
Beyond Surveys: Analyzing Software Development
Artifacts to Assess Teaching Efforts

Christoph Matthies, Ralf Teusner, Guenter Hesse
Hasso Plattner Institute

University of Potsdam, Germany
{firstname.lastname}@hpi.de

C. Matthies, R. Teusner and G. Hesse, “Beyond Surveys: Analyzing Software Development Artifacts to Assess Teaching Efforts,” 2018 IEEE Frontiers in
Education Conference (FIE), San Jose, CA, USA, 2018, pp. 1-9. doi: 10.1109/FIE.2018.8659205. IEEE Xplore: https://ieeexplore.ieee.org/document/8659205.

Copyright c©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Abstract—This Innovative Practice Full Paper presents an
approach of using software development artifacts to gauge
student behavior and the effectiveness of changes to curriculum
design. There is an ongoing need to adapt university courses to
changing requirements and shifts in industry. As an educator it is
therefore vital to have access to methods, with which to ascertain
the effects of curriculum design changes. In this paper, we present
our approach of analyzing software repositories in order to
gauge student behavior during project work. We evaluate this
approach in a case study of a university undergraduate software
development course teaching agile development methodologies.
Surveys revealed positive attitudes towards the course and the
change of employed development methodology from Scrum to
Kanban. However, surveys were not usable to ascertain the degree
to which students had adapted their workflows and whether they
had done so in accordance with course goals. Therefore, we
analyzed students’ software repository data, which represents
information that can be collected by educators to reveal insights
into learning successes and detailed student behavior. We analyze
the software repositories created during the last five courses, and
evaluate differences in workflows between Kanban and Scrum
usage.

Index Terms—software engineering, capstone course, develop-
ment artifacts, Kanban, Scrum, Educational Data Mining

I. INTRODUCTION

One of the main goals of universities is to provide students
with an education of the best quality possible. As such,
there is the constant need to improve the learning experience
in courses, update course contents to changing requirements
and strive for more effective organizational structures [1].
With the continuing rise of digitization in universities, an
ever-expanding amount of data on learners is available [2],
[3]. Access to new data sources has led to drastic changes
both in science and business. Equally, learning scientists can
greatly benefit from having large repositories of educational
data available [3]. Analysis of these repositories in order to
tackle educational research issues has given rise to the field of
Educational Data Mining (EDM) [4]. In this paper, we show
how techniques from this domain can be used to gain insights
into students’ workflows and ascertain whether changes in
curriculum design had the desired effects, without relying on
traditional surveys alone.

A. Educational Data Mining

The International Educational Data Mining Society defines
EDM as a discipline concerned with “developing methods
for exploring the unique and increasingly large-scale data

that come from educational settings and using those methods
to better understand students, and the settings which they
learn in” [5]. Traditional student assessment and evaluation
methods such as standardized exams can only provide in-
formation on specific student traits at certain points in time.
In order to obtain information that could explain students’
progress continued recording of their activities using more
sophisticated techniques is required. If designed well, such
measurements can provide insights into how students behave,
communicate, and participate in learning activities [6]. In an
educational setup, data is generated using a variety of disparate
systems [2]. Some settings in which EDM has been applied
include:

• E-learning and learning management systems, e.g. Moo-
dle [7], where web mining approaches have been applied
to student data in log files and databases [4].

• Massive Open Online Courses (MOOCs), where student
collaborations and interactions with the platforms are
studied [8].

• Offline education, where students are lectured in a tradi-
tional face-to-face manner. Statistical analyses are applied
to students’ data, like test scores or peer assessments,
which are gathered in classroom environments [4].

Analyzing this educational data can help evaluate, validate and
eventually improve courses and educational systems, paving
the way for a more effective learning process [9].

B. Educational Data Sources

Educational contexts such as e-learning or MOOCs benefit
from student data that is easily available for analysis and can
be used to improve courses [2]. In these settings, student
activity takes place in controlled, digitized setups that data
can be extracted from by logging interactions [6], [10]. In in-
person university courses or other offline educational settings
other data collection strategies have to be employed, for
example, the results of peer assessments [11] or surveys [1]. In
these analog settings, the lack of detailed, high-resolution data
on learners can be compensated by collecting additional data
sources specific to the individual context, e.g. social network
data [12] or even the complexity of teacher’s lecture notes [13].
However, due to the limited classroom time available, teachers
are often forced to choose between spending time assisting
students and spending time assessing students and collecting
data [10]. In order to alleviate this problem, data that is already

https://doi.org/10.1109/FIE.2018.8659205
https://ieeexplore.ieee.org/document/8659205

being created by students during project work, especially if
digital systems are used, can be analyzed in depth. While
this type of already existent data has previously been used
to assess students [14], [15], [16], it is also valuable to assess
the effectiveness of changes in curriculum design and in order
to improve classroom courses.

C. Case Study

In this paper, we describe a case study on how software
development artifacts, created during students’ project work in
a software engineering course, can be used to check educator’s
assumptions on student behavior. The course’s setting of
collaborative software engineering in a simulated real-world
scenario is ideally suited for collecting development data.
During the project work, students use common development
tools such as version control systems (VCS), issue trackers and
Continuous Integration services. The artifacts produced using
these systems, i.e. commits in a VCS containing code changes
and descriptions, contain a large amount of information on
how students work and collaborate in their groups [17], [18].

D. Research Questions

The following research questions (RQ) guide our work:
RQ1 How can surveys be used to gauge students perceptions

of changes in course design over time?
RQ2 What data can be collected from software development

artifacts created by students during a classroom course?
RQ3 What metrics can be applied to student development

data to gauge changes in student behavior during project
work?

The rest of the paper is structured as follows: Section II
introduces the university course in which the case study was
performed and describes the software development process
that was followed. Section III presents the surveys that were
conducted and discusses the perceptions and attitudes of
students. The following Section IV describes the analysis
of students’ software development artifacts produced in the
course installments of the last five years and discusses the re-
sults. Section V presents related work in the field of studies in
student behaviors and sources of educational data. Section VI
concludes and summarizes our findings.

II. CASE STUDY CONTEXT

The undergraduate software development course described
in this case study has been running in our university for more
than 5 years. It is repeatedly run in the winter semester with a
length of 15 weeks and was most recently taught in the winter
semester of 2017/18.

A. Software Engineering Course

The main goal of the capstone course “Software Engi-
neering II” is teaching iterative, agile development methods
and best practices in a hands-on fashion, which has become
standard practice in universities [19], [20]. Each week of the
course students are expected to work 8 hours on the project

including lectures and team meetings. In a simulated real-
world scenario, students are encouraged to apply the agile
processes, introduced in lectures and exercises, and adapt them
to suit their teams. The main learning targets of the course
include:

• Gaining experience with the artifacts and meetings of
agile methods

• Acquiring knowledge of source code management (SCM)
and continuous integration (CI) systems

• Developing critical self-assessment skills regarding stu-
dents own roles in a software development team

All participants, who form their own development teams,
jointly develop a single software system. This means students
need to communicate and collaborate within their teams as
well as with other student teams. The project is hosted on
the public collaboration platform GitHub1, allowing all stake-
holders access to the code and documentation. Junior research
assistants, acting as tutors, are present during team meetings
and provide advice and assistance. Regular lectures on agile
methodologies and their applications as well as more general
software development topics, such as Continuous Integration
and testing, take place during the course.

B. Course Evolution

Course installments prior to the winter semester of 2014/15
taught exclusively the Scrum methodology [21]. However,
Lean development approaches, such as Kanban [22], have
gained popularity in industry [23], [24]. Therefore, in an
ongoing effort to keep the course as relevant and closely
related to real-world scenarios as possible, the practice of
Kanban was included. Students employed the Scrum method-
ology at the beginning of the course, before switching to
Kanban. In comparison to Scrum, Kanban is considered less
authoritative and prescriptive, having fewer rituals and rules
than Scrum [25]. In order to improve learning results, it is
therefore advisable to introduce Kanban after students have
already gained experience with the more structured Scrum
method [26]. Iterations of the course prior to the winter term
2015/16 did not include Kanban and focused solely on the
application of Scrum. The inclusion of Kanban in the course
is a major change as it impacts how students collaborate, plan
their work and organize their team structures and meetings.
It needs to be evaluated in order to gauge how effective the
introduction of a different software development methodology
was, both in terms of student satisfaction as well as how well
the method was applied in the project.

C. Switching Development Processes

In the first four development iterations of the course, the
majority of the course, a modified version of the Scrum
process, adapted for the limited time allotted to students for
the course is employed. It is depicted in Figure 1 at the top.

Participants form self-organizing teams [27] of up to 8
members. For every Scrum team the roles of Product Owner

1https://github.com/

https://github.com/

1
2
3
4
5
6
7

Sprint
Planning
Meeting

Sprint
BacklogBacklog

Every
Week

2-3 Week
Sprint

Weekly Scrum
Meeting

Stakeholder
Input

Product

4 iterations

Sprint
Retrospective

Meeting

Finished
Increment

Sprint Review
Meeting

ToDo Doing Done

Last iteration

Kanban Board

Review

Scrum Process

Kanban Process

As fast as possible

Fig. 1. Overview of the modified Scrum process (top, blue) and the Kanban
process (bottom, red) used in our software engineering course.

(PO) and a Scrum Master (SM), are also performed by
student team members, while all other students act as software
developers. In every development iteration (i.e. Sprint), a
planning, sprint review, retrospective as well as a weekly
synchronization meeting, a stand-up meeting, is organized by
the teams. After course participants have become familiar
with the Scrum process and their teams, i.e. after they have
reached the norming stage of group development [28], and
have developed a cohesive group, Kanban and its practices
are introduced in a lecture. The concepts of Kanban such as
the Kanban board, the idea of workflow visualization and the
guiding principle of limiting work in progress (WIP) [29] are
introduced. We encourage students to try out and apply these
new ideas in their teams. Participants employ Kanban for the
last iteration of the project, instead of a final Scrum sprint, see
the bottom of Figure 1.

III. SURVEYS

When trying to assess the impact of changes in curriculum
design and whether the expected changes to student behavior
took place, students’ perceptions can be collected through the
use of surveys.

A. End-of-term Survey

As part of an ongoing effort to collect feedback from stu-
dents to improve teaching and university courses, standardized
end-of-term surveys were conducted in all iterations of our
software engineering courses in the years 2013 up to 2018.
This has become standard practice for educational institutions
to evaluate teaching quality [1]. The survey is administered
online before students receive their final course grades, in
order to prevent interference. The survey collects perceptions
of students on a range of topics, including satisfaction with
the course in general, perceived importance of course contents

and satisfaction with mentoring. An extract of the questions
relevant to student satisfaction with the project work and the
course over the iterations of the course is shown in Table I.

Survey item

1 The course was fun
2 The course motivated me to delve deeper into the discussed topics
3 I learned a lot in the course
4 The course is important to my course of studies
5 The course was well structured
6 The topics of the course were well chosen
7 How would you rate the course overall?

TABLE I
QUESTIONS AND STATEMENTS OF THE END-OF-TERM SURVEY.

Questions and statements could be rated on a scale of
“fully agree”/“great” to “totally disagree”/“bad”. Results of
the anonymous survey are presented to course instructors in
aggregate form, with ratings mapped to German school grades.
The grade 1 (“very good”) is the best, with the grade 5
(“inadequate”) signifying a fail.

Results Average ratings for all installments of the course
showed overwhelmingly positive perceptions of the course and
its content, see Figure 2. Very few questions were answered

Fig. 2. Mean grades given to course installments by students after the course’s
end. German school grades: 1 is the best grade, i.e. the lower the better.
Courses in 2013/14 and 2014/15 (blue) employed solely Scrum, the others
(yellow) employed both Scrum and Kanban.

with mean scores larger than 2 (“good”). While this is satis-
fying to see as far as student satisfaction goes it also means
no significant change can be detected in student satisfaction
between the courses employing Kanban and those that did not.
The variance in answers is very low, as students rated aspects
of the course overwhelmingly as very good (1) to good (2).
Therefore, we devised a more specific survey.

B. Kanban Survey

In the second installment of the software engineering course
that used Kanban (in 2016/17), we conducted a voluntary,
anonymous online survey among all students after course
completion, in addition to the regular end-of-term surveys. The
first course that introduced Kanban (in 2015/16) using newly
created teaching materials had received critical comments from
students in oral feedback sessions, which we addressed in the

following course. The Kanban survey focused on students’ per-
ceptions of Kanban as well as the advantages and drawbacks
of the introduced practices and methods. While the survey was
designed to elicit responses to the details of how Kanban was
introduced in the course, it also explicitly included questions
on whether and how students’ workflows were adapted when
changing from Scrum to Kanban processes. These questions
were designed to better understand whether the expected
changes in process had actually taken place. The survey
questions related to process change are listed in Table II.

Type Question

1 5-point
scale

Was the Kanban week at project end more useful and
productive then a last week of Scrum?

2 5-point
scale

Did you have to adapt your workflow for the Kanban week?

3 free text What were the biggest advantages and disadvantages of using
Kanban in your team?

4 multiple
choice

How did user stories change from using Scrum to Kanban?

5 5-point
scale

Would you recommend using Kanban to the participants of
next year’s course?

TABLE II
QUESTIONS RELATED TO KANBAN ADOPTION OF THE ANONYMOUS

ONLINE STUDENT SURVEY PERFORMED AT THE END OF THE 2016/17
SOFTWARE ENGINEERING COURSE.

The survey consisted mainly of questions that could be
answered using a 5-point Likert scale, ranging from 1 (strong
no) to 5 (strong yes), with 3 being neutral. Additionally, the
survey included free text questions as well as a multiple choice
question to gather more detailed insights. It was possible to
submit the survey with missing answers.

Results Overall, 18 students, 17 men and 1 woman, an-
swered the questionnaire. All questions featuring the Likert
scale were answered by all participants. Table III contains a
summary of the collected answers. Concerning the change of
Scrum to Kanban methods (question 2), students on average
stated that they had adapted their workflows, see Figure 3. The
high mean value (4.08), as well as the median of 5 (highest
agreement), point to students having adapted their workflow

Question Topic Mean Std.
Dev.

10% Trim.
Mean

Median Range

1 Kanban week
preferred over
another Scrum
week?

4.08 1.38 4.30 5.00 4.00

2 Was the work-
flow adapted?

3.83 1.11 4.00 4.00 4.00

5 Recommended
for next year?

4.33 0.98 4.50 5.00 3.00

TABLE III
SUMMARIZED ANSWERS OF PARTICIPANTS TO THE 5-POINT LIKERT

SCALE QUESTIONS OF THE SURVEY. ANSWER POSSIBILITIES:
1 (STRONG NO), 2 (NO), 3 (NEUTRAL), 4 (YES) 5 (STRONG YES).

Fig. 3. Summary of answers to Likert-scale questions 1, 2 and 5 as a box
plot. Center lines show the medians, box limits indicate the 25th and 75th
percentiles. Whiskers extend 1.5 times the interquartile range from the 25th
and 75th percentiles, outliers are represented by dots. Crosses represent sample
means, data points are plotted as open circles. N = 12.

in a reflected manner. The overall positive student attitude
towards group software development methodologies was also
reflected in the answers to questions 1 and 6, regarding the
preference of Kanban over Scrum for the last iteration as well
as recommending the course for next year’s students. Surveys
participants indicated that they would strongly recommend the
usage of Kanban to the next cohort of students of the software
engineering course (question 6), indicating that, even though
this question is not a measure of learning success, applying
Kanban was most likely at least fun.

The free text answers to question 3, see Figure II, regarding
the (dis)advantages of Kanban, were manually labeled with
the mentioned topics. The list of topics was refined repeatedly
after evaluating every question. Survey participants identified
the following topics as advantages of Kanban (N=11):

• Efficiency (7 mentions)
• Autonomy (4 mentions)

Three other other topics were mentioned only twice or fewer
times. As concepts, efficiency and autonomy are closely re-
lated to Lean Software’s guiding principles of Eliminate Waste
and Empowering the Team, respectively [30]. As Kanban is
heavily inspired by these ideas, it is reassuring to see that
these ideas transferred.

Regarding the disadvantages of Kanban usage, students
mentioned the following topics (N=9):

• Only worked on small user stories (3)
• Uneven task distribution (2)

Another six disadvantages only received single mentions.
Solely working on small user stories, i.e. work items in

an agile process, may be a consequence of team member
autonomy. Developers may choose to work on small items
that can be moved through the columns of the Kanban board
quickly, instead of picking larger, more time-consuming tasks
to work on. Tackling uneven task distribution between team
members is an ongoing challenge in educational settings and
especially in self-organizing teams of students. It can be
seen as a negative consequence of the autonomy identified
by survey participants. Developers are free to handle their

Topic Answer choice and count

User story focus bug-oriented 11 feature-oriented 0
User story length Shorter 11 Longer 0
Requirements More detailed 8 More general 0
Interaction with PO More 3 Less 0
Prioritization of stories Better 3 Worse 2

TABLE IV
ANSWERS OF SURVEY PARTICIPANTS TO QUESTION #4, REGARDING
ATTRIBUTES OF USER STORIES WHEN CHANGING FROM SCRUM TO

KANBAN PROCESSES. N=12.

workload, with some developers choosing to do more and
others choosing to work on fewer items.

User stories are one of the core means of communication,
both in Kanban and Scrum, between the Product Owner, who
receives input from stakeholders, and developers [31]. As
such, we included a question on the perceived change of user
stories when switching from Scrum to Kanban (question 4). In
order to make answering easier, this question was a multiple
choice question, that provided a range of answer possibilities
of which any number could be chosen. The choices, as well
as the summarized answers of survey participants, are shown
in Table IV.

Students classified the user stories that were written by
Product Owners and developers during the Kanban iteration
as shorter and more bug-oriented than in the previous Scrum
iterations. While an influx of small fixes to a software product
is expected shortly before the final deadline, a time in which
Kanban was used, smaller user stories can also help move
tickets through the Kanban board more quickly. This reduced
the cycle time, the time from when work begins on an item
until it is ready for delivery [32].

However, students also answered that the requirements, i.e.
part of the acceptance criteria [33] within user stories, had
gotten more detailed during Kanban usage. This allows work
on a user story to be started without having to clarify open
questions beforehand and can help efficiency by decreasing
the cycle time. Small user stories that contain enough detail
to be immediately implementable are ideal for usage in the
Kanban process [34].

C. Discussion

Both surveys, the more general end-of-term survey as well
as the more specialized survey on Kanban, revealed positive
attitudes towards our approach of teaching agile processes
in a hands-on fashion as well as the shift from Scrum to
Kanban at the end of the project (RQ2). Students indicated
that they would recommend using Kanban to participants of
the following year’s course. These results are in line with
related, similar studies [35]. In particular, Melnik et al. state
that students, in general, were “very enthusiastic about core
agile practices” and accepted and liked them [36]. The authors
also point out that this observation held for a broad range of
students, regardless of educational program, age or industry
experience. Furthermore, whether the educational setting that

student teams worked in during their project work was more
or less controlled, did not have a significant influence on
student satisfaction [37]. While the findings of this and similar
studies are encouraging for educators teaching software project
courses, they also pose challenges. If students are generally
content in agile project courses, simply due to the course
setting and the fact that teamwork and building software
together is fulfilling, how can improvements to curriculum
design and changes in student behavior be evaluated?

Student opinions and attitudes towards course contents are
an important part of any assessment plan. However, evalua-
tions of teaching methods should primarily rely on the as-
sessment of learning outcomes [1], which surveys only partly
capture as they are geared towards collecting perceptions and
attitudes. Furthermore, if not every survey participant an-
swered the more reflective, time-consuming free text answers,
data on the learning outcomes of these participants is missing
completely. To help tackle these challenges, the outcomes and
artifacts produced during the process transition from Scrum
to Kanban can be analyzed to gain additional insights into
development teams.

IV. DEVELOPMENT ARTIFACT ANALYSIS

While surveys are excellent tools for capturing the attitudes
of participants, they do not allow insights into whether the
perceived change in workflow or in user story quality actually
took place during the project or how severe the change was. In
order to provide another dimension of analysis based on real
project data, we evaluated the software development artifacts
produced by course participants. In particular, we compared
students’ development artifacts of the last five installments of
our software engineering course, the earliest two of which did
not include Kanban and the three most recent ones that did.

A. Data Collection

The development artifacts we collected from course repos-
itories included commits into the version control system git2,
containing code changes, timestamps and commit messages
describing the change, as well as tickets, acting as user stories,
in an issue tracker. Both of these data sources were collected
from the collaboration and hosting service GitHub, where all
projects were hosted. GitHub features extensive application
programming interfaces (APIs) 3 that allow programmatically
extracting the data stored by the service.

For every repository of the last five course iterations, user
stories/issues and commits from the last seven days of project
work were collected. This is the time frame that Kanban was
employed in the more recent course iterations.

1) Contributors: First, all unique contributors of a project
in the given time frame were identified. This allows infor-
mation extracted from different courses to be normalized by
contributor count, as different course installments featured
differing participant amounts. This step was followed by
manual deduplication of users, in order to merge accounts

2https://git-scm.com/
3https://developer.github.com/v3/

https://git-scm.com/
https://developer.github.com/v3/

where students had used multiple accounts or email addresses,
e.g. university or private accounts, to work on projects.

2) Issues / User Stories: Issues were only included in the
analysis if they were closed in the study time frame and issues
that represented GitHub pull requests4 and not user stories
were excluded. For every issue, the number of comments,
as well as events5, interactions except commenting, such as
assigning developers or labels, were collected. We furthermore
annotated each issue with whether the user who had opened
the issue was the same as the one who closed it.

3) Commits: In order to allow more rapid analysis, the
git repositories of all projects under study where copied, i.e.
cloned, to a local copy. Using the git command line, specif-
ically the git log sub command6, statistics on the commits
where collected. Attention was paid not to include merge
commits, i.e. commits that introduce no new functionality and
to take advantage of the deduplicated list of contributors. All
statistics were collected as means per contributor. For every
list of commits of a project repository, the mean commits,
touched files, last-minute commits, mean line changes and the
number of unique issues referenced, were saved. Last-minute
commits refer to those commits made within a day of project
end. Furthermore, we parsed the commit messages of commits
and identified whether they referenced an issue in the issue
tracker by number in the form ”fixed issue #123“.

Using this data, both the assumptions on student behavior,
i.e. educators hypothesis of how artifacts would change from
using Scrum to Kanban, as well as the accurateness of student
perceptions could be tested.

B. Discussion

The collected data shows that the length of user stories did
not significantly differ from when Kanban or Scrum was used
in the last iteration of the course, see Table V.

Issue body length Issue title length

Course year Mean Stdev Median Mean Stdev Median

2013/14 274.8 295.2 169.0 35.3 15.3 32.0
2014/15 420.8 327.3 361.0 50.7 15.5 50.0
2015/16* 360.9 339.4 253.0 36.9 16.9 32.5
2016/17* 505.5 556.9 378.0 36.9 16.7 35.0
2017/18* 579.8 393.3 526.0 35.9 14.3 37.5

TABLE V
ISSUE BODY AND TITLE LENGTH OF ISSUES FOR THE LAST WEEK OF

PROJECTS. COURSES MARKED WITH * EMPLOYED KANBAN.

This differs from the reported perceptions of students in the
survey performed in the 2016/17 course installment. There,
students reported that user stories were perceived to be shorter
when using Kanban when compared to Scrum. While these
two measures are not necessarily directly comparable, further
study into the content differences between user stories in

4https://help.github.com/articles/about-pull-requests/
5https://developer.github.com/v3/issues/events/
6https://git-scm.com/docs/git-log

Kanban and Scrum is required. However, the analysis was
able to uncover this discrepancy and provides a starting point
for further investigation.

Most other measures calculated from commits, such as the
mean amount of touched files, did not differ significantly
between the two processes in different course years, see
Table VI.

Course
year

Commit
amount

Touched
files

Last-
minute
commits

Line
changes
per commit

Unique
issues
referenced

2013/14 12.1 13.3 1.4 590.5 2.8

2014/15 7.2 6.9 1.2 408.0 1.0

2015/16* 6.1 8.0 8.1 466.0 0.1

2016/17* 3.4 5.4 2.2 163.5 2.2

2017/18* 8.6 5.3 1.7 195.0 1.5

TABLE VI
COMPARISON OF COMMIT ATTRIBUTES FOR THE LAST WEEK OF

PROJECTS. COURSES MARKED WITH * EMPLOYED KANBAN. ALL VALUES
STATED NORMALIZED BY COURSE PARTICIPANT COUNT.

However, it is encouraging to see that the amount of last-
minute commits, i.e. commits made close to the end of the
iteration [38] tended to be higher in the course installments
in which Kanban was employed. Scrum’s iteration plan, the
Sprint Backlog, contains all the work items a team intends
to address in a sprint, i.e. the amount of work that can be
performed by a team in an iteration. Ideally, these items are
worked on in a continuous manner, so that towards the end of
the sprint the last user story is finished [21]. In this manner,
work intensity and commit frequency should be uniformly
distributed during an iteration. In contrast, Kanban does not
explicitly call for iteration planning and so work is more likely
to be assigned more dynamically: new work items can easily
be added to the work queue, especially towards the end of the
project, when the deadline approaches.

The more dynamic nature of Kanban is also reflected in
the fact that the mean line change per commit, as well as the
mean number of touched files, were smaller in the last two
years of the course, see Table VI, when educators had already
gathered some experience teaching the new methodology. This
is in line with the Kanban survey results, where students stated
that their user stories when employing Kanban were more bug-
oriented than feature-oriented. Fixing a bug usually requires
changing fewer lines touching fewer files than implementing
an entirely new feature. Furthermore, bugs are usually noticed
during regular development activities or during testing and can
easily be added to a Kanban board [39], whereas they might
only end up in the next Scrum sprint [40].

Interactions with user stories, i.e. issues on GitHub, did
not differ significantly between those courses that employed
kanban and those that used Scrum, see Table VII.

Normalized by participant count, similar mean numbers of
issues were closed in the studied time frame and a similar
amount of comments were attached to issues. However, the
two most recent courses using Kanban showed higher mean

https://help.github.com/articles/about-pull-requests/
https://developer.github.com/v3/issues/events/
https://git-scm.com/docs/git-log

Mean per contributor % issues
opened & closed
by same person

Course year Issue
amount

Issue
events

Issue
comments

2013/14 4.9 27.5 17.1 43
2014/15 2.6 47.8 4.1 58
2015/16* 3.9 35.5 4.1 20
2016/17* 2.8 64.4 6.4 46
2017/18* 2.1 68.9 4.8 65

TABLE VII
COMPARISON OF ISSUES AND THEIR ATTRIBUTES FOR THE LAST WEEK OF

PROJECTS. COURSES MARKED WITH * EMPLOYED KANBAN.

amounts of non-comment events, such as labeling or assign-
ments, a sign that the issue tracker was used more heavily.
While Scrum explicitly calls for a role that mainly writes and
prioritizes user stories, the Product Owner [21], Kanban does
not. We had thus hypothesized that introducing Kanban would
result in higher engagement by the entire team with the list
of outstanding work items, instead of teams mostly relying
on the PO to maintain it. However, the percentage of issues
opened and closed by the same person, see the last column of
Table VII, was surprisingly low even in the Scrum courses,
with only 43% and 58% in course installments 2013/14
and 2014/15. These numbers did not differ significantly for
the Kanban courses. While these results do not support our
original hypothesis on team engagement with user stories, they
represent opportunities for future work on how agile student
teams interact with user stories and work item backlogs in
collaboration with a Product Owner role.

By analyzing software development data created by stu-
dents, which is already produced during regular development
activities, we were able to uncover areas where some of
our assumptions on student behavior regarding the adoption
of different agile software development methodologies were
confirmed and some were refuted. These areas will serve as a
basis for future improvements to the course.

V. RELATED WORK

A variety of specialized data sources have been analyzed in
previous work in order to gain insights into student behaviors
in computer science courses.

Wilson and Shrock [41] employed a survey to determine
factors that promote success in an introductory computer sci-
ence course. They examined twelve factors of which comfort
level, math, and attribution to luck for success/failure were
the most important for predicting student scores. Similarly,
Bennedsen and Caspersen [42] attempted to help improve
students learning premises by collecting data on the emotional
and social factors of students in a survey. They collected data
on the factors of perfectionism, self-esteem, coping tactics,
affective states, and optimism.

While surveys can be used to collect data on arbitrary fac-
tors, depending on which questions are used, entirely different
ways of collecting student data have also been explored. Keen
and Etzkorn [13] analyzed the complexity of teacher’s lecture

notes, the buzzword density, i.e. the amount of Computer
Science domain-specific words divided by the total number of
words in the lecture, to predict grades. Fire et al. [12] built a
graph of social interaction between students using homework
assignment data and course website logs. The authors then
studied this data structure to reveal the impact of cooperation
among students on their success. The model showed a high
correlation between a student’s grade and that of their closest
friend. Ashenafi et al. used data created by students during
course activities, namely the results of several semi-automated
peer-assessment tasks throughout the semester, to build a linear
regression model for predicting final grades [6].

Performance prediction has more recently also been applied
in MOOCs, which feature an abundance of digital data on
student behavior. Jian et al. [43] used students’ activity in
discussion forums together with their performance on peer-
assessment tasks and assignments in the first week of the
course to predict whether students will complete the course.
Brinton et al. [44] collected behavior data of students watching
the educational videos of a MOOC. They recorded interactions
with the video player, e.g. pause, rate change or seek in order
to predict whether participants will correctly answer questions
on a video’s content in the first attempt. Teusner et al. [8]
compiled events of users interacting with a MOOC platform
in the form of standardized events [45]. From these event
streams 17 combined metrics, such as session duration, forum,
video player and download activity, as well item discovery
are computed. The authors state that using the collected data,
informed actions can be taken to improve learning outcomes.

VI. CONCLUSION

University courses need to be continuously adapted to
changes in requirements, such as industry shifts, technology
advancements or altered student expectations. Feedback to
educators on curriculum design usually takes the form of end-
of-term surveys or questionnaires on specific course aspects.
However, techniques from the field of Educational Data Min-
ing can be employed to gain insights into student teams and
their reactions to changes in curricula, that go beyond those
possible with surveys. This paper presents our approach to an-
alyze development artifacts to achieve this goal. We analyzed
the software development artifacts of student teams from five
university undergraduate software development courses, which
teach different agile development methodologies. Surveys with
participants revealed positive attitudes towards the course and
changing the employed development methodology during the
course from Scrum to Kanban. However, surveys were not able
to ascertain the degree to which students had adapted their
workflows accurately. Therefore, we propose an approach of
analyzing the software development data created by students
during regular project work activities, specifically user stories
and commits to a version control system, as an additional
dimension of analysis. While this data serves a primary
purpose in communication between students it also represents
information that can be collected and analyzed by educators to
generate insights into student behavior during project work.

REFERENCES

[1] R. M. Felder and R. Brent, “How To Improve Teaching Quality,” Quality
Management Journal, vol. 6, no. 2, pp. 9–21, 2009.

[2] A. Dutt, M. A. Ismail, and T. Herawan, “A Systematic Review on
Educational Data Mining,” IEEE Access, vol. 5, no. c, pp. 15 991–
16 005, 2017. [Online]. Available: https://doi.org/10.1109/ACCESS.
2017.2654247

[3] K. R. Koedinger, K. Cunningham, A. Skogsholm, and B. Leber, “An
open repository and analysis tools for fine-grained, longitudinal learner
data,” in Educational Data Mining 2008: 1st International Conference
on Educational Data Mining, Proceedings, 2008, pp. 157–166.

[4] C. Romero and S. Ventura, “Educational Data Mining: A Review
of the State of the Art,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), vol. 40, no. 6,
pp. 601–618, nov 2010. [Online]. Available: https://doi.org/10.1109/
TSMCC.2010.2053532

[5] International Educational Data Mining Society, “educationaldatamin-
ing.org,” 2018. [Online]. Available: http://educationaldatamining.org/

[6] M. M. Ashenafi, G. Riccardi, and M. Ronchetti, “Predicting students’
final exam scores from their course activities,” in 2015 IEEE Frontiers
in Education Conference (FIE). IEEE, oct 2015, pp. 1–9. [Online].
Available: https://doi.org/10.1109/FIE.2015.7344081

[7] J. Gamulin, O. Gamulin, and D. Kermek, “Data mining in hybrid
learning: Possibility to predict the final exam result,” in 2013 36th In-
ternational Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), 2013, pp. 591–596.

[8] R. Teusner, K.-A. Rollmann, and J. Renz, “Taking Informed Action
on Student Activity in MOOCs,” in Proceedings of the Fourth (2017)
ACM Conference on Learning @ Scale - L@S ’17. New York,
New York, USA: ACM Press, 2017, pp. 149–152. [Online]. Available:
https://doi.org/10.1145/3051457.3053971

[9] C. Romero, S. Ventura, and P. D. Bra, “Knowledge Discovery
with Genetic Programming for Providing Feedback to Courseware
Authors,” User Modeling and User-Adapted Interaction, vol. 14, no. 5,
pp. 425–464, jan 2004. [Online]. Available: https://doi.org/10.1007/
s11257-004-7961-2

[10] M. Feng and N. T. Heffernan, “Informing Teachers Live about Student
Learning: Reporting in the Assistment System,” in The 12th Annual
Conference on Artificial Intelligence in Education Workshop on Usage
Analysis in Learning Systems, 2005.

[11] K. J. Topping, “Methodological quandaries in studying process
and outcomes in peer assessment,” Learning and Instruction,
vol. 20, no. 4, pp. 339–343, aug 2010. [Online]. Available:
https://doi.org/10.1016/j.learninstruc.2009.08.003

[12] M. Fire, G. Katz, Y. Elovici, B. Shapira, and L. Rokach, “Predicting
Student Exam’s Scores by Analyzing Social Network Data,” in Active
Media Technology, R. Huang, A. A. Ghorbani, G. Pasi, T. Yamaguchi,
N. Y. Yen, and B. Jin, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 584–595.

[13] K. J. Keen and L. Etzkorn, “Predicting Students’ Grades in Computer
Science Courses Based on Complexity Measures of Teacher’s Lecture
Notes,” Journal of Computing Sciences in Colleges, vol. 24, pp. 44–48,
2009.

[14] P. Johnson, Hongbing Kou, J. Agustin, Qin Zhang, A. Kagawa, and
T. Yamashita, “Practical automated process and product metric collection
and analysis in a classroom setting: lessons learned from Hackystat-
UH,” in Proceedings. 2004 International Symposium on Empirical
Software Engineering, 2004. ISESE ’04. IEEE, aug 2004, pp. 136–144.
[Online]. Available: https://doi.org/10.1109/ISESE.2004.1334901

[15] C. Matthies, T. Kowark, K. Richly, M. Uflacker, and H. Plattner,
“How surveys, tutors, and software help to assess Scrum adoption in
a classroom software engineering project,” in Proceedings of the 38th
International Conference on Software Engineering Companion (ICSE).
New York, New York, USA: ACM Press, 2016, pp. 313–322. [Online].
Available: https://doi.org/10.1145/2889160.2889182

[16] N. Zazworka, K. Stapel, E. Knauss, F. Shull, V. R. Basili, and
K. Schneider, “Are developers complying with the process,” in
Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement - ESEM ’10, ACM.
New York, New York, USA: ACM Press, 2010, p. 1. [Online].
Available: https://doi.org/10.1145/1852786.1852805

[17] C. Rosen, B. Grawi, and E. Shihab, “Commit guru: analytics and risk
prediction of software commits,” in Proceedings of the 2015 10th Joint

Meeting on Foundations of Software Engineering - ESEC/FSE 2015, ser.
ESEC/FSE 2015. New York, New York, USA: ACM Press, 2015, pp.
966–969. [Online]. Available: https://doi.org/10.1145/2786805.2803183

[18] E. A. Santos and A. Hindle, “Judging a commit by its cover,”
in Proceedings of the 13th International Workshop on Mining
Software Repositories - MSR ’16, ser. MSR ’16. New York, New
York, USA: ACM Press, 2016, pp. 504–507. [Online]. Available:
https://doi.org/10.1145/2901739.2903493

[19] M. Paasivaara, J. Vanhanen, V. T. Heikkilä, C. Lassenius, J. Itkonen,
and E. Laukkanen, “Do High and Low Performing Student Teams
Use Scrum Differently in Capstone Projects?” in Proceedings of
the 39th International Conference on Software Engineering: Software
Engineering and Education Track, ser. ICSE-SEET ’17. Piscataway,
NJ, USA: IEEE Press, 2017, pp. 146–149. [Online]. Available:
https://doi.org/10.1109/ICSE-SEET.2017.22

[20] D. Dzvonyar, L. Alperowitz, D. Henze, and B. Bruegge, “Team Compo-
sition in Software Engineering Project Courses,” SEEM’18: IEEE/ACM
International Workshop on Software Engineering Education for Millen-
nials, 2018.

[21] K. Schwaber and J. Sutherland, “The Scrum Guide - The
Definitive Guide to Scrum: The Rules of the Game,” Tech. Rep.,
2017. [Online]. Available: http://scrumguides.org/docs/scrumguide/
v2017/2017-Scrum-Guide-US.pdf

[22] J. P. Womack, D. T. Jones, and D. Roos, The machine that changed the
world: the story of lean production. Harper Collins, 1991.

[23] VersionOne Inc., “The 11th Annual State of Agile Report,” VersionOne
Inc., Tech. Rep., 2017. [Online]. Available: https://explore.versionone.
com/state-of-agile/versionone-11th-annual-state-of-agile-report-2

[24] A. Komus and M. Kuberg, “Abschlussbericht : Status Quo Agile
2016/2017,” Hochschule Koblenz, University of Applied Sciences, Tech.
Rep., 2017.

[25] H. Kniberg, Kanban and Scrum - Making the most of both. Lulu.com,
2009.

[26] V. Mahnic, “From Scrum to Kanban: Introducing Lean Principles to
a Software Engineering Capstone Course,” International Journal of
Engineering Education, vol. 31, no. 4, pp. 1106–1116, 2015.

[27] R. Hoda, J. Noble, and S. Marshall, “Organizing self-organizing teams,”
in Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - ICSE ’10, vol. 1. New York, New
York, USA: ACM Press, 2010, p. 285. [Online]. Available: https:
//doi.org/10.1145/1806799.1806843

[28] D. A. Bonebright, “40 years of storming: a historical review of
Tuckman’s model of small group development,” Human Resource
Development International, vol. 13, no. 1, pp. 111–120, feb
2010. [Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/
13678861003589099

[29] M. O. Ahmad, J. Markkula, and M. Oivo, “Kanban in software
development: A systematic literature review,” in 2013 39th Euromicro
Conference on Software Engineering and Advanced Applications.
IEEE, sep 2013, pp. 9–16. [Online]. Available: https://doi.org/10.1109/
SEAA.2013.28

[30] M. Poppendieck and T. Poppendieck, Lean software development: an
agile toolkit. Addison-Wesley, 2003.

[31] M. Rees, “A feasible user story tool for agile software development?”
in Ninth Asia-Pacific Software Engineering Conference, 2002., vol.
2002-Janua. IEEE Comput. Soc, 2002, pp. 22–30. [Online]. Available:
https://doi.org/10.1109/APSEC.2002.1182972

[32] R. Polk, “Agile and Kanban in Coordination,” in 2011 AGILE
Conference. IEEE, aug 2011, pp. 263–268. [Online]. Available:
https://doi.org/10.1109/AGILE.2011.10

[33] A. Silva, T. Araújo, J. Nunes, M. Perkusich, E. Dilorenzo,
H. Almeida, and A. Perkusich, “A systematic review on the use
of Definition of Done on agile software development projects,” in
Proceedings of the 21st International Conference on Evaluation and
Assessment in Software Engineering - EASE’17. New York, New
York, USA: ACM Press, 2017, pp. 364–373. [Online]. Available:
https://doi.org/10.1145/3084226.3084262

[34] N. Nikitina and M. Kajko-Mattsson, “Developer-driven big-bang
process transition from Scrum to Kanban,” in Proceeding of the 2nd
workshop on Software engineering for sensor network applications -
SESENA ’11. New York, New York, USA: ACM Press, 2011, p. 159.
[Online]. Available: https://doi.org/10.1145/1987875.1987901

[35] V. Mahnič, “Scrum in software engineering courses: An outline of the
literature,” Global Journal of Engineering Education, vol. 17, no. 2, pp.
77–83, 2015.

https://doi.org/10.1109/ACCESS.2017.2654247
https://doi.org/10.1109/ACCESS.2017.2654247
https://doi.org/10.1109/TSMCC.2010.2053532
https://doi.org/10.1109/TSMCC.2010.2053532
http://educationaldatamining.org/
https://doi.org/10.1109/FIE.2015.7344081
https://doi.org/10.1145/3051457.3053971
https://doi.org/10.1007/s11257-004-7961-2
https://doi.org/10.1007/s11257-004-7961-2
https://doi.org/10.1016/j.learninstruc.2009.08.003
https://doi.org/10.1109/ISESE.2004.1334901
https://doi.org/10.1145/2889160.2889182
https://doi.org/10.1145/1852786.1852805
https://doi.org/10.1145/2786805.2803183
https://doi.org/10.1145/2901739.2903493
https://doi.org/10.1109/ICSE-SEET.2017.22
http://scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
http://scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-agile-report-2
https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-agile-report-2
https://doi.org/10.1145/1806799.1806843
https://doi.org/10.1145/1806799.1806843
http://www.tandfonline.com/doi/abs/10.1080/13678861003589099
http://www.tandfonline.com/doi/abs/10.1080/13678861003589099
https://doi.org/10.1109/SEAA.2013.28
https://doi.org/10.1109/SEAA.2013.28
https://doi.org/10.1109/APSEC.2002.1182972
https://doi.org/10.1109/AGILE.2011.10
https://doi.org/10.1145/3084226.3084262
https://doi.org/10.1145/1987875.1987901

[36] G. Melnik and F. Maurer, “A cross-program investigation of
students’ perceptions of agile methods,” in Proceedings. 27th
International Conference on Software Engineering, 2005. ICSE
2005. IEEE, may 2005, pp. 481–488. [Online]. Available: https:
//doi.org/10.1109/ICSE.2005.1553593

[37] C. Matthies, T. Kowark, and M. Uflacker, “Teaching Agile the Agile
Way Employing Self-Organizing Teams in a University Software
Engineering Course,” in American Society for Engineering Education
(ASEE) International Forum. New Orleans, Louisiana: ASEE, 2016.
[Online]. Available: https://peer.asee.org/27259

[38] C. Matthies, T. Kowark, M. Uflacker, and H. Plattner, “Agile metrics
for a university software engineering course,” in IEEE Frontiers in
Education Conference (FIE). Erie, PA: IEEE, oct 2016, pp. 1–5.
[Online]. Available: https://doi.org/10.1109/FIE.2016.7757684

[39] M. Ikonen, E. Pirinen, F. Fagerholm, P. Kettunen, and P. Abrahamsson,
“On the Impact of Kanban on Software Project Work: An Empirical
Case Study Investigation,” in 2011 16th IEEE International Conference
on Engineering of Complex Computer Systems. IEEE, apr 2011, pp.
305–314. [Online]. Available: https://doi.org/10.1109/ICECCS.2011.37

[40] H. Kniberg, Scrum and XP from the Trenches. C4Media, 2007.
[41] B. C. Wilson and S. Shrock, “Contributing to success in an

introductory computer science course,” ACM SIGCSE Bulletin,
vol. 33, no. 1, pp. 184–188, mar 2001. [Online]. Available:
https://doi.org/10.1145/366413.364581

[42] J. Bennedsen and M. E. Caspersen, “Optimists have more fun, but do
they learn better? On the influence of emotional and social factors on
learning introductory computer science,” Computer Science Education,
vol. 18, no. 1, pp. 1–16, 2008.

[43] S. Jiang, A. E. Williams, K. Schenke, M. Warschauer, and D. O. Dowd,
“Predicting MOOC Performance with Week 1 Behavior,” Proceedings of
the 7th International Conference on Educational Data Mining (EDM),
pp. 273–275, 2014.

[44] C. G. Brinton and M. Chiang, “MOOC performance prediction
via clickstream data and social learning networks,” in 2015 IEEE
Conference on Computer Communications (INFOCOM). IEEE, apr
2015, pp. 2299–2307. [Online]. Available: https://doi.org/10.1109/
INFOCOM.2015.7218617

[45] A. del Blanco, A. Serrano, M. Freire, I. Martinez-Ortiz, and
B. Fernandez-Manjon, “E-Learning Standards and Learning Analytics,”
2013 Ieee Global Engineering Education Conference, pp. 1255–
1261, 2013. [Online]. Available: https://doi.org/10.1109/EduCon.2013.
6530268

https://doi.org/10.1109/ICSE.2005.1553593
https://doi.org/10.1109/ICSE.2005.1553593
https://peer.asee.org/27259
https://doi.org/10.1109/FIE.2016.7757684
https://doi.org/10.1109/ICECCS.2011.37
https://doi.org/10.1145/366413.364581
https://doi.org/10.1109/INFOCOM.2015.7218617
https://doi.org/10.1109/INFOCOM.2015.7218617
https://doi.org/10.1109/EduCon.2013.6530268
https://doi.org/10.1109/EduCon.2013.6530268

	Introduction
	Educational Data Mining
	Educational Data Sources
	Case Study
	Research Questions

	Case Study Context
	Software Engineering Course
	Course Evolution
	Switching Development Processes

	Surveys
	End-of-term Survey
	Kanban Survey
	Discussion

	Development Artifact Analysis
	Data Collection
	Contributors
	Issues / User Stories
	Commits

	Discussion

	Related Work
	Conclusion
	References

