
What Stays in Mind? - Retention Rates in Programming MOOCs

Ralf Teusner, Christoph Matthies, Thomas Staubitz
Hasso Plattner Institute

University of Potsdam, Germany
{firstname.lastname}@hpi.de

R. Teusner, C. Matthies and T. Staubitz, ”What Stays in Mind? - Retention Rates in Programming MOOCs,” 2018 IEEE Frontiers in Education Conference
(FIE), San Jose, CA, USA, 2018, pp. 1-9. doi: 10.1109/FIE.2018.8658890. IEEE Xplore: https://ieeexplore.ieee.org/document/8658890.

Copyright c©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract—This work presents insights about the long-term
effects and retention rates of knowledge acquired within
MOOCs. In 2015 and 2017, we conducted two introductory
MOOCs on object-oriented programming in Java with each
over 10,000 registered participants. In this paper, we analyze
course scores, quiz results and self-stated skill levels of our
participants. The aim of our analysis is to uncover factors
influencing the retention of acquired knowledge, such as time
passed or knowledge application, in order to improve long-
term success. While we know that some participants learned
the programming basics within our course, we lack information
on whether this knowledge was applied and fortified after
the course’s end. To fill this knowledge gap, we conducted
a survey in 2018 among all participants of our 2015 and
2017 programming MOOCs. The first part of the survey elicits
responses on whether and how MOOC knowledge was applied
and gives participants opportunity to voice individual feedback.
The second part of the survey contains several questions of
increasing difficulty and complexity regarding course content
in order to learn about the consolidation of the acquired knowl-
edge. We distinguish three programming knowledge areas in
the survey: First, understanding of concepts, such as loops and
boolean algebra. Second, syntax knowledge, such as specific
keywords. Third, practical skills including debugging and
coding. We further analyzed the long-term effects separately
per participant skill group. While answer rates were low,
the collected data shows a decrease of knowledge over time,
relatively unaffected by skill level. Application of the acquired
knowledge improves the memory retention rates of MOOC
participants across all skill levels.

1. Introduction

Massive Open Online Courses appeal to a broad and
diverse audience. They offer a wide variety of knowledge
to anyone, usually free of charge. These characteristics
offer much potential, making it possible to join for anyone
interested in a specific topic, regardless of material pros-
perity, physical access to universities and libraries, or prior
knowledge in the respective field. However, this openness
also comes with a downside: a lack of commitment. Students
are not required to invest anything except the click on the
enrollment button. Common “problems” of MOOCs are high

no-show rates, high dropout rates, and oftentimes missing
feedback channels. These issues are not causing harm to
the concept in general, but complicate educators’ work of
improving learning success and tailoring courses to the
audiences’ needs. An approach to tackle these problems
is to analyze the data that participants produce on the
course platforms and that they share through surveys. As
students signing up and then quitting a course after some
time is the most visible and apparent issue, research has
focused on predicting, measuring and explaining student
dropouts. What is missing however, is further analysis on
the successful case. What influence do MOOCs have in the
long term? How do students apply their acquired knowledge,
and how do they benefit from it? Research is sparse in this
area, due to the previously mentioned lack of commitment
limiting the feedback that educators receive.

To our knowledge, this is also one of the issues that
contributes to the challenge of finding a viable and sus-
tainable business model for MOOCs. Currently, the main
motivations for developing and running MOOCs are spread-
ing knowledge, educating the public about specific products,
broadcasting desired beliefs and research in general [3], [6],
[18].

In order to valuate MOOCs, from an academic as well
as a business perspective, it is necessary to prove the lasting
effect of the delivered information.

In this paper, we aim to contribute to the research
of knowledge retention within MOOCs, with a focus on
programming courses. We base our conclusions on data col-
lected from two MOOCs and a survey of their participants.

Specifically, we want to answer the following research
questions:

RQ1. Does (programming) knowledge fade noticeably
over time?

RQ2. Does the skill level influence knowledge attrition?
RQ3. Does application of the knowledge after the

MOOC’s end reduce knowledge attrition?
RQ4. Does a different time span (1 vs. 3 years) has a

measurable effect on knowledge attrition?

For the following approaches and descriptions, we want
to clearly state that whenever we speak of an absolute skill
expressed in numbers, we are aware that this numerical
value can not reflect the true knowledge, experience and
mastery of a topic.

The remainder of this paper is structured as follows:
Section 2 explains the survey and our rationale behind each
question in detail. Section 3 shares related work and relates
it to our approach. Section 4 shortly outlines our approach,
while we present the gathered results in Section 5. In the
last sections, we conclude our findings, and give an outlook
on our upcoming research.

2. Concept

Retention of knowledge gained within a MOOC can
either be measured with an additional MOOC, in which we
could re-identify our prior participants, or with an additional
survey. From the user perspective, it is unlikely that they
will enrol in a future iteration of a course they already
completed, as it yields little benefit for them. When offering
an advanced course that builds on prior knowledge, it is
likely that only participants that completed the first course
and have a high interest in the topic will take part, therefore
biasing the results. By offering an additional survey, we
hope to reach a broader audience. We are aware that also
the subset of prior course participants that will answer our
survey will be biased, as individuals are naturally more
likely to help and answer our questions if they kept us in
good memory, and thus probably completed the course or
found it in another way appealing. However, by approaching
all prior participants, whether they were no-shows, dropouts,
or completed the course with any score, we are confident
that we decided for the best possible prerequisite to answer
our research questions.

When assessing the effects of a MOOC, we focus on
different aspects that could result from course participation
or might have occured since course completion:

• gain of expert knowledge,
• refresh and fortification of knowledge,
• increase of interest in the problem domain,
• correction of misunderstandings,
• forgetting of knowledge.

With our survey, we approached a large number of prior
participants, therefore we cautiously considered the total
amount of questions to ask, the different areas we want to
cover and the offered answer options of multiple-choice or
multiple-answer questions. Too many questions bear the risk
of scaring participants away, too few questions might leave
important areas untouched, leaving gaps when analyzing the
responses or reducing precision. In the end, we decided on
15 questions in total, with one additional free text questions
for general feedback and remarks. In the following, we will
further break down our decisions and motivations on the 15
questions that finally made it into the survey.

All questions were asked in German, as this was the
language used in the course. In this paper, we will present
the English equivalents of the questions and answers, for
the sake of transparency and quality assurance, the original
german questions can also be accessed online1.

1. https://rteusner.github.io/fie18/

The first five questions of the survey are concerned with
prior knowledge, self-assessment and perceived valuation
of the course. These questions are intended to give us a
general overview over the participants skill level, their prior
education, as well as progress in the meantime and valuation
of individual course parts.

Q1. The question “Did you have programming experi-
ence prior to the course?” separates novices from
participants seeking to deepen their knowledge.
This question further allows us to find out, whether
participants that initially learned programming with
our MOOC lack knowledge that other participants,
that adopted their initial understanding from tradi-
tional in person classes, have. The offered answers
are “yes”, “no”, and “yes, but it is so long since
that I re-learned many things anew”.

Q2. The question “In case you had programming ex-
perience prior to the course, where did you learn
programming” aims to uncover differences in dif-
ferent learning ways and stages. Additionally, albeit
in hindsight, it offers us to gain a deeper under-
standing of our audience. The offered answers were
“In an online programming course (e.g. Coursera,
Udacity, edX, openHPI)”, “University or school
classes”, “At my workplace” and “Self-Study (e.g.
books, ...)”.

Q3. “How do you rate your current programming skills”
is typical self-assessment question, with a scale be-
tween “Little to no programming knowledge avail-
able (any longer)”, “basic”, ‘good”, “very good”
and “excellent” programming skills. This question
enables us to to separate students by skill level.
It further allows us to notice their self-claimed
advance in programming knowledge.

Q4. “Did you program since the course ended?” simply
checks whether the participants picked up their
(newly) acquired programming skills. As it is in-
teresting to know, in which context the knowledge
was used, we offer the options “No”, “Yes, in
my spare time (hobby projects)”, “Yes, as part of
my job”, “Yes, as part of my education (school
and university)”, and “Yes, in self-studies (online
courses, books, ...)”.

Q5. “Which parts of the course did you enjoy most
in hindsight” concludes the general questions and
aims to give us further insight whether specific fo-
cusses of the participant within the course translate
to better or worse learning results. Additionally, it
gave us some more feedback about our course parts.
The possible answers were “the videos”, “the prac-
tical programming exercises”, “the self-tests”, “the
story”, “the peer-assessment”, and “the discussions
in the forum”.

After that, we start with multiple-answer questions cov-
ering domain knowledge of Java programming. The ques-
tions increase in difficulty and cover different areas. Ad-
ditionally, they require different depth of understanding of

Java and object-oriented programming. If not stated other-
wise, all answer options were shuffled, so that effects that
might skew the results by option placement are prevented.

Q6. The sixth question asks the participants to “mark
the correct keywords” from the list of five given
options: “public”, “common”, “output”, “void”, and
“back”. We purposely mixed the two correct op-
tions “public” and “void” with either valid sound-
ing options “common” and “back” or otherwise
tempting terms like “output”, which is close to a
valid attribute used within the common method call
“System.out.println(...);”. Both correct
options were chosen from the entry point of every
Java program, ensuring that also participants that
quitted our course after the first video, should be
able to at least knowingly pick both of the correct
options, even if they fail on sorting out the other op-
tions then. The sixth question thus required solely
knowledge without understanding of any concepts
or application.

Q7. With the seventh question, we went for one of the
key concepts in programming languages, regard-
less of being them imperative or object-oriented:
control structures. We started with a question to
check whether participants recall basic boolean
logic. To clarify the question, we give them an
example where this might be used within their
program. “Which of the given expressions evaluates
to true? This could for example be done in an if-
statement. Given is the integer variable i with the
value 3. “(int i = 3;)” There are 5 options
given in total in this multiple answer question, with
the four correct ones “true”, “true false”,
“i = 3”, and “(i ≤ 3 && true) (i ≤
3 && false) as well as one wrong option
“true && false”. We implicitly tested partici-
pants’ understanding of the &&(AND), (OR) and
==(equals) operators and their understanding
whether they can solve a more complex boolean
equation. These answers were not shuffled, in or-
der to re-introduce participants with the boolean
logic by arranging the statements from simple (just
the expression “true”), to intermediate (the rather
simple expression “true false” and a com-
parison) to the hard one with AND, a comparison
and OR combined.

Q8. The eighth question tests understanding of a second
control structure: the for-loop. This time, we gave
the participants a minimal program, just consisting
of a loop with the configuration “(int i=0;
i≤3;i++)” which printed out “I love Java!” on
each iteration. The question to that was “How often
is I love Java! printed out”, with unshuffled answer
options from 0 to 5, and the additional answer
“unlimited times”. The correct answer, 4 times,
requires the participant to understand the program
flow, notice that the exit condition for the loop

is made up of an “smaller or equals” check and
requires the understanding how to count with a
variable that is initialized with zero.

Q9. The ninth question returns to assessing knowl-
edge, this time of object-orientation specifics. The
multiple-choice question “What is the main purpose
of an Interface” requires theoretical knowledge
about an advanced concept (at least when regarded
from the viewpoint of an introductory course) of
OOP. Participants had to exclusively choose be-
tween “It is a framework to design frontends”,
“It improves performance by better utilization of
compiler options”, “It allows to declare methods to
be implemented”, “It allows to connect to objects:
Calls on one of the object are also executed on the
other object.”, and “It allows to restrict the visibility
of methods”. This question has some red herrings
that are relatively easy to spot, but at least the vis-
ibility restriction answer seems a valid alternative
to the correct one, that it declares methods to be
implemented. With the question type set to multiple
choice, therefore only allowing only one answer,
this is the easiest of the OOP related knowledge
questions.

Q10. Question ten goes further into asking object-
oriented domain knowledge, this time with the
more difficult question “What is polymorphism in
object-oriented programming?”.
The possible multiple-answer options are the false
one “Renaming of an object”, the correct one “The
dynamic determination of the actual implementa-
tion (dynamic binding) within an inheritance hi-
erarchy offering several potential implementation
with identical method signatures”, and the two
more false ones “Calling a static method within an
inheritance hierarchy with undefined method sig-
natures” and “The instantiation of multiple objects
at runtime”. We tried to give each option a pseudo
valid sounding purpose, so that participants have to
explicitly decide for each option whether it is true
or not.

Q11. Question eleven combines asking specific Java
knowledge and a basic OOP concept: “How is
a inheritance relation created within code?”. The
exclusive multiple-choice options are the correct
answer “By using the keyword extends in the class
definition”, as well as the incorrect answers “By
marking the super- and subclass with the keywords
child and parent”, “By using the keyword super-
class instead of class”, “By creating a class Regis-
ter first, that tells Java which classes inherit from
which other ones” and “Not at all. Java decides on
semantic basis on its own”.

Q12. Finally, the last OOP knowledge centric question,
question twelve, asks “which statements about ab-
stract classes are true”. From the four possible
answers, the two answers “Abstract classes can’t
be instantiated” and “Abstract classes are created by

adding the keyword abstract in front of the keyword
class in the class definition” are correct. The two
wrong answers, “Every class is abstract, as it only
provides a building instruction for the objects to be
created from it” and “Abstract classes are created
by using the keyword abstractClass instead of the
keyword class in the class definition” , both are
close to truth in order to increase difficulty. Albeit
classes primarily provide building instructions for
actual objects, this is not the important difference
for abstract classes. And the second option with
regards to keywords is just a slight variation of the
correct answer, in order to distinguish participants
that maybe recall some concepts, but no longer
actively use them, from participants with fortified
knowledge.

The remaining three questions aim to test the partici-
pants abilities to apply their knowledge. We provided code
snippets for each question and asked which of the given
options has to be inserted at a specified line in order to
cause the desired output in question 13 and 14, or what the
actual output is for question 15.

Q13. Question thirteen shows some code that loops over
a given array with a counter variable i. The loop
body adds the value of the array at the current
position i to a variable with the identifier sum. An
if-condition has to be added in order to only sum
up those values, that are positive or 0. The partici-
pants have to exclusively choose from six different
options. The correct option is “if(array[i] >=
0){”. Several other options are offered, for exam-
ple just checking whether i is greater 0, checking
whether i or the array value on position i is smaller
than zero, or checking the array element at position
i+1, resulting in an array index out of bounds
exception. With this exercise, we intend to check
whether participants are able to map the asked
requirement to a code construct. They need to know
how they access an array and that it is indexed by
zero. We refrained from giving options with broken
syntax, such as trying to access array positions
by providing round brackets such as array(i),
because similar, more basic knowledge should be
covered already in the knowledge centric questions.

Q14. Question fourteen asks participants to pick all cor-
rect lines of code so that the program prints out
all odd numbers between 1 and 10. The logic to
print out the number and to distinguish odd from
even numbers is already in place, the participants
just have to choose the correct loop condition.
The first correct solution is rather trivial, “for
(int i = 0; i < 10; i++){”. The second
correct solution, “for(int i = 1; i < 10;
i+=2){”, also prints out the desired numbers and
simply skips all even numbers. The wrong options
just loop over all even numbers or have broken exit
conditions such as “i / 2 == 1”, “i%2 < 10”

or “i%2==1”. Participants need to realize that the
correct if-condition is already in place, requiring
them to have understood the modulo operator and
its usage. Additionally, they need to notice that also
just looping over all odd numbers will create the
desired result.

Q15. Question fifteen presents a complete program and
asks participants what the output will be. The pro-
gram consists of a loop with five iterations from 0
to 4, printing out the result of a method call each
time. The method being called is named count and
receives an integer as an argument. It simply adds
up the passed argument to a sum being kept and
returns the current sum value. The correct output is
thus 0, 1, 3, 6, and 10. This exercise is particularly
hard because we have chosen a misleading name
for the method count (actually summing values up),
and one need to understand loops, method calls,
parameters and return values. Additionally, we used
the shorthand form to sum up values, resulting
in the line “return result += number;”.
Other answering options were numbers counting up
from 0 to 4, or from 0 to 5, the first numbers of the
fibonacci sequence, just some zeros or the option
that the program will raise an exception.

3. Related Work

This paper contributes to the research areas Knowledge
Assessment and Learning Analytics in MOOCs. Research
in this field seeks to understand the effects of teaching and
learning, especially within online learning environments.
While there is plenty of research aiming to predict student’s
success in ongoing courses, there is relatively little work
available on measuring effects, and almost none with regards
to long-term effects of MOOCs.

3.1. Knowledge Retention in Business Trainings

Outcomes of trainings and effectiveness of learning are
often measured in paid business context. If a training is paid
by an employer to train staff for a specific job position,
the human resource department usually applies established
models (such as Kirkpatrick’s 4 levels of evaluation [10],
the ROI methodology by Kirkpatrick and Philipps [17], the
Six Sigma approach [8], [19] as well as others) to measure
the outcome. However, these models do not fit for MOOCs
in their current form, as they do not reflect MOOC specifics
and are tailored towards their current use case. They offer
detailed descriptions (reaction of participants to trainings,
changes in job workflows, and in the end the return on
investment in monetary value in the ROI methodology)
or calculations of improvements for production processes
(Six Sigma), but they lack measures to e.g. represent initial
knowledge. Additionally, the models are designed for busi-
ness situations, mostly staff trainings, which are most often
conducted in classroom settings or even smaller scales.

3.2. Knowledge Retention in Classroom Settings
and Theoretical Model

Retention of knowledge in classroom settings is often
explained with the “learning pyramid”, also called “cone
of experience” established by Edgar Dale at the National
Training Laboratories [5]. While there is dispute about
subsequently added factors that should reflect the retention
level, it is accepted that more immersion with and applica-
tion of the learning material improves retention in general.
MOOCs in general offer the basic levels of reading text
(via offered articles) up to watch videos (the main course
corpus). Our MOOC in specific also allowed for hands-on-
experience via practical programming exercises, therefore
further strengthening retention.

Zabrucky and Bays argue that testing improves reten-
tion [22] in classes. As MOOCs often offer graded test
assignments as well as self tests, this also should strengthen
retention within MOOCs. On the other side, the physi-
cal and technically induced distance negatively affects the
relationship between teacher and students, as well as the
immersion with the content, as all teaching is done in front
of a computer. Existing learning theories should therefore
be re-evaluated for their applicability within MOOCs.

3.3. Retention in Distance Education and MOOCs

Breslow et al. state that participation as well as perfor-
mance within MOOCs do not follow the rules by which uni-
versities have traditionally organized their teaching. Mainly
because MOOCs allow free registration and do not require
formal withdrawals. They thus “...do include a large number
of students who may not have any interest in completing
assignments and assessments.”. From their work with data
of one of the first huge MOOCs they came to the conclusion,
that they “appreciate what a different animal MOOCs are,
and some of the challenges they pose to researchers” [4].
This suggests that also retention of knowledge might differ
from traditional classroom settings.

The MOOC-Maker project [13], co-funded by the Eras-
mus+ program of the European Union, examined retention
and attrition rates of MOOCs. The consortium of 3 European
and 6 Latin American higher education institutes focused on
an analysis of scientific literature that had been published
so far and provide a quite complete overview. None of the
examined literature is analyzing the knowledge retention of
the presented content. All of the publications dealt with the
retention of learners in the course, basically drop-out predic-
tion. Also Philips’ work on retention rates in MOOCs [16],
as well as Bawa’s literature overview over retention rates
in MOOCs [1] focus on dropout rates when speaking about
retention.

Retention rates in the form we viewed them were re-
searched for medical knowledge by Naidr et al. [15]. They
found that participants’ knowledge retention correlated with
their preference of the online course over the classroom
course as well as with the number of hours spent with
the computer weekly. Garrison encountered no difference in

retention for participants of a distance education program
about evidence based medicine compared to a face-to-face
training [7]. They noticed higher scores for the distance
education group for the tests prior to the retention test,
however without statistical significance.

3.4. Survey Participation

We conducted a survey and expected relatively low
response rates, as studies trying to uncover the reasons
for dropout report response rates of such surveys between
between 12.5% [11] and 1% [20]. When mailing students
after a long period of about one respectively three years,
the response rates are likely to strongly drop further. We
therefore kept our expectations low.

3.5. Self Assessment

Important parts of our analysis depend on self-stated
skill levels. As with all metrics reported from a survey, the
reliability of self-assessment relies on exact, neutral wording
and the offered choices, including the number of options to
pick from [2], [9]. Furthermore, tend to avoid the border
options and might show some overconfidence [12]. This
might especially affect our numbers on skill distribution (see
Figure 2.

3.6. Additional Sources Reflecting Knowledge

As the topic of our courses is Object Oriented Program-
ming in Java, we evaluated adding additional information
that is only available when solving practical development
tasks, such as required time, error rates and issued program
runs. Previous work has either analyzed this in classroom
settings or rather small MOOCs [21]. The data was used to
form student models and reflect their knowledge acquisition.
The authors extracted concepts from the developed source
code and automatically derive learning paths. Their use
case was thus tracking the current knowledge status, and
not documenting long term application of knowledge. We
decided against including a practical exercise, as there was
no huge information gain expected, and the required time
for students to participate in the survey is likely to double,
already with just one exercise.

Apart from the mentioned approaches, it is also possible
to incorporate other information to interpret the results, such
as demographics like age, the highest degree, or results from
previous courses. According to Morrison and Murphy-Hill,
the age and skill of a programmer (proxied by stack overflow
reputation in their study) show a positive correlation [14].
However, as we currently do not have thorough data on these
demographics across all participants and we did not want to
ask our participants for such relatively private data just for
the sake of assessment without providing direct benefit for
them, we omitted these considerations from our study.

Previous work either focused on classroom trainings or
regarded retention in terms of dropout prevention, not as

actual knowledge retention. This work presents a specific
use case for the important domain of programming and
supplies first steps and claims towards generalization within
this area in order to start filling the current research gap.

4. Method

We surveyed the participants of two individual courses
from 2015 and 2017 in order to potentially uncover effects
caused by an extended timeframe between course participa-
tion and current knowledge status.

Invitations to take part in our survey were sent as a
course announcement. The email text encouraged partic-
ipants to take part in the survey in order to recap their
learnings and to support our research. No benefits or prizes
were offered for survey participation.

4.1. Participants

We mailed 20,495 participants of our ”Java for Begin-
ners” course in 2015 and 13,609 participants of our ”Intro-
duction to Object-Oriented Programming with Java” course
in 2017. The 2015 course resulted in 3,295 participants
reaching a graded record of achievement, the 2017 course
had 2,124 participants that completed the course with a
record of achievement. The audience covered a wide range
of age groups from pupils to retired persons and many others
in between with a broad variety of prior knowledge. Prior
knowledge ranged from senior programmers of structural
programming languages such as C or Fortran, to complete
beginners with no prior knowledge at all. The ratio of
responses we received was low; lower than we expected.
We got 66 responses from 2015 (0.322%) and 92 responses
from 2017 (0.676%).

5. Results

The first focus of interest are the results of our survey
in general and the success quotes separated by question
and participant groups. Questions Q9-Q12 were asked with
identical wording during the runtime of our 2017 course,
therefore we also added these mean “former scores” of the
survey respondents of the 2017 group for better comparabil-
ity. The four questions were placed at different places during
the 2017 course, questions Q9 and Q10 were asked as a self-
test before any content was presented and thus tested prior
knowledge, questions Q11 and Q12 were asked in self-tests
directly after the respective content unit. Outcomes of this
general analysis are shown in Table 1.

In order to get insights which subgroup of our learners
answered to our survey, we compared the distribution of
self-stated skill levels. We further analyzed the self-stated
skill levels of participants, that answered the same question
in 2017 as well as in the survey of 2018. 69 of the 92
responders from the course of 2017 answered all questions,
including the original self-test questions from 2017 which
we reintroduced in our survey. Of the 69 students who

TABLE 1. MEAN SURVEY SCORES OF PARTICIPANTS FROM 2015 AND
2017

2017 2015 “former scores” from 2017
Q6 0.96 0.91
Q7 0.81 0.78
Q8 0.86 0.85
Q9 0.62 0.64 0.35
Q10 0.66 0.67 0.32
Q11 0.91 0.80 0.99
Q12 0.84 0.72 0.94
Q13 0.84 0.80
Q14 0.66 0.63
Q15 0.66 0.50

TABLE 2. SELF-STATED SKILL-LEVELS OF THE 2017 GROUP IN THE
CURRENT SURVEY AND CHANGES FROM THEIR SKILL LEVEL STATED

DURING THE COURSE

Skill Level Total: 69 Same: 34 +1: 18 -1: 17
(no knowledge) 0 5 (7%) 1 - 4

(basic knowledge) 1 16 (23%) 11 3 4
(good knowledge) 2 36 (52%) 18 10 8

(very good knowledge) 3 9 (13%) 3 5 1
(excellent knowledge) 4 1 (1%) 1 0 -

answered all questions, 34 (49%) stated the same skill level
in the survey in 2018 as at the beginning of the course in
2017. 17 participants (25%) stated a skill reduced by one
level, 18 participants (26%) stated a skill level one option
higher. Stronger variations, either up or down, were not
recorded. All results can be found in Table 2. Noteworthy
is, that of the 69 participants who answered all questions,
all reached a record of completion (meaning they accessed
> 50% of the course material), 63 received a graded
certificate (reached total scores > 50%). When adding the
23 students of 2017 who did not answer all questions, we
find 4 students that aborted the course, and additional 14
that got a record of completion, but no graded certificate.

From the 18 students that self-stated an improved skill
level, 15 (88%) answered that they programmed in the
meantime. There are no specific accumulations of answers
towards work, hobby, school or self-study visible (all have
between 5 and 8 mentions). Of the 17 students that answered
wit a lower self-stated skill level, 6 answered that they did
not program in the meantime (35%). All participants that
lowered their skill level from “basic” to “not existent (any
longer)” answered they did not program in the meantime.
Of those who programmed in the meantime but lowered
their skill level, there is a slight accumulation towards the
answer ”programmed as a hobby” with 6 mentions opposed
to 3 mentions of self-studies, 3 mentions of school and one
mention of work.

When having a closer look onto the scores, we get the
means vizualized in Figure 1 for the graded questions Q6
to Q15.

We further separated the mean scores by skill level, the
results can be found in Tables 3 and 4. We further calculated
the deltas for the corresponding mean scores of 2017 and
2015, to approach research question RQ2 (see Table 5).
Conclusions should be drawn carefully from that table, as

Figure 1. Mean Score per Question and Group

TABLE 3. MEAN SCORES PER QUESTION AND SKILL LEVEL(SL) 2015

2015 SL0 (stdev) SL1 (stdev) SL2 (stdev) SL3 (stdev) SL4 (stdev)
Q6 0.62 (0.48) 0.89 (0.27) 0.92 (0.19) 0.97 (0.13) 1.00 (0.00)
Q7 0.37 (0.32) 0.64 (0.35) 0.83 (0.28) 0.92 (0.15) 0.92 (0.14)
Q8 0.25 (0.50) 0.78 (0.43) 0.92 (0.28) 0.94 (0.25) 1.00 (0.00)
Q9 0.00 (0.00) 0.50 (0.51) 0.76 (0.44) 0.75 (0.45) 0.67 (0.58)
Q10 0.50 (0.58) 0.67 (0.49) 0.68 (0.48) 0.69 (0.45) 0.67 (0.58)
Q11 0.00 (0.00) 0.83 (0.38) 0.80 (0.41) 0.94 (0.25) 1.00 (0.00)
Q12 0.13 (0.25) 0.69 (0.35) 0.78 (0.41) 0.78 (0.41) 0.83 (0.29)
Q13 0.25 (0.50) 0.67 (0.49) 0.88 (0.33) 0.94 (0.25) 1.00 (0.00)
Q14 0.00 (0.00) 0.56 (0.42) 0.64 (0.34) 0.88 (0.22) 0.50 (0.00)
Q15 0.00 (0.00) 0.28 (0.46) 0.72 (0.46) 0.50 (0.52) 0.67 (0.58)
Sum 2.13 6.50 7.93 8.30 8.25
#users 4 18 25 16 3

the number of students contributing to the respective means
is low, especially for skill level 0 (no knowledge) and 4
(expert). For this reason, also the standard deviations are
comparatively high, and not given as the group of skill level
4 in 2017 had just one user.

Correlating the current self-stated skill levels against the
unweighted scores of the graded questions, yielded a weak
positive correlation of 0.35 (p < 0.005, test statistic: Pear-
son’s product-moment correlation). The correlation between
the prior self-stated skill levels during the course in 2017

TABLE 4. MEAN SCORES PER QUESTION AND SKILL LEVEL(SL) 2017

2017 SL0 (stdev) SL1 (stdev) SL2 (stdev) SL3 (stdev) SL4 (stdev)
Q6 0.90 (0.22) 0.89 (0.21) 1.00 (0.00) 0.94 (0.17) 1.00
Q7 0.50 (0.35) 0.81 (0.33) 0.86 (0.24) 0.97 (0.08) 1.00
Q8 1.00 (0.00) 0.72 (0.46) 0.92 (0.28) 1.00 (0.00) 0.00
Q9 0.40 (0.55) 0.56 (0.51) 0.78 (0.42) 0.89 (0.33) 0.00
Q10 0.60 (0.55) 0.61 (0.50) 0.75 (0.44) 0.89 (0.33) 0.00
Q11 0.80 (0.45) 0.89 (0.32) 0.97 (0.17) 1.00 (0.00) 1.00
Q12 0.60 (0.55) 0.83 (0.30) 0.93 (0.24) 0.94 (0.17) 0.50
Q13 0.60 (0.55) 0.83 (0.38) 0.89 (0.32) 0.89 (0.33) 1.00
Q14 0.20 (0.45) 0.72 (0.39) 0.71 (0.37) 0.78 (0.36) 0.50
Q15 0.20 (0.45) 0.61 (0.50) 0.72 (0.45) 0.89 (0.33) 0.00
Sum 5.80 7.47 8.53 9.19 5.00
#users 5 18 36 9 1

TABLE 5. DELTAS IN MEAN SCORES BETWEEN 2017 AND 2015
(RESULT: MEANSCORE2017 - MEANSCORE2015)

Deltas SL0 SL1 SL2 SL3 SL4
Q6 0,28 0,00 0,08 -0,02 0,00
Q7 0,13 0,17 0,03 0,05 0,08
Q8 0,75 -0,06 0,00 0,06 -1,00
Q9 0,40 0,06 0,02 0,14 -0,67
Q10 0,10 -0,06 0,07 0,20 -0,67
Q11 0,80 0,06 0,17 0,06 0,00
Q12 0,48 0,14 0,15 0,16 -0,33
Q13 0,35 0,17 0,01 -0,05 0,00
Q14 0,20 0,17 0,07 -0,10 0,00
Q15 0,20 0,33 0,00 0,39 -0,67
Sum 3.67 0.97 0.60 0.90 -3.25

and the unweighted survey scores is also weak and positive,
however a little bit higher, namely 0.38 (p < 0.005). When
correlating the prior course scores with the survey scores,
we found no correlation at all (c = 0.00).

Calculating the total mean survey scores for participants
depending whether they programmed in the meantime or
not, yielded a mean of 6.44 for students that did not pro-
gram, and a mean of 8.47 for students that programmed
in the meantime, for the 2017 survey group. For the 2015
survey group, the scores showed a larger gap: a mean score
of 3.47 for non programming students and a mean of 7.32
for students that programmed in between.

5.1. Discussion

The first point that we examined further was the dis-
tribution of skills in Figure 2 and Table 2. The skill level
distribution of our survey responders from 2015 and 2017
is similar in general. The only difference is that the in the
group of responders from 2015 were some more participants
with “very good” knowledge, whereas the responders from
2017 had some more responders with “good” knowledge.
Border options were mostly avoided within the survey.
When comparing those numbers with the overall skill level
distribution from the course audience of 2017, it becomes
apparent that mostly participants with a higher skill level
answered our survey. The courses we conducted approached
mainly beginners, therefore explains the high but reasonable
ratio of participants with “no knowledge” and the generally
skewed distribution to the left of the overall course partici-
pants.

The outcomes of the graded questions meet our ex-
pectations with regard to most findings. In general, the
easier questions Q6 to Q8 show high mean scores for both
surveyed groups. The more difficult questions showed lower
mean scores overall.

A second noticeable finding is that for most questions (8
of 10) the participants from 2017 scored better than those
from 2015 in the survey questions. Given the fact that the
mean skill level of the 2015 survey participants was higher,
we conclude that knowledge attrition indeed depends on the
timespan between training and in this case surveying. When
comparing the results with the outcomes gathered during the
course runtime of 2017, here labelled with “former scores”,

one might be surprised by the relatively large deltas for
questions Q9 and Q10. However, as stated before, questions
Q9 and Q10 were asked before the actual course lectures
were presented. From that outcome we conclude that our
participants acquired knowledge that they did not possess
beforehand and are still able to recall it one or three years
later.

For questions Q11 and Q12 we notice something dif-
ferent, the mean “former scores” are higher than the survey
scores. Q11 and Q12 were asked in a self-test directly after
the respective lecture unit in the course 2017. Therefore, we
got mean scores of nearly 100%. It is only reasonable, that
the mean scores dropped after some time.

The deltas grouped by skill levels and questions are
relatively small, but add up in total. We refrain from drawing
conclusions for skill level 0 (“no knowledge”) and skill level
5 (“expert”) due to the low participant number. Nonetheless,
for skill levels basic to very good, it is noticeable that
participants from 2017 achieved higher mean scores than
those from 2015. The shares come most prominently from
the harder questions Q12 to Q15, suggesting that they are a
suitable means to capture and distinguish knowledge gaps.

The mean score gap between the groups not having
programmed after the course and those who had (6.44 vs.
8.47 for 2017, 3.47 vs. 7.32 for 2015) further reassures us
that application and recapitulation of knowledge leads to
better retention. The numbers also support the hypotheses
that knowledge attrition happens over time, as the values for
the participants of our course in 2015 are lower than those
for the participants of 2017.

With regard to our research questions, we conclude
that programming knowledge lessens noticeably over time
[RQ1]. The skill level had only a weak correlation towards
the survey scores. With regards to knowledge attrition, we
noticed no consistent effect depending on the skill level
[RQ2]. Students that programmed in the meantime achieved
a higher score in the graded survey questions in general, and
our results show an even stronger effect for participants that
took the course 3 years ago [RQ3]. Despite being a self-
stated higher skilled group, our students from 2015 scored
worse than those that took the course in 2017, leading to the
conclusion that the passed timespan does have a measurable
effect on knowledge attrition [RQ4].

6. Limitations and Future Work

General learnings from this experiment are mostly lim-
ited by the relatively low feedback rate we encountered.
We could not go much deeper into uncovering specific
misconceptions within specific areas (such as boolean logic
or array access), as the total amount of answers stating
a certain wrong option lead to a too small subgroups for
further analysis of interdependence. To improve this, we
plan to survey the participants of our next MOOC after
a period of six months already. We will further stress out
in that MOOC that constant repetition is very effective in
fortifying knowledge and offer them an opt-in possibility to

Figure 2. Skill Distributions in the 2017 Course and the Survey Groups

be mailed with additional training exercises and quizzes and
self-tests after the course runtime.

7. Conclusion

There are many articles and blog posts, claiming
“MOOCs are here to stay”. The important question, whether
the knowledge acquired through MOOCs is here to stay,
remains mostly unanswered as of now. Existing literature
mostly focusses on dropout rates, which yields little benefit
in actually measuring the long-term impact of MOOCs. On
the basis of two programming MOOCs conducted in the
years 2015 and 2017, we developed a survey consisting
of 15 questions in order to gain some insight into the
long-term retention of the conveyed knowledge. Response
rates were low, even for typical MOOC settings, as only
a fraction of participants still had enough commitment to
fill out the survey months after course completion with-
out further external motivation. We shared the anonymized
outcomes of the gathered data and were able to answer
our four research questions regarding knowledge retention
and attrition. Our findings serve as a starting point into
exploring knowledge retention in programming MOOCs and
can be further generalized in future work. For our MOOCs,
knowledge fades noticeably over time, however not at an
alarming rate. Especially basics seemed to be learned by
heart. Knowledge attrition did not depend on the skill level
of the participant, and might be partly counteracted by
applying the knowledge. Determining optimal timespans
for recapitulation remains an open research question, to be
tackled in future course iterations.

References

[1] Papia Bawa. Retention in Online Courses: Exploring Issues and
SolutionsA Literature Review. SAGE Open, 6(1):2158244015621777,
January 2016.

[2] Orlando Behling and Kenneth S. Law. Translating Questionnaires
and Other Research Instruments: Problems and Solutions. SAGE,
May 2000.

[3] Paul Belleflamme and Julien Jacqmin. An Economic Appraisal of
MOOC Platforms: Business Models and Impacts on Higher Educa-
tion. CESifo Economic Studies, 62(1):148–169, March 2016.

[4] Lori Breslow, David E. Pritchard, Jennifer DeBoer, Glenda S. Stump,
Andrew D. Ho, and Daniel T. Seaton. Studying Learning in the
Worldwide Classroom Research into edX’s First MOOC. Research
& Practice in Assessment, 8:13–25, 2013.

[5] Edgar Dale. Audiovisual methods in teaching. Dryden Press, New
York, 1969.

[6] Helge Fischer, Stefan Dreisiebner, Oliver Franken, and Martin Ebner.
Revenue vs. Costs of MOOC Platforms. Discussion of Business
Models for XMOOC Providers, based on Empirical Findings and
Experiences During Implementation of the Project IMOOX. page 11.

[7] Julie Garrison. Continuing Education and Knowledge Retention: A
Comparison of Online and Face-to-Face Deliveries. Articles, April
2007.

[8] Michael L. George, John Maxey, David Rowlands, and Mark Price.
The Lean Six Sigma Pocket Toolbook: A Quick Reference Guide to
100 Tools for Improving Quality and Speed. McGraw-Hill Education,
New York, 1st edition, August 2004.

[9] W. Paul Jones and Scott A. Loe. Optimal Number of Questionnaire
Response Categories. SAGE Open, 3(2):2158244013489691, April
2013.

[10] Donald L. Kirkpatrick. Evaluating Training Programs: The Four
Levels. Berrett-Koehler, San Francisco: Emeryville, CA, November
1994.

[11] René F. Kizilcec and Sherif Halawa. Attrition and achievement gaps
in online learning. In Proc. L@S ’15, pages 57–66, New York, NY,
USA, 2015. ACM.

[12] Justin Kruger and David Dunning. Unskilled and unaware of it: How
difficulties in recognizing one’s own incompetence lead to inflated
self-assessments. Journal of Personality and Social Psychology,
77(6):1121–1134, 1999.

[13] MOOC-Maker. Construction of management capacities of moocs in
higher education.

[14] Patrick Morrison and Emerson Murphy-Hill. Is programming knowl-
edge related to age? an exploration of stack overflow. In Proceedings
of the 10th Working Conference on Mining Software Repositories,
MSR ’13, pages 69–72, Piscataway, NJ, USA, 2013. IEEE Press.

[15] J. P. Naidr, T. Adla, A. Janda, J. Feberova, P. Kasal, and M. Hladikova.
Long-Term Retention of Knowledge After a Distance Course in
Medical Informatics at Charles University Prague. Teaching and
Learning in Medicine, 16(3):255–259, July 2004.

[16] Alana S. Phillips. Retention: Course Completion Rates in Online
Distance Learning, December 2015.

[17] Jack J. Phillips and Patricia Pulliam Phillips. The Value of Learning:
How Organizations Capture Value and ROI and Translate It into
Support, Improvement, and Funds. John Wiley & Sons, August 2007.

[18] Jan Renz, Florian Schwerer, and Christoph Meinel. openSAP:
Evaluating xMOOC Usage and Challenges for Scalable and Open
Enterprise Education. International Journal of Advanced Corporate
Learning (iJAC), 9(2):34–39, August 2016.

[19] Bill Smith. Six-sigma design (quality control). IEEE Spectrum,
30(9):43–47, September 1993.

[20] Jacob Whitehill, Joseph Jay Williams, Glenn Lopez, Cody Austun
Coleman, and Justin Reich. Beyond prediction: First steps toward
automatic intervention in mooc student stopout. Available at SSRN
2611750, 2015.

[21] Michael Yudelson, Roya Hosseini, Arto Vihavainen, and Peter
Brusilovsky. Investigating Automated Student Modeling in a Java
MOOC. In Educational Data Mining 2014, pages 261–264, London,
UK, July 2014. University of Pittsburgh.

[22] Karen M. Zabrucky and Rebecca B. Bays. Improving students’
retention of classroom material through the testing effect. College
Teaching, 63(2):91–91, 2015.

