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Abstract—Traditionally, enterprise data management is di-
vided into separate systems. Online Transaction Processing
(OLTP) systems are focused on the day to day business by
being optimized for retrieving and modifying complete entities.
Online Analytical Processing (OLAP) systems initiate queries
on specific attributes as these applications are optimized to
support decision making based on the information gathered
from many instances. In parallel both hardware and database
applications are subject to steady improvements. For example,
today’s size of main memory in combination with the column
oriented organization of data offer completely new possibilities
such as real time analytical ad hoc queries on transactional
data. Especially latest development in the area of main memory
database systems raises the question whether those databases
are capable of handling both OLAP and OLTP workloads in
one system. This Paper discusses requirements for main mem-
ory database systems managing both workloads and analyses
using appropriate data structures.

I. INTRODUCTION

Today’s enterprise systems are segmented into the so-
called Online Transaction Processing (OLTP) and Online
Analytical Processing (OLAP). With growing data volumes
of enterprise applications, relational database management
systems were not capable of providing sufficient perfor-
mance for analytical questions anymore. The more data the
OLTP system has to handle, the more analytical applications
as Business Intelligence solutions were moved into dedicated
enterprise data warehouses and data marts.

This separation into different components continued due
to the increasing demand for data timeliness. Where tradi-
tional ETL (Extract, Transform and Load) processes ran in
batch mode once a day just a few years ago, data older than
30 minutes is not acceptable for most modern companies
today. This trend towards right and real time analytics throve
the rise of new market segments as software systems for
closed-loop techniques, Business Action Management and
Business Performance Management [6], [9]. This resulted in
new components as Operation Data Stores or Data Staging
Integrators while complicating the composition of business
systems at the same time.

That increasing obliteration has several reasons. Beside
traditional applications as Financials, Customer Relation-
ship Management or Supply Chain Management new data
sources had to be integrated into existing data warehouse

environments as online stores, or marketing campaigns.
Due to the heterogeneity of these sources many companies
implemented data staging and integration systems like Op-
erational Data Stores as intermediate steps between transac-
tional systems and analytical components as enterprise data
warehouses. These intermediate systems consolidate data
from different sources and usually act as data cleansing and
integration applications, too. New technologies as closed-
loop analytics point to the major problem of this trend:
to handle the increasing demand for data timeliness and
provide new functions into current systems, new systems
have to be integrated since existing systems do usually not
provide the performance and scalability required. Hence,
the components of enterprise environments are actually
increasingly linked as processes getting more sophisticated
but they are not growing together and thus increasingly
complicate data flowing.

This paper applies recent database research to the field of
main memory database systems for enterprise applications.
The focus hereby lies on mixed workloads integrated in one
common single system as described in [14]. It is evaluated
whether main memory databases can act as the primary
persistence for enterprise applications including both trans-
actional and analytical workloads. Using a common database
model for enterprise systems can significantly improve
maintainability and reduce complexity, while providing real
time data access and completely new possibilities. Therefore
main memory optimized data structures are examined and
evaluated in the context of enterprise systems using real
customer data.

The remainder of the paper is structured as follows:
Section II explains the motivation for research on new data
structures and what might be accomplished with the latest
hardware. Section III introduces main memory databases in
general, shows the research done in this field and discusses
main memory optimized data structures. On which findings
on enterprise customer data we base our research is shown in
Section IV. The Section V includes findings and calculations
based on real customer statistics and evaluates the relevance
of these findings mean for main memory enterprise databases
while Section VI presents related research. The paper closes
with a brief conclusion in Section VII.
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II. MOTIVATION

A major trend in analytical enterprise systems, especially
Business Intelligence solutions, is right and real time com-
puting. For years, vendors have been working on solutions
to integrate transactional data into analytical systems as
enterprise data warehouses (EDW) and data marts. A major
problem of the real time trend were iteratively developed
solutions tackling one special problem, often with a lack of
scalability.

An example are Operational Data Stores (ODS). Es-
pecially in the beginning of the last decade the demand
for real time analytics on latest transactional data was
increasing. Since most EDWs are not capable of handling
the steady stream of transactional data, ODS were integrated
in between OLTP and OLAP systems holding only current-
valued data. However, new developments in the hardware
and database sector encouraged the integration of real time
data into EDWs. Due to the fact of growing requirements
for timeliness an intermediate step as ODS was providing
unacceptable additional delay without providing any new
advantages. Furthermore, ODSs usually integrate data only
in one-way fashion leaving out new technologies such as
closed-loop analytics, which require bidirectional data inte-
gration back into the operational systems.

Another major advantage of a database running mixed
workloads is the inherent “real time data access”. Defining
real time in the context of EDWs and Business Intelligence
is quite vague and differs from vendor to vendor. In [1] real
time is defined as follows.

The answer is absolutely the most up-to-date infor-
mation physically possible in terms of both update
and access.

Current commercially available systems with redundant
transactional data and data integration systems can obviously
not fulfill this definition. The techniques discussed in this
paper focus on “real real time”, thus ensured transactional
safety of always having the exact results of the current state
of the data when the query was executed. In the following
“real real time” is only named real time, even though this
might not be congruent with the term real time used by
commercial solutions.

To overcome these aforementioned drawbacks this paper
discusses new database techniques, contemplating whether
it is possible to use a common database model for analytical
and transactional workloads enabling a less sophisticated
environment while providing real time data access and
enabling new functionalities and business processes.

A. Hardware Development

Hardware development of the last years still underlies the
trend of an increasing gap between CPU speed and memory
speed. CPU performance has improved by 60% each year
for over two decades while memory access latency only

decreased by less than 10% per year [16]. This development
is transferring the bottleneck from hard disk - which was the
prime limiting factor when most RDBMS were developmed
in the last century - to main memory on modern computer
systems [4], [8]. This is even greater if pure main memory
data processing is considered. Consequently, new algorithms
and data structures tackling the memory gap are needed in
order to efficiently use todays hardware.

Commercially available server blades with up to 64 cores
and 1 terra byte main memory with steadily falling prices en-
abled enormous enhancements, especially in the area of main
memory column oriented databases, which are currently
primarily used for Business Intelligence purposes. Besides
performance improvements the growing main memory sizes
combined with light-weight compression techniques allow to
store complete transactional enterprise data in main memory
while providing sufficient query performance in parallel
[17].

B. A Common Database Model for Transactional and Ana-
lytical Workloads

A very recent trend in the area of analytical databases
is optimized write performance. Latest analytical databases
need to be able to handle incoming transactional data
streams in right or even real time. Looking at those tough
time constraints and achievements made in Business Intelli-
gence environments in recent years, this raises the question
what these analytical solutions using current hardware devel-
opment could accomplish. In [17] Plattner proposes the idea
of a common database approach using a column oriented
main memory database. Hereby all transactional business
data is kept in main memory and using the column oriented
design all analytical questions are directly answered on the
transactional data.

Having only one single source of truth and inherently
real time access to this data - even when asking analytical
questions - reveals completely new possibilities. Techniques
as closed-loop analytics, operational reporting or event-
driven business processes are supported out of the box.
Furthermore upcoming trends as event-driven process op-
timization become possible.

III. IN-MEMORY DATABASES

In-memory (or main memory) database systems are
databases which answer all queries directly from main mem-
ory instead of reading data from hard disks as traditional
RDBMS do. In-memory databases have been researched for
over two decades now [3]. Despite the common assumption
they are primarily afflicted by CPU bottlenecks as Manegold
et al. showed in [15] that the CPU processing time can be di-
rectly mapped to the number of cache misses. Hence the new
bottleneck was still mainly I/O caused while it moved from
hard disk to main memory access [2]. Consequently, existing
I/O optimized algorithms have to be modified in order to
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acknowledge the memory hierarchies without considering
the disk access. The so-called “myth of random access”
says that even though access times are constant on main
memory, the contiguousness and data locality of read data is
a significant performance factor making cache consciousness
a prime key performance factor in main memory systems.

Cache memories are subdivided into fixed-sized logical
cache lines, which are atomic units for accessing data.
Hence, caches are filled on per-cache-line basis rather than
on per byte basis. In order to load a value from main
memory it is necessary to iterate over all intermediate
caches subsequently. Consequently, with stepping down in
the memory hierarchy the CPU cycles needed to access a
certain value increases. For instances, accessing the main
memory consumes 80 times the amount of CPU cycles than
an access to the CPU near L1 cache consumes. This factor
highlights the necessity of data locality in pure main memory
persistent data management. These so called “cache misses”
are the goals of optimization in in-memory based databases.
As in disk-based systems the proper data management has
a huge impact on the processing performance regardless of
the in-memory processing speeds up application alone by
leaving out the disk access. Furthermore, the cache line
based pattern has the effect of reading too much data,
if data is accessed in an non-optimal way. For example,
especially in analytical workloads, which is largely attribute-
focused rather than entity-focused, the column-wise data
representation is useful in a sense that only a small number
of attributes in a table might be of interest for a particular
query. This allows for a model where only the required
columns have to be read while the rest of the table can be
ignored. Due to this fact, the read cache line only contains
the data needed to process the request exhibiting a more
cache-friendly I/O pattern. In case of a row-oriented data
storage the cache line would be polluted with other attributes
of the tuple depending on both the width of the tuple and the
size of the cache line. Attributes of a certain tuple can even
be on separate cache lines leading to another cache miss
while accessing two attributes adjoining each other. Also,
this affect can be applied when comparing disk-based row-
and column-stores but on page level. Another advantage
of sequential memory access is achieved by pre-fetching
strategies of modern CPU’s. This CPU-inherent technique
allows the pre-fetching of another cache line when reading
and processing a cache line, i.e. it speeds up the access to
the proceeding cache line.

A. Main Memory Data Structures

As mentioned before, database systems organize tables
either in a row- or column-wise fashion. Considering a
vector-based storage in-memory system the row oriented
variant stores each attribute of a tuple contiguously while
the column oriented representation stores the values of each
column contiguously in memory, which can be seen as
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Figure 1. Row vs. column storage with different access patterns

a full vertical partitioning. Therefore the data locality of
both designs differs completely with regards to the applied
workload. For example, column-stores can efficiently pro-
cess analytical queries, which usually compute many rows
on a small number of attributes. In contrast, row-stores
provide better data locality for complete tuple accesses and
modifications by low selectivity queries. Figure 1 illustrates
the two access patterns OLTP and OLAP with regards to
the used storage technique while the black box illustrates
the access data for fulfilling the request. As depicted using
the appropriate storage organization for a specific workloads
leads to an optimal read pattern. For example pure OLTP-
style queries perform best in the row-store as the requested
row 3 can be access sequentially while in the column-
store the reconstruction of the tuple introduces as many
cache misses as attributes on the relation. Vice versa in
the OLAP use case that benefits from a column-wise data
representation.

IV. REAL CUSTOMER DATA FINDINGS

To evaluate main memory data structures not only based
on theoretical assumptions, all calculations and predictions
in this paper are founded on statistics gathered on a real
enterprise customer system. Therefore five years of Finan-
cial (FI) and Sales & Distribution (S&D) data have been
examined. The data was gathered and analyzed via SQL
logs and direct database access.

A. Workload Characteristics
Analyzing the database workload of the given transac-

tional customer system the focus lied on the analytical loads
produced in the transactional system. This includes OLAP
like queries, usually e.g. aggregations over many table rows.

Besides the actual rate of data modifications was mea-
sured. Against common assumptions SELECT is the domi-
nating command even on transactional systems as shown in
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Figure 2. Distribution of SQL Commands on a Transactional System

Table I
DISTRIBUTION OF SELECTION QUERIES

Executions Total Distinct Queries
26986346725 79269 Total selections

949005688 3810 Selections with aggregations
26037341037 75459 Selections without aggregation

3,52% 4,81% Percentage of aggregations

figure 2. Only a tenth of all queries is actually modifying
data. This is especially important when considering the
usage of column-stores, since these usually provide a far
worse write performance compared to row-stores.

Even though column-stores can profit from the fact
already mentioned, that transactional workloads are read
dominated, they provide a minor read performance on small
result sets or very low selectivities. Table I shows the
distribution of selecting queries. Only less than 5 per cent
are aggregating select queries. However, this is based on the
fact of the inability of todays row-based data management
to efficiently handle aggregation on-the-fly. If tables, which
store materialized aggregates would be removed due to the
on-the-fly aggregation capability of the new storage the
workload would show much more aggregating queries.

B. Enterprise Specific Attribute Selection

The analyzed transactional tables have an average width of
200 attributes, which is due to the fact of complex enterprise
application that cannot be neglected. Hence, todays data
management systems have to handle this amount of columns
efficiently even in mixed workload environments with at-
tribute focused queries leaving out most of the columns.

To evaluate main memory data structures it is important,
especially for column-stores, to know the exact usage of
attributes. Since the row wise data locality of columnar
storages is worse than on row-stores, each selected attribute
usually produces a cache miss. Therefore narrow selections
and modifications of rows are preferable for column-stores.
To measure column-stores and typical enterprise selections
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the customer’s SQL logs were analyzed. We found that an
average SELECT uses approximately 20% of all fields. Thus
of a 200 attributes wide table 40 attributes in average are
requested with a standard deviation of 35, which is actually
not very surprising seeing the number of columns having a
distinct value cardinality of one as shown in figure 3.

Furthermore the contiguousness of selected attributes has
been analyzed. While column-stores suffer from wide selec-
tions, the impact of a high attribute selectivity using row-
stores in contrast is barely measurable, since often complete
rows are read into the cache anyway. For the calculations
made in V-A a static value of 20% contiguous attributes
selected in each query was used (see Average Selection
Width in V-A-1).

Another important aspect concerning main memory data
structures are properties effecting compression. Figure 3
shows the cardinality of distinct values per column. Espe-
cially column oriented storages profit heavily from columns
holding a small number of distinct values since even most
trivial compression approaches provide compression rates
up to 99% while still providing good query performance.
Furthermore, this analysis on characteristics of data leads
to the conclusion that only columns with a high cardinality
of distinct values are of interest for analytical queries since
only these can provide insights.

V. EVALUATION

This Section puts main memory data structures into the
context of enterprise systems. First cache miss calculations
are shown where hereby the focus is not simply lying
on cache miss predictions, but on cache miss comparison
between row and column-stores measured in the base of
real customer data and real workloads. Assuming a complete
main memory database solution might not be realizable right
now it is defined which enterprise solutions profit more or
less from main memory databases. This Section closes with
a brief outlook to current hybrid data structures research.
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A. Cache Miss Measurements

Based on the finding explained in Section IV-B the
cache misses for typical enterprise workloads have been
measured. To find the breakeven point, where a column-
store outperforms a row-store depending on the size of the
read rows, a set of select queries is calculated based on data
explained in Section IV. Hereby a simplified cache miss
model was used, which models only one level of cache.

Since an average transactional table has 200 attributes
with an average size of 10 byte, we expect a table row
to have a size of 2 kilobyte each. Based on analyses on
SQL traces (see Section IV-B) the Average Selection Width
ASW , which is the average number of selected attributes,
is calculated with a sample set of the following selection
widths.

ASW = (5, 10, 10, 40, 40, 40, 40, 40, 80, 200) (1)

The number of resulting rows of each select query is
r. The probability of a cache miss per attribute per row
is Mo with o as the type of storage form. Based on the
cache size and the data statistics shown in Section IV-A we
assume Mrow to be 0.001 (not exactly zero, since row might
be spanning over two cache lines). Even though attribute
access in a column-store almost translates to one cache miss
per attribute we set Mcolumn to be 0.8 since Section IV-A
revealed that many columns only consist of very few distinct
values and thus can be very well compressed resulting in
possibly multiple columns per cache line, even on huge data
sets. Furthermore we assume no read row to be contiguous
to any other read line, simply because of the huge data
sets enterprise systems store. Hence the probability Ro of
producing a cache miss getting values of a column is 1
for row-stores and 0.15 for column-stores (numbers derived
from ASW and calculated B-tree size of data shown in figure
3).

CMisso(r) =

⌈∑#ASW
k=1 ASWk ×Mo +Ro × r

#ASW

⌉
(2)

The results of formula 2 can be seen in figure 4. Column-
stores outperform row-stores beginning at an average result
set of approximately 350 rows. Even though it was shown
that aggregating queries are not dominating in transactional
workloads (see table I), this paper assumes that enabling
analytical queries on transactional data at any time and on
any data will significantly increase the analytical workload
on transactional systems. Since only a minority of queries
reads more than 350 rows one has to decide which tradeoffs
to accept choosing a storage design. Depending on the write
performance of column-stores this decision usually tends
towards column-stores since they offer analytical functions
and are steadily improving their write performance. Row
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stored tables are most suitable for tables with a heavy
transactional workload and tables which are usually never
read using aggregations or using primary keys. A typical
example here are tables storing customer data as address,
contact person etc. or configuration tables.

Concluding one can say that given a known workload
and a exact knowledge about ones data it is possible to find
metrics defining whether a column oriented or row oriented
design is more suitable for a certain table.

VI. RELATED WORK

This work focuses handling mixed workloads by evalu-
ating row- and column-wise main memory data structures.
Comparable publications to this storage technique are Frac-
tured Mirrors [18] and HyPer [13]. Fractured Mirrors is
optimized for hard disk efficiency but describes a hybrid
model using the Decomposition Storage Model (DSM) and
the N-ary Storage Model (NSM). Fractured Mirrors writes
data both to column and row oriented schemas in parallel,
while answering selects using the most appropriate table
form. HyPer uses a virtual memory snapshot mechanism for
fast data modification and duplication. Both implementations
improve read queries since they can process these with
regards to certain properties by leveraging the advantages
of one or the other storage concept. Similar approaches that
serve both workloads via redundant data storages suffer in
general from additional costs and complexity on writes since
some sort of two-phase commit protocol has to be in place
if storage of both needs to be consistent. While basically
tending in the same direction by providing different data
structures for different purposes a major aim of this work is
the strict avoidance of any redundancy but profit inherently
from advantages such as easier transaction handling, less
complexity and better maintainability.

Besides intense research on column-stores there has been
comparably little research work on row oriented databases
in main memory. The most prominent works are H-Store
and P*Time [7], [12], which are both optimized for OLTP
workloads. Besides these transactional main memory row-
stores mainly performance enhancing cache layers have been
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researched as in [19] and [5] where the hard disk still serves
as the primary persistence.

As shown in the previous Sections it is possible to
define which storage paradigm is more efficient based on
measurable metrics. Following this rationale grouping of
frequently accessed columns should provide the optimal
solution for a specific workload and has been researched
over the last decade with different approaches. Besides [18]
with having column oriented as well as row oriented tables
in parallel other approaches use a more loose table paradigm
and combine column and row orientation. Two variants here
are e.g. Data Morphing [11] and HYRISE [10].

VII. CONCLUSION

This work studied data structures for main memory
databases and illustrated their performance implications
based on real customer data while considering data and
workload characteristics derived from realistic enterprise
applications.

Taking the hardware development into account especially
columnar storages are very promising, since their drawback
- the write performance - will lose its impact on the total
performance with the current development for increasing
real time data integration. Besides, the write performance
in an in-memory based column-store is limited to the log
performance to disk as in conventional disk-based database
systems, since decomposing relations in main memory is
much faster than logging to disk even while introducing a
cache miss on every column access.

We could show that in mixed workload environments as
applied in modern enterprise applications the in-memory
column-oriented storage organization is advantageous. To
what extend tables which have both a high transactional as
well as an analytical load can be remodeled or partitioned in
a way, which does not create new redundancy but provides
a automated workload adaption, has to be evaluated in
further research. For the future also analytical workloads
on transactional data have to be analyzed to get a more pre-
cise workload definition of mixed workload environments.
Furthermore latest hybrid developments are very promising
to utilize the memory bandwidth.
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