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Abstract—An efficient selection of indexes is indispensable
for database performance. For large problem instances with
hundreds of tables, existing approaches are not suitable: They
either exhibit prohibitive runtimes or yield far from optimal index
configurations by strongly limiting the set of index candidates or
not handling index interaction explicitly. We introduce a novel
recursive strategy that does not exclude index candidates in
advance and effectively accounts for index interaction. Using
large real-world workloads, we demonstrate the applicability of
our approach. Further, we evaluate our solution end to end with
a commercial database system using a reproducible setup. We
show that our solutions are near-optimal for small index selection
problems. For larger problems, our strategy outperforms state-
of-the-art approaches in both scalability and solution quality.

Publication: This paper has been published in the proceedings
of the 35th IEEE International Conference on Data Engineering
2019. The final publication is available at IEEE Xplore via
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I. THE INDEX SELECTION PROBLEM

Developments in hard- and software have shifted the break-
even point for sequential scans and secondary index scans in
terms of performance. In [1], Kester et al. have investigated the
impact of large main memory capacities and modern CPU cache
hierarchies for both access paths. They show that even though
sequential scans have overall become more efficient, secondary
indexes are still necessary to achieve the best performance in
many settings.

Besides the performance aspects, indexes often consume a
major share of the available main memory, a typically scarce
resource [2], [3]. The sheer size of indexes and their potential
performance gains emphasize the need for mechanisms to
efficiently balance memory consumption and performance.

But determining the most beneficial set of indexes is
a complex and time-consuming problem. The number of
theoretical index candidates offered by large enterprise systems
is unmanageable [4]. Large tables of enterprise software
can have hundreds of attributes [5], workloads often include
thousands of queries, and, hence, the number of accessed
attribute combinations is enormous.

The selection process is typically conducted by Database
Administrators (DBAs) who have to rely on their intuition
and index advisors with often sub-optimal heuristics to find
acceptable solutions. Chaudhuri et al. [6] even stated that
expenses for DBAs became the key factor in the Total Cost of
Ownership (TCO) with increasing complexity of databases and

their queries. Workloads which change over time complicate
the selection process further.

Moreover, increasingly large cloud database deployments
require database vendors to minimize database administration
efforts. Assisting DBAs [7] with these complex tasks has the
potential to lead to more beneficial index configurations (and
improved system throughput) and to a lower TCO by both
reducing (i) the time taken for manual index tuning and (ii) the
main memory footprint due to removed superfluous indexes.

Index selection (or index tuning) belongs to the class of
NP-hard problems [8]. Especially large real-world problem
instances exhibit characteristics that most existing selection
approaches cannot handle: (i) thousands of attributes to
consider, (ii) workloads consisting of many thousand query
templates, (iii) solution constraints such as memory budgets,
and (iv) balancing reconfiguration costs with performance gains.
The approach we are presenting in this paper is capable of
handling large systems efficiently, adheres to given memory
budgets, and incorporates reconfiguration costs.

Looking at existing selection approaches, we see two impor-
tant aspects that render them unsuitable in real-world settings:
(i) index interaction and (ii) large problem dimensionality.
Most approaches do not explicitly take the effects of index
interactions into account or prune potential index candidates
too early [9]–[11], thereby degrading the solution’s quality. We
seek to address both aspects.

A. Index Interaction & Index Candidates

Typical relational database systems as used by enterprise ap-
plications contain a large number of multi-attribute indexes [2].
Multi-attribute indexes offer a good benefit-cost-ratio compared
to single-attribute indexes. Hence, it is desirable for index
selection systems to consider multi-attribute indexes.

The determination of multi-attribute indexes is computa-
tionally challenging as the number of candidate indexes, i.e.,
the number of used attribute combinations, typically exceeds
the number of attributes by orders of magnitude. Hence, in
general, optimal solutions cannot be derived anymore, and it is
impossible to evaluate all candidate combinations. Finding the
best selection of indexes out of a large set of potential indexes is
highly challenging as the presence of index elements mutually
affects their impact and the overall performance. This interplay
is called index interaction (IIA) and defined by Schnaitter et al.
as follows: “an index a interacts with an index b if the benefit
of a is affected by the presence of b and vice-versa” [12].



Index interaction increases the complexity of index selection
significantly as each index may influence the impact of all
other indexes. Nonetheless, the integration of index interactions
can significantly improve the solution quality.

Most existing approaches tackle index selection by having a
two-step process. First, the number of potential index candidates
is limited according to a certain heuristic. Second, this index
candidate set is used by the actual index selection algorithm to
compute a final index configuration. The main reason for the
pruning of index candidates during the candidate selection is
runtime performance. For approaches that exhaustively enumer-
ate candidates, the solution space of possible configurations and
their evaluation using what-if optimizers makes it unfeasible
to consider all candidates as soon as the system in focus is
sufficiently large.

The problem with an upfront candidate limitation is that
it might exclude candidates that later turn out to be useful.
Especially when accounting for multi-attribute indexes and the
effects of index interaction, simple heuristics (e.g., using the
top n single-attribute indexes for multi-attribute selection [13])
yield sub-optimal results. To our best knowledge, all existing
approaches that determine multi-attribute index configurations
use strong candidate pruning and consider fixed candidate sets.

Instead of the described two-step approach, our solution is a
one-step approach. The key idea is to prune index candidates
as late as possible and to construct index selections in an
iterative way. The power of recursion allows (i) to deal
with the enormous size of index combinations and (ii) to
incorporate index interaction in each construction step. Further,
in each step, new indexes are chosen or existing ones extended
to consistently maximize the additional performance per
additional memory. This technique has advantages compared to
randomized shuffling or substitution heuristics used by existing
state-of-the-art approaches.

To obtain accurate cost estimates for a configuration, we use
the what-if capabilities of modern query optimizers, similar to
other approaches [13]–[15]. Unfortunately, what-if calls are the
major bottleneck for most index selection approaches (cf. [16]).
Hence, a major constraint is to limit the number of what-if
optimizer calls. And even though our approach does not limit
the index candidate set, we are able to decrease the number of
what-if calls using caching and by exploiting workload context
information (cf. Section II-C).

B. Contributions

The proposed index selection solution is based on a general
solution principle which allows for efficient computation. To
demonstrate the performance and the applicability of our
approach, we present extensive evaluations, consisting of
simulated, reproducible examples, and a real-world workload.
Evaluations show that our approach outperforms various
heuristics and state-of-the-art approaches.

The results indicate both an improvement in the quality of the
selected indexes and a greatly reduced search time. We focus
on a comparison with the state-of-the-art approach CoPhy [14],
which outperforms index advisors of commercial database

systems resembling techniques presented in [10] and [17].
Compared to CoPhy, we show that our solution quality is
higher for large problem instances, while at the same time
being significantly faster.

Current state-of-the-art approaches spend almost half of the
computation time for solving and the other half for what-if
calls to the query optimizer [14]. Our solution improves both
main contributors to the overall runtime for large problems:
We calculate index configurations orders of magnitude faster
while executing fewer what-if calls. Our main contributions
can be summarized as follows:
• We propose a novel workload-driven index selection

approach that builds on a recursive mechanism and
effectively accounts for index interaction.

• Our approach is scalable and efficient, making it applicable
even for large-scale problems.

• Using reproducible examples, we demonstrate the scalabil-
ity and the end-to-end performance of our solution with a
commercial database system compared to state-of-the-art
techniques.

• We also demonstrate the improved performance of our ap-
proach over established techniques for real-world scenarios
with the workload of a productive enterprise system.

The remainder of this paper is structured as follows. In
Section II, we derive our index selection approach and discuss
its conceptual differences to other state-of-the-art approaches.
In Section III, we use a reproducible scalable setting to study
the scalability and quality of our approach compared to optimal
selections provided by CoPhy. In Section IV, we study the
performance of our approach against other state-of-the-art tools
using real-life workloads in a commercial DBMS. In Section V,
we summarize our evaluation results and discuss the advantages
of our approach. In Section VI, we present important related
work in the area of index selection. Final conclusions and
future work are given in Section VII.

II. MULTI-ATTRIBUTE INDEX SELECTION

In this section, we present our approach and discuss its
conceptual differences compared to other approaches.

A. Problem and Model Description

We consider a system with N attributes. The problem is
to choose secondary indexes for a workload, consisting of Q
queries, such that the overall performance is maximized, e.g.,
by minimizing the execution time, I/O traffic, or the amount
of transferred memory. Each of the Q queries is characterized
by a set of attributes qj ⊆ {1, ..., N}, j = 1, ..., Q, that are
accessed during query evaluation. Note, a notation table is
given in Appendix A.

A (multi-attribute) index k with K attributes is characterized
by an ordered set of attributes k = {i1, ..., iK}, where iu ∈
{1, ..., N}, u = 1, ...,K. Further, to describe index candidates,
we use a set of indexes denoted by I ,

I
e.g.
:= {{16, 3}, {1, 6, 2}, {5, 6}}



By the subset I∗ ⊆ I , we denote an index selection. W.l.o.g.,
using binary variables xk, we indicate whether a candidate
index k ∈ I is part of the selection I∗, i.e.,

I∗(I, ~x) :=
⋃

k∈I:xk=1

{k}

The costs of a query qj , j = 1, ..., Q, are denoted by values
fj(I

∗), which depend on the selection I∗. Usually fj(I
∗) is

determined by what-if optimizer calls. The functions fj assign
costs to sets of indexes (which includes one-dimensional sets).
Note, a query qj can be of various type, such as a selection,
join, insert, update, etc. or a combination of the above.

The total workload costs F are defined by the sum of
query costs fj of all queries qj , multiplied by their number of
occurrences denoted by bj , j = 1, ..., Q,

F (I∗) :=
∑

j=1,...,Q

bj · fj(I∗) (1)

Further, we assume that the memory consumed by the
selected indexes is not allowed to exceed a certain budget A.
The necessary memory for a (multi-attribute) index k, k ∈ I∗,
is denoted by pk and can be arbitrarily defined. The total
memory used by I∗ amounts to

P (I∗) :=
∑

k∈I∗
pk (2)

Further, we allow for reconfiguration costs. By R(I∗, Ī∗), we
denote the costs (arbitrarily defined) for changing an existing
index selection Ī∗ to a new selection I∗ (i.e., create new indexes
I∗ \ Ī∗ and delete unnecessary ones Ī∗ \ I∗).

Finally, (given an arbitrary but fixed current index selection
Ī∗) the multi-attribute index selection problem can be generally
defined by

minimize
xk∈{0,1},k∈I

F (I∗(I, ~x)) + R(I∗(I, ~x), Ī∗) (3)

subject to P (I∗(I, ~x)) ≤ A (4)

Note, in problem (3) - (4) both the variables ~x and the index
candidate set I are crucial and have to be optimized.

B. CoPhy’s LP Approach

In this subsection, we consider an integer linear programming
approach to solve index selection problems. The approach
resembles the concept of CoPhy [14]. For ease of simplicity,
w.l.o.g., we do not consider updates and reconfiguration costs.

CoPhy’s model assumes that for each query at most one
index (per table) is applied and that scan costs are additive
separable for different tables. Moreover, it is assumed that
the scan costs of a query when using a specific index are not
affected by the presence of other indexes. Hence, if index k is
applied to query qj , CoPhy uses scan costs fj(k), k ∈ I ∪ 0,
where 0 describes the option that no index is applied to qj .

Further, by Ij ⊆ I we denote the set of index candidates
out of I that are applicable to query qj , j = 1, ..., Q. W.l.o.g.,

we assume that queries operate only on one table. For a given
candidate set I , the essence of CoPhy’s index selection LP
approach can be written as:

minimize
zjk,xi∈{0,1},i∈I,
j=1,...,Q,k∈Ij∪0

∑

j=1,...,Q,k∈Ij∪0

bj · fj(k) · zjk (5)

subject to
∑

k∈Ij∪0

zjk = 1 ∀j = 1, ..., Q (6)

zjk ≤ xk ∀j = 1, ..., Q, k ∈ Ij (7)∑

i∈I
pi · xi ≤ A (8)

The family of constraints (6) guarantees that at most one
index k is used for query qj . The constraints (7) serve to
identify which indexes k are used at all. Finally, constraint (8)
ensures that the memory budget A is not exceeded. CoPhy takes
IIA into account as the LP allows for all index combinations
I∗ out of I .

The complexity of the problem described by (5) - (8) is
particularly characterized by the number of variables and
constraints. Note, using Ij ⊆ I instead of I allows to reduce
the number of variables and constraints (from approx. Q · I ,
cf. variables zjk and constraint (7), respectively) to

|I|+ Q · Īq and Q + Q · Īq + 1

where Īq := 1/Q ·∑j=1,...,Q |Ij | is the average number of
relevant index candidates per query.

If an index k is only applicable to a query qj under the
condition that the first attribute of k denoted by l(k) is part of
qj , then the relevant sets Ij can be defined as, j = 1, .., Q,

Ij :=
⋃

k∈I:qj∩l(k)6=∅

{k}

In this case, the number of variables and constraints can be
approximated as follows. On average, we have |I|/N indexes
that start with a specific attribute i, i = 1, ..., N . Further,
let q̄ := 1/Q ·∑j=1,...,Q |qj | denote the average number of
attributes occurring in queries. Hence, the average number of
candidates applicable to a query is Īq ≈ q̄ ·|I|/N . Note, that the
number of qualifying indexes can also be larger, as I typically
contains indexes that start with attributes that overproportional
occur in a workload’s queries. Finally, the number of variables
and constraints is approximately

Q · Īq ≈ Q · q̄ · |I|/N (9)

Hence, as expected, the problem complexity strongly in-
creases in the number of queries Q and the number of candidate
indexes |I|. As the linear programming formulations, cf. (5) -
(8), require all cost coefficients fj(k), the number of what-if
optimizer calls can also be estimated by Q · Īq, cf. (9). Note,
that what-if cost estimations can be efficiently and accurately
derived, e.g., via INUM [16].
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1 Introduction

• Consider a new single index, k9 2 S
j=1,...,10 qj \{k2, k4},

cf. Algorithm 1 (3a)

• Consider enhancements of existing indices taking
relevant queries into account, cf. Algorithm 1 (3a):

– k6: appending N ORD.O ID to improve q4

– k7: appending ORD.ID to improve q2

– k7: appending ORD.C ID to improve q9

– k1, ..., k5, and k8: no improvements possible
for q1, ..., q10

• Decision (step 17): append ORD.ID to k7 due to best
performance improvement per additional space

• Note: in each step, required what-if calls from previous
steps can be cached, except for calls related to indexes
built in the previous step

1

Fig. 1. Illustration of Algorithm 1 for index selection for TPC-C: construction steps, applicability of indexes to different queries, and consideration of relevant
index enhancements.

C. Our Index Selection Approach

In the following, we define our approach for multi-attribute
index selection. Many index selection concepts are character-
ized by a two-step approach of (i) defining a well-sized index
candidate set and (ii) deriving an optimized selection for a
fixed memory budget (using heuristics or linear programming
techniques). Instead of these two steps, we use a constructive
approach to compute index selections which is based on a
recursive solution with increasing budgets.

Our approach uses a step-wise construction of an index
selection following a recursive context-based selection mech-
anism. Algorithm 1 recursively adds attributes to a set of
indexes. Attributes can either extend the current set of indexes
I as a new single-attribute index or they can be appended to
the “end” of existing indexes out of I (cf. morphing). The
decision which attribute is added in which way is determined
by comparing the additional performance, cf. F (I) + R(I), to
the associated additional utilized memory, cf. P (I), see (2).
Figure 1 illustrates the procedure for a TPC-C example1.

In a nutshell, the approach seeks to approximate the efficient
frontier (regarding performance and size) associated to the
multi-attribute index selection problem.

Algorithm 1. To determine multi-attribute index selections, we
use the following recursive construction:

1) Let I := ∅.
2) Determine the single-attribute index {i}, i = 1, ..., N ,

that minimizes the ratio between costs and the associated
memory consumption, i.e., (F (∅) + R(∅, Ī) − F ({i}) −
R({i}, Ī))/p{i}. Extend the current index set I by the
best single-attribute index {i∗}: I := I ∪ {i∗}.

3) Consider the current set I with a calculated cost of
F (I) + R(I, Ī) and utilized memory P (I). For each

1We aggregated the distinct conjunctive selections of all TPC-C transactions:
https://git.io/pytpcc

elementary index element {i}, i = 1, ..., N , and indexes
k ∈ I consider the following two types of construction
steps:

a) Add {i} as new single-attribute index, if I ∩ {i} = ∅.
b) Append {i} at the end of index k.
All potential attachments lead to a new index set Ĩ with
F (Ĩ) + R(Ĩ , Ī) and P (Ĩ). Choose the new index set with
the best ratio of cost reduction F (I) +R(I, Ī)−F (Ĩ)−
R(Ĩ , Ī) and its required additional memory P (Ĩ)−P (I).
Save the chosen construction step and let I := Ĩ∗.

4) Repeat Step (3) until either P (I) exceeds the given mem-
ory budget, a predefined maximum number of construction
steps is reached, or if no further improvement can be made.

Step (3) of the presented algorithm allows for time-saving
optimizations. If the elementary enhancements i = 1, ..., N
are considered for indexes k ∈ I it is not necessary to
fully recalculate costs F (Ĩ) using the what-if optimizer. It
is sufficient to only recalculate costs for queries that might be
affected by the potential attachment, cf. Step (3a or 3b). The
costs of most queries do not change.

Algorithm 1’s applicability is independent of specific values
of F , R, P , and f , respectively. The algorithm can be
generally applied and is independent of particular cost models
or optimizers. The only requirements are that query costs need
to be quantified and relative performance improvements of
index attachments must be comparable, cf. Step (3).

Note, the set of index candidates is not restricted in advance.
There is also no maximum number of attributes used in a multi-
attribute index. Algorithm 1 provides a series of construction
steps, which recursively and thus efficiently determine growing
sets of indexes I and their associated memory consumption
P (I). The recursive selection allows to take cannibalization
effects between different indexes into account as the value of
an index candidate is measured by its additional performance



improvement in the presence of other earlier selected indexes
(cf. IIA).

The following remark suggests several ways how Algorithm 1
can be further improved and extended.

Remark 1. Extensions and generalizations of Algorithm 1:
1) Algorithm 1 can be accelerated, e.g., by just considering

the n-best single-attribute indexes in the construction
steps, cf. Step 2.

2) It is possible that indexes that have been built in earlier
steps are not used anymore as new indexes (requiring
higher memory budgets) allow for more efficient scans.
In such cases, Algorithm 1 can be optimized by excluding
unnecessary indexes from the current index set.

3) To be able to identify different indexes that have the same
leading attributes, the estimated impact of missed (e.g.,
second best) opportunities to extend indexes can be stored
and potentially used in a later step. Note, the performance
impact might have to be re-estimated.

4) In case what-if calls are inexpensive or sufficiently
accurate cost models are present, the algorithm can be
generalized to consider not only single attributes but also
certain pairs of attributes to build or extend indexes.

Finally, we define our index selection heuristic. In addition,
we define three heuristic rules as well as two index selection
approaches resembling concepts used in [9] and [13].

Definition 1. Our approach and state-of-the-art concepts:
(H1) := Pick indexes of a given index candidate set I with the

most used attributes, measured by the number of occurrences
gi :=

∑
j=1,...,Q,i∈qj bj , i = 1, ..., N , in queries as long as

the given memory budget A is not exceeded.
(H2) := Pick indexes of a given index candidate set I with

smallest selectivity si := 1/di, i = 1, ..., N , as long as the
budget A is not exceeded (di the number of distinct values).

(H3) := Pick indexes of a given index candidate set I with
the smallest ratio of selectivity and number of occurrences, i.e.,
si/gi, i = 1, ..., N , as long as A is not exceeded.

(H4) := Pick indexes of a given index candidate set I with
the best performance as long as A is not exceeded; exclude
candidates that are not efficient (concerning performance and
size) for at least one query (skyline candidates), cf. [13].

(H5) := Pick indexes of a given index candidate set I with
the best performance per size ratio as long as A is not exceeded,
cf. starting solution of [9].

(H6) := Apply the series of construction steps, cf. Algo-
rithm 1, as long as A is not exceeded.

D. Discussion of Different Selection Approaches

The index selection problem cannot be solved exhaustively
as the number of combinations is enormous and the number
of what-if calls that can be processed to estimate each cost
improvement due to a specific index is limited.

Hence, the set of index candidates to be considered has to
be limited. As a limited candidate set can easily shrink the

solution quality the index candidate set has to be (i) either
very large or (ii) well defined. While (i) makes it difficult to
find an optimal selection, it is also not easy to solve (ii), as it
resembles the index selection problem itself.

Existing approaches work as follows: First, (large sets of)
index candidates are chosen based on simple metrics (e.g.,
access frequency, selectivity, or size) and individually evaluated
using what-if optimizer calls for all relevant queries. Second,
for a given memory budget the final index selection is picked
according to a certain mechanism.

In [13], final indexes are selected greedily based on their
individually measured performance. While this procedure
scales, IIA is not explicitly considered. Selected indexes are
likely to cannibalize their impact.

CoPhy’s linear programming approach allows identifying
optimal index selections while taking also IIA into account.
However, due to the complexity of the LP, the applicability of
the approach is limited to small sets of index candidates.

In [9], indexes are initially picked greedily based on their
individually measured performance/size ratio (starting solution).
To account for IIA and to increase performance index elements
are randomly substituted. Thereby, the approach is applicable
to large candidate sets. However, as the starting solution is
often far away from optimal and the shuffling is not targeted,
it can take a long time to obtain optimized results, particularly,
when candidate sets are large.

On first sight, our algorithm appears similar to greedy ap-
proaches like [9]. However, our approach has crucial differences.
We apply greedy selections in a recursive subsequent way such
that IIA, i.e., the presence of other (earlier selected) indexes,
is taken into account.

By comparing cost estimations, it can be determined for
which queries a potential new index (when added to a current
index set) would be applied, cf. (1), and hence, by how much
the current total performance would be improved. In each step
of Algorithm 1, an index is chosen such that the “additional
performance” per “additional required memory” is consistently
optimized. Hence, in contrast to [9], we address IIA in a
targeted way.

The combinations and variety of indexes that can be
composed by Algorithm 1 are not restricted in advance (as
when starting with certain sets of index candidates). Yet, the
number of necessary what-if calls is comparably small as
we also prune index candidates: Due to the use of recursive
incremental index extensions/alterations, in each step, only
small subsets of potential new indexes are considered and few
what-if calls are performed (cf. Section II-C).

Most importantly, the “direction” in which indexes are
considered and selected follows the “additional performance
per additional memory” criteria which reflects IIA.

To sum up, our approach (i) effectively includes IIA, (ii)
performs a small number of what-if calls, and (iii) quickly
identifies index selections for given budgets without using a
solver - even for large problems.



III. REPRODUCIBLE EVALUATIONS

In this section, we use a reproducible scalable benchmark
scenario to compare the runtime (Section III-A) and the quality
(Section III-B) of our index selection approach, cf. Section II-C,
to CoPhy’s solution approach, cf. Section II-B.

A comparison of all presented index selection concepts
including (H4) and (H5), cf. Definition 1, for real-life workloads
as well as end-to-end evaluations follows in Section IV.

Example 1. (Illustrating Reproducible Scalable Example)
In order to compare our approach to CoPhy’s solution, we

consider the following setting.
(i) CoPhy applies at most one index per query. To obtain

comparable results, we express query costs in the simplified
”one index only” setting, i.e., given a selection I∗ the costs of
a query j are determined by:

fj(I
∗) := min

k∈I∗∪0
fj(k) = min(fj(0), min

k∈I∗
fj(k))

(ii) In order to illustrate the applicability of our approach
in a reproducible setting, we fill the what-if optimizer calls
for fj(k), k ∈ I∗ ∪ 0, according to an exemplary cost model
described in Appendix Section B.

(iii) Further, we consider a (randomized) synthetic work-
load setting with T = 10 tables. We consider different problem
sizes with Qt = 50, ..., 5 000 queries and Nt = 50 attributes
per table, t = 1, ..., T . For details, see Appendix Section C.

(iv) We compare our heuristic (H6), cf. Algorithm 1 and
Definition 1, to CoPhy’s approach making use of the following
three heuristics to define scalable sets of index candidates I:

(H1-M) For each m = 1, ..., 4 select h index candidates of m
attributes {i1, ..., im} that occur most frequently in
queries throughout the workload, iu = 1, ..., N , u =
1, ...,m,

∑
j=1,...,Q,{i1,...,im}∈qj bj (in desc. order).

(H2-M) For each m = 1, ..., 4 select h index candidates of m
attributes {i1, ..., im} that have the smallest combined
selectivity

∏
u=1,...,m siu (in ascending order).

(H3-M) For each m = 1, ..., 4 select h index candidates on
tuples of m attributes with the best ratio of combined
selectivity (cf. H2-M) and number of occurrences (cf.
H1-M) in ascending order.

For M index candidates, let h := M/4 for each m = 1, ..., 4.

A. Applicability, Scalability, and Runtimes

We use Example 1 to compare the applicability of our
approach to CoPhy’s solver-based approach. For details see
our implementation framework2.

For different problem sizes (characterized by the number of
queries and attributes), Table I shows the runtimes (excluding
what-if calls) of our strategy (H6) – implemented with a single-
threaded C++ program – and CoPhy’s approach (CPLEX
12.7.0.0, mipgap=0.05, 4 threads, via NEOS Solver) for

2Reproducible framework for Example 1 for multi-attribute solutions, and
re-implementation of CoPhy: https://git.io/ICDE19IndexSelection

TABLE I
RUNTIME COMPARISON: SOLVING TIME OF OUR STRATEGY (H6) VS.

COPHY’S APPROACH (WITH 5% OPTIMALITY GAP AND |I| INDEX
CANDIDATES) FOR DIFFERENT PROBLEM SIZES WITH ICmax POTENTIAL

INDEXES, T = 10 TABLES,
∑

t Nt = 500 ATTRIBUTES, BUDGET w = 0.2;
WITHOUT TIME FOR WHAT-IF CALLS; EXAMPLE 1.

# Queries ICmax # Candidates ∅ Runtime ∅ Runtime∑
t Qt |Imax| |I| CoPhy3 (H6)

500 4 249 (100, 1K, ICmax) (0.35, 4.1, 19.7) s 0.276 s
1 000 7 504 (100, 1K, ICmax) (0.62, 7.3, 59.0) s 0.362 s
2 000 13 862 (100, 1K, 10 000) (2.4, 470, DNF) s 0.587 s
5 000 29 111 (100, 1K, 10 000) (5.4, DNF, DNF) s 1.121 s

10 000 54 622 (100, 1K, 10 000) (6.1, DNF, DNF) s 2.163 s
20 000 97 550 (100, 1K, 10 000) (15.3, DNF, DNF) s 5.552 s
50 000 194 065 (100, 1K, 10 000) (16.3, DNF, DNF) s 12.230 s

different sizes of index candidate sets, cf. Example 1. The
number of selected indexes is roughly |I∗| ≈ w ·∑t Nt = 100.
The budget A(w) is defined by the share w of the total memory
required for all single-attribute indexes, 0 ≤ w ≤ 1,

A(w) := w ·
∑

k∈{{1},...,{N}}
pk (10)

The runtimes of (H6) were again collected on a consumer
notebook with an Intel Core i5 and 16 GB of main memory.
We observe that even for really large problem instances
computations take only seconds and thus allow for basically
immediate response times. To further accelerate the runtime
of our strategy, Algorithm 1 could be parallelized.

We observe, that CoPhy’s computation time significantly
increases with the number of queries Q as well as the number
of index candidates. The generation of candidate sets and calls
to the what-if optimizer are not included. Note, the basic LP
model, cf. (5) - (8), with Q = 500 queries and |I| = 1 000
candidates typically has already more than 100 000 variables
and 100 000 constraints.

Further, the number of combinations of indexes exponentially
grows with the number of candidates (cf. [15]). Although
solvers use pruning, they cannot circumvent that problem.
Hence, for large problems the applicability of solver-based
approaches is limited and, thus, the number of candidates has
to be reduced to a small subset of potential indexes. Thereby,
even though, the final selection of indexes is optimal (for the
subset of index candidates), in general, the solution quality can
be far from optimal.

Comparing the runtimes in Table I, we observe that our ap-
proach is still applicable if problems are large. The complexity
of our algorithm is different: Due to the recursive nature of
our approach, in each construction step, there is just a small
number of possibilities which have to be evaluated. As current
index selections remain, the number of possibilities in each step
does not multiply – they just add up, leading to a dramatically
lower complexity.

Moreover, our recursive approach does not require a partic-
ularly large number of cost estimations, e.g., what-if optimizer
calls. Although in principle, a large number of index candidates
can be constructed, not all of them are evaluated using what-if

3DNF: Did not finish within eight hours.



optimizer calls. The majority (e.g., often more than 50%) of
optimizer calls occurs in the very first construction step, in
which the scan costs of all potential single-attribute indexes
k = {i}, i = 1, ..., N , have to be determined for all queries
qj , j = 1, ..., Q, i.e., we roughly have q̄ ·Q what-if optimizer
calls in the first step. In each of the following construction
steps of Algorithm 1, only those queries have to be evaluated
that could fully use a new potential (incrementally extended)
multi-attribute index – otherwise the costs of a query do not
change and have already been determined previously. Thus, in
each construction step, just a small number of what-if calls
has to be performed. Note, these numbers again just add up
over all construction steps.

Whereas in our approach the number of what-if calls (≈ 2·Q·
q̄) slowly increases with the number of necessary construction
steps to reach the targeted memory budget, in CoPhy’s approach
the number of calls (≈ Q · q̄ · |I|/N , cf. (9)) is roughly linearly
increasing in the number of index candidates |I|. Thus, our
approach requires fewer cost estimations compared to CoPhy,
especially if the number of candidates |I| is large compared
to the number of columns N .

Moreover, if multiple indexes per query are admissible the
complexity of the index selection problem is further increased
as the costs of a query cannot separately be derived for different
indexes, cf. Example 1 (i). Instead, the costs of a query are
context-based, i.e., they may depend on the entire selection I∗.
Hence, Cophy’s framework would have to be extended such
that cost parameters fj(I) are available for all subsets I∗. In
addition, the LP (5) - (8) is very likely to become nonlinear,
and hence, might be hardly applicable anymore.

Remark 2. Algorithm 1 is applicable in settings with multiple
indexes per query. In each step, what-if calls are made to
evaluate potential extension where the current state, i.e., the
current selection I, is taken into account. The only difference to
the "one index only setting" is that some what-if calls performed
in earlier steps have to be refreshed as the underlying current
state (and in turn, query costs) might have changed.

B. Performance Comparison with CoPhy

Next, we compare the performance of CoPhy’s approach with
our strategy. To study to which extent CoPhy’s performance
depends on the size and quality of index candidate sets, we
consider Example 1 for different parameters h, the number of
index candidates.

Figure 2 illustrates combinations of performance and memory
used for our and CoPhy’s selection approach in case different
heuristics are used to define index candidate sets. We observe
that CoPhy’s results are affected by the assortment of candidate
sets. Depending on the targeted memory budgets, heuristics can
perform differently. Our strategy, however, provides excellent
results for any budget.

Figure 3 depicts the corresponding results in case CoPhy’s
selection approach uses different sizes of candidate sets accord-
ing to (H1-M). As expected, CoPhy’s results are significantly
affected by the size of candidate sets. The smaller the set of
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Fig. 2. Comparison of combinations of scan performance and associated
relative memory budgets A(w), w ∈ [0, 0.4], for our strategy (H6) and
CoPhy’s concept with different sets of index candidates using (H1-M), (H2-
M), (H3-M) with |I| = 500 and all candidates Imax; N = 500, Q =
1 000; Example 1.

candidates is, the higher is the chance that important indexes
are missing. The larger the set of candidates, the higher the
solve time becomes.
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Fig. 3. Comparison of combinations of scan performance and associated rela-
tive memory budgets, cf. A(w), for our strategy (H6) and CoPhy’s concept with
different sets of index candidates using (H1-M) and |I| = 100, 1 000, |Imax|
candidates, w ∈ [0, 0.4], N = 500, Q = 1 000; Example 1.

CoPhy’s solutions are optimal in case the maximum number
of potential indexes (cf. Imax) is used as an exhaustive
candidate set. The fact that our strategy (H6) performs close
to optimal verifies the high quality of our solution. Recall, in
terms of computation times, we clearly outperform solver-based
approaches with large candidate sets which are necessary for
solutions of high quality.

Finally, our solution can be used to replace as well as to im-
prove traditional index selection approaches by complementing
index candidate sets. If the indexes that our approach selects
are used as additional index candidates, the problem complexity
of solver-based approaches hardly increases while the solution
quality may only improve.



IV. ENTERPRISE WORKLOADS AND
END-TO-END EVALUATIONS

In Section IV-A, we present benchmark results which are
based on data and workloads from a productive enterprise
system of a Fortune Global 500 company. In Section IV-B,
we demonstrate that our solution’s quality does not depend on
the exemplary cost model used in Section II. We evaluate our
approach with actual runtime costs measured with a commercial
DBMS against all presented concepts including (H4) and (H5),
cf. Definition 1.

A. Application to Enterprise Workloads

We evaluate our strategy for a real-world enterprise system.
We extracted the largest 500 tables (by memory consumption)
from the database system including the queries accessing these
tables. These 500 tables consist of 4 204 relevant attributes.
The tables had between ∼350 000 and ∼1.5 billion rows.
55 758 distinct queries (with Q = 2 271 query templates) were
executed and more than 50 million query executions took place
during the recorded period. The workload can be characterized
as mostly transactional with a majority of point-access queries
but also contains few analytical queries (more information
about a comparable system can be found in [18]).

Figure 4 shows the cost (calculated memory traffic) to
process the aforementioned workload for varying memory
budgets for our index selection strategy (H6) and CoPhy. In
addition, the size of CoPhy’s candidate sets is varied using (H1-
M). The measurements reassure the results from Section III-A
and Section III-B. Our approach clearly outperforms CoPhy’s
LP-based approach with limited candidate sets regarding the
solution quality. The runtime of our approach amounts to
approximately half a second whereas CoPhy with all 9 912
candidates needs several minutes.

The bad performance of the heuristics can be explained
by the nature of real-world workloads. The aforementioned
interaction between indexes plays an important role. Some
attributes are often accessed together. Hence, an index on an
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Fig. 4. ERP systems example: Comparison of combinations of scan
performance and associated relative memory budgets, cf. A(w), w ∈ [0, 0.1],
for our strategy (H6) and CoPhy’s concept with different index candidates
using (H1-M) and |I| = 100, 1 000, |Imax|; N = 4 204, Q = 2 271.

attribute might degrade the performance of a potential index
on another attribute. Rule-based heuristics like (H1) - (H3)
cannot take these effects into account.

B. Evaluation with a Commercial DBMS

In this section, we demonstrate the applicability of our
solution in practice for real-world database systems. In addition,
we show that our approach is independent of exact cost
modeling or what-if optimization implementations.

The following performance evaluations are conducted using a
commercial columnar main memory database system. While the
usage of (what-if optimizer-based) cost estimations is necessary
to enable the solution of large problem instances, it has also
been shown to be too often inaccurate [19]. Hence, we ran
all evaluations without relying on what-if or other optimizer-
based estimations but executed all queries one after another
with the aforementioned database system. The actual reported
execution time is then used to determine a query’s cost for a
given index configuration. To determine the impact of index
candidates on query performance, we also created all index
candidates one after another and executed all queries for every
candidate. These measured runtimes are then used (instead
of what-if estimations) to feed the model’s cost parameters.
While this approach guarantees precise costs, it comes with
a high evaluation time caused by evaluating every query for
every index candidate multiple times. Therefore, we used a
scalable workload as in Example 1 instead of the real-world
ERP workload to enable these experiments.

The measurements were conducted with the newest version
of the DBMS on a machine with 512 GB of main memory and
64 cores with a clock speed of 2.3 GHz. We repeated the mea-
surements at least 100 times per query per index configuration
to reduce measurement inaccuracies. The workload is created by
the above-presented workload generator which mimics real-life
workload characteristics. The code to reproduce the workload,
data and measurements are organized as Jupyter notebooks and
are available for download4. Based on the measured costs, we
compute index configurations using CoPhy, heuristics, and our
recursive strategy.

Figure 5 shows the performance of various index selection
strategies. Up to a budget of roughly 30%, our solution is on
par with the optimal solution CoPhy with all (2 937) candidates.
The performance of our solution is always within 3% of the
optimal solution.

The results of (H1) and (H4) with and without dominated
candidates (skyline method [11]) based on the exhaustive
candidate set are far away from optimal. Heuristic (H5) with
the complete set of index candidates provides also good results.
However, the results of (H5) are worse if the candidate set
is too small (see Figure 3) or of lower quality (which is the
case when, e.g., using H2-M or H3-M to define candidate
sets, see Figure 2). Note, the results of CoPhy provide an
upper performance bound if reduced candidate sets are used,

4Source code to reproduce end-to-end evaluation: http://bit.ly/index_
selection_icde_submission
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since for a given candidate set CoPhy computes optimal
selections. In this context, the results of CoPhy based on a
10% candidate selection (according to heuristic H1-M) show a
significant performance decrease compared to CoPhy with all
index candidates, cf. Figure 5.

The results can be summarized as follows: First, the choice
of the candidate set can significantly influence the overall
performance. Second, for a fixed candidate set the final selection
mechanism crucially affects overall performance. Third, our
approach does not depend on a suitable selection of candidates
and provides near-optimal results.

Although the workload size of our example is relatively small,
the problem complexity of CoPhy’s LP is already surprisingly
high. Both, the number of variables and constraints is linearly
increasing with the size of the index candidate set (see Figure 6,
Appendix Section D). The problem complexity, i.e., the solving
time, typically increases super-linearly with the number of
variables as well as the number of constraints. The exhaustive
set of 2 937 index candidates leads to roughly 20 000 variables
and constraints. The solving time for such problems can already
take several minutes (cf. Table I) depending on the solver used,
the specified optimality gap, the available hardware, etc. To
reduce the number of candidates, permutations of multi-attribute
index candidates can be substituted by their presumably best
representative. However, in general, results will be negatively
affected by removing other permutations.

Further, if problem instances are large, performance-based
approaches like (H4) and (H5) are also affected. As in their
approaches cost predictions have to be available for all index
candidates, the required number of what-if optimizer calls can
be (too) large. Hence, reduced candidate sets have to be used,
which requires suitable candidate heuristics and often leads to
an overall performance decrease, cf. Figure 5.

Finally, our results verify that our solution’s results also hold

in end-to-end scenarios: (i) we outperform simple rule-based
selection strategies, (ii) we outperform CoPhy with restricted
candidate sets, and (iii) we verify that our results are close
to optimal in case of tractable selection problems. Thereby,
we demonstrate that our solution finds close to optimal index
configurations also when not relying on what-if estimations or
specified cost models. Moreover, our solution is scalable as
what-if optimizer-based costs are less frequently determined
(see Section III-A) and no solver is required.

V. DISCUSSION OF EVALUATION RESULTS

We compared our solution against conceptual heuristics used
by Valentin et al. (cf. (H5), [9]), Kimura et al. (cf. (H4), [11]),
and CoPhy’s approach. Note, for [9], its starting solution
(H5) provides a lower bound while CoPhy yields an upper
performance bound.

For reproducibility, in Section Section III-A (scalability) and
Section III-B (performance), we used an exemplary illustrating
cost model, cf. Example 1. For the end-to-end evaluation
in Section IV-B, instead of a cost model, we used what-if
optimizer-based cost predictions, which include complex effects
of modern execution engines.

The results show that our approach scales and quickly
provides near-optimal index selections. Our approach outper-
forms (H4) and (H5) as well as CoPhy’s results if the set
of candidates is small compared to the set of all potential
candidates. Hence, our approach is a promising alternative to
existing tools, particularly for large problems.

The scalability, i.e., the quick runtime, of our approach can
be explained as follows: (i) during the recursive algorithm, we
consider only a limited subset of index candidates, and (ii)
instead of a randomized mechanism, we use a constructive
deterministic one with a comparably small number of steps.

The performance of our approach can also be explained. Our
approach exploits structures and properties that are typical for



real-world workloads and the performance of indexes: First, an
index A can be applied to more queries than an (extended) index
AB and requires less memory (Property 1). Second, similar
indexes AB and AC typically cannibalize each other, i.e., when
both are selected together they can only marginally increase
the overall workload performance compared to a scenario
where just (the best) one of them is selected (Property 2).
Third, we can assume that taking out any index from a Pareto-
efficient selection significantly affects performance. Hence,
from Property 2 follows that selections with several similar
indexes are not efficient and that including an index has
to significantly increase performance (Property 3). Fourth,
the Pareto-efficient frontier of “performance” and “required
memory” is of convex shape, cf. Figure 2-5.

Our approach exploits those properties: If an index AB
is beneficial, then typically index A also is, cf. Property 1,
and hence, is identified (and extended) by our algorithm. Our
algorithm does not construct similar indexes, cf. Property 2.
Our recursion only realizes index selections/extensions with
significant additional performance per size ratio while taking
IIA (of the current state) into account, cf. Property 3. With
an increasing number of our algorithm’s steps, the realized
additional performance per size typically decreases (diminish-
ing returns), cf. Property 1 and Property 4. Thus, it is very
unlikely that our algorithm misses a major improvement in a
future step, and in turn, our approach resembles the efficient
frontier of performance and required memory.

When Properties 1-4 are unsatisfied, our recursive approach
has probably limitations. For instance, our approach might miss
beneficial indexes in case they require a previous expensive but
not directly beneficial index to append to. In this context, we
refer to the discussion of potential extensions of Algorithm 1,
see Remark 1 and Remark 2. To study optimality gaps of special
cases, we recommend using CoPhy’s solution as a reference. It
will be challenging to derive performance guarantees as what-if
optimizer-based costs lack functional structure.

VI. RELATED WORK

An array of publications (e.g., [20], [21]) reduces the Index
Selection Problem (ISP) to the Knapsack Problem (KP) [22].
Both problems share similarities and are to a certain extent
comparable. The reduction to the KP as well as the work of
Piatetsky-Shapiro [8] demonstrate the NP-completeness of the
ISP. However, index interaction (cf. [12]) renders the reduction
of ISP to KP an oversimplification of the problem.

Valentin et al. present the index selection approach of IBM
DB2 [9] which greedily selects indexes until the given budget
is exceeded. The authors propose to evaluate indexes by their
ratio of runtime improvement vs. size consumption. To account
for index interactions and maintenance costs, the determined
configuration is randomly shuffled several times in search for
potentially better configurations.

Chaudhuri and Narasayya presented the optimizer-based
index selection tool for Microsoft SQL Server [13], [23]. They
explained several techniques to reduce the complexity of the
ISP. For example, to avoid considering every admissible index,

they determine a set of index candidates as input for the actual
index selection process. These candidates are chosen as follows:
Only indexes which are the best index for at least a single
query are considered as index candidates, potentially resulting
in wasted potential. Moreover, their solution, cf. [13], [23],
takes a fixed number of indexes as constraint and stop criterion.
Instead, as indexes differ in size depending on the underlying
data, we see their size as a more reasonable constraint and
consider a fixed memory budget.

A more recent version of Microsoft SQL Server’s index
advisor handles compressed indexes [11]. Here, potential index
candidates are first filtered for being efficient (i.e., are not
dominated by others). Then, Kimura et al. propose a heuristic
that – in contrast to the DB2 advisor – greedily selects indexes
with the largest expected runtime improvement. Only after the
budget is exceeded, index costs are considered when the advisor
tries to “recover” from the budget violation and iteratively
replaces indexes with more space-efficient alternatives.

The work of Idreos et al. [24] focuses on index selection
for column stores. They introduced adaptive indexing, where
the tuning of indexes is not a separate task but part of the
query processing. The two techniques adaptive merging [25]
and database cracking [26] either need a large number of
processed queries to be fully functional or have high initial
costs for the first queries compared to non-index scans. The
authors presented a hybrid approach of adaptive merging
and database cracking that performs close to optimal. But
experimental evaluations, e.g., by Schuhknecht et al. [27],
show that the success of these adaptive approaches depends
heavily on query access patterns. In addition, the potentially
highly-tuned database operator code needs to be adapted and it
is not clear how well these indexes can be taken into account
for the optimizer’s cost estimations.

Often, solutions for autonomous database design, e.g.,
CoPhy [14], depend on plan selections or cost estimations
of query optimizers. Especially for systems with large solution
spaces for index configurations, query optimizer-based what-if
calls can easily become the dominated performance bottleneck.
Therefore, previous optimization results can be reused as
presented by Papadomanolakis et al. [16] with INUM. They
propose to cache already calculated query cost estimations
to speed up the evaluation of similar configurations. Thereby,
beneficial index combinations can be identified without fully
enumerating them [14]. Their approach outperforms industry
optimizers by orders of magnitude with respect to runtime and
by up to a factor of 4× in accuracy as they can evaluate larger
solution spaces in the same time. We see INUM as a promising
mechanism to speed up what-if calls.

The idea to formulate the ISP as an optimization problem is
not new [14], [15], [28]. These works consider binary integer
problems as well as associated continuous relaxations. As
integer optimization problems are NP-complete [29], heuristics
are usually used. Caprara et al. [28] use branch-and-bound
algorithms to approximate solutions of their linear integer
problem. Their model assumes that for each query at most one
index is used which is a strong simplification. The benefit of



an index for one query is not affected by other index decisions.
Thereby index interaction is often not considered which leads
to suboptimal index configurations.

Papadomanolakis et al. [15] repeal the one index per query
simplification by allowing more than one index per query.
Furthermore, they take update costs into account. Dash et
al. [14] presented with CoPhy the current state of the art
solution for index selection. The authors claim to solve larger
problem instances with well-known techniques from linear
optimization efficiently. Their technique also relies on what-if
optimizer calls to feed the input for their linear programming
optimization; for details see Section II.

To mitigate scalability issues of index selection approaches,
workloads can also be proprocessed. Chaudhuri et al. proposed
to compress the workload while staying within the given error
bound that the user accepts for the compressed workload [30].
For the first step of compression (i.e., the determination of
query similarities) the optimizer is invoked. As such, the main
bottleneck for index selection (i.e., what-if optimizer calls)
is lowered but still remains. Zilio et al. [10] made similar
observations, finding the proposed workload compression to
be too slow. As an alternative, DB2 uses a simple approach
that selects the top k most expensive queries [10].

VII. CONCLUSION & FUTURE WORK

We have proposed a novel index selection approach which
allows computing efficient multi-attribute index selections.
While either the applicability or the quality of traditional index
selection approaches is limited, our strategy is applicable to
large index selection problems and provides effective results.

Using various reproducible examples and comparisons to
state-of-the-art index selection concepts, we have demonstrated
both the general applicability of our solution approach as well
as its high quality for large-scale workloads. Finally, we have
also verified the performance of our solution for real-world
systems using an ERP data set and workload.

The performance of state-of-the-art tools highly depends
on both, (a) the quality of an initial index candidate selection
and (b) the final selection mechanism accounting for index
interaction. Instead, our approach deals with problems (a)
and (b) simultaneously and combines four key properties
for index selection: (i) the ability to consider workload-
specific index interaction in general what-if optimizer-based
cost models, (ii) an optimized usage of main memory resources
for performance-enhancing indexes, (iii) short computation
times even for large problem instances, and (iv) configurable
reconfiguration costs.

In future work, we will analyze scenarios with stochastic
workloads that change over time. To react to changing work-
loads, the model has to adapt the index selection successively.
For such scenarios, it is vital to take reconfiguration costs into
account in order to determine whether it is worth to reorganize
the index configuration.

Further, historical workload information can be used to
estimate anticipated query frequencies or even distributions of

potential future workload scenarios, e.g. in the context of self-
managing database systems [31], [32]. Weighting the impact of
index selections for these scenarios (under risk considerations)
allows computing robust data allocations under uncertainty.
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APPENDIX A
NOTATIONS

TABLE II
NOTATION TABLE

W
or

kl
oa

d
Pa

ra
m

et
er

s

N number of attributes
Q number of queries
T number of tables
n number of rows of all attributes of a table
di number of distinct values in attribute i
ai value size of attribute i, i = 1, ..., N
si selectivity of attribute i, i = 1, ..., N
qj attributes accessed by query j, j = 1, ..., Q,

subset of {1, ..., N}, e.g., q1 = {8, 6, 13, 14}
bj frequency of query j, j = 1, ..., Q
gi number of occurrences of attribute i
q̄ average number of attributes accessed by queries
Īq average number of index candidates applicable

to a query

C
os

t
Pa

ra
m

et
er

s A main memory budget
w relative main memory budget
fj(0) cost of scanning query j without an index
fj(k) cost of scanning query j with index k
pk memory size of index k, k ∈ I

V
ar

ia
bl

es

I set of multi-attribute index candidates
xk multi-attribute index k selected, yes (1) / no (0)
~x vector of decisions of all xk for k ∈ I
I∗ set of selected indexes out of candidates I
fj(I∗) costs of query j for selection I∗

F (I∗) total costs of index selection I∗

P (I∗) occupied memory of index selection I∗

Ī∗ existing set of selected indexes (current state)
R(I∗, Ī∗) index reconfiguration costs from Ī∗ to I∗

Ij set of candidates out of I applicable to query j
zjk decision variable: index k used for query j

yes (1) / no (0), j = 1, ..., Q, k ∈ Ij

APPENDIX B
REPRODUCIBLE EXEMPLARY COST MODEL

(i) To define fj(I
∗), we consider the following execution

of scan operations for a query j given an index set I∗:
1) Choose the index k out of I∗ for query j that produces

the smallest result set. Take the selectivity of attributes
of qj and the order of attributes within k into account.

2) Scan attributes i of qj that are coverable for a chosen
index k, i.e., i ∈ U(qj , k), and accumulate scan costs,
e.g., via

log2(n) +
∑

i∈k
ai · log2(di) + 4 ·

∏
m∈U(qj ,k)

sm

Note, written position list elements amount to 4 bytes.
3) Choose the next best index out of I∗ for the remaining

attributes in qj . Use this index and accumulate scan costs
as described above.

4) Repeat these steps until no further index is used.
5) Scan all remaining attributes of qj ordered by selectivity

and accumulate scan costs F .
(ii) Let the memory utilized by a multi-attribute index k:

pk :=
⌈
d log2(n)e · n/8

⌉
+
∑

i∈k
ai · n

Note, the workload model chosen for the reproducible
example resembles vector-at-a-time execution models (cf. [33]).
However, the model is general and can also be applied to data-
centric execution models (cf. [34]).

APPENDIX C
REPRODUCIBLE SCALABLE WORKLOAD DEFINITION

In Example 1, see Section III-A, we consider multiple tables
and define the following workload:

T = 10

Nt = 50, t = 1, ..., T

Qt = Nt, t = 1, ..., T

nt = t · 1 000 000, t = 1, ..., T

dt,i = round(Uniform
(
0.5, nt ·

(
Nt − i + 1

Nt + 1

)0.2)
)

Zt,j = round(Uniform(0.5, 10.5)), j = 1, ..., Qt

qt,j =
⋃

k=1,...,Zt,j

{round(Uniform(1, N
1/0.3
t )0.3)}

bt,j = round(Uniform(1, 10 000)), j = 1, ..., Qt

APPENDIX D
ADDITIONAL FIGURES
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Fig. 6. Increasing problem complexity: number of variables and constraints
of CoPhy’s LP for different relative sizes of index candidate sets; end-to-end
example with N = 100, Q = 100, |Imax| = 2 937.


