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ABSTRACT
Most online markets are characterized by competitive settings and
limited demand information. Due to the complexity of suchmarkets,
efficient pricing strategies are hard to derive. We analyze stochastic
dynamic pricing models in competitive markets with multiple offer
dimensions, such as price, quality, and rating. In a first step, we use
a simulated test market to study how sales probabilities are affected
by specific customer behaviors and the strategic interaction of price
reaction strategies. Further, we show how different state-of-the-art
learning techniques can be used to estimate sales probabilities from
partially observable market data. In a second step, we use a dynamic
programming model to compute an effective pricing strategy which
circumvents the curse of dimensionality. We demonstrate that the
strategy is applicable even if the number of competitors is large and
their strategies are unknown. We show that our heuristic can be
tuned to smoothly balance profitability and speed of sales. Further,
our approach is currently applied by a large seller on Amazon for
the sale of used books. Sales results show that our data-driven
strategy outperforms the rule-based strategy of an experienced
seller by a profit increase of more than 20%.
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1 DYNAMIC PRICING UNDER COMPETITION
The problem of dynamic pricing can be loosely defined as follows:
Given a number of items to sell and a given sales horizon, adaptively
adjust prices over time to maximize expected profits. Uncertain
customer demand, steady competition, changing markets, as well
as remaining inventory levels have to be taken into account.

Dynamic pricing is crucial in revenue management, especially in
e-commerce, since prices are a keymarketing factor and have a huge

KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in KDD ’18: The 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, August
19–23, 2018, London, United Kingdom, https://doi.org/10.1145/3219819.3219833.

impact on sales and profits. Naturally, in the Big Data era revenue
management systems provide automated demand estimation and
price adjustment methods that assist managers in this challenging
and important task [19].

Stochastic dynamic pricing under competition and incomplete
demand information is a major open problem in revenue manage-
ment. Practical relevance is enormous, but the problem appears
intrinsically hard. The challenge is (i) to predict sales probabil-
ities based on observable private market data, and (ii) to derive
approaches that allow for optimized automated price reactions
with minimal computation times [21].

In this paper, we solve dynamic pricing problems for large input
specifications that are common in real-world systems, e.g., compe-
tition with dozens of firms, thousands of distinct products, multiple
offer dimensions (e.g., product qualities, seller ratings, cf. [12]), and
several financial constraints (e.g., holding costs, discounting). Exist-
ing re-pricing techniques cannot handle such scenarios efficiently
and hence, force managers to limit the scope of pricing strategies,
e.g., by using deterministic or highly stylized demand functions [22],
monopoly settings, or by pricing less frequently. This simplification
negatively affects the quality of strategies.

The inefficiency of existing techniques stems from several factors
that reflect the challenges behind dynamic pricing. First, the space
of possible solutions grows exponentially with the number of time
periods, products, and competitors. This is an inherent property
of the problem (curse of dimensionality), since pricing decisions
interact in terms of their impact and hence, simple heuristics do not
lead to good solutions. Moreover, automated techniques depend on
accurate data-driven estimations of sales probabilities in order to
predict the impact of price decisions in a specific market situation.
Limited demand information, combined with the large solution
space, implies a very high problem complexity, thus increasing
computation time dramatically.

Recent machine learning methods for demand estimation have
been a major development in the area, as they can accurately quan-
tify demand probabilities. However, these methods only speed up a
single component of the process. The fundamental issue remains
that the solution space is too large, i.e., it is necessary to circumvent
the dimensionality curse.

In this paper, we derive price reaction strategies to be applied on
Amazon Marketplace. Our aim is to deal with the following assump-
tions: (i) limited demand information, (ii) unknown competitors’
strategies, and (iii) partially observable market data. To compute
viable pricing strategies in competitive settings, we combine data-
driven demand estimations and a dynamic price optimization model
that circumvents the curse of dimensionality.
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1.1 Related Work
Selling products is a classical application of revenue management
theory. The problem is closely related to the field of dynamic pricing,
which is summarized in the books [26] and [32]. The surveys [4]
and [7] provide an excellent overview of recent pricing models
under competition. Oligopoly pricing models are studied by, e.g.,
[16], [29], and [30]. Dynamic pricing models under competition
that also include strategic customers are analyzed by [14] and [15].

In most existing models, the demand intensity is assumed to be
known. Dynamic pricing competition models with limited demand
information are analyzed by [2], [6], [27], and [31] using robust
optimization and learning approaches. As many models are not
flexible enough, their practical applicability is often limited.

Data-driven pricing applied in real-life is studied in the recent
publication by [11]. Their multi-product model allows to include
substitution effects in demand. Their framework is characterized by
a deterministic, finite horizon monopoly with unrestricted supply
and static pricing decisions. While they use least squares and or-
thogonal matching pursuit method to estimate demand, their price
optimization is based on binary quadratic programming.

Another important aspect – especially in the context for compet-
itive settings – are pricing simulations. Simulating the performance
of automated pricing strategies is important as testing is poten-
tially hazardous when done in production. [13] and [9] present
two approaches, which are, however, limited in their capabilities:
Simulations run on a single machine, offer a limited set of consumer
behaviors, simulate solely short sales horizons, and pricing updates
or orders are restricted to predefined discrete points in time. [25]
presents a continuous time framework – called Price Wars [20]
– that allows to simulate various oligopoly settings and to study
strategic interaction of self-adapting data-driven strategies [3].

1.2 Contributions
The main contributions of our work are as follows:

Comparison of Demand Learning Techniques: We show
how to predict (conditional) sales probabilities from partially ob-
servable market data (Section 3). Using a reproducible test model1,
we are able to analyze strategic interaction and to measure sales
probabilities in competitive markets characterized by a given cus-
tomer behavior and a specific set of competing pricing strategies.
This allows comparing the quality of different estimation methods.

Efficient Algorithm for Dynamic Price Optimization un-
der Competition: We derive a novel effective dynamic pricing
approach that builds on estimated sales probabilities and a decom-
posed dynamic programming formulation (Section 4). Using repro-
ducible examples, we show that our approach is even applicable
when the number of competitors is large and the competitors’ strate-
gies are unknown. Moreover, our strategy can be used to smoothly
balance profitability and speed of sales. Our concept is easy to
implement and enables pricing computations in milliseconds.

Experiments on Amazon Marketplace: We demonstrate the
effectiveness of our pricing strategy on Amazon (Section 5). Our
strategy outperforms the established rule-based strategy of an ex-
perienced seller both in profitability and speed of sales.

1The framework used for data generation and demand learning can be found on Github:
https://git.io/pricing. The framework is self-contained and ensures reproducible results.

2 MODEL DESCRIPTION
We consider the situation in which a firm wants to sell a finite
number of durable goods on a digital market platform (e.g., Amazon
or eBay). The time horizon is not restricted.We allow that customers
compare the offers of different competitors. Arriving customers
take prices as well as product conditions (quality) and ratings of
different competitors into account.

We assume that items cannot be reproduced or reordered. A firm
k’s initial number of items to sell is denoted by N (k ) , N (k ) < ∞. If
a sale takes place shipping costs c have to be paid, c ≥ 0. A sale of
one item at price a leads to a profit of a − c .

Moreover, we consider inventory holding costs. We assume that
each unsold item leads to inventory costs of l per period (e.g., one
hour or one day), l ≥ 0. We also include discounting in the model
using the discount factor δ , 0 < δ < 1, for one unit of time. This
corresponds to a discount rate α , α > 0, given by α = ln(δ−1).

Due to customer choice, the sales intensity of a firm particularly
will depend on a firm’s offer (characterized by price a, quality q,
and rating r ) and the competitors’ offers. Further, we allow the sales
intensity also to depend on time, e.g., the time of the day or the
weekday. We assume that the time-dependence is periodic and has
a finite cycle length of J periods.

In our model, the sales intensity denoted by λ is a function of
the current market situation denoted by s⃗ . We assume that s⃗ is a
vector which includes time t and the current offers of all market
participants, i.e., all prices p⃗ = (p (1) , ...,p (K ) ), product conditions
q⃗ = (q (1) , ...,q (K ) ), and customer ratings r⃗ = (r (1) , ..., r (K ) ), where
K is the number of market participants at time t .

To highlight that the sales intensity of a firm k’s offer (a,q, r ) =
(p (k ) ,q (k ) , r (k ) ), k = 1, ...,K , given a market situation s⃗ = (t , p⃗, q⃗, r⃗ )
particularly depends on its offer price a and time t , we consider the
jump intensity, 0 ≤ t < ∞, a ≥ 0,

λ
(k )
t (a, s⃗ ) (1)

A firm k’s random inventory level at time t is denoted by X
(k )
t ,

t ≥ 0, k = 1, ...,K . The end of sale is the random time τ (k ) , when
all N (k ) products are sold, that is τ (k ) := mint ≥0{t : X (k )

t = 0}; for
all remaining t ≥ τ (k ) , we let λ(k )t (·, ·) := 0, cf. (1).

At some points in time t , a firm k’s offer price a can be updated.
We call strategies (at )t admissible if they belong to the class of
Markovian feedback policies, i.e., pricing decisions at ≥ 0 may
depend on time t , the inventory level X (k )

t , and the current random
market situation denoted by S⃗t .

A firm k’s profits are characterized by its sales and its holding
costs which are connected to the inventory process X (k )

t . Given a
pricing strategy (at )t , a firm k’s random accumulated future profits
from time t on (discounted on time t ) amount to, t ≥ 0, k = 1, ...,K ,

G
(k )
t :=

τ (k )∫
t

e−α ·(u−t ) · (au− − c ) |dX
(k )
u |−

τ (k )∫
t

e−α ·(u−t ) · l · X
(k )
u du

(2)
A firm k’s objective is to determine a non-anticipating (Markovian)
feedback pricing policy that optimizes a given objective, e.g., to
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maximize the expected total discounted profit given N (k ) items at
time 0 and an initial market situation s⃗0, k = 1, ...,K ,

E (G
(k )
0

����X
(k )
0 = N (k ) , S⃗0 = s⃗0) (3)

In the next section, we introduce a simulation model and show how
sales probabilities can be estimated in competitive markets with
incomplete information. In Section 4, we compute heuristic pric-
ing strategies for scenarios with many competitors and unknown
strategies. The applicability of our strategy is demonstrated for the
simulation model. In Section 5, we measure the performance of our
pricing strategy when being applied on the Amazon Marketplace.

3 DATA-DRIVEN DEMAND ESTIMATION
The goal of this section is to estimate sales probabilities from ob-
servable market data. We will consider different demand learning
approaches. To measure the quality of those approaches, we in-
troduce a reproducible simulation model that is able to mimic the
dynamics of specific markets. This way we are able to assess which
approaches are suitable to estimate sales probabilities under specific
competitive settings and a representative customer behavior.

3.1 Reproducible Test Model
Our continuous time model supports multiple competitors and
offers with multiple features, such as price, quality, rating, etc.
Customers are assumed to arrive at random times and to decide
for a competitor’s offer according to their individual willingness
to pay and a weighted scoring function that allows ranking the
competitors’ offers.

We assume K competitors. The initial market situation is given
by s⃗0 = (p⃗0, q⃗0, r⃗0), i.e., the price, quality, and rating of all current
market participants. We assume quality levels 1-5 where 1 is the
best. Seller ratings range from 0-100 (%) where 100 (%) is the best
score. In e-commerce merchants typically adjust their prices on a
regular basis. However, reaction times are not exactly equidistant
which is due to delays caused by the marketplace or in order not to
act predictably, cf. [23].

Hence, in our model each competitor k , k = 1, ...,K , adjusts its
price p (k ) at (uniformly distributed) points in time t (k )j , j = 1, 2, ...,

where t (k )0 ∼ U (0, 1) and t (k )j := t
(k )
j−1 +U (0.8, 1.2). Considering a

time interval [0,T ], we obtain that market situations denoted by
s⃗t = (p⃗t , q⃗t , r⃗t ), t ∈ [0,T ], change at all points in time

t ∈ T̄ :=
⋃

k=1, ...,K ;j=1, ... J (k )
{t
(k )
j ∧T }

where for all firms k the total number of their price adjustments
J (k ) is defined by J (k ) := minj=1,2, ... {j |t

(k )
j > T } and the final point

in time is t (k )
J (k )
= T , k = 1, ...,K .

Further, we assume a random stream of interested customers
that arrive at (exponentially distributed) times t (c )i , i = 1, 2, ...,
where t (c )1 ∼ 2 · Exp (1) and t

(c )
i := t

(c )
i−1 + 2 · Exp (1). We assume

heterogeneous customers. An interested customer arriving at time
t assigns scores v (k )

t to each offer k = 1, ...,K , e.g., determined by

v
(k )
t := p (k )t +U (0, 1) · q (k )t +U (0, 0.5) · (100 − r (k )t ) (4)

where the random coefficients are the same for each offer k . A
customer buys a firm k’s offer if arg mink=1, ...,K {v

(k )
t } = k and the

utility score is good enough compared to the customer’s individual
(uniformly distributed) reference score (cp. willingness to pay), i.e.,

min
k=1, ...,K

v
(k )
t < U (5, 15) (5)

Our framework allows to model various market dynamics which
can be determined using different parameter settings. The model
can be easily extended by further offer dimensions as well as the
exit or entry of firms.
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Figure 1: Illustration of customer arrivals (ticks), buying de-
cisions (dots), and price reactions of 5 firms over time.

Figure 1 illustrates examples of price trajectories over time as
well as the arrival of interested (indicated by ticks on the x-axis)
and buying customers (indicated by dots) in case of K = 5 and
q⃗t = (2, 1, 4, 3, 2), r⃗t = (98, 99, 95, 96, 97). Note, due to different
qualities and ratings of competitors customers do not always choose
the cheapest competitor.

In markets, it can be observed, that competitors undercut each
other (e.g., by ε) and raise the price (e.g., to D) if the price level is
too low (e.g., below d), i.e., a firm k adjusts its prices via the strategy

F (p⃗;d,D, ε ) :=



D , min
j ∈{1, ...,K }\{k }

p (j ) < d

min
j ∈{1, ...,K }\{k }

p (j ) − ε , else

(6)
The application of such response strategies leads to cyclic price

patterns over time, cf. Edgeworth cycles, see, e.g., [17], [18]. We call
such kind of strategies “two bound” strategies, see also [13], [25].

3.2 Simulation of Oligopoly Settings
In this subsection, we illustrate the impact of strategic interaction
on a firm’s sales probabilities for the time between two own price
adjustments. In the following example, we define different settings
of competing strategies, which include (i) randomized prices and



(ii) two bound strategies that strategically undercut competitors’
prices. In a third setting (iii), we consider a mixture of active and
passive competitors, which can be often found in practice.

Example 3.1. We use the simulation setting described in Section
3.1 with K = 5. Qualities and ratings of firms are chosen randomly
but fixed over time q (k )0 := round (U (0.5, 5.5)), r (k )0 := U (90, 100).
We define three settings of interacting price reaction strategies:

(i) All firms use randomized prices, 0 ≤ t ≤ T ,
p
(k )
t := U (0, 15), k = 1, ...,K

(ii) All firms use two bound strategies, 0 ≤ t ≤ T , cf. (6),
p
(k )
t := F (p⃗t ; 5, 10, 0.5), k = 1, ...,K

(iii) Firms use either two bound strategies or fix price strategies
p
(1)
t := F (p⃗t ; 5, 10, 0.5), p (2)t := F (p⃗t ; 4, 9, 0.5),

p
(3)
t := F (p⃗t ; 6, 12, 0.5), p (4)t := 11, p (5)t := 13

Our simulation model, cf. Section 3.1, can be used to evaluate
competing strategies over time and to simulate buying events. In
the following, we illustrate how strategic interaction affects a firm’s
sales probabilities. Due to price reactions of the other firms, we can
expect that the market situation might change over time according
to the different settings (i)-(iii) described in Example 3.1.

Example 3.2. Assume firm 1 does not adjust its price until t = 1.
We simulate multiple market evolutions each starting in the fixed
market situation s⃗0 at time t = 0 with p⃗0 = (6.5, 7, 9, 11, 13), q⃗0 =
(2, 2, 2, 2, 2), r⃗0 = (98, 98, 98, 98, 98). To determine the average sales
intensities of firm 1 within the time interval (0, 1) for the different
strategy settings (i)-(iii), we used 10 000 simulation runs starting in
s⃗0 and counted the observed sales of firm 1 over time.

Figure 2 illustrates how the chance to sell an item at price
p (1) = 6.5 decreases over time due to price reactions of competitors,
cf. Example 3.1. The random points in time in which potential cus-
tomers arrive and competitors adjust their prices were simulated
as described previously. As expected, we observe that setting (ii) is
the most competitive one.

Finally, such simulations allow quantifying the conditional prob-
abilities, k = 1, ...,K , t ≥ 0, h > 0, i = 0, 1, ...,

P
(k )
t,t+h (i,p

(k ) |⃗st ) (7)

to sell i items at price p (k ) during the interval (t , t + h) in a certain
strategy setting given that the market situation at time t is s⃗t . Con-
ditional probabilities are integrated sales intensities over time and
correspond to the areas under the curves depicted in Figure 2.

Remark 3.1. The conditional sales probabilities, cf. (7), are char-
acterized by the following effects:

(i) the arrival intensity of potential customers,
(ii) the buying behavior of customers,
(iii) the pricing strategies of competing merchants, and
(iv) the adjustment frequencies of competing merchants

The goal of the next two subsections is to estimate such condi-
tional probabilities from observable data.
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Figure 2: Decay of average sales intensity of firm 1 over one
period of time due to competitors’ price reactions in differ-
ent competitive settings (i)-(iii), starting inmarket situation
s⃗0; Example 3.1 - 3.2.

3.3 Observable Market Data
In real-life applications, merchants cannot continuously track mar-
kets over time. Typically, merchants have to request themarketplace
to observe the current market situation. Then, based on the current
market situation a price adjustment is sent back according to a
certain repricing rule or strategy. Each merchant can also observe
realized sales as private knowledge.

The idea of data-driven demand learning is to quantify how the
number of observed sales within different time intervals is affected
by the relation of a firm’s offer (i.e., a firm’s price, quality, rating)
and the competitors’ offers.

We assume that firms observe current market situations every
time they adjust its prices. W.l.o.g. in the following, we take the
perspective of firm k = 1. According to our model, cf. Section 3.1,
within a time frame [0,T ] firm 1 observes market situations s⃗ at
J (1) points in time as well as its realized number of sales denoted
by y (1)j within the J (1) time intervals (t (1)j , t

(1)
j+1), see Table 1.

The data of observed market situations s⃗ consists of firm 1’s
prices p (1) , quality q (1) , and rating r (1) as well as each competitor
k’s price p (k ) , quality q (k ) , and rating r (k ) , k = 2, ...,K , at times
t
(1)
j , j = 0, 1, ..., J (1) − 1.
Note, the other merchants k , k = 2, ...,K , can observe similar

(asymmetric) data for their corresponding points in time t (k )j , j =
0, 1, ..., J (k ) − 1.

3.4 Estimating Conditional Sales Probabilities
A firm k that plans to set a price at time t for the length of, e.g., h
units of time, seeks to estimate sales probabilities for the period
(t , t + h) given the current market situation s⃗ observed at time t .
While its offer features q (k ) , r (k ) are fixed the offer price p (k ) = a
can be chosen from a setA of admissible prices. In this context, firm
k seeks to derive an estimation of the conditional sales probabilities,
cf. (7), k = 1, ...,K , a ∈ A, h > 0, i = 0, 1, ...,



j t
(1)
j y

(1)
j p

(1)
t (1)j

q
(1)
t (1)j

r
(1)
t (1)j

p
(2)
t (1)j

q
(2)
t (1)j

r
(2)
t (1)j

... p
(K )

t (1)j

q
(K )

t (1)j

r
(K )

t (1)j

0 0.0 1 15 2 98 14 3 99 ... / / /
1 1.7 0 17 2 98 14 3 99 ... 7 1 96
2 2.5 0 13 2 98 9 3 99 ... 7 1 96
3 2.8 1 11 2 98 12 1 95 ... / / /
... ... ... ... ...

J (1) − 1 T − 0.6 ... ... ... ...

Table 1: Illustration of observable and private data of firm 1:
Market situations s⃗ at discrete points in time t (1)

j
and num-

ber of sales between t
(1)
j

and t
(1)
j+1

, j = 0, 1, ..., J (1) − 1

P̃
(k )
t,t+h (i,a |⃗s ) (8)

where s⃗ = (t , p⃗, q⃗, r⃗ ) is characterized by the competing firms’ offers.
There are several approaches to estimate sales probabilities, cf.

(8), from data sets as described in Table 1. Common approaches are,
e.g., least squares, gradient boosted trees (e.g., XGBoost [5]), neural
networks, etc. If, as in our use-case the dependent variable y (1)
(i.e., the number of sales) is predominantly binary (0 or 1), logistic
regression approaches are also admissible.

In the following, we want to compare different demand learn-
ing approaches in order to investigate which approach fits best to
our use-case, i.e., the simulation model described in Section 3.1.
The different approaches are typically based on explanatory vari-
ables. The raw data, cf. Table 1, usually does not serve as suitable
explanatory variables. Instead, it is advisable to use the raw data
to express characteristic quantities that might be responsible for
customers’ decisions. In Definition 3.1, we give simple examples of
such explanatory variables.

Definition 3.1. Consider the following data of firm 1: market
situations s⃗ = (p⃗, q⃗, r⃗ ) including our own offer (p (1) ,q (1) , r (1) ) at the
begin of the interval (t (1)j , t

(1)
j+1) of observation j , j = 0, 1, ..., J (1) − 1.

We define the following explanatory variables x⃗ = x⃗ (j ) (⃗s
t (1)j
, t

(1)
j , t

(1)
j+1):

x
(j )
1 := 1, constant / intercept

x
(j )
2 := rank (p (1) ; p⃗), rank of price p (1) within prices p⃗ at t (1)j

x
(j )
3 := 1{rank (p (1) ;p⃗ ) } , is price p

(1) at rank 1 at t (1)j (yes/no)

x
(j )
4 := rank (q (1) ; q⃗), rank of quality q (1) within qualities q⃗

x
(j )
5 := rank (r (1) ; r⃗ ), rank of rating r (1) within ratings r⃗ at t (1)j

x
(j )
6 := p (1) , price p (1) at t (1)j

x
(j )
7 := p (1) −mink=2, ...,K {p

(k ) }, price gap to best competitor
x
(j )
8 := q (1) , quality q (1) at t (1)j

x
(j )
9 := r (1) , rating r (1) at t (1)j

x
(j )
10 := 1{arg mink=1, . . .,K {p (k )+0.5·q (k )+0.25·r (k ) }=1} ∈ {0, 1},

is firm 1’s score the best for a fixed weighting (yes/no)

In this general framework, further explanatory variables can be
easily defined to capture the impact of various effects, such as time,
duration of intervals, etc.

Next, we use the explanatory variables defined above to estimate
demand probabilities for different competitive oligopoly settings.

Example 3.3.We use the simulation setting described in Section
3.1 with K = 5. We distinguish the three settings of interacting pric-
ing strategies, cf. Example 3.1. For each setting (i)-(iii), we simulate
1 000 scenarios of market data each for a time horizon of T = 100,
resulting in ca. 100 000 observed market situations for each firm.
Based on the explanatory variables defined in Definition 3.1, for
firm 1 we apply the following regression approaches:

(LR) logistic regression
(LS) least squares
(XGB) gradient boosted trees
(MLP) multi-layer perceptron

Table 2 shows the results of the different regression approaches
for the three competitive settings of Example 3.1. As information
criteria (goodness-of-fit) we used the McFadden Pseudo R2. We
used 80% of the data for training and 20% for validation.

Oligopoly setting LR XGB MLP LS

(i) 0.249 0.249 0.252 0.233
(ii) 0.394 0.393 0.395 0.311
(iii) 0.214 0.217 0.207 0.179

fitting time in ms 58 443 530 5
prediction time in µs 0.116 1.938 0.791 0.066

Table 2: Comparison of McFadden Pseudo R2s and fitting
times of different demand learning approaches for data de-
rived from simulations of the settings (i)-(iii); Example 3.3.

We observe that almost all estimation approaches yield satisfy-
ing results for our use-case. Logistic regression (LR), multi-layer
perceptron (MLP), and boosted trees (XGB) achieved the best re-
sults. We also tested random forest (RF) and support vector machine
(SVM) approaches; as their results were worse, we concentrated
on the other approaches. Our examples predominantly serve to
illustrate that different approaches can be applied and compared.
While not focus of the paper all methods can be further tuned and
improved or tested for different settings of the model.

Regression results also depend on the size of the training data.
Our model can be used to study the impact of the size of the data on
regression results, and in turn, to determine howmany observations
are needed to obtain good sufficient results.

Further, the quality of estimations of sales probabilities does not
have to be the same for the entire range of prices. While for some
merchants, it is desirable to consistently estimate probabilities for all
prices, for others it might be more favorable to accurately estimate
probabilities for prices that often occur during the competition.

In general, regression results are better if prices are more ran-
domized, cf. [8]. In this context, our model can also be used to study
the impact of a selection bias caused by firm 1’s strategy as well as
the competitors’ strategies. Moreover, the impact of various effects
of the model can be studied, such as distribution and length of reac-
tion times, customer arrival intensity, customers’ buying behavior,
cf. (4)-(5), or number of competitors, etc.



3.5 Validation of Demand Estimations
In this subsection, we validate the quality of estimations of (8) for
different learning approaches, cf. Section 3.4, by comparing them
to their true counterparts (7), which can be derived using repeated
Monte Carlo simulations, cf. Section 3.2.
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Figure 3: Illustration of comparisons of evaluated Monte
Carlo probabilities P (p̄) := 1 − P

(1)
0,1

(
0, p̄ |s⃗0

)
(10 000 simula-

tion runs for each price) and different predicted probabil-
ities P̃ (p̄) := 1 − P̃

(1)
0,1

(
0, p̄ |s⃗0

)
, p̄ = 0, 0.05, ..., 15, for two ran-

dom market situations for setting (i) and (iii); Example 3.1
- 3.3.

Figure 3 illustrates an example of estimated sales probabilities
and true (simulated) probabilities. For a given setting and an initial
market situation s⃗0 in t = 0, we let firm 1 adjust its price to p (1)0 := p̄
for the time interval (0, 1). For each situation and price, we used
10 000 simulation runs to compute accurate approximations of the
correct probabilities P (1)0,1 (i, p̄ |⃗s0), cf. (7), for p̄ = 0, ..., 15, see Figure
3. This way, we are able to evaluate the quality of the estimations
of different approaches in specific price ranges.

Table 3 summarizes average prediction errors (bias, SMRE, and
deviation of expected short-term profits) for single prices and differ-
ent estimation approaches. We observe that estimations are almost
unbiased and prediction errors are modest.

We obtain that different estimation approaches can be used to
accurately approximate the true probabilities for all prices. For
small prices the estimations are worse if prices are rarely applied,
cf. setting (ii)-(iii). Prices that do not exceed production costs or
shipping costs, however, are often irrelevant in practice.

Remark 3.2. Our simulation model is simple yet reasonable
and allows studying the quality of different demand learning ap-
proaches, cf. Example 3.3. We find that estimation approaches (LR),
(LS), (XGB), (MLP) yield good performance results. To choose a
suitable approach, practitioners might also take additional aspects
into account, such as (i) accessibility, (ii) interpretability, (iii) com-
putation time, and (iv) scalability.

Finally, the conditional probabilities (7) are affected by both, the
customer behavior as well as the strategic interplay of competitors’
price adjustments, cf. Remark 3.1. Note, a firm’s demand learning
does neither anticipate competitors’ strategies nor their reaction

p̄ approach E
(
P̃ (p̄) − P (p̄)

)
E
(���P̃ (p̄) − P (p̄)���

0.5)2
E
(���P̃ (p̄) − P (p̄)���

)
· p̄

4 LR 0.0353 0.0550 0.273
4 LS 0.0346 0.0562 0.263
4 XGB 0.0252 0.0679 0.322
4 MLP 0.0054 0.0568 0.272

8 LR 0.0003 0.0092 0.086
8 LS -0.0127 0.0114 0.123
8 XGB -0.0191 0.0179 0.166
8 MLP -0.0030 0.0099 0.093

12 LR -0.0011 0.0010 0.013
12 LS -0.0017 0.0002 0.021
12 XGB -0.0075 0.0060 0.089
12 MLP -0.0015 0.0014 0.018

Table 3: Comparison of average prediction quality of differ-
ent estimation approaches for prices p̄ = 4, 8, 12; 100 random
initial market situations, setting (iii); Example 3.1 - 3.3.

times. The estimated probabilities (8), however, allow to indirectly
measure the average impact of competitors’ price adjustments and,
thus, account for the fact that market situations may change be-
tween two price adjustments of a firm.

Remark 3.3. The estimation of conditional sales probabilities,
cf. (8), allows taking the complex interplay of different effects, cf.
Remark 3.1, implicitly into account. We have the following effects:

(i) The adjustment frequencies of competing merchants, and
their strategic interaction determine the expected
evolution of sales intensities, cf. Figure 2, and hence the
size of conditional sales probabilities, cf. Figure 3.

(ii) The arrival intensity of potential customers mirrors the
maximum sales probability, cf. y-intercept of Figure 3.

(iii) The buying behavior of customers determines the
slope of sales probabilities, see Figure 3.

Moreover, our model can be easily extended by additional fea-
tures, e.g. such as, (i) limited inventory levels, (ii) potential changes
in quality and ratings over time, or (iii) exit and entry of firms.

Our basic model allows to test and to validate different demand
learning approaches in different competitive markets. In addition,
components of the demand estimation can be further improved
(exploration phases, sampling, feature selection, etc.). While not
focus of the paper, further issues, such as missing variables, IIA
assumption, unobservable demand shocks, etc., can be addressed,
cf. to recent literature, e.g., [1], [10], or [28]. To this end, our model
can be used to study to which extent such effects influence the
quality of different demand learning approaches.

The goal of the next section is to derive an efficient pricing
mechanism that is based on estimated conditional probabilities for
current market situations, cf. (8). Further, we seek to account for
different inventory levels, holding costs, and discounting.

4 PRICING STRATEGIES TO BALANCE
PROFITABILITY AND SPEED OF SALES

In this section, we look for viable data-driven pricing strategies for
markets with restricted supply capacities, many competitors, and



multiple offer dimensions, cf. Section 2 and 3. Further, the goal is
to be able to balance profitability and speed of sales.

There are two major problems to derive applicable pricing strate-
gies in competitive markets: (i) as demand is affected by many pa-
rameters (e.g., dozens of competitors’ prices) a model’s state space
explodes and the problem becomes intractable, and (ii) in general,
as competitors’ strategies are not known, their price adjustments
cannot be effectively anticipated.

4.1 Dynamic Programming Approach
Our approach deals with both problems. Most importantly, instead
of computing complete feedback strategies we compute prices for
one period only based on the current market situation that occurs
during a sales process. To compute prices for single time periods,
in general, the current state as well as potential future states have
to be taken into account. As price reactions of competitors occur
with a certain delay the short-term evolution of the market can be
well approximated by the current market situation. The long-term
evolution of the market, however, can hardly be predicted. Our
approach is motivated by the fact that the optimal price for one
period mostly depends on the current state and is much less affected
by specific potential states in the future.

For a current state, wemanage problem (i) as follows:We roughly
approximate future market situations by using sticky prices. While
the degree of inaccuracy is acceptable, we gain a structure that
makes it possible to circumvent the curse of dimensionality, cf.
problem (i), as the states of our dynamic system (i.e., the market
situation) are not coupled and can be decomposed. Thus, for single
states decisions can be computed independently, which makes it
possible to consider current market situations only.

The second key idea is to compensate the model’s inaccuracy
as well as the lack of price anticipations, cf. problem (i), by fre-
quent price adjustments, which in turn are possible as the model’s
simplicity allows for fast re-computations.

Due to price adjustments, exits, or entries of firms, in general,
market situations are not stable. In our model, we consider condi-
tional sales probabilities, cf. (8).W.l.o.g., we consider firmk = 1with
an average adjustment delay of h = 1. We consider the (estimated)
probabilities, a ≥ 0, t = 0, 1, ..., i = 0, 1, ...,

P̃t (i,a |⃗s ) := P̃
(1)
t,t+1 (i,a |⃗s ) (9)

for selling i items within the time span (t , t + 1) at price a under the
condition that at time t the market situation is s⃗ (and may change
within the period due to competitors’ price reactions).

As described in the beginning of this section, we use a simpli-
fied dynamic programming approach in which the best expected
discounted future profits E (Gt |Xt = n, S⃗t = s⃗ ), cf. (2) - (3), are
described by the value function V ∗t (n, s⃗ ), t ≥ 0, n = 0, 1, ...,N . If all
items are sold, no future profits can be made, i.e., for any s⃗ and t
the natural boundary condition for the value function is given by

V ∗t (0, s⃗ ) = 0 (10)
The time dependence in our infinite horizon model is assumed

to be seasonal or cyclic (daily/weekly effects) with a given a cycle
length of J periods. Hence, for all t , where tmod J = j, we have
P̃t (i,a |⃗s ) = P̃j (i,a |⃗s ), for all s⃗ , i ≥ 0, j = 0, 1, ..., J − 1. Since, we

can assume that V ∗t (n, s⃗ ) = V
∗
t mod J (n, s⃗ ) for all t , we just have to

determine the values V ∗t (n, s⃗ ) for t = 0, 1, ..., J − 1.
Finally, the value function is characterized by the associated

Hamilton-Jacobi-Bellman equation, t = 0, 1, ..., J − 1, n = 1, ...,N ,

V ∗t (n, s⃗ ) = max
a∈A




∑
i≥0

P̃t (i,a |⃗s )

·

(
(a − c ) ·min(n, i ) − n · l + z · δ ·V ∗(t+1) mod J

(
(n − i )+, s⃗

))}
(11)

where z, z ≥ 0, is an additional penalty/discount parameter which
allows (i) to control the aggressiveness of the feedback pricing policy,
and (ii) to account for expected general long-term market trends
(decay of average prices, product attractiveness, etc.). The set of
admissible prices A can be chosen arbitrarily. The solution of the
system of equations (10) - (11) can be derived using standard meth-
ods like value iteration or policy iteration. Alternatively, the system
can also be solved using a nonlinear solver.

Value iteration does not need a solver to approximate the value
function. For a given “large” number T̃ , T̃ >> J , we letVT̃ (n, s⃗ ) := 0
for all numbers n and market situations s⃗ . Using the recursion,
t = 0, 1, ..., T̃ − 1, n = 1, ...,N ,

Vt (n, s⃗ ) = max
a∈A




∑
i≥0

P̃t (i,a |⃗s )

·
(
(a − c ) ·min(n, i ) − n · l + z · δ ·Vt+1

(
(n − i )+, s⃗

))} (12)

we can compute the values Vt (n, s⃗ ), t = 0, 1, ..., J − 1. The number
of iteration steps T̃ can be chosen such that the approximation
error betweenV andV ∗ is sufficiently small. Finally, the associated
optimal pricing strategy at (n, s⃗ ), t = 0, 1, ..., J − 1, n = 1, ...,N , is
given by the arg max of (12) and (11), respectively.

Note, due to the size of the state space it is not possible to compute
prices at (n, s⃗ ) for all states s⃗ in advance. The following algorithm,
however, circumvents the curse of dimensionality and allows to
derive viable heuristic pricing strategies in competitive markets
with a large number of competitors.

Algorithm 4.1.We propose the following pricing heuristic:
Step 1: For every period t observe the new state, i.e., the current

inventory level Xt and the current market situation S⃗t . Compute
the probabilities P̃t (i,a |S⃗t ), i = 0, 1, ...,Xt , a ∈ A.

Step 2: SolveV ∗t mod J (Xt , S⃗t ), cf. (11), or use T̃ −t recursion steps

to compute the specific value Vt mod J (Xt , S⃗t ), cf. (12), and obtain
the associated offer price at mod J (Xt , S⃗t ).

The key idea is to just compute prices for single market situations
and to regularly refresh prices in response to changing market
situations. Due to the small dimensionality of the state space, a
single re-computation is very fast. Further, our solution is scalable as
the algorithm’s complexity does neither increase with the number
of competitors nor the dimensionality of market situations.

In case demand can be assumed to be independent of time the
computational effort of Algorithm 4.1 via (11) or (12), can be even
further reduced.



Theorem 4.1. If demand is time homogeneous then V ∗ (n, s⃗ ) can
be expressed explicitly, n > 1,

V ∗ (n, s⃗ ) = max
a∈A




∑
i>0

P̃ (i,a |⃗s ) ·

(
(a − c ) ·min(n, i ) − n · l
−z · δ ·V ∗

(
(n − i )+, s⃗

) )
1 − P̃ (0,a |⃗s ) · z · δ



(13)

Proof. Consider (10) - (11) for n = 1 and fixed prices ã, i.e., using
Ã := ã. Then solve forV ∗ (1, s⃗ ; ã) (whereV ∗ (0, s⃗ ) = 0) and maximize
V ∗ (1, s⃗ ; ã) over ã ∈ A to obtainV ∗ (1, s⃗ ). Do the same forn = 2, ...,N
in increasing order (where V ∗ (n − 1, s⃗ ) was derived previously).

Using the explicit formula (13) of Theorem 4.1 in Algorithm 4.1
makes it possible to adjust prices in milliseconds.

4.2 Application of the Heuristic Strategy
Using a numerical example that can be reproduced by the reader,
we demonstrate the applicability of our approach in markets with
many competitors and unknown strategies.

Example 4.1. We consider the setting of Example 3.1. We let
c = 0, l = 0.001, δ = 0.9999, n = 1, 2, 3, 5, 10, K = 5, and
z = 0.5, 0.9, 0.95, 0.98, 0.99, 1. We assume the market situation p⃗0 =
(p̄, 5, 7, 11, 13), q⃗0 = (3, 2, 2, 1, 1), r⃗0 = (99, 98, 97, 99, 98). We con-
sider estimated logit probabilities of setting (iii) determined by ex-
planatory variables defined in Definition 3.1 and the corresponding
beta coefficients: β⃗ = (−5.39,−0.44,−0.54,−0.03, 0.13,−0.30,−0.17,
0,−0.14, 0.07, 0.31). We compute prices using (13), cf. Theorem 4.1.

a(n, s⃗0),
(
P̃ (n |⃗s0)

)
n = 1 n = 2 n = 3 n = 5 n = 10

z = 1 14.48 (0.00) 12.99 (0.00) 12.99 (0.00) 10.99 (0.01) 10.99 (0.01)
z = 0.99 9.11 (0.03) 6.99 (0.13) 6.99 (0.13) 6.99 (0.13) 5.00 (0.33)
z = 0.98 6.99 (0.13) 6.99 (0.13) 6.90 (0.13) 5.00 (0.33) 5.00 (0.33)
z = 0.95 6.99 (0.13) 6.19 (0.18) 5.00 (0.33) 5.00 (0.33) 4.24 (0.41)
z = 0.9 6.33 (0.17) 5.00 (0.33) 5.00 (0.33) 4.24 (0.41) 4.02 (0.43)
z = 0.5 5.00 (0.33) 4.03 (0.43) 3.89 (0.45) 3.83 (0.45) 3.83 (0.45)

Table 4: Feedback prices a(n, s⃗0) (and associated expected
sales probabilities P̃ (n|s⃗0) := 1 − P̃ (0, a(n, s⃗0) |s⃗0)) for differ-
ent inventory levelsn, degrees of aggressiveness z, and a spe-
cific market situation (predictions via LR); Example 4.1.

Table 4 illustrates how prices of Algorithm 4.1 are affected by
(i) the inventory level, (ii) the current market situation, and (iii) the
aggressiveness factor z. Next, we demonstrate the applicability of
Algorithm 4.1’s strategy dynamically over time.

Example 4.2. We consider the setting of Example 4.1. The com-
petitors adjust their prices according to the strategies of setting
(iii), Example 3.1. Firm 1 adjusts its prices according to the infinite
horizon model of Algorithm 4.1 and (13). We use different aggres-
siveness factors z and simulate sales (10 000 runs) over a finite test
horizon of [0,T ], T = 10. At time 0, we let N (k ) = 10, k = 1, ..., 5.

Table 5 summarizes sales results of firm 1, 2, and 3 for different
degrees of aggressiveness z for firm 1’s strategy, cf. Example 4.2.
The accumulated profits R (k )

T of firm k = 4 and k = 5 are omitted
as they are close to 0. We observe that the average number of

sales of firm 1 decreases in z while profit per sales increases. The
results demonstrate that certain versions of our pricing strategy
can dominate competitors’ results in both sales and profit per sale.

Average sales N − X
(k )

T
Total profit R (k )

T
Profit per sale

Firm k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

z = 1 0.17 2.86 1.91 1.10 18.80 13.30 7.62 6.56 6.94
z = 0.99 2.31 3.66 0.92 12.71 17.97 5.55 5.24 4.96 6.02
z = 0.98 3.25 2.81 0.95 15.73 12.99 5.47 4.83 4.63 5.80
z = 0.95 4.36 2.40 0.64 20.57 10.50 3.78 4.58 4.39 5.88
z = 0.9 4.50 2.32 0.63 18.71 9.97 3.55 4.05 4.29 5.73
z = 0.5 5.06 1.94 0.49 20.50 8.23 2.75 3.98 4.25 5.60

Table 5: Average sales results of Algorithm 4.1’s strategy ap-
plied over time (from 0 toT ) for different z values compared
to active competitors of setting (iii),T = 10; Example 4.2.

Note, to have an effective strategy that also allows to smoothly
balance sales and profitability (via the factor z) is useful in prac-
tice as it allows to control cash-flows, overall inventory levels, etc.
according to a manager’s needs.

5 APPLICATION IN PRACTICE
To evaluate the performance of our approach, we applied our heuris-
tic strategy on Amazon Marketplace. Online market platforms such
as Amazon or eBay are highly dynamic as sellers can regularly ob-
serve the current market situation and adjust their prices instantly.
This dynamic is hard to manage as pricing decision requires han-
dling a multitude of dimensions for each competitor (e.g., price,
quality, shipping, rating). Further, a firms’ supply is typically limited
and sales events are private knowledge.

In this experiment, we partner with a German bookseller. The
seller is among the top 10 sellers for used books on Amazon in Ger-
many and has an inventory of over 100 000 distinct books (ISBN),
each with multiple items (1-20). Our seller can decide – to some
extent – on the replenishment of used books (via purchase prices
for second-hand books). However, supply is limited and it is not
possible to directly reorder specific items ([24]). Hence, the chal-
lenge is to extract as much profit as possible from a given number
of books (inventory level) in a reasonable amount of time.

The pricing strategy of our project partner is characterized by a
rule-based system that has been developed over years by carefully
adjusting rules to lessons learned from selling books on Amazon.
As our project partner has more than ten years of experience in
the market, we consider his strategy to be effective and accurate.
However, market dynamics are increasingly sophisticated making
rule-based strategies increasingly hard to handle and maintain.

We applied the pricing strategy derived in the previous sections.
As our approach is designed to be applied in practice, we need to
calibrate the model, particularly the (conditional) sales probabilities.
The data set that we use for calibration contains both the requested
market situations from Amazon as well as the seller’s own data
(offers, sales, and inventory). The seller requests market situations
for each offered book every two hours (i.e., >20 Mmarket situations
per month which result in >140 M single competitor observations
per month). In an exploration phase, also randomized offer prices
were used by the seller.



Offer Dimension Range/Unit

Pr
od

uc
t-
Sp

ec
ifi
c

Pa
ra
m
et
er
s

time seconds
Amazon sales rank of ISBN 1 – 5 000 000 by 1
weight gram
original price 0.01 – 500 Euro by 0.01
number of used offers 0 – 20 by 1
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s

price 0.01 – 500 Euro by 0.01
condition/quality new – acceptable (6 levels)
rating 0% – 100%
feedback count 0 – 5 000 000 by 1
shipping time 0 – 30 days by 1
shipping costs 0 – 10 Euro by 0.01
domestic shipping yes / no

Table 6: Product and merchant-specific offer dimensions.

Our estimations of sales probabilities for realized sales of a spe-
cific book in a certain time interval are based on market situations
at the time of our firm’s price adjustment. Market situations are
characterized by product-specific features as well as offer dimen-
sions (e.g., price, quality, ratings, feedback count, shipping time)
for each present competitor, see Table 6.

Based on the offer dimensions given in Table 6, we defined 30
customized features to describe the relative competitiveness of
our offer in a particular market situation. Among others, we used
features similar to Definition 3.1, i.e., the price rank of our offer
price within the competitors’ prices, etc.

We tested different demand learning techniques to quantify how
offer prices and specific market situations affect sales. We decided
for a logistic regression approach to estimate sales probabilities
for offer price in specific market situations (mainly driven by the
requirement to yield interpretable models).

We calibrated our model based on the estimated (conditional)
sales probabilities (P̃ ). Using our heuristic approach, we computed
optimized prices adjustments for current market situations. The
application of our dynamic pricing strategy works as described in
the previous sections, cf. Algorithm 4.1.

Finally, we used the calibrated model to determine heuristic
pricing strategies to be applied on the Amazon Marketplace. In our
experiment, we used four different z factors (z (1) > z (2) > z (3) >
z (4) ) to vary the strategy’s aggressiveness, cf. strategy S (1) – S (4)

in Table 7. S (4) is the most aggressive strategy. Over three months,
we compared our data-driven strategies with the seller’s rule-based
benchmark strategy. To each strategy, we randomly assigned a test
group of over 5 000 books. The price adjustment frequencies were
the same for all five strategies.

Table 7 summarizes a comparison of sales, revenues per sale,
and profits per sale of the different strategies. Profits are defined
as revenue minus costs, i.e., shipping, Amazon provision, tax (7%),
packing, additional costs (warehouse rent, electricity costs, staff
costs), and the average purchase price per item.

As expected, the speed of sales increases and profitability de-
creases the more aggressive strategies are defined. Hence, the ag-
gressiveness of our strategy can be used to actively control the

Test Revenue per Profit per
Strategy group size % Sold sale (EUR) sale (EUR)

Benchmark 5 534 41.71 (100.0%) 7.54 (100.0%) 2.56 (100.0%)
S(1) 5 206 29.37 (–29.6%) 8.84 (+17.2%) 3.58 (+40.0%)
S(2) 5 407 36.62 (–12.2%) 8.15 (+ 8.1%) 3.03 (+18.7%)
S(3) 5 241 44.61 (+ 7.0%) 8.03 (+ 6.5%) 2.94 (+15.0%)
S(4) 5 200 44.92 (+ 7.7%) 7.50 (– 0.5%) 2.52 (– 1.2%)

Table 7: Comparison of sales and profits for our data-driven
strategies and the seller’s rule-based benchmark strategy.

trade-off between profitability and speed of sales. Moreover, strat-
egy S (3) reveals that our approach can sell faster (+7%) and at the
same time more profitable (+15%) as the seller’s benchmark strategy.

In Table 8, we compare the accumulated profits of all strategies.
The relative accumulated profit denotes the quantity “profit per
sale (EUR) × % of items sold” compared to the corresponding value
of the benchmark strategy. Results show that with our strategy
applied, cf. S(3) , profits can be increased by more than 20%.

Benchmark S (1) S (2) S (3) S (4)

Relative accum. profit 100.0% –1.5% +4.3% +23.1% +6.4%

Table 8: Comparison of strategies’ accumulated profits.

6 CONCLUSIONS
Using a reproducible test market, we studied the impact of the
customer behavior and the complex interplay of price reaction
strategies. Moreover, we verified and compared the suitability of
different demand learning techniques.

Further, we have proposed a novel data-driven approach to com-
pute dynamic pricing strategies under competition.We have demon-
strated that our heuristic approach is applicable even if the number
of competitors is large and the competitors’ strategies are unknown.
Our approach allows for frequent price adjustments as the computa-
tion of prices is efficient and fast. Furthermore, the aggressiveness of
the strategy can be used as a management instrument to smoothly
balance profitability and speed of sales.

Our approach combines key features that are important for real-
life applications. First, the approach is applicable if many com-
petitors are involved and offers have multiple dimensions. Second,
market dynamics do not have to be explicitly known, but they can
be indirectly taken into account using data-driven demand estima-
tions. Third, computation of prices is efficient, easy to implement,
and allows for frequent price adjustments.

Finally, the performance of our data-driven pricing strategy was
measured in a real-life experiment on Amazon. We outperformed
the rule-based strategy of an experienced seller by more than 20%.

In future research, we will extend our model to also address
problems (i) with a finite horizon framework (perishable products)
as well as (ii) competitive multi-product models, in which demand
is characterized by substitution effects, see [11].
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