
Video Conferencing as a Peephole
to MOOC Participants

Understanding Struggling Students and Uncovering Content Defects

Abstract— Distance education gained considerable attention
with the rise of Massive Open Online Courses (MOOCs). Given
the significant role collaboration plays in practical computer
science education on campus, it becomes evident that nowadays
online course platforms mostly lack the necessary collaborative
capabilities. We present a solution to support collaborative
programming through video conferencing for practical exercises
employed in MOOC contexts. Two user surveys show that
although users value the possibilities, privacy concerns remain.
We therefore propose to additionally use video conferencing
technology to face another challenge: MOOCs usually are
conceptualized and produced to a large extent before the actual
course runtime. Reaction on current events within the course is
possible but requires insights on students’ problems. Course
conductors can use the tutoring mode in our WebIDE to
understand struggling students and potentially uncover topics
that lack additional background material or need additional
training exercises.

Keywords—MOOCs; video conferencing; tutoring;
programming assignments; content adaption

I. INTRODUCTION
Running a MOOC is usually an intensive and

busy time for the involved, often rather small,
teaching team. Supervising and nurturing
discussions, fixing glitches in the course material
and keeping things running is enough to fill each
workday during the runtime of a course. Particularly
courses with experimental or interactive parts
require additional efforts to fix and enhance the
tooling used. Therefore, the majority of content is
produced before the course runtime. During the
course runtime, course conductors mostly moderate
the forums, record additional “office hours” videos
and supervise the helpdesk to interact with the
students. The comparison of campus centered
teaching activities and distance education shows
several differences.

While the core principles of teaching remain the
same, the surrounding conditions in a MOOC are
different. Pea describes that collaborative efforts and
the sharing of different perspectives are required to
acquire knowledge [1]. This has been missing until
the recent trend to integrate collaborative concepts

into MOOCs [2, 3, 4]. Group-based experiences are
supposed to improve “satisfaction, persistence and
intellectual and social development” [5]. They are
therefore relevant not only to on-campus courses,
but to students taking part in online courses as well.
Chen et al. measured in 2008 that, compared to on-
campus students, remote participants taking the
classes online were at least as engaged when it came
to asking questions or contributing to the class
discussion. Yet they were significantly less involved
in working with other students to prepare class
assignments or projects [5]. Since then, multiple
approaches to improve collaboration among MOOC
students, such as openHPI’s Collab Spaces [6] or
Stanford’s Talkabout [4], have emerged.

Even though this apprenticeship approach is
beneficial to the students’ learning outcome, it is not
feasible to mentor and support the thousands of
students that participate in online courses
individually [7, 8, 9]. Although support forums
exist, those are often impersonal. Moreover, asking a
question interrupts the students’ workflow – one has
to leave the editor to post on the forum and then
check regularly to see if there is an answer. Still,
writing code collaboratively has been promoted in
the form of pair programming in the last years to
help programmers share learnings and improve their
code’s quality [10, 21].

We propose CodePilot, a prototypical video
conferencing solution integrated into our web-based
execution environment CodeOcean1, to support
remote tutoring sessions. Leveraging students’
knowledge by enabling them to mentor their peers
and by encouraging them to share their recorded
discussions also fosters the scalability of MOOCs.

On the basis of CodePilot, we want to address the
following research questions:

1 available at: https://github.com/openHPI/codeocean

c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works. DOI: 10.1109/TALE.2017.8252312

1. Can we transfer collaboration concepts
from on-campus education to MOOCs, and
especially programming MOOCs?

2. What issues hinder remote collaboration
and how can they be circumvented?

3. Are participants willing to share their
content and thus actively create further
course content?

II. RELATED WORK
The field of remote tutoring in MOOCs touches

different research areas, which we will examine
with regards to their related work.
A. Media Richness and Media Synchronicity Theory

To evaluate the effectiveness of different
approaches with regards to improving dissemination
of knowledge, media richness and its advancement,
media synchronicity theory offer approaches [11].
Media covering more senses and offering a stronger
immersion generally support easier content adoption
[12]. We argue that a stronger personal commitment
and increased interactivity, as induced by one-to-one
interaction with another human, further increases
learning rates notably.
B. Cooperative and Collaborative Learning

We distinguish between cooperative and
collaborative learning. According to Panitz,
cooperative learning is aimed towards reaching a
pre-defined goal, while collaborative learning is
more of a “personal philosophy, not just a classroom
technique” [13]. We stick to this definition and will
refer to goal-oriented teamwork as cooperation,
while collaboration refers to open discussions and
general advancements. In order for teamwork to be
effective, team members have to share a common
goal, which might be set externally (e.g. a task to be
solved) or motivated internally (create a certain
program). If such a goal is missing, teamwork will
end too early or might not start at all. The groups
that form can be classified into two kinds, informal
cooperative learning groups, that are short lived and
exist to discuss a recent problem or solve a present
task, and base groups, that are more formal and exist
for a longer period, mostly solving a larger exercise
or attending the whole course together [14, 15].

 When conducting remote cooperation, additional
steps have to be taken to prevent the failure of the

intended teamwork due to additional organizational
(scheduling) or technical (missing hardware,
software or accounts) issues.
C. (Remote) Pair Programming

Our focus on programming MOOCs causes
additional requirements to the assistive tooling
supplied for collaboration. Jointly developing
programs, i.e. writing and discussing code, requires
a shared view on the present state of the source
code. This can either be achieved by screen sharing,
or by editor synchronization. While screen sharing,
for example via Screenhero2, yields some benefits as
transmission of all visible elements including the
mouse pointer, screen sharing in general also wastes
additional bandwidth and might come with delays or
otherwise poor user experience due to blurry
pictures preventing small fonts to be read.

In his research challenges for global software
development, Herbsleb underlines the importance of
exploiting project memory and knowledge of team
members [16]. This can be transferred to the e-
learning context as well – here, the project memory
consists of course- or assignment-related knowledge
of all students. While pair programming can help to
share knowledge from one team member to another
[17] and while there are plenty of tools that enhance
access to project memory [16, 18], xMOOCs usually
only feature forums to allow students to share their
knowledge. In addition to the benefits of knowledge
sharing, McDowell et al. found that dropout rates of
students using pair programming were reduced [19].
D. Other Courses, Platforms

There have been some former attempts to utilize
video conferencing in xMOOCs, e.g. Collab Spaces
in openHPI or Talkabout in Coursera [6, 4]. While
these attempts highlight the importance of
collaboration and the positive effects of connecting
students, they currently have a number of drawbacks
based on their proprietary foundation, relying on
Google Hangouts and thus requiring an additional
account and preventing a deeper integration into the
course platform to enhance grouping quality or
better feedback. This also prevents recordability and
might lead to legal issues, as data sovereignty is also
not given and content is shared with third parties.

2 available at: https://screenhero.com/

openHPI’s collab spaces focus on creating
purposeful groups. Three different kinds of groups
are usually distinguishable: study groups, that
progress through the course together and are
connected by external factors (language, location,
age, employer), topic focused groups that evolve
around a certain (often times specific or especially
demanding) topic, and teams. Teams are formed
when a certain task has to be solved in cooperation.

Joseph and McKinsey surveyed the adoption of
remote pair programming in 2013, and came to the
conclusion that organization is one of the major
issues [20, 21]. Also, they encountered problems
with participants just wanting a “free ride“, joining
remote programming sessions with the primary goal
to copy solutions for the exercises.

 For production usage, a distinguished tool, such
as Talkabout, to form groups and plan shared time
slots is therefore recommended [4]. In their
experiments with Talkabout, Kulkarni et al. found
that students collaborating in diverse discussions
were significantly more likely to also answer
quizzes and score higher on exams [4]. They also
underline that a pedagogical concept that
accompanies the group discussions is important:
Depending on the course type and the expected
learning results, certain strategies can, for example,
increase sharing of self-references or encourage
students to re-evaluate their own opinion. Omitting
explanations of all agenda items encourages students
to ask questions about them. When testing a very
strict and rigid agenda, Kulkarni et al. found that
students mentioned that the discussions were less
motivating and that they were less inclined to meet
the same group again. While Coursera, the platform
that the respective courses were conducted on, uses
an open-source, web based development
environment for some of their programming classes,
there is no deeper integration of this into Talkabout.
Talkabout also did not try this concept in a
programming related class.

 Additionally, it became apparent that just putting
people together does not lead to effective progress.
Staubitz et al. concluded that an elaborated team
composition increases learning success [13].

III. CONCEPT
Our system should meet the following

requirements:

1. Pair programming support: Lagless
synchronization of the source code and
program output is crucial to enable a natural
development flow.

2. Apprentice becomes master: by encouraging
students to help each other, we want to offer
advanced students additional options to grow
their knowledge and will thereby reduce the
workload on the teaching team and tutors.

3. Reproducibility and rehearsability: the ability
to re-watch tutoring videos and use them as
additional content will foster the effectiveness
of tutoring for wider audiences.

4. No additional plugins, no additional accounts:
installing software or registering for 3rd party
services will discourage usage and thus
hinder adoption.

5. Pairing of Participants: Students asking for
help and tutors should be automatically
matched for the best potential outcome.

Pair programming allows us to put the driver
(person writing code) to be set up in the so-called
“zone of proximal development” [8]. In pair
programming, the driver and the observer, the
person tasked with guiding, reflecting and
commenting on the code, usually switch roles after a
certain amount of time. For our main use case
tutoring, we will work with fixed roles: the tutor
being the observer and the student being the driver.
Having a tutor guiding and helping on problems,
allows students to progress from tasks they can do
alone to tasks they can solve with external help.
There will remain tasks that are still too hard, but
usually exercises that are demanding and require the
participant to leave his comfort zone yield the best
learning results [22, 23]. Also the eXtreme
Apprenticeship model suggests using scaffolding
and mentors to help students. In the context of
children education, scaffolding has been described
as “the way the adult guides the child’s learning via
focused questions and positive interactions” [24].
For this reason, we decided to limit the code
synchronization to one site, forcing the tutor to
explain all necessary source code changes instead of
directly implementing them. Another benefit of this
“guided programming”, where the student is lead by
the tutor but needs to solve all tasks himself, is that
it effectively circumvents students falling into

pitfalls that would leave beginners stuck. Debugging
sometimes feels cumbersome and demotivates
students [10]. Experienced tutors can explain rather
cryptic compiler errors and stack traces and help
during debugging, allowing the student to focus to
concentrate on their program design and algorithms.
By limiting our approach to pairs of one participant
and one tutor, we implicitly prevent the „free ride“
problem mentioned by McKinsey.

 The second requirement, apprentices becoming
masters, provides for the specific MOOC setting.
While tutoring from teaching assistant to student
works for university course scale, the proportions in
MOOCs require a much larger group of tutors,
preferably available over all time zones. Recruiting
motivated and skilled students to take over the role
of tutors is therefore necessary. In addition, students
might feel more comfortable with receiving help
from a fellow student, instead of the teaching staff
[25]. Naumann et al. found that students are willing
to contribute to these forums and often solve issues
without the intervention of teaching staff, e.g. by
sharing pre-existing knowledge or providing links to
external information [26]. Also the findings of
Staubitz et al. [27] support this conclusion. The fact
that the ability to teach fellow students can be built
up is further demonstrated by Coursera’s usage of
Community Teaching Assistants – successful
participants of former courses who volunteer to
teach future classes [28]. In order to gain scalability,
we propose to build up a potential pool of tutors
through the tutoring itself. The main reason not to
give everyone the option to answer open requests, is
that a synchronous audio and video connection
implies potential threats with regards to privacy. As
the tool supplier, we therefore want to ensure control
over at least one side of the tutoring sessions.
However, given the workload on the teaching team,
we also admit that additional persons are required,
as well. Starting from the group of course
conductors and platform owners, we aim to unlock
the tutoring backend for participants that we had a
positive session with and who seem to be qualified
with regards to knowledge as well as attitude. We
are further confident that tutors do not need to be on
expert level content wise, since oftentimes it is
already enough to just give a subtle hint, if necessary
at all. Sometimes it’s already sufficient just to
phrase the problem and to recapitulate the steps
taken, to uncover a potential solution oneself.

 Next to sorting out potential legal issues and
carefully selecting potential participants that act as
additional teaching assistant, the prototype has to
offer an environment in which students feel
confident in asking as well as answering questions.

Good reproducibility and rehearsability allows
also students whose skill level is above the average
and simply do not encounter further issues and
students that lack the technical requirements or the
extroversion to ask questions publicly, thus
admitting perceived deficits to strangers.
Synchronizing a recording of the video conference
with the editor content of the student allows other
students to track applied code changes and the
discussion that led to these changes. Also adding a
further channel to convey information improves the
media richness.

Apart from the primary use case within
programming assignments, the software should also
offer general availability of video conferencing to be
used within arbitrary group tasks.

IV. IMPLEMENTATION
The prototype of our proposed tutoring solution

was implemented as a Ruby on Rails application
that integrates into our code execution platform
CodeOcean via an iFrame. For the actual video
conferencing part, we rely on the open source
project Jitsi Meet. With respect to the workflow, our
prototype has to support the actions shown in
Figure 1.

Fig. 1. Main Workflow for Tutoring Sessions

In order to realize the flows, we modeled the
required data as shown in Figure 2. The core part is
the question, which has attached participations of
users (in our case: two users). Technically, to also
support other use cases like public demonstration

sessions or group discussions, there could also be
more participations. Whenever the student starts a
program run, we save the execution result to allow
for playback later on. All changes to the source code
are saved as deltas, to support a seamless playback
and synchronization with the tutor. If the session
ends, a recording entry is stored and all participants
are surveyed for their opinions (helpfulness of the
tutor, could the problem be solved, allowance to use
the recordings, additional free text).

Fig. 2. Data Model Used for CodePilot

For participants, the user interface of our
prototype presents itself as shown in Figure 3.

Fig. 3. User Interface for the Student

On the left side (1), users see the usual controls
of our execution platform. The only difference is
that changes made in the editor during an active
conference session are recorded and transferred to
the tutor via a synchronous webRTC connection.
We currently restrict the synchronization direction to
be unidirectional towards the tutor. In order to
potentially enable full bidirectional synchronization
for full pair programming, additional methods like
operational transform (OT) are required [29]. On the
right side (2), the main compartment of our
prototype is embedded. We show open questions

and existing recordings here. If the student clicks
“Ask question”, an input box to phrase the question
opens up. Afterwards, the student is forwarded to an
empty meeting room that opens up in the iFrame (2).
The coding environment (1) stays as it is; the
progress on the exercise is not interrupted in any
way. If an existing recording is chosen, which is
available under “Featured Questions” the current
progress is persisted and the recording is played
back in fullscreen, to make room for the recorded
code to be presented. With regards to usability, we
kept the controls and new elements as minimal as
possible and got only positive feedback so far.

V. EVALUATION
We conducted several qualitative interviews as

well as 3 quantitative surveys with a varying number
of participants and questions. The first small study
was conducted in a controlled environment and had
eleven participants, students and young
professionals, use the tool for different tasks. We
asked them for their perception which factors would
be most important for an optimal tutoring. The
overall result can be seen in Figure 4. As a basis, so
of highest importance, the participant - tutor pairs
have to share a common language and participants
wish to have the tutor to have mastered the skillset
to be learned. On top of that, students then prefer
tutors that they had contact with, for example in
person, in prior sessions or in forum discussions.
Ranked of least importance was the user role,
meaning the position and occupation within a
course, so being a student, an entitled teaching
assistant or part of the core group actually
conducting the course. When presenting potential
questions for tutors, these considerations should be
represented in the pairing and ranking algorithms.

Fig. 4. Factors for Optimal Tutoring

Over all conducted sessions, the tutor was always
the dominant speaker, meaning he had more or
louder parts during the conversations. This met our
expectations, since we expected that the tutors

explain the comparably shorter questions of the
student in comparably greater detail. For longer
sessions, we expect the ratio to shift towards the
student, as potentially in longer sessions the tutor
acts as a facilitator, guiding the student to work his
way to the partial solutions himself, instead of
answering a specific question and therefore solving
the problem rather quickly. In our sessions,
however, all questions were solved in less than eight
minutes, which means we got no data concerning
that, yet.

When asking video conferencing participants
under which circumstances they are willing to share
their content on the platform, the results were
hesitant but overall promising. Only one participant
stated that he would never share the content. The
others were ranging from reluctant (majority) to
proactive (minority). Further inquiring, what
stopped them from sharing, they answered that they
were not sure whether the content was good enough,
whether the questions were interesting and whether
the results were helpful enough to be regarded as
teaching material. All participants agreed that being
individually contacted by the teaching team and
asked for permission would further convince them to
share their content. External reassurance by the
teaching team would therefore dispel their doubts
about usefulness and quality. Wishes for the ability
to re-watch the recording before granting the ok for
publishing, and in best case to have basic cutting
functionality to trim the videos to core parts and
remove unwanted parts were voiced. Alternatively,
also the much simpler function to simply remove the
video stream was requested. As implementing video
editing capabilities into the web application was
outside our focus, we gathered further feedback on
the idea to remove the video stream. In the end, we
discarded that option because several participants
mentioned that the video was a vital part for them
and created a sense of trust in the discussants.

When offered to either directly ask a question or
first watch a potentially matching, recorded tutoring
sessions, 9 out of 11 participants watched a
potentially suited video before or instead of asking
for help. Asking for help requires participant to
overcome an individual hurdle, as they feel they are
eventually disturbing another person and they have
to show their face together with their lack of specific
knowledge, which is something especially

participants in higher career positions sometimes
have grown unfamiliar with and thus can feel
intimidated [30]. Allowing to copy the code of
recorded sessions however re-introduces the “free
ride” problem, potentially causing participants to
cheat without learning anything. Asking our
surveyed participants for the reason they are copying
the final source code, they stated that they
understood the concept, but had however mostly
problems with the proper syntax.

Our evaluation further showed that if a question
has already been answered, students are more likely
to watch the recorded session than to ask the
question again.

Based on our initial findings, we activated the
tool in the aftermath of our Introduction to Java3
course and also in an Introduction to Python4 course.
Students were not able to communicate with other
students, just the teaching team had access to the
tutor backend. While the survey responds were
positive, only a fraction of the course audience
actually tried to start a conference. Technical
problems prohibited about half of the sessions,
because students could not get a proper connection,
or immediately left the session (possibly not patient
enough to wait for the tutor to connect, or scared by
the fact that their webcam was activated after they
allowed the access). The sessions that did take place
were mostly conducted without a webcam on the
participant side, sometimes even without a
microphone. The tutors streamed a live picture and
answered by voice, however the students mostly
lacked the technical capabilities or were too deeply
concerned about their privacy [31]. In our recent
Java course in 2017, we did not offer tutoring due to
a lack of potential time, but we used the opportunity
to gather some additional insights about participants’
views on tutoring. 1836 participants answered the
survey, each question could be answered
individually. 38% of the students voiced that they
would not use that opportunity because they had
doubts about their privacy, and 19% of all students
lacked the technical capabilities to take part in a
tutoring session. When being asked what they would

3 German course “Java für Einsteiger“ conducted in 2015,
available at: https://open.hpi.de/courses/javaeinstieg2015/
4 German course “Spielend Programmieren lernen 2015!“,
conducted in 2015, available at:
https://open.hpi.de/courses/pythonjunior2015/

use the tool for, 21% answered they would like to
get feedback from the teaching team, 12% would
like to get feedback from their fellow students.
Another interesting finding is that 10% would be
willing to contribute for feedback from a tutor. We
purposely did not state whether the contribution
should be monetary or in terms of another service to
the benefit of the platform. From our point of view,
such a service could also be the allowance to use the
recorded session as additional teaching material.

Based on these findings, we currently use the tool
to get a glimpse into the students work processes
and compensate what is done in on-campus settings
by just watching over the shoulder: uncovering
oftentimes trivial problems, that simply were not on
teachers minds during the conception of the
didactical concept.

VI. FOCUS SHIFT AND CURRENT USAGE
Starting from our concept to establish a scalable

pool of voluntary tutors with the course conductors
as the seed and foundation in order to improve
programming courses with individual help on
shortcomings, we shifted our focus with regards to
the current usage of CodePilot. Missing technical
equipment and privacy concerns on student side
lowered the effective demand for tutoring. While we
might be able to compensate that with a different
approach with regards on how we integrate it into
the course, we then suspect other issues to arise
instead. By globally announcing public office hours,
we will most likely be overwhelmed with
participants who will then be disappointed and
demotivated if they do not make it into a session and
waited in vain. Offering the tutoring rather silently
without additional voluntary tutors and inviting
users just by announcing it in the forums, lead to
only few participants, as only a fraction of
participants read the forums and even fewer then
decided to start working on the exercises,
encountered problems and on top of that had the
courage to ask for help. As of now, we are
nonetheless sticking to the silent tutoring approach,
but see the main benefit in another factor besides the
knowledge gain of the participant. For us as course
conductors, an important benefit is the insights that
we gain about the individual problems of the
respective participant. The direct dialog with
students uncovered several shortcomings that were
perceived as minor by the individual participant and

were therefore not posted in the forum, but affected
several students and hindered their progress. Such a
shortcoming was for example the missing
knowledge on how to enter curly brackets via the
German keyboard layout on Windows and MacOS.
The opportunity of virtually watching over the
shoulder of a participant also enables teachers to
detect limiting factors or misunderstandings that the
students do not notice themselves, as for example
superfluous variables, which were used in
instructional videos and that had been perceived as
necessary for a certain setup by the student, however
had no usage in the actual exercise. The virtual
glimpse into actual real-time learning processes of
some students allows making didactical
improvements, uncovering likely misunderstandings
of de-facto correct but ambiguous explanations and
filling previously unnoticed shortcomings of the
supplied material.

VII. FUTURE WORK AND CONCLUSION
The future work presented here mostly suits the

initial focus of connecting students, as well as the
shifted focus on uncovering didactical problems.
First, we think that an automatic detection of the
topics covered within a tutoring session will be a
worthwhile effort. While complete and coherent
speech to text transcription is hard to realize, we
believe that detecting specific keywords is possible.
They will allow for automatic clustering of
recordings and improved searchability of content.
Second, analyzing the discussion dynamics yields
potential. With regards to the social course status
(student tutor, teaching assistant, course conductor)
and age, there might be patterns that occur in
tutoring sessions. Using the active speaker detection,
we can analyze the speech ratio and determine
whether we rather have on open discussion or a
more counseling based session. Determining factors
to improve student - tutor matching is mainly helpful
for the initial approach. Participants having posted in
the same forum threads is most likely not the best
metric to determine suited partners. Probably, also
similar scores, a similar progress in the course and
previous contact via asynchronous commenting in
the programming environment might be additional
factors. As those factors have not proven efficient
yet, we currently simply put the request in queues
and assign the next free tutor to the next student.

The technical requirements for our prototype
have been met. The evaluation of our prototype
implementation shows that students value the
benefits of our solution. When receiving advice,
participants favor language and professional skills
over status and previous contact. Concerning the
research questions, we currently cannot transfer the
on-campus collaboration concepts to MOOCs
because many participants lack the technical
capabilities to actively participate in video
conferences. When encouraged by the teaching
team, most participants were willing to share their
produced content. Although we shifted from our
initial goal on intent due to the current status quo of
our audience, we are confident that we created an
auxiliary tool, elevating our efforts to better
understand our participants and opening up further
room for research. The feedback of the tutored
participants was positive without exception, and the
masses that could not be reached directly benefitted
transitively through better material, mostly without
even noticing where our elaborated guesses which
parts to improve, originated from.

REFERENCES
[1] R. D. Pea, Practices of distributed intelligence and designs for education.

Distributed cognitions Psychological and educational considerations,
pages 47–87, 1993.

[2] T. Staubitz, J. Renz, C. Willems, and C. Meinel, Supporting social
interaction and collaboration on an xMOOC platform, In Proc. 6th
International Conference on Education and New Learning Technolo-
gies (EDULEARN14), Barcelona, Spain, 2014.

[3] T. Pfeiffer, Collaborative learning in a MOOC environment, Master’s
thesis, Hasso Plattner Institut, Potsdam, Germany, 2014.

[4] C. Kulkarni, J. Cambre, Y. Kotturi, M. S. Bernstein, and S.R. Klemmer,
Talkabout: Making distance matter with small groups in massive classes.
Proceedings of CSCW 2015: ACM Conference on Computer Supported
Collaborative Work, 2015.

[5] P. Chen, R. Gonyea, and G. Kuh. Learning at a distance: Engaged or
not? Innovate, 4(3), April 2008.

[6] T. Staubitz, T. Pfeiffer, J. Renz, C. Willems and C. Meinel,
Collaborative Learning in a MOOC Environment, 8th International
Conference of Education, Research and Innovation (ICERI)
Seville, Spain, 2015.

[7] A. Vihavainen, M. Paksula, and M. Luukkainen, Extreme apprenticeship
method in teaching programming for beginners, in Proceedings of the
42nd ACM technical symposium on Computer science education, pages
93– 98. ACM, 2011.

[8] L. S. Vygotsky, Mind in society: The development of higher
psychological processes, Harvard university press, 1980.

[9] C. Meinel, C. Willems, J. Renz, and T. Staubitz. Reflections on
enrollment numbers and success rates at the openHPI MOOC platform,
In Proceedings of the European MOOC Stakeholder Summit (eMOOCs),
Lausanne, Switzerland, 2014.

[10] L.Williams, R. Kessler, W. Cunningham, and R. Jeffries, Strengthening
the case for pair programming. IEEE software, 17(4), pages 19–25,
2000.

[11] A.R. Dennis and J.S. Valacich, Rethinking media richness: towards a
theory of media synchronicity, In Proceedings of the 32nd Annual
Hawaii International Conference on Systems Sciences, pages 10 pp.,
1999.

[12] E. Dale, The cone of experience. In Audio-visual methods in teaching.
(pp. 37-51), New York: Dryden Press, 1946.

[13] T. Panitz, Collaborative versus cooperative learning: A comparison of
the two concepts which will help us understand the underlying nature of
interactive learning, 1999.

[14] K. Smith. Cooperative learning: Making “group-work” work. New
directions for teaching and learning, (67), pages 71–82, 1996.

[15] T. Staubitz and C. Meinel, Collaboration and Teamwork on a MOOC
Platform: A Toolset. In Proceedings of the Fourth (2017) ACM
Conference on Learning @ Scale (L@S '17). ACM, New York, USA,
pages 165-168. DOI: https://doi.org/10.1145/3051457.3053975

[16] J.D. Herbsleb, Global software engineering: The future of socio-
technical coordination, In Future of Software Engineering, FOSE ’07,
pages 188–198, Washington, DC, USA, 2007. IEEE Computer Society.

[17] H. Holz and F. Maurer. Knowledge management support for distributed
agile software processes, In Advances in Learning Software
Organizations, pages 60– 80, Springer, 2003.

[18] D. Cubranic, G.C. Murphy, J. Singer, and K.S. Booth, Hipikat: A project
memory for software development, In IEEE Transactions on Software
Engineering, 31(6), pages 446–465, 2005

[19] C. McDowell, L. Werner, H. Bullock, and J. Fernald, The effects of
pair-programming on performance in an introductory programming
course. In Proceedings of the 33rd SIGCSE Technical Symposium on
Computer Science Education, SIGCSE ’02, pages 38–42, New York,
USA, 2002. ACM.

[20] Agile Ventures, Remote Pair Programming Analysis, Retrieved July 22,
2017, from https://www.agileventures.org/remote-pair-
programming/analysis

[21] J. McKinsey, Remote Pair Programming in a Visual Programming
Language, Technical Report No. UCB/EECS-2015-139, University of
California at Berkeley, 2015

[22] S.I. Leberman and A.J. Martin. Does pushing comfort zones produce
peak learning experiences? Australian Journal of Outdoor Education,
7(1):10, 2002.

[23] M. Brown, Comfort zone: Model or metaphor. Australian Journal of
Outdoor Education, 12(1), pages 3–12, 2008

[24] N. Balaban, Seeing the child, knowing the person. To become a teacher,
pages 49–57, 1995.

[25] B. Goldschmid and M.L. Goldschmid, Peer teaching in higher
education: a review, Higher Education, 5(1): pages 9–33, 1976.

[26] F. Naumann, M. Jenders, and T. Papenbrock. Ein Datenbankkurs mit
6000 Teilnehmern. Informatik-Spektrum, 37(4): pages 333–340, 2014.

[27] T. Staubitz, J. Renz, C. Willems, C. Meinel: Supporting Social
Interaction and Collaboration on an xMOOC Platform, In Proceedings
of 6th Annual International Conference on Education and New Learning
Technologies (EDULEARN2014), Barcelona, 2014.

[28] K. Papadopoulos, L. Sritanyaratana, and S.R. Klemmer, Community
TAs scale high-touch learning, provide student-staff brokering, and
build esprit de corps. In Proceedings of the first ACM conference on
Learning@ scale conference, pages 163–164. ACM, 2014

[29] C.A. Ellis and S.J. Gibbs. Concurrency control in groupware systems. In
ACM SIGMOD Record, volume 18, pages 399–40 , 1989

[30] M. Lowis, T. Staubitz, R. Teusner, J. Renz, C. Meinel and S. Tannert,
Scaling Youth Development Training in IT Using an xMOOC Platform,
In Proceedings of 45th Annual Frontiers in Education Conference
(FiE2015), El Paso, TX, USA, 2015

[31] T. Staubitz, R. Teusner, J. Renz and C. Meinel, An Experiment in
Automated Proctoring, In Proceedings of the European MOOC
Stakeholder Summit (eMOOCs), Graz, Austria, 2016.

