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ABSTRACT
Largely, the performance of main-memory databases is limited by
the growing memory gap. To be e�cient, a DBMS cannot waste any
bandwidth. However, this is exactly the case when 64-byte cache
lines are transferred but only parts of these are used. We present
a cache simulator that measures this waste, show that current
databases waste up to 70% of the available bandwidth, and discuss a
new gather instruction with sub-cache line access granularity that
could reduce this waste.
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1 INTRODUCTION
For up to half of their execution time, main-memory databases are
memory-bound [6, 19]. Di�erent optimizations have been intro-
duced to reduce the memory access cost, including cache-e�cient
programming [5], compression [1], and dedicated hardware [7].
What is usually taken for granted is the cache line granularity. We
cannot read an integer from memory without reading an entire
64-Byte line. An e�cient DBMS thus arranges its data in a way
where the other loaded bytes are also used. �is is the core of the
row vs. column store discussion for main-memory databases [2].

Not always can all of the cache line be used. While a column
store can scan a sequentially stored column without wasting any
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bytes of a cache line, it can only do so for the �rst predicate. For a
second predicate, where only some rows are probed, the memory
access pa�ern is random, causing data to be loaded, but not used.

In a discussion at the Dagstuhl seminar Databases on Modern
Hardware [8], participants agreed that reducing this waste by al-
lowing sub-cache line accesses could be a game changer. With this
work, we quantify potential bene�ts using a waste-tracking cache
simulator and show that current databases do indeed waste a signif-
icant amount of memory bandwidth. Working towards a solution
for this, we outline a more e�cient gather instruction, and present
the case for sub-cache line access to the hardware community.

2 RELATEDWORK
Near Memory Processing is an active area of research, aiming to al-
leviate the memory bandwidth bo�leneck by implementing smarter
logic into the memory controller [9, 10, 18] or adding hardware,
such as an external integrated circuit mountable to the DIMM [20].
Xi et al. [20] address the memory bandwidth bo�leneck of modern
column-oriented DBMS by implementing operators on near-data
processing hardware accelerators. In particular, they implement a
select operator that �lters data close to memory, transferring only
qualifying data to CPU. Seshadri et al. [18] propose a gather-sca�er
DRAM GS-DRAM that improves spatial locality of non-unit strided
accesses. �ey distribute values of a cache line to di�erent chips
within the DRAM module, implement logic in the memory con-
troller for �xed-width strided pa�erns and access them in a single
read/write command. In contrast, we propose a general instruction
that is not limited to �xed-width strides.

3 QUANTIFICATION
To measure the cache line utilization (CLU), every single cache slot
has to track which bytes have been loaded into a CPU register. �is
makes hardware counters infeasible. Instead, we built a tool based
on the PIN dynamic binary instrumentation framework [15] 1. PIN
instruments a binary by adding hooks for selected instructions, such
as loads. We modi�ed the dcache tool from the PIN package, which
already provides an associative data cache. For each loaded cache
line, we keep a 1-Byte bitset, where each bit represents whether
the corresponding 8-Byte chunk in the cache line has been used
by the CPU. When the cache line is evicted, or when the program
terminates, we aggregate the number of used 8-Byte chunks and
the number of cache lines loaded. �e quotient is the CLU.

1Code and instructions for reproduction at h�ps://github.com/hyrise/sub-cache-line-
access
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�e results meet our expectations and we list three limitations
mostly for completeness: First, because the actual cache replace-
ment strategies of modern CPUs are unknown [3], we use 4-way
associativity and a round robin replacement algorithm. Second,
atomic operations on the data structures would be costly and
slow down the simulation, thus we currently only support single-
threaded workloads. �is is an implementation decision, not a
fundamental limitation. �ird, we only track data loads, not in-
struction loads. Having only a single cache level is not a limitation,
because we are interested in data loaded from DRAM into the CPU,
no ma�er in which cache level it ends up.

A second tool that tracks the CLU is Intel Advisor2. Comparing
both tools, we obtained similar results showing that the discussed
limitations do not harm the accuracy of our instrumentation. Dif-
ferent from our tool, advisor requires the user to manually select
program loops to be tracked, while our tool can treat the database as
a black box. Also, our tool allows for adjustable access granularity.

For a �rst sanity check, we have build a prototypical row/column
store example. With 10, 000 rows of 100 8-Byte integers stored either
in row-major or column-major format, we scan one column for a
given value. A row store can only use 1

8 of each cache line. Our tool
reports a CLU of 13.10%. For the column store, the CLU is 98.11%.

Using our PIN tool, we have executed the TPC-H benchmark3
on two research databases, Peloton [16] and Hyrise [13]. We focus
on analytical workloads because the proposed instruction works
best with operators accessing multiple memory locations (i.e., rows)
sequentially. Transactional workloads with point-accesses cannot
be optimized with the instruction. As Hyrise is being rewri�en and
does not yet support subqueries, we show results for a subset of
queries. Experiments were executed with a scale factor of 1. �e
physical system con�guration is irrelevant for our instrumentation.

Q1 Q3 Q5 Q6 Q7 Q9 Q10
Hyrise 78.35 70.00 56.67 74.64 94.13 71.58 90.81
Peloton 49.60 42.50 49.39 28.35 44.74 37.86 40.54

Table 1: Cache line utilization in percent for selected TPC-H
�erieswith Scaling Factor of 1 based on a for 4-way associa-
tive 16 MB cache and a sub-cache line granularity of 8 Byte

Table 1 shows the CLU for these queries. For Hyrise, where data
is stored in a column-major format4, we see that the CLU varies.
In the worst case, less than 36 Bytes out of a 64 Byte cache line are
used. Peloton, in a row-major con�guration, uses, in average, less
than 32 Bytes and can have a CLU of only 28%, e.g., in Q6.

�is shows a signi�cant waste of memory bandwidth, but does
not translate one-to-one in an expected performance bene�t of
sub-cache line access of 70%. While operators such as column scans
on row-major data could be improved to almost 100% e�ciency, it
will be more di�cult for pointer chasing operations (e.g., indexes).
Measuring the actual bene�t is part of our ongoing work.

2h�ps://so�ware.intel.com/en-us/intel-advisor-2017-user-guide-linux
3h�p://www.tpc.org/tpch/
4Hybrid data layout for the new version of Hyrise is still work-in-progress.

4 PROPOSED INSTRUCTION
�e interface most similar to what we are suggesting is the gather
instruction in AVX-512. It takes a base address to the location in
memory and an index list containing the o�sets to the actual values.
It then gathers values from di�erent memory locations into a single
512-bit register. �is can already improve the performance of a
scan by up to a factor 10 [12]. Its shortcoming is that the data is
�rst transferred on a cache line granularity to the CPU. Only there,
the values are extracted and combined. If we could get the memory
hardware to assemble the requested values into a cache line, only
relevant data would be send over the memory bus, see Figure 1.

Figure 1: Waste in memory bandwidth for a traditional load
compared with a sub cache line load

�e proposed sub-cache line gather (SCG) instruction has a sim-
ilar interface, but uses sub-cache line memory accesses when as-
sembling the data, instead of bringing in every cache line contain-
ing elements. Although o�-the-shelf DRAM modules provide full
64-Byte data per access, we are motivated by recent memory tech-
nologies such as High Bandwidth Memory and Hybrid Memory
Cube, which can provide sub-cache line memory accesses of 32 and
16 Byte granularity [14, 17]. Also, techniques such as sub-ranking
or burst-chop can enable smaller granularity memory accesses [4].

Scalar sub-cache line memory accesses lead to partially valid
lines in caches complicating the cache design. However, SCG forms
full cache lines via several sub-cache line accesses before inserting
the data which eliminates the partial line issue. A�er assembling
the full cache line, SCG can target an AVX register or a pre-allocated
memory region. La�er is useful to exploit temporal locality, se�ing
the destination to L2/L3 using cache allocation technology [11].

A limitation of this approach is that the read data is a non-cache-
coherent copy of the data stored in memory. Modi�cations do not
get propagated to other copies of the data. Because we see the use
case mainly for read operators, we do not consider this to be an
issue. For use cases that require a write operation a symmetric
sca�er instruction could be added.

5 SUMMARY AND FUTUREWORK
For two research databases, we have shown that they underutilize
the data stored in the cache lines loaded into the CPU. Some TPC-H
queries waste as much as 70% of the available bandwidth. We have
proposed a gather instruction that assembles data with a sub-cache
line granularity before it is sent over the memory bus.

As a next step, we will work on simulating this proposed in-
struction. Once this becomes available, preferably via a compiler
intrinsic, we can prototypically implement �rst database operators
with sub-cache line access. �is should allow us to not only quantify
the waste, but also gains expected for SCG.
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While we have only discussed databases in this paper, we be-
lieve that other types of memory-bound programs can also pro�t,
especially when future compilers identify sca�ered memory reads
and automatically emit the appropriate gather instruction.
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