
A Decomposition Approach for Risk-Averse Index Selection
Rainer Schlosser

Hasso Plattner Institute, Germany
rainer.schlosser@hpi.de

Stefan Halfpap
Hasso Plattner Institute, Germany

stefan.halfpap@hpi.de

ABSTRACT
While finding the best selection of indexes is an important task
the problem appears highly challenging as (i) indexes mutually
affect their impact on performance and (ii) the number of index
combinations can be enormous. Current selection approaches have
limitations when problems are large and ignore the fact that future
workloads are partially stochastic. In this paper, we propose a solver-
based approach to find effective index selections for large-scale
workloads. Our decomposition concept allows to deal with large
candidate sets and makes it possible to address risk-averse problem
versions, where multiple potential future workloads are taken into
account. We demonstrate the applicability and the effectiveness of
our approach for the TPC-DS benchmark workload. Our numerical
results show that compared to state-of-the-art LP approaches index
selections can be computed orders of magnitudes faster while still
obtaining near-optimal performance results.

CCS CONCEPTS
• Information systems→Database design andmodels;Data access
methods; • Mathematics of computing → Linear programming;
Integer programming.

KEYWORDS
index selection, risk aversion, stochastic workloads, integer pro-
gramming, mean-variance optimization
ACM Reference Format:
Rainer Schlosser and Stefan Halfpap. 2020. A Decomposition Approach for
Risk-Averse Index Selection. In 32nd International Conference on Scientific
and Statistical Database Management (SSDBM 2020), July 7–9, 2020, Vienna,
Austria. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3400903.
3400909

1 INTRODUCTION
Indexes are indispensable for speeding up queries on large data-
bases. Because workloads are becoming both more complex, com-
prising of thousands of query templates referencing thousands of
attributes, and dynamic, i.e., they change over time, automatic and
efficient index selection approaches are important.

However, index selection (or index tuning), i.e., choosing the set
of indexes to minimize the workload costs while considering a set
of constraints, is an NP-hard problem [9]. Index selection consists

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SSDBM 2020, July 7–9, 2020, Vienna, Austria
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8814-6/20/07. . . $15.00
https://doi.org/10.1145/3400903.3400909

of two steps. First, potentially suitable index candidates must be
determined. Second, a subset of these candidates must be selected.

To solve large index selection problems, greedy heuristics, e.g.,
[4, 12], have been proposed, which often select or reject index
candidates one after another. The main problem of greedy index
selection algorithms is index interaction, i.e., the additional benefit
of a specific index may depend on the selection of another index. As
a result, an early chosen index (because of its overall large benefit for
all queries) may potentially lose its benefit completely for the final
selection, when additional indexes are added with higher benefits
for individual queries.

To counteract this issue, alternative approaches seek to jointly
select all indexes in a single step, i.e., solving the complete index
selection as a multi-dimensional mathematical optimization prob-
lem, e.g., [5, 7]. Of-the-shelf (integer) solvers are tuned for varying
input characteristics to prune sub-optimal solutions early and, thus,
find optimal solutions significantly faster than naive enumerations.
Nevertheless, when having too many index candidates, solvers take
too long to find optimal solutions to be practically applicable.

Looking at existing selection approaches, we see two important
aspects that render them unsuitable in real-world settings: (i) index
interaction and (ii) huge candidate sets. Most approaches do not
explicitly take the effects of index interactions into account or prune
potential index candidates (too) early [12, 13], thereby degrading
the solution’s quality. We seek to address both aspects:

• We propose a solver-based decomposition heuristic to effi-
ciently compute near-optimal index selections without being
forced to strongly limit the set of candidates in advance.

• Further, instead of a single workload, we consider multiple
potential future workload scenarios and compute risk-aware
index selections using mean-variance optimization.

• We evaluate the performance of our decomposition approach
against [5] (CoPhy) for the TPC-DS benchmark.

• We show that our concepts yield both, a near-optimal per-
formance and significantly reduced computation times.

2 INDEX SELECTION PROBLEM
In this section, we describe the index selection problem. First, we
discuss its main challenges (Section 2.1). Based on this discussion,
we mathematically specify the index selection problem (Section 2.2).
Finally, we discuss state-of-the-art LP approaches (cf. [5]) to select
indexes from a given set of candidates (Section 2.3).

2.1 Challenges
2.1.1 Index Candidate Selection. The number of (relevant) single-
attribute indexes can be directly derived by the overall number of
(used) attributes. Typically, relational database systems also use
multi-attribute indexes. To choose which of the relevant multi-
attribute indexes to consider as candidates is difficult, because
their number, i.e., the number of used attribute combinations in

https://doi.org/10.1145/3400903.3400909
https://doi.org/10.1145/3400903.3400909
https://doi.org/10.1145/3400903.3400909
Stefan Halfpap

Stefan Halfpap
SSDBM ’20, July 07–09, 2020, Vienna, Austria
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in SSDBM ’20: The 32nd International Conference on Scientific and Statistical Database Management, July 07–09, 2020, Vienna, Austria, https://doi.org/10.1145/3400903.3400909

SSDBM 2020, July 7–9, 2020, Vienna, Austria

the queries, usually exceeds the number of attributes by orders of
magnitude [13] and their benefit cannot be easily derived.
2.1.2 Index Interaction. Many indexes interact with each other, i.e.,
the benefit of one index is affected by the presence of another [11].
Thus, to find effective selections, themutual interplay of indexes has
to be taken into account. However, index interaction increases the
complexity of (i) choosing suitable candidates and (ii) computing
their best selection significantly, as the benefit of an index cannot
be expressed or ranked independently.
2.1.3 What-if Based Cost Estimations. A further challenge is an
efficient cost estimation of the workload with indexes. Repeatedly
creating a large set of index combinations physically and executing
queries is too expensive. Hence, many existing approaches [4, 5]
rely on the what-if capability of an optimizer, which allows estimat-
ing the size and benefit of so-called hypothetical indexes based on
statistics without physically creating the indexes. Note, including
the optimizer for the determination of query costs guarantees that
indexes are really used during query execution [4]. Unfortunately,
what-if calls require time-consuming query optimizations by the
optimizer. Resulting, what-if calls may be the bottleneck for index
selection approaches (cf. [8]). The number of what-if calls during
the index selection can be reduced by avoiding unnecessary calls
using caching and by exploiting workload context information. Fur-
ther, one can speed-up what-if calls by INUM’s advanced caching
mechanism [8], exploiting that optimal query plans for different
index sets often have the same structure and only differ in the table
access costs.
2.1.4 Potential Future Workloads. Workload anticipations are cru-
cial. Potential future workload scenarios can be determined, e.g.,
based on previously observed (seasonal) workloads or forecasts. Re-
garding a suitable index selection, such scenarios allow optimizing
the expected performance (risk-neutral) ormore robust (risk-averse)
objectives. We assume that a workload scenario is characterized
by a set of queries, which occur with given frequencies within a
certain time frame. We consider K potential workload scenarios
with probability Pk , k = 1, ...,K , where

∑
k Pk = 1.

2.2 Mathematical Problem Description
We consider the problem to choose secondary indexes for a work-
load, consisting of Q queries and N attributes, such that the (ex-
pected) overall performance is maximized, e.g., by minimizing the
execution time. Each query j is characterized by a set of attributes
qj ⊆ {1, ...,N }, j = 1, ...,Q , that are accessed during query eval-
uation. A (multi-attribute) index i is characterized by an ordered
set of attributes from {1, ...,N }. Further, by I , we denote a set of
index candidates and by the subset I∗ ⊆ I , we denote an index se-
lection. Using binary variables xi , we indicate whether a candidate
index i ∈ I is part of the selection I∗, i.e., I∗(I , ®x) :=

⋃
i ∈I :xi=1 {i}.

The costs for a query qj , j = 1, ...,Q , are denoted by values c j (I∗),
which depend on the index selection I∗. Typically the costs c j (I∗)
are determined by what-if optimizer calls. Note, a query j can be of
various type. The total workload costs Ck of scenario k are defined
by the (weighted) sum of query costs c j of all queries qj , multi-
plied by their number of occurrences denoted by fjk , j = 1, ...,Q ,
k = 1, ...,K , i.e.,

Ck (I
∗) :=

∑
j=1, ...,Q

fjk · c j (I
∗). (1)

Further, we assume that the memory consumed by the selected
indexes is not allowed to exceed a certain budget A. The necessary
memory for a (multi-attribute) index i , i ∈ I , is denoted bymi . The
total memory used by a selection I∗ amounts to

M(I∗) :=
∑

i ∈I ∗
mi . (2)

Finally, the index selection problem can be defined by:

minimize
xi ∈{0,1},i ∈I

∑
k=1, ...,K

Pk ·Ck (I
∗(I , ®x)) (3)

subject to M(I∗(I , ®x)) ≤ A. (4)

Note, for problem (3) - (4) both the selections ®x as well as the
index candidate set I determine the solution quality.

2.3 Linear Programming Approach
In this subsection, we discuss existing LP approaches to solve index
selection problems. In this context, we resemble the concept of
CoPhy [5], abstracting from multiple query plans per query with
slots for accessing tables. Equal to CoPhy, which allows applying a
single index per slot, we allow a single index per (sub) query. As a
result, the structure and complexity of both linear programming
models are the same and depend crucially on the number of options,
via variables and constraints. For ease of simplicity, we do not
consider updates.

Moreover, we assume that the costs of (a fixed query plan and)
a query when using a specific index are at hand (e.g., based on
what-if calls), i.e., if an index i is applied to query j, we consider
scan costs c j (i), i ∈ I ∪ 0, where 0 describes the option that no
index is applied to j, j = 1, ...,Q . Besides xi , we use the additional
binary variables zji to model whether an index option i is applied
to a query j, which particularly depends on the selection of other
indexes that might be more beneficial (cf. index interaction).

Further, by Ij ⊆ I , we denote the (sub)set of index candidates out
of I that are applicable to query j , j = 1, ...,Q . For a given candidate
set I and K potential workload scenarios, the basic structure of
index selection LP approaches (cp. CoPhy) minimizing (expected)
total costs can be written as:

minimize
zjs ,xi ∈{0,1},i∈I ,
j=1, . . .,Q,s∈Ij∪0

∑
k=1, ...,K

Pk ·
∑

j=1, . . .,Q,
i∈Ij∪0

fjk · c j (i) · zji (5)

subject to
∑

i ∈Ij∪0
zji = 1 ∀j = 1, ...,Q (6)

zji ≤ xi ∀j = 1, ...,Q, i ∈ Ij (7)∑
i ∈I

mi · xi ≤ A. (8)

The family of constraints (6) guarantees that a unique index
option is used for each query j. The constraints (7) serve to iden-
tify which indexes i are used at all. Constraint (8) ensures that the
memory budget A is not exceeded, cf. (4). The linear programming
formulations, cf. (5) - (8), require all cost coefficients c j (i), e.g., deter-
mined by what-if optimizer calls. Note, that what-if cost estimations
can be efficiently and accurately derived, e.g., via INUM [8].

Remark 1 Approaches like (5) - (8) are superior to rule-based
heuristics but do not scale as the problem complexity strongly increases
in the number of queriesQ and candidates |I |. Hence, such solver-based
approaches are (i) either not applicable if the problem is sufficiently
large, see [10] (Table I), or (ii) lead to suboptimal selections using
reduced candidate sets, see [10] (Figure 3 - 4).

A Decomposition Approach for Risk-Averse Index Selection SSDBM 2020, July 7–9, 2020, Vienna, Austria

3 SCALABLE DECOMPOSITION HEURISTIC
In the following, we present our heuristic decomposition approach
to solve large-scale (risk-neutral) index selection problems (Sec-
tion 3.1). The approach can also be applied to more complex risk-
averse problem versions (Section 3.2).

3.1 Decomposition Approach
To circumvent the fact that the LP (5) - (8) does not scale, next, we
propose an approach to decompose the index candidate set to be
able to reduce the LP’s complexity in a targeted way.

Algorithm 1 (Problem Decomposition)
Step 1: Partition the set of index candidates I into B smaller sub-

sets. The number B, the chunk sizes, and the subsets can be arbitrarily
defined. For example, subsets of (at most) size S can be formed in a
naive way. Then the number of chunks is B := ⌈|I |/S⌉.

Step 2: For all subsets of index candidates Ĩb , b = 1, ...,B, we
solve the problem (5) - (8) independently (with the same budget A)
and store the selected indexes, i.e., the sets Ĩ∗b , b = 1, ...,B.

Step 3: Solve the problem (5) - (8) for the combined set of remain-
ing index candidates Ĩ :=

⋃
b=1, ...,B Ĩ∗b .

The key idea of Step 1 and Step 2 is (i) to solve LPs of smaller
size and (ii) to exclude indexes which are dominated by others.
In Step 3 the best selection of the best indexes of the individual
subsets are formed. The subproblems’ complexity can be controlled
by choosing the chunks’ sizes. In case the candidate set Ĩ (after
Step 2) is too large, Step 1-2 can be repeatedly applied (to Ĩ) or
Step 2 can be executed with a smaller budget Ã < A. Moreover, to
optimize the choice of chunks, further information can be used,
e.g., by collecting similar indexes within chunks. This way index
interaction is more effectively addressed in each chunk.

3.2 Mean-Variance Optimization
In this section, we combine our decomposition approach with more
complex non-linear problem versions, which address risk-averse
selections. An effective criteria to balance expected performance
vs. performance deviations is mean-variance optimization (MVO).
Based on a scenario k’s workload costsCk (®z) =

∑
j=1, ...,Q,i ∈I fjk ·

c j (i) · zji , k = 1, ...,K , cf. (1) & (5), the expected workload costs of an
index selection (determined by ®z) are given by

EC(®z) =
∑

k=1, ...,K
Pk ·Ck (®z) (9)

and the associated variance of workload costs amounts to

VC(®z) =
∑

k=1, ...,K
Pk · (Ck (®z) − EC(®z))2. (10)

The trade-off between expected costs EC and the variance VC
can be modeled by the extended objective, cp. (5),

minimize®x, ®z MVO(®z) = EC(®z) + α ·VC(®z) (11)

using a penalty parameter α ≥ 0. The penalty term in the objective
provides an incentive to avoid large deviations in potential workload
costs by selecting indexes such that queries of comparably heavy
workload scenarios are sped up. The decision variables and the
constraints (6) - (8) remain unchanged. While for α=0 we obtain
the linear risk-neutral model (5) - (8), for α>0 we have a (more
complex) binary quadratic problem (BQP), which can be solved
using standard solvers as long as the problem is sufficiently small.

Table 1: Performance comparison: Workload costs EC, cf.
(9), and runtimes of Algorithm 1 for different numbers of
chunks B with size S vs. the optimal solution (EC∗) of the LP
model (5) - (8) with full S = |I |, cf. CoPhy’s approach; TPC-
DS with |I | = 8 343 index candidates (1-3 attributes).

B Size S |Ĩ | EC/EC∗ Time (Step 2 + 3) time saved

1 8 343 8 343 (100.00%) 3.5 s (100%)
4 2 100 474 100.00% 2.0 s + 0.1 s = 2.1 s -46%
16 525 586 99.98% 1.4 s + 0.2 s = 1.6 s -54%
42 200 784 100.00% 3.6 s + 0.3 s = 3.9 s +11%

4 NUMERICAL EVALUATION
In this section, we compare the performance of Algorithm 1 against
optimal selection approaches with full candidate sets (cf. B = 1).
Using the setup described in Section 4.1, we evaluate the risk-neutral
(Section 4.2) as well as the MVO model (Section 4.3).

4.1 Setup and Model Input
To obtain the model inputs, we set up a PostgreSQL 11 [3] database
system with the extension HypoPG [2]. HypoPG allows creating
hypothetical indexes and estimating their sizes. We loaded TPC-DS
tables with scale factor 1. For the TPC-DS queries (Q = 99) and
various index configurations I , we derived query costs c j (i), i ∈ I , by
calling PostgreSQL’s EXPLAIN with the query template string using
fixed parameters. For all queries, we use E(fjk) := 1, j = 1, ...,Q ,k =
1, ...,K , to obtain, on average, an identical number for each query
template. Note, to avoid a skew in the queries’ workload shares
or in the total workloads of single scenarios, the frequencies can
also be normalized accordingly. Index sizes are modeled by using
HypoPG’s function hypopg_relation_size(). Obtained model
inputs to reproduce the calculations are available online [1].

4.2 Risk-Neutral Performance Comparison
We compare our decomposition-based approach (cf. Section 3.1)
with the solutions of the state-of-the-art approach CoPhy numeri-
cally, focussing on the workload costs and the required runtimes.
Table 1 shows results for the TPC-DS benchmark workload. We let
K=10 and use randomized query frequencies fj,k :=Uniform(0,2),
k = 1, ...,K . The budget is A := 0.0002 ·M(I), cf. (2).

We observe that while the solution performance (EC/EC∗), cf.
(5) & (9), of Algorithm 1 is constantly (near-)optimal for different
chunkings, the number of chunks B majorly affects the runtime,
which is dominated by Step 2. The u-shaped dependence of the
runtime can be explained as follows: First, an increase in B decreases
the total runtime due to the reduced problem complexity. Then,
at some point (cf. B > 16) Step 2’s runtime increases again as (i)
the reduced complexity, cf. S , does not compensate the increased
number of subproblems B anymore and (ii) during Step 2 more
indexes survive, cf. |Ĩ |, such that Step 3 takes longer. Note, for the
extreme case S = 1, in Step 3, we again obtain the original problem.
Further experiments show that the results obtained also hold for
various other memory budgets A.

Remark 2 In Algorithm 1, the selection within each chunk (Step 2)
eliminates candidates that are dominated by others. Beneficial indexes
are hardly excluded, since (compared to the original problem) within

SSDBM 2020, July 7–9, 2020, Vienna, Austria

Table 2: Performance comparison: Workload costs and run-
times of the optimal BQP, cf. (11), vs. our decomposition
heuristic (Algorithm 1) for different chunk sizes S ; TPC-DS
with |I | = 1 422 index candidates (1-2 attributes).

B Size S |Ĩ | MVO/MVO∗ Time (Step 2 + 3) time saved

1 1 422 1 422 (100.00%) 172 s (100%)
4 400 24 100.00% 21.5 s + 0.5 s = 22 s -87%
15 100 124 100.00% 4 s + 3 s = 7 s -96%
57 25 421 100.00% 9 s + 5 s = 14 s -92%

Table 3: Performance comparison: Workload costs and run-
times of the optimal BQP, cf. (11), vs. our decomposition
heuristic (Algorithm 1) for different chunk sizes S ; TPC-DS
with |I | = 8 343 index candidates (1-3 attributes).

B Size S |Ĩ | MVO/MVO∗ Time (Step 2 + 3) time saved

1 8 343 8 343 no result no result no result
4 2 100 140 ("100.00%") 1 950 s + 5 s = 1 955 s (100%)
8 1 050 59 "100.00%" 267.5 s + 0.5 s = 268 s -86%
16 525 142 "100.00%" 149 s + 6 s = 155 s -92%
42 200 458 "100.00%" 248 s + 43 s = 291 s -85%

a chunk the competition between indexes (cf. index interaction) is
lower as less indexes are involved and the budget is unchanged. In
the final selection (Step 3) all non-dominated indexes compete against
each other in a joint setting (with the highest degree of competition),
which finally provides near-optimal results.

4.3 Risk-Averse Performance Comparison
Next, we study the quality of Algorithm 1 applied in the risk-averse
MVO model (cf. Section 3.2). We consider the parameter setting as
used in the example of Table 1. The penalty factor is α = 1, cf. (11).
To solve the BQP, we used the Gurobi solver (Version 8.1.0).

Using only indexes with 1-2 attributes (in total 1 422), in the
risk-averse MVO case, see Table 2, (for different S) we obtain the
best index selection with the optimal objective value (cf. B=1). The
runtime is minimized for S=100 (B=15). Further, the saved runtime
is significantly higher, which is due to the higher complexity of the
initial problem. Again, for different budgets, we find that the MVO
performance is not affected by S , cf. Remark 2.

Considering all indexes with 1-3 attributes (in total 8 434), see
Table 3, the optimal BQP solution with a full candidate set could not
be computed anymore, which shows the weakness of models with
large candidate sets, cf. Remark 1. In contrast, our decomposition
approach still allows computing high quality results in a reasonable
amount of time. Note, in Table 3, the results for B = 4 chunks serve
as the reference result with "100%" performance. Recall, in general,
if the set of candidates used contains more indexes (cf. |I |=1 422 vs.
8 343), the solution is better but also harder to compute.

Remark 3We find that Algorithm 1 can effectively improve solver-
based approaches, which have limitations when candidate sets are
chosen too large (high complexity) or too small (exclusion of beneficial
indexes). We recommend choosing the chunking in Algorithm 1 such
that Step 2’s subproblems best benefit from a smaller candidate set,
i.e., a suitable number of chunks is exceeded if Step 2’s total runtime
does not decrease in B anymore (i.e., in our example B = 16).

5 RELATEDWORK
Early approaches tried to derive optimal index configurations by
evaluating attribute access statistics [6]. Newer index selection ap-
proaches are coupled on the query optimizer of the database system.
By doing so, the costs models of the index selection algorithm and
the optimizer are the same. As a result, the benefit of considered
indexes can be estimated consistently [4]. As optimizer invocations
are costly, especially for complex queries, along with improved
index selection algorithms, techniques to reduce and speed up opti-
mizer calls have been developed [4, 8].

An increasing number of possible optimizer calls for index selec-
tion algorithms opens the possibility to investigate an increasing
number of index candidates. Compared to greedy algorithms [4, 12],
approaches using mathematical optimization, especially integer lin-
ear programming [5], are able to efficiently evaluate a larger number
of index combinations. A major challenge of these index selection
approaches is dealing with the complexity of integer programming,
which is in general not scalable. An obvious solution is reducing
the number of considered index candidates. Instead of restricting
the set of index candidates in advance, we propose a decomposition
approach to handle the complexity.

6 CONCLUSIONS
We have proposed a solver-based decomposition approach, which
allows computing near-optimal index selections for problems with
large candidate sets. For the TPC-DS workload, we verified the near-
optimal performance of our approach against optimal solutions,
while the required runtime can be effectively reduced. With our
approach index candidate sets do not have to be strongly limited in
advance, which is beneficial as (i) potentially suitable indexes are
not excluded and (ii) heuristic preparations of candidate sets can
be omitted. Moreover, we showed that our decomposition concept
can also be used to identify robust index selections in the presence
of multiple potential future workloads.

REFERENCES
[1] [n.d.]. https://hyrise.github.io/replication/.
[2] HypoPG. https://github.com/HypoPG/hypopg.
[3] PostgreSQL. https://www.postgresql.org.
[4] Surajit Chaudhuri and Vivek R. Narasayya. 1997. An Efficient Cost-Driven Index

Selection Tool for Microsoft SQL Server. In Proc. VLDB’97. 146–155.
[5] Debabrata Dash, Neoklis Polyzotis, and Anastasia Ailamaki. 2011. CoPhy: A

Scalable, Portable, and Interactive Index Advisor for Large Workloads. PVLDB 4,
6 (2011), 362–372.

[6] Sheldon J. Finkelstein, Mario Schkolnick, and Paolo Tiberio. 1988. Physical
Database Design for Relational Databases. ACM Trans. Database Syst. 13, 1 (1988),
91–128. https://doi.org/10.1145/42201.42205

[7] Stratos Papadomanolakis and Anastassia Ailamaki. 2007. An Integer Linear
Programming Approach to Database Design. In Workshop@ICDE. 442–449.

[8] Stratos Papadomanolakis, Debabrata Dash, and Anastassia Ailamaki. 2007. Effi-
cient Use of the Query Optimizer for Automated Database Design. In Proc. VLDB
2007. 1093–1104.

[9] Gregory Piatetsky-Shapiro. 1983. The Optimal Selection of Secondary Indices is
NP-Complete. SIGMOD Record 13, 2 (1983), 72–75.

[10] Rainer Schlosser, Jan Kossmann, and Martin Boissier. 2019. Efficient Scalable
Multi-attribute Index Selection Using Recursive Strategies. 1238–1249.

[11] Karl Schnaitter, Neoklis Polyzotis, and Lise Getoor. 2009. Index Interactions
in Physical Design Tuning: Modeling, Analysis, and Applications. PVLDB 2, 1
(2009), 1234–1245.

[12] Gary Valentin, Michael Zuliani, Daniel C. Zilio, GuyM. Lohman, and Alan Skelley.
2000. DB2 Advisor: An Optimizer Smart Enough to Recommend Its Own Indexes.
In Proc. ICDE. 101–110.

[13] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy M. Lohman, Adam J. Storm, Chris-
tian Garcia-Arellano, and Scott Fadden. 2004. DB2 Design Advisor: Integrated
Automatic Physical Database Design. In Proc. VLDB. 1087–1097.

https://hyrise.github.io/replication/
https://github.com/HypoPG/hypopg
https://www.postgresql.org
https://doi.org/10.1145/42201.42205

	Abstract
	1 Introduction
	2 Index Selection Problem
	2.1 Challenges
	2.2 Mathematical Problem Description
	2.3 Linear Programming Approach

	3 Scalable Decomposition Heuristic
	3.1 Decomposition Approach
	3.2 Mean-Variance Optimization

	4 Numerical Evaluation
	4.1 Setup and Model Input
	4.2 Risk-Neutral Performance Comparison
	4.3 Risk-Averse Performance Comparison

	5 Related Work
	6 Conclusions
	References

