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Abstract—Recent work has started to combine two approaches
for faster query execution: Vectorization and Just-in-Time Com-
pilation (JIT). Combining the advantages of block-at-a-time and
tuple-at-a-time processing opens up opportunities for perfor-
mance improvements. In this context, we present the Fused
Table Scan, a just-in-time-compiled scan operator for consecutive
table scans. It makes use of the Intel AVX-512 instruction set to
combine multiple predicates in a single scan. This reduces the
number of instruction-level branches and makes memory access
more efficient. We show that the Fused Table Scan doubles the
scan performance in most cases and can achieve a speed-up of
up to a factor of ten over sequential execution. Furthermore, we
discuss which query plans profit from the Fused Table Scan and
how the operator code can be generated at runtime.

I. INTRODUCTION

Relational databases rely on efficient mechanisms to filter
data in a table. While secondary indexes can speed up some
queries, they consume memory, have high maintenance costs,
and are suitable for queries that select few rows [9]. Thus, a
significant share of queries requires a sequential scan of the
table or intermediate data. For some applications, the need to
enable fast scans on unindexed data is paramount. In fact, this
is the core of the row versus column store debate for main
memory databases [16].

Generally, the performance of operators in main memory
databases is limited by either the CPU, the memory latency, or
the memory bandwidth. One might expect the sequential scan
to be limited by the memory bandwidth. As value comparisons
in the CPU should be cheap, it should be an issue of the CPU
stalling while waiting for more data to arrive. In Section II,
we will show that this is incorrect and that the memory bus
holds untapped resources that the scan can use.

Existing improvements of the sequential scan have been
grouped into two categories [6]: Block-at-a-Time Execution
scans a block of data from the table using vectorized opera-
tions and produces intermediary position lists. This enables the
use of more efficient SIMD operations, but requires the results
to be materialized and then consumed by a following operator.
Data-centric Compilation uses Just-in-Time Compilation (JIT)
to generate a tight, optimized loop that processes one tuple
at a time. While this keeps data in memory for as long as

possible and reduces the overhead of unnecessary method calls
in the DBMS, it does not take advantage of SIMD. Recent
work started to combine SIMD and JIT to vectorize across
the boundaries of single operators [6, 13].

In this work, we combine these two concepts to improve
consecutive table scans, that evaluate multiple predicates in a
row. We show how the AVX-512 SIMD instruction set [7],
which is available on the current generation of Intel Xeon
Processors, allows to perform a series of vectorized scans
without materializing. As a result, we present the Fused Table
Scan operator, which achieves a 2x speedup in most cases and
a 10x speedup in the best case when compared to traditional
sequential scans.

The paper is organized as follows: In Section II, we present
a naı̈ve implementation of a consecutive table scan and analyze
its limitations. We then present the implementation of a Fused
Table Scan in Section III and discuss its use of AVX-512
instructions. We evaluate the performance in Section IV, where
we compare our operator with SISD and AVX2 implementa-
tions. In Section V, we explain how the binary code for the
Fused Table Scan can be generated during JIT compilation.
Related work is presented in Section VI and a summary is
given in Section VII.

II. MOTIVATION

We will use the following simplified SQL query to demon-
strate why a data-centric execution that does not use SIMD
misses out on optimization opportunities:

SELECT COUNT(*) FROM tbl WHERE a = 5 AND b = 2

We make the following assumptions:
1) All data is in memory.
2) The table is stored in column-major format, i.e., the

values of column a are stored contiguously in memory1.
3) Values have a fixed size. This could either be because

they are fixed-size by nature (such as the integers in
this example) or because a compression scheme such as
dictionary encoding [1] is used.

1It can, however, be horizontally partitioned into chunks or morsels.
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Fig. 1. For a fixed table size of 100 million rows and varying selectivities,
the runtime correlates with the number of useless prefetches and the number
of branch mispredictions.

With these assumptions, a naı̈ve data-centric implementation
could result in code like this:

int total_results = 0;
for (pos_t i = 0; i < col_a.size(); ++i) {

if (col_a[i] == 5 && col_b[i] == 2) {
++total_results;

}
}
return total_results;

For now, let us leave the auto-vectorization that may be
done by the compiler aside. In Section IV, we will show that
it suffers from similar drawbacks. Two cursors are used for
the two columns col_a and col_b. The first value is loaded
into the CPU and compared to the search value. Because of
short-circuit evaluation, the second value is only loaded and
compared if the first value matches. So much for the theory.

In the real world, the prefetcher will speculatively load the
value for the second column if it expects col_a[i] == 5 to
be true. If the prediction fails, most of the data loaded by the
prefetcher is discarded. Most notably, this happens when half
of the rows qualify and branch prediction becomes a 50/50
decision.

A second performance bottleneck is the condition itself,
which gets translated into a compare CMP and a conditional
jump Jcc. While both the compiler and the processor’s branch
predictor2 try to optimize the execution order so that the
number of jumps is reduced, they cannot guarantee a linear
execution flow. If a branch misprediction occurs, the results
of the speculative execution have to be rolled back.

We measured the number of rollbacks using PAPI and
the branch-misses and l2_lines_out.useless_hwpf perfor-
mance counters. The former gives us the number of branch
mispredictions. It is available in PAPI as PAPI_BR_MSP. The
latter measures the number of cache lines that were loaded
by the hardware prefetcher but were never used and finally
evicted. It was introduced with the Skylake architecture [8]

2Of recent notoriety because of the Spectre and Meltdown attacks.
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Fig. 2. A naı̈ve SISD scan cannot utilize the available bandwidth. Only
when parts of the cache line are skipped, it can reach the maximum available
bandwidth. Of course, this reduces the number of actually processed values.

and is not available in PAPI’s master branch yet, but can be
imported using PAPI_event_name_to_code.

Figure 1 shows how these counters are influenced by the
selectivity of the first predicate3. As the number of qualifying
rows and thus the probability of a match increases, the branch
prediction gets worse. At 0.00001%, the branch prediction that
assumes a non-match is almost always right. At 10%, even
the best branch prediction will be correct in only 9 out of 10
cases. These mispredictions lead to expensive rollbacks and
increase the overall runtime. At 100%, the branch prediction is
always right, so the number of branch mispredictions, useless
prefetches, and thus the runtime, decreases.

Finally, comparing the integers one by one is too slow to
make use of the available memory bandwidth. We can show
this with the following experiment: Instead of comparing every
integer, only every n-th integer is scanned. This reduces the
number of compares, but not the number of cache lines that
have to be loaded. For n = 4, this doubles the bandwidth, as
can be seen in Figure 2. Of course, skipping entries in the
table is not a viable approach to improve the scan. Thus, to
make use of the available bandwidth of 12 GB/s, more integers
have to be scanned at the same time.

III. IMPLEMENTATION OF THE FUSED TABLE SCAN

In this section, we will describe the implementation of a
new scan operator we refer to as Fused Table Scan. We use
the same SQL query as before, searching for value 5 in the first
column and 2 in the second column. The dataflow is visualized
in Figure 3 and example code can be found online4.

Our approach starts the same way that most SIMD-based
sequential scans do. A part of the first column is read into an
AVX register. For the example, we use 128-bit registers instead
of the 512-bit registers offered by AVX, simply because they
are easier to visualize. As we will show in Section IV, the
actual execution would almost always be faster on bigger

3The test system’s configuration is given in Section IV.
4https://github.com/hyrise/fused table scans
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Fig. 3. Data Flow of the Fused Table Scan. Instructions printed in blue are
AVX-512 instructions.

512-bit registers. The function _mm_loadu_si128 loads 16
bytes into a 128-bit register. In our example, we look at
4-byte integers, so this makes four values per register. We
compare these four values with the search value using the
_mm_cmpeq_epi32_mask function. This gives us a bitmask
with four entries in which 1 stands for a match on the first
search criterion. Traditional block-at-a-time (i.e., vectorized)
implementations would now scan the remaining blocks and
finally return the complete bitmask to the next operator.

Instead, we use this bitmask to perform the next scan in
the chain. Doing so has the advantage that the bitmask can
remain in the AVX register instead of being written into a
CPU cache or, even worse, to memory. First, we convert the
bitmask into a position list (an offset list of the matching
positions). For this, we prepare an AVX register that holds all
positions in the current block. In the first iteration of the loop,
this results in the register (0, 1, 2, 3). Applying a bitmask
where the second and the fourth row match the criterion to
that register gives us (0, 1, 0, 3). Because the position list
should be dense, we shift the register so that we get (0, 0,

1, 3). AVX-512 can do these two steps in one instruction,
_mm_mask_compress_epi32. As we keep track of the number
of entries in the mask (here it is two), the leading zeroes can be
ignored in following instructions. This removes any ambiguity
between 0 as an empty value or as the offset of the first row.

Now that we have a list of all positions from the first
block, we repeat the previous steps for the next four val-
ues. The indexes from the second iteration are appended to
the position list by first shifting the existing values using
_mm_permutex2var_epi32 and then bringing in the new values
with _mm_mask_compress_epi32.

We repeat this until no more entries can be appended to the
position list. The position list may hold less than four entries,
for example if it already held three entries and the iteration
produced two more results. In these cases, we first process
the incomplete list and then start a new list with the two new
results. Because we keep track of the number of entries, we
do not have to worry about leading zeroes.

At this point, we have four positions within the table (i.e.,
row ids) where the first criterion a = 5 is fulfilled. We now use
_mm_i32gather_epi32, which allows us to use the position list
as indexes into the second column. This saves us from issuing
multiple load instructions and sequentially building an AVX
register by hand. To our understanding, it reduces the number
of instructions and involved registers, but not the number of
cache lines loaded. We expect bigger speed-ups if the gather
instructions could somehow assemble the register somewhere
closer to the memory hardware.

We use _mm_mask_cmpeq_epi32_mask to scan the column
for the search value and end up with yet another bitmask.
This bitmask, applied to the position list that we used as
input for the second column, is 1 in places where a =

5 AND b = 2. By using the _mm_mask_compress_epi32 and
_mm_permutex2var_epi32 steps from before, it can be con-
verted into a position list. That list can then be used as input
for the next operator in the execution plan.
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Fig. 4. Across different table sizes, our Fused Table Scan outperforms data-
centric SISD (with auto-vectorization) for all measured selectivities. In most
cases, the relative performance is doubled.

If we had a third consecutive scan, we would likely have
too few positions remaining to fill an entire register. Thus, we
first repeat the previous steps until we have enough results to
continue with the third column. The next steps are the same
as the ones executed for the second column.

The presented approach is an improvement over the naı̈ve
code in a number of ways:

1) By using SIMD instructions, more comparisons are
performed per cycle. This allows us to break through
the bandwidth ceiling described in Section II.

2) Because less data is prefetched but not used, the avail-
able bandwidth is used more efficiently.

3) As the code has fewer conditions, the number and cost
of branch mispredictions is significantly reduced.

4) In contrast to existing SIMD implementations, the re-
sults of the comparisons (i.e., the bitmasks) are not
materialized but remain in the AVX registers. This
reduces the transfer cost.

In the example, the values neatly fit into a native data type.
Other optimizations, such as null suppression [18] and SIMD-
BP128 [12], change this layout to fit more data into a given
amount of memory. Our solution is not limited to native data
types and could incorporate the needed unpacking steps.

Even though the example uses only 128-bit registers, it
relies on AVX-512 instructions. This is because AVX-512
can perform multiple computations in one step where pre-
vious AVX versions would have required multiple instruc-
tions. First, we use masked instructions to apply the bitmask
from previous instructions to the next step. An example of
this is _mm_mask_cmpeq_epi32_mask. It compares two packed
integers for equality, but only outputs 1 for those where the
corresponding field in the input mask is set. Before AVX-512,
this required two steps: _mm_cmpeq_epi32 and _mm_and_ps.

Second, we use _mm_mask_compress_epi32, a new swizzle
instruction. It allows us to select values from an AVX register,
move them to the first slots and fill up the result vector with
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Fig. 5. When comparing different instruction set extensions and register
sizes, we see that (a) AVX-512 has an advantage over AVX-2 and (b) the
register size contributes significantly to the performance benefit.

elements from a second input vector. This is key to the step
where we build a full position list for the second predicate.

For measuring the benefit of these new AVX-512 instruc-
tions, we built equivalent functions using AVX2. Because
something as short as _mm_mask_compress_epi32 became 32
lines, we do not print the equivalent functions here and instead
refer to _mmX_mask_compress_epi32 in the REG == 128 &&

!AVX512 configuration in avx_scan.cpp. The performance
advantages of AVX-512 will be discussed in Section IV.

IV. EVALUATION

In this section, we evaluate several aspects of the Fused
Table Scan’s performance. Unless noted otherwise, we use
the query that was introduced in Section III. We will discuss
the impact of the tables’ sizes, the predicates’ selectivities, the
number of predicates in the query, and the AVX register width
with several experiments. All measurements were executed
on an Intel Xeon Platinum 8180 CPU with 2.5 GHz base
frequency, 3.8 GHz maximum turbo frequency and 2 TB of
PC4-2666 main memory. The caches hold 32 KB (L1 data),
1024 KB (L2), and 38.5 MB (L3), but were flushed after each
benchmark. Our code was compiled with gcc 7.2 and -O3.

Figure 4 shows the relative performance (i.e., the reduction
in runtime) of the Fused Table Scan compared to that of a
data-centric SISD implementation (as seen in Section II). The
x-axis shows varying table sizes, while differently colored bars
show different selectivities. Some bars are omitted, as 0.1%
of qualifying rows would not return any rows for a table with
100 rows. The dashed line at 1x is the the performance of
a data-centric SISD-scan which is used as the baseline. All
configurations were measured at least 100 times. Our figure
displays the median of these runs.

For all measured configurations, the Fused Table Scan
outperforms the SISD-scan. In 32 of the 40 benchmark con-
figurations, the performance is improved by at least a factor
of two. This validates the claim made in this paper’s title.
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Fig. 6. The Fused Table Scan has a lower number of branch mispredictions.
Because fewer speculative executions have to be rolled back, the performance
is improved. The graph shows results for a table size of 32 million rows.

In Figure 5, a fixed table size of 32 million rows and
a varying selectivity were chosen. Different implementations
are compared: SISD (no vec) denotes traditional tuple-at-a-
time approaches. SISD (auto vec) is the same code but uses
auto-vectorization by the compiler. AVX2 Fused (128) is a
reimplementation of the Fused Table Scan where AVX-512
instructions are replaced by their AVX2 equivalent. This is not
necessarily the fastest implementation possible with AVX2,
but gives us an idea how AVX-512 instructions that combine
multiple AVX2 instructions improve the performance. Finally,
AVX-512 Fused (x) is our Fused Table Scan with x being the
size of the used registers.

We can see that the Fused Table Scan is faster in all con-
figurations. It outperforms both the auto-vectorized SISD scan
and the AVX2 backport. Furthermore, the influence of larger
register sizes can be seen. Interestingly, the gap from AVX-
512 Fused with 128-bit registers to 256-bit registers is bigger
than that of 256-bit registers to 512-bit registers. Because this
distance remains similar even as the runtime goes up, we do
not believe that this is because of the memory barrier. Instead,
it appears as if there are some 512-bit instructions that take
longer than their corresponding 256-bit instruction.

The Fused Table Scan still requires some branching, for
example when checking if new matches can be appended
to the current position list or if a new position list has to
be started. However, when comparing the number of branch
mispredictions across the different implementations, it has a
lower number of branch mispredictions than the SISD and
AVX2 versions. Figure 6 shows this effect, which is part of
the Fused Table Scan’s performance advantage.

Finally, for Figure 7, we measured how the performance is
impacted when the number of predicates is increased. Because
of the gather optimizations made in the Fused Table Scan,
we expect it to be less affected by a higher number of
predicates than the SISD implementation. Not only is this
of interest when looking at queries with multiple predicates
(such as TPC-H Query 6), but also when the DBMS uses
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Fig. 7. The performance benefit grows with the number of predicates. Here,
the first predicate matches for 1% of the rows and following predicates match
for 50% of the rows. Similar results are measured for different configurations.

multi-version concurrency control (MVCC) and the validation
of the visibility vectors is treated as a follow-up predicate. We
scanned 32 million rows with a varying number of predicates.
Here, for the first predicate, 1% of all rows qualify and for
following predicates 50% of the remaining rows match. The
results confirm our expectation that the benefit of the Fused
Table Scan improves with a growing number of predicates.

V. RUNTIME CODE SPECIALIZATION

In the previous section, we have shown that the Fused Table
Scan outperforms a tuple-at-a-time SISD implementation. Be-
fore the implementation given in Section III can become part
of a query plan, it has to be generated by the JIT compiler.
This is because a number of parameters are only known at
runtime:

• The size of the scanned values. In the example, we used
4-byte integers, but other sizes are also possible.

• The data type of the values. While this makes no dif-
ference for the equality scan executed in the example, it
matters for other comparisons. A four byte integer has to
be compared differently than a four byte float.

• The comparison operator itself, where different AVX
instructions need to be used for =, <, and so on.

For a single scan, this gives us ten data types5 and six compar-
ison operators. While sixty instantiations of the operator code
might still be feasible, this number explodes once we look at
the following scan in the chain of consecutive scans. As our
performance benefit is largely the result of using the output
from one scan as the input of the next scan, the code of the
operator has to be tailored to the characteristics of both scans.
If we disregard some minor optimizations, this leaves us with
3600 possibilities for two predicates. Many queries have more
predicates, so generating all combinations is infeasible.

This problem can be overcome by using Just-in-Time
Compilation to generate the code at runtime. Because the

5Signed and unsigned ints with 1, 2, 4, or 8 bytes plus float and double
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Fig. 8. Logical Query Plans for non-optimized and SIMD-optimized scans

JIT support in our research database Hyrise6 is still under
development, we will discuss what we consider to be the
optimal setup. It generates an executable operator that acts as a
drop-in replacement for consecutive scans as seen in Figure 8.

Hyrise uses a JIT execution model where generated code
has the same interface as traditional database operators. This is
comparable to Peloton’s Relaxed Operator Fusion model [13].
Operators are written in C++, translated to LLVM IR, and
shipped with the DBMS. During runtime, the IR is specialized
with runtime information such as data types and actual values.
The code from all operators in one pipeline is then inlined into
a single, monolithic function. Subsequent calls to LLVM’s
optimizer and compiler then generate binary code that is
optimized across operator boundaries.

For the Fused Table Scan, we deviate from this model
and use code generation, where the actual code is generated
during runtime. This is because code specialization would
require us to have unspecialized code that compiles and
executes properly. In turn, this would require all parameter
combinations to exist in the unspecialized code. Luckily, the
code that has to be generated follows a very static pattern and
can easily be expressed as a code template. Because of this,
we decided for code generation instead of code specialization.

Three abstraction levels of code could be used for gener-
ation: C(++), LLVM IR, or ASM. Because of the hardware-
oblivious nature of LLVM IR, it is not a good choice for
writing code that is tuned to a specific instruction set extension
and vectorized by hand. The advantages of C(++) code are
automatic register allocation and type safety, whereas ASM
has the advantage of being closer to the hardware and requiring
fewer steps to compile. For now, we found C(++) code easier
to write and maintain. Especially when compiled operators are
cached for future use, we do not see the additional compile
time as a deciding bottleneck.

Before any actual code generation occurs, the DBMS has to
identify potential uses for the Fused Table Scan in the query
plan. This is done by Hyrise’s optimizer, which operates on
logical query plans (LQPs). These contain relational operators

6https://github.com/hyrise/hyrise
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Fig. 9. The Hyrise optimizer works on logical query plans that contain re-
lational algebra operators. These are then translated into executable operators
by the LQP Translator.

(e.g., joins) but do not define the actual implementation (e.g.,
a hash-join). The rule-based part of the optimizer translates
the LQP using techniques such as predicate pushdown and
predicate reordering, which make sure that predicates are
evaluated as early as possible and in the most efficient order.
When multiple predicates (σ in Figure 8) are identified as a
chain, they are tagged to be translated as a Fused Table Scan.

The LQP Translator then invokes the JIT compiler, which
generates code as visualized in Figure 3. Doing so consists of
choosing the correct data sizes for the AVX intrinsics (e.g.,
_epi32 when scanning four byte integers or _ps for single-
precision floats). Also, the placeholder for the comparison
(_mm_cmpXX_epi32_mask) has to be replaced according to the
chosen comparison operator. Finally, the different predicates
have to be fused. At this point, the JIT compiler has to make
sure that the length of the generated position lists matches
the data type of the column scanned in the following step.
Looking at the example, this becomes important if the first
column uses 4-byte integers and the second column 8-byte
integers. The first predicate would generate four indexes into
the second column, but the 128-bit AVX register can only hold
two of the 8-byte integers. In this case, the JIT compiler has
to split the list of indexes and perform twice the number of
iterations when evaluating the following predicate.

VI. RELATED WORK

Previous work has explored different ways of improving
the performance of sequential scans. These use a variety of
approaches, including compressing the data to shift work from
the memory bus to the CPU [1], using SIMD to scan multiple
values in a CPU cycle [20], using Just-in-Time Compilation
(JIT) [3, 5, 14], or even offloading the scan to dedicated
hardware [2].

A. SIMD in Main Memory Databases

Willhalm et al. [19, 20] use SIMD instructions to perform
fast scans of bit-packed data (also known as null-suppression).
They combine the steps needed to unpack bit-packed integers
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with the comparison step in a single SIMD pipeline. This
allows them to benefit from the higher number of unpacked
and compared integers than SISD and from a better utilization
of the memory bandwidth due to the compression.

Broneske et al. [4] compare different implementations of a
sequential scan that make use of modern CPU features. They
compare how branch removal, loop unrolling, parallelization,
and vectorization improve the effective throughput of scans.

Polychroniou et al. [17] discuss how new SIMD instruc-
tions, including the gather operations used in our approach,
can be used to improve the performance of single operators.
Included are algorithms for scans, hashing, bloom filters, parti-
tioning, and sorting. For all of these, significant improvements
can be seen when vectorization is used.

B. JIT-Compilation for Query Plans
Just-in-time (JIT) compilation is an established technique

in modern database systems for reducing the interpretation
overhead of traditional query execution. Given a query plan
as input, query-specific code is produced based on runtime
knowledge about the data schema, the query structure, and
operator parameterization. This produces a low-level represen-
tation of the query-specific code that is subsequently compiled
to native machine instructions and executed.

Many databases that use JIT focus on optimizing the hot
loops of individual operators. Cloudera Impala [10] identifies
tuple materialization, user-defined functions, and complex
arithmetic and logic expressions as good candidates for such
hot-spot optimizations. Query-specific versions for these oper-
ations are created by cross-compiling generic implementations
to the LLVM intermediate representation and substituting
known runtime values. Invocations of the generic functions
can then be redirected to the specialized version.

Butterstein et al. [5] use a similar idea, with a focus
on arithmetic and selection expressions in the PostgreSQL
database. SparkSQL [3] follows a more generative approach
to produce query-specific code. Nested arithmetic and logic
expressions are represented as a tree data structure. These trees
are programmatically transformed into Scala abstract syntax
trees (ASTs) in a number of steps. These ASTs are fed to the
Scala compiler to produce executable Java bytecode.

While these approaches provide some performance im-
provements, their optimizations are local to individual op-
erators. To avoid tuple materialization between operators,
HyPer [14] introduced a data-centric optimization approach.
Complex query plans are split into multiple linear pipelines
at materialization points (aka. pipeline breakers), which are
necessary due to the structure of the query (e.g. aggregations).
For each pipeline, a single tight loop is generated. Inside this
loop, all operators in the pipeline work on the tuple before the
next tuple is processed. Thus, tuple values stay close to the
CPU and operator boundaries are dissolved.

C. Combinations of Vectorization and JIT
In the past, vectorization and JIT were considered to be

irreconcilable [15]. Only recently, the interest in combining
vectorization and JIT has risen.

Lang et al. [11] modified HyPer so that instead of working
on a single tuple at a time, it now works on small blocks.
These blocks are the basis for a vectorized scan that can be part
of a JIT pipeline. Similar to our approach, that scan focuses
on reducing the number of branches and enabling the use of
SIMD instructions. The main difference to our work is our
use of AVX-512 masks and swizzle instructions. This allows
us to avoid an inner loop that iterates over single rows.

Gubner et al. [6] are among the first to use JITted AVX-
512 for database operators. They show how compacting the
data types from what is defined in the schema can help with
vectorization. Furthermore, they present an AVX-512-based
aggregation operator both in existing databases and as a stand-
alone benchmark.

Menon et al. [13] show that careful materialization between
operators can be better than strictly following the tuple-at-a-
time approach. They precisely identify the problem that we
have addressed and identify two solution methods:

In the first method, the operator breaks out of
SIMD code to iterate over the results in the indi-
vidual SIMD lanes one-at-a-time. [...] In the second
method, [...] the operator delivers its results in a
SIMD register to the next operator in the stage. Both
methods are not ideal. Breaking out of SIMD code
unnecessarily ties up the registers for the duration of
the stage. Delivering the entire register risks under-
utilization if not all input tuples pass the operator,
resulting in unnecessary computation.

We have solved this problem by using gather instructions,
which allow us to retrieve only the rows that have made
it through the predicate. Figure 3 shows how the use of
_mm_i32gather_epi32 makes it possible to continue without
breaking out of SIMD code even if parts of the intermediary
result get thrown out by a predicate.

VII. SUMMARY

Traditionally, vectorization and Just-in-Time compilation
were seen as incompatible. Even with recent work, an impor-
tant question remained: What happens if a predicate removes
half the tuples pointed to by a SIMD register? Traditional
approaches would either leave the SIMD mode and iterate
over the register or leave these tuples until the end, causing
unnecessary loads and comparisons on the way.

This paper presents the Fused Table Scan, which uses new
AVX-512 gather, compress, and swizzle instructions to remove
tuples from the AVX register without leaving SIMD mode.
We evaluated it with varying register sizes, selectivities, table
sizes, and number of predicates. In 32 of 40 measured cases,
the performance was at least doubled. Drilling down into the
causes for the runtime differences, we found the number of
branch mispredictions to be an important factor and showed
how our approach reduces these mispredictions by roughly an
order of magnitude.

AVX intrinsics are needed as the compiler’s auto-
vectorization does not reach the same performance. Because of
this, the operator code has to be generated by a JIT compiler
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in the DBMS. We described how the DBMS can analyze the
logical query plan to identify use cases for the Fused Table
Scan and how its code is generated.

Future Work shall include the integration of orthogonal
optimization methods. Among these, we believe that the
concept of bit-packing (aka. null suppression) can be most
beneficial for our approach. The main challenge for this will
be the extraction of single values as part of the gather step.
This is because a bit-compressed value can span multiple bytes
and will have to be decompressed before it can be processed.
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