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Abstract—In replication schemes, replica nodes can process
read-only queries on snapshots of the master node without violat-
ing transactional consistency. By analyzing the workload, we can
identify query access patterns and replicate data depending to its
access frequency. In this paper, we define a linear programming
(LP) model to calculate the set of partial replicas with the
lowest overall memory capacity while evenly balancing the
query load. Furthermore, we propose a scalable decomposition
heuristic to calculate solutions for larger problem sizes. While
guaranteeing the same performance as state-of-the-art heuristics,
our decomposition approach calculates allocations with up to
23% lower memory footprint for the TPC-H benchmark.

Index Terms—database replication, allocation problem, linear
programming

I. INTRODUCTION

Increasing demand for analytical processing capabilities
can be managed by scale-out approaches. Master replica-
tion – a single master node processes all OLTP workload
while OLAP queries are load-balanced across replica nodes
– is a common scale-out approach, e.g., supported in SAP
HANA [1], Postgres-R [2], and as replication middleware [3]–
[6]. Using full replication, the memory consumption increases
linearly with the number of nodes. In addition, all replicas
have to continuously synchronize all data modifications to the
database, i.e., inserts, updates, and deletes.

Although analytical requests access large data sets, the ma-
jority of queries require a limited set of tuples and attributes.
When scaling out to cope with increasing query load, we can
analyze the workload and identify frequently accessed data
portions or query tree patterns [7]. The derived knowledge
can be used to replicate only subsets of the data, while still
being able to balance the query load evenly.

Partial replication consists of two steps [8]. First, the data
set is partitioned horizontally and/or vertically into disjoint
data fragments, the units of replication. Second, the individual
fragments are allocated to one or multiple database nodes. It
is widely accepted to separate fragmentation and allocation to
better deal with the complexity of the problem [8]. We focus
on the allocation part. The calculation of optimal fragment
allocations is an NP-hard problem. Note, the data allocation
and the distribution of workload are mutually dependent and
have to be optimized simultaneously.

* The authors are listed alphabetically. All work was shared equally.

In this paper, we present the following contributions:
• Workload-driven LP models to calculate both optimal

fragment allocations as well as near-optimal heuristic
solutions for large-scale problem instances.

• Reproducible analytical evaluations with the TPC-H
benchmark to show that our model outperforms state-of-
the-art allocation approaches.

The remainder of this paper proceeds with a description
of the addressed fragment allocation problem in Section II.
In Section III, we discuss related work. Our LP models are
described in Section IV and Section V. Section VI concludes
this paper.

II. FRAGMENT ALLOCATION PROBLEM

The problem is a coupled data placement and workload
distribution problem. We assume a database consisting of N
disjoint fragments/partitions. The fragmentation scheme and
data model are not relevant to the problem, even though our
examples focus on vertical fragmentation and the relational
model. The size of a fragment i is determined by ai, i =
1, ..., N . We assume K nodes, where data can be replicated.
We assume a set of Q (classes of) queries j, characterized
by fragments used, i.e., qj ⊆ {1, ..., N}, j = 1, ..., Q. We
assume a workload, where queries j occur with frequency
fj , j = 1, ..., Q. The costs of query j are independent of
the executing node k, k = 1, ...,K, and determined by cj ,
j = 1, ..., Q. Query costs are numerical and can be modeled
in several ways, e.g., as average processing times.

We have to decide (i) on which node to put which fragments
and (ii) which query is executed at which node to which extent.
The main constraints are: First, query j can only be executed at
node k, if all relevant fragments are stored on node k. Second,
we look for a balanced workload share of 1/K at each node.
The objective is to minimize the total amount of required data.

III. RELATED WORK

The fragment allocation problem belongs to the more
general problem of allocating resources in a network [8].
This class of problems is old and well-studied for varying
system architectures and optimization goals. Because it was
early proven that various different formulations of allocation
problems are NP-complete [9], a lot of research has tried to
find good heuristic solutions [8].
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However, because the system architectures and optimization
goals for specific allocation problems differ [10], there is no
general applicable heuristic. Further, Özsu et al. underline that
heuristics are tied to specific assumptions about the system
and, thus, only applicable to certain specific formulations of
allocation problems [8].

In the field of partially replicated databases, our work is
closely related to the work of Rabl et al. [11]. We maximize
throughput by balancing the load evenly among replicas and
minimize the overall memory consumption of a cluster. As an
LP model for an optimal allocation is only feasible for small
problem sizes, Rabl et al. propose a greedy heuristic, which
starts to assign queries having high query costs and accessing
large amounts of data, because these queries potentially cause
the highest data duplication if they are assigned late. Although
the motivation behind the heuristic is plausible, the heuristic
has two shortcomings. First, when choosing the next query to
assign, the accessed fragments of the query are not regarded
(only their sizes). Second, the information about the remaining
queries, which have to be assigned later, is not regarded.

In contrast to rule-based heuristics, our decomposition ap-
proach preserves the structure of the problem and, thus, is
able to find close to optimal solutions for the coupled data
placement and load distribution problem.

IV. OPTIMAL SOLUTION

In this section, we propose a model to derive optimal
allocations, which is applicable to small problem instances.
The linear programming model is described in Section IV-A
Numerical benchmark examples are given in Section IV-B.

A. Linear Programming Model

In our model, we use the following decision variables:
• xi,k ∈ {0, 1}, i = 1, ..., N , k = 1, ...,K, is allowed to be

zero or one, indicating whether fragment i is allocated to
node k (1) or not (0).

• yj,k ∈ {0, 1}, j = 1, ..., Q, k = 1, ...,K, is allowed to be
zero or one, indicating whether query j can run on node
k (1) or not (0).

• zj,k ∈ [0, 1], j = 1, ..., Q, k = 1, ...,K, is allowed to
be continuously between zero and one, indicating the
workload share of query j executed at node k. The sum
of shares is normalized to one for all queries.

Next, we give an LP formulation of the basic allocation
problem. We seek to minimize data redundancy such that all
nodes do not exceed a certain workload limit L, 0 ≤ L ≤ 1.
Like Rabl et al. [11], we assume that z can be chosen without
regard to query frequencies and costs, which may be discrete.
Hence, x, y, and z have to be chosen such that the objective

minimize
xi,k, yj,k ∈ {0, 1}, zj,k ∈ [0, 1],
i = 1, ..., N, j = 1, ..., Q, k = 1, ...,K∑

i=1,..,N,k=1,...,K
xi,k · ai (1)

is minimized and the following constraints are satisfied:

yj,k · |qj | ≤
∑

i∈qj
xi,k, j = 1, ..., Q, k = 1, ...,K (2)

zj,k ≤ yj,k, j = 1, ..., Q, k = 1, ...,K (3)∑
j=1,...,Q

fj · cj/C · zj,k ≤ L, k = 1, ...,K (4)∑
k=1,..,K

zj,k = 1, j = 1, ..., Q (5)

Constraint (2) guarantees that a query j can only be exe-
cuted at node k, if all relevant fragments are available. The
cardinality term |qj | expresses the number of fragments used
in query j. Constraint (3) ensures that a query j can only have
a positive workload share on node k if it can be executed at
node k. If yj,k = 0 then zj,k = 0 follows; if yj,k = 1 the shares
zj,k are not restricted. Constraint (4) guarantees that all nodes
k do not exceed the workload limit L. In this context, we use
the total workload costs denoted by

C :=
∑

j=1,...,Q
fj · cj

to normalize the workload in each node. Constraint (5) ensures
that a query’s workload shares on nodes k sum up to one.

Note, constraint (3) couples the binary variables y and
the continuous variables z in a linear way. This formulation
qualifies the model by Rabl et. al [11], where the coupling
was expressed in a non-linear way using an if condition, cf.
equation (40) in [11].

In our basic model, the objective and all constraints are
linear in the decision variables. The total number of variables
(N · K + Q · K binary and Q · K continuous) and the total
number of constraints (2 · Q · K + K + Q) increase in the
number of fragments N , the number of queries Q, and the
number of nodes K, respectively. Problem (1) - (5) is a linear
mixed integer problem and can be solved using off-the-shelf
solvers (see, e.g., NEOS solver) as long as the size of the
problem is not too large.

B. Numerical Results

We illustrate the results of our problem formulation (1) - (5)
using the Q = 22 queries of the TPC-H benchmark and use
vertical partitioning with each column as individual fragment.
The TPC-H schema consists of N = 61 columns.

To reproduce the calculation of replication factors, Table I
shows the query costs. Further, we use scale factor 1 and make
the following assumptions to derive fragment sizes: (i) table
LINEITEM contains exactly 6M tuples; (ii) date, identifier,
and integer require 4 bytes; (iii) decimal requires 8 bytes; (iv)
variable and fixed text require maximum length bytes.

TABLE I
EXEMPLARY TPC-H QUERY PROCESSING TIMES IN SECONDS, I.E., COSTS
cj ; THE QUERY FREQUENCIES ARE IDENTICAL, I.E., fj = 1 ∀j = 1, ..., 22.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
6.20 0.14 2.60 2.20 1.30 0.50 1.80 0.70 1.70 1.70 0.20

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22
1.30 8.10 0.40 0.30 1.10 1.30 1.70 3.60 1.20 7.60 0.70



TABLE II
OPTIMAL SOLUTION OF PROBLEM (1) - (5): PROBLEM COMPLEXITY, DATA
REPLICATION FACTOR W ∗/V , AND SOLVING TIME; DISTRIBUTION OF 22
TPC-H QUERIES TO K NODES WITH SINGLE COLUMNS AS FRAGMENTS.

K # variables # constraints W ∗/V solve time

2 210 112 1.2889 0.29 s
3 315 157 1.4245 0.56 s
4 420 202 1.6495 13.55 s
5 525 247 1.7617 33.23 s
6 630 292 2.0537 158.42 s
7 735 337 2.1858 268.59 s
8 840 382 2.4555 2 260.95 s

We used CPLEX (version 12.7.0.0, 4 threads) via NEOS
(https://neos-server.org). By W/V , we denote the replication
factor, where the total amount of data used

W :=
∑

i=1,..,N,k=1,...,K
xi,k · ai

is normalized by the minimal amount of used data

V :=
∑

i∈
⋃

j=1,...,Q:fj>0 {qj}
ai (6)

For different numbers of nodes K Table II summarizes
the problem complexity, the replication factor of the optimal
solution, as well as the computation time. The optimal alloca-
tions achieve a perfect workload distribution L∗ = 1/K. The
optimal replication factor W ∗/V is small compared to K, i.e.,
the replication factor for full replication. Optimal allocations
for K ≥ 9 could not be computed within a reasonable amount
of time (termination after 8 hours), see also [11]. The reason
is the increasing problem size characterized by the number
of variables and constraints. To approach larger problems,
heuristics have to be used, e.g., greedy approaches [11].
Although the optimal solution approach is limited to smaller
problems, it is extremely useful as it enables to analytically
measure any heuristic’s performance.

V. DECOMPOSITION-BASED HEURISTIC

In Section V-A, we present a heuristic decomposition ap-
proach to compute near-optimal allocations. In Section V-B,
we demonstrate that our heuristic enables to address large-
scale problems and outperforms state-of-the-art approaches.

A. Linear Programming Model

In this section, we propose a decomposition-based heuristic
to solve problem (1) - (5). The key idea is solve smaller
subproblems by iteratively splitting the workload into different
shares/chunks using a tree structure with K leaves. Figure 1
illustrates such a tree for K = 2 × 2 = 4 with one
additional level of decomposition for a given specific workload
characterized by queries and fragments (cf. top left corner of
the figure).

In each step, we split the workload using a general LP
approach (similar to (1) - (5)) which can be applied in any
node of the tree: Consider an arbitrary node on a certain level.
Assume, the node’s workload share is supposed to be split into
B subnodes (within one step). Each subnode b represents nb
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Fig. 1. Iteratively splitting data allocations and workload shares, using a tree
decomposition principle; illustration of the case of B = 2 subnodes at two
levels leading to K = 2× 2 nodes for a workload with Q = 5 queries and
N = 10 fragments. Transparent fragments visualize memory savings.

final nodes, b = 1, ..., B. Hence, a subnode b has to take
the workload share wb := nb/K, b = 1, ..., B. Further, we
assume the remaining workload in this node is specified by
the parameter x̄i := 1, ȳj := 1, z̄j ∈ (0, 1], for subsets
i ∈ I ⊆ {1, ..., N} and j ∈ J ⊆ {1, ..., Q}.

The top node represents the total workload characterized by
x̄i := 1, ȳj := 1, z̄j := 1, for all i = 1, ..., N and j = 1, ..., Q.
A node’s share of the workload is denoted by w̄. For the top
node, the workload is undivided, i.e., w̄ := 1. A chunk node
aggregating the load of n leaf nodes has the load w̄ = n/K.
For each chunk node, we assign the data allocation and the
workload distribution to its B subnodes with

∑
b=1,..,B wb =

w̄ using the following generalized LP, cp. (1) - (5):

minimize
xi,b, yj,b ∈ {0, 1}, zj,b ∈ [0, 1], L ≥ 0,
i = 1, ..., N, j = 1, ..., Q, b = 1, ..., B : x̄i = 1, ȳj = 1∑

i=1,..,N,b=1,...,B:x̄i=1
xi,b · ai + α · L (7)

s.t. yj,b · |qj | ≤
∑

i∈qj
xi,b,

j = 1, ..., Q : ȳj = 1
b = 1, ..., B

(8)

zj,b ≤ yj,b,
j = 1, ..., Q : ȳj = 1
b = 1, ..., B

(9)∑
j=1,...,Q:ȳj=1

fj · cj/C/wb · zj,b ≤ L, b = 1, ..., B (10)

∑
b=1,...,B

zj,b = z̄j , j = 1, ..., Q : ȳj = 1 (11)

Note, in the balance constraint (10) L can be used as a fixed
parameter L (cf. (4)) or as a continuous variable while adding
a penalty term α ·L in the objective (7). This formulation has
advantages as for solvers it is easier to identify a suitable
starting solution. If α is chosen sufficiently large, i.e., α >>
V , cf. (6), the targeted workload limit is attained.



TABLE III
PERFORMANCE COMPARISON: DATA REPLICATION FACTORS OF THE

RULE-BASED HEURISTIC BY [11] (WS ) VS. OUR HEURISTIC (W ), CF.
PROBLEM (7) - (11), WITH ONE DECOMPOSITION LEVEL OF B CHUNKS
AND ASSOCIATED nb NODES, b = 1, ..., B, SUMMING UP TO K ; TPC-H.

K chunks B nodes nb W/V W/W ∗ solve time W/WS

4 2 2+2 1.6959 +2.82% 0.97 s -19.37%
5 2 3+2 1.8546 +5.27% 1.33 s -12.54%
6 2 3+3 2.0619 +0.40% 0.83 s -10.71%
7 2 4+3 2.2162 +1.39% 1.22 s -11.83%
8 2 4+4 2.4979 +1.73% 1.84 s -18.42%
9 3 3+3+3 2.7725 / 6.88 s -14.09%
10 4 4+2+2+2 2.7047 / 14.39 s -12.09%
11 3 4+4+3 2.8604 / 2.50 s -16.44%
12 4 3+3+3+3 3.1830 / 14.39 s -9.92%
13 4 4+3+3+3 3.3886 / 13.89 s -22.85%
14 4 4+4+3+3 3.7710 / 7.30 s -17.13%
15 4 4+4+4+3 3.9540 / 23.83 s -14.08%
16 4 4+4+4+4 4.0306 / 33.98 s -11.28%

Let the optimal solution of the linear program (7) - (11) be
denoted by x∗, y∗, and z∗. Further, the remaining workload of
each subnode b on the next level is characterized by x̄ī := 1,
ī ∈ {i = 1, ..., N : x∗i,b = 1}, ȳj̄ := 1, and z̄j̄ := z∗j,b,
j̄ ∈ {j = 1, ..., Q : y∗j,b = 1}, b = 1, ..., B, i.e., on the next
level the program (7) - (11) can be applied again.

Note, from level to level the number of relevant fragments
and queries decreases. Thus, the number of variables and
constraints gets smaller (for constant B). On each level, for
each node, the number of subnodes B and their workload
weights wb, b = 1, ..., B, can be chosen arbitrarily. This way,
all integer numbers K can be utilized. An optimal solution
also guarantees an even workload distribution, cf. L = 1/K.

The number of subnodes B can be used to control the prob-
lem complexity. The smaller B the faster is the computation
(on each level) but overall data redundancy of the heuristic
might increase compared to optimal allocations. To obtain
minimal computation times, it is advantageous to start with
B = 2 on the highest level.

The problem complexity gets quickly smaller with each
decomposition from the root to the leaves. However, if the
number of fragments and queries are large, the LP approach
might take too long even if the number of chunks is small. In
such cases, the corresponding subproblems can be simplified
– e.g., by (i) clustering similar query classes, (ii) considering
only large fragments, or (iii) considering only most expensive
query classes with a large workload share – or solved heuris-
tically. In particular, the heuristic proposed by Rabl et al. [11]
can be used to decompose large subproblems (at a tree’s root).
If subproblems are sufficiently small the LP approach can be
used henceforth (towards a tree’s leaves).

B. Numerical Results

In this section, we illustrate the results of our decomposition
approach using the TPC-H benchmark. We compare the repli-
cation factors of our heuristic to optimal solutions (if applica-
ble) and to solutions of the state-of-the-art heuristic proposed
in [11]. To this end, we implemented Rabl’s algorithm, see
also [12]. Their results are denoted by WS .

Table III summarizes the solutions of the heuristics and the
computation times of the decomposition heuristic for numbers
of K between 4 and 16 for one decomposition level. Note,
the results were achieved using AMPL (single threaded on a
laptop) and a student version of CPLEX 12.5.1.0, restricted to
500 variables and 500 constraints. In our penalty formulation,
we used the (normalized) factor α := 1 000 · V , cf. (6).

We observe that results of the decomposition heuristic are
near-optimal. Compared to the optimal data redundancy fac-
tors W ∗/V , see Table II, the corresponding factors W/V are
just 1%− 5% larger. The workload limits are also L = 1/K.

Remark 1 The optimal solution for K = 4, ..., 8 (TPC-H
example), cf. Table II, enables to determine the quality of our
solution: Compared to Rabl’s solution (WS , cf. Table III),
we observe that our decomposition approach (W ) requires
10% − 23% less data, which compared to optimal solutions
reduces the optimality gap by (WS−W )/(WS−W ∗) ≈ 89%.
Moreover, the computation times are just single seconds.

VI. CONCLUSIONS

In this paper, we investigated an NP-hard workload-driven
fragment allocation problem, minimizing the overall mem-
ory consumption of a replication cluster while maximizing
throughput by balancing the load evenly. Our novel heuristic
approach decomposes the problem into subproblems which
preserve the structure of the original problem but can be solved
efficiently using linear programming.

We compared the solutions of our heuristic with optimal
solutions (as long as applicable) and solutions of a state-
of-the-art heuristic for the TPC-H benchmark. Our heuristic
calculates close to optimal allocations, reducing the memory
consumption of the cluster significantly compared to the
heuristic of Rabl et al. [11].
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