
Adaptive Access Path Selection for
Hardware-Accelerated DRAM Loads

Markus Dreseler, Timo Gasda, Jan Kossmann, Matthias Uflacker, and Hasso
Plattner

Hasso Plattner Institute, Potsdam, Germany
markus.dreseler@hpi.de

Abstract. For modern main memory database systems, the memory
bus is the main bottleneck. Specialized hardware components of large
NUMA systems, such as HPE’s GRU, make it possible to offload mem-
ory transfers. In some cases, this improves the throughput by 30%, but
other scenarios suffer from reduced performance. We show which factors
influence this tradeoff. Based on our experiments, we present an adaptive
prediction model that supports the DBMS in deciding whether to utilize
these components. In addition, we evaluate non-coherent memory access
as an additional access method and discuss its benefits and shortcomings.

1 Introduction

Current in-memory databases are significantly limited by the main memory’s
latency and bandwidth [2]. In the time spent for transferring a cache line from
DRAM to the CPU (roughly 100 ns), a modern CPU can execute 300 instructions
or more. When the compute part of database operators executes in fewer cycles,
the CPU stalls and waits for more data to arrive. This gets exacerbated in NUMA
setups where remote DRAM accesses take roughly 200 ns with a single NUMA
hop. Scale-up systems, as used for big SAP HANA or Oracle databases, can
include multiple NUMA hops and up to 48 TB of memory. These connect up to
eight blades with four processors each to a single, cache-coherent network using
a proprietary interconnect. In such setups, memory latency from one end to the
other can reach hundreds of nanoseconds, making the influence even bigger.

Closely related to memory latency is memory bandwidth. On our test system
(cf. Section 3), we measured a NUMA node-local bandwidth of slightly over
50 GB/s, while remote accesses on the same blade had a reduced bandwidth of
12.5 GB/s and remote blades of 11.5 GB/s. As such, making good use of the
available physical bandwidth is vital. Doing so includes reducing the amount of
data transferred by using compression for a higher logical bandwidth (i.e., more
information transferred per byte) or organizing the data in a cache line-friendly
way. This could be a columnar table layout where each cache line only holds
values from the column that is accessed and cache line bycatch, i.e., data that is
loaded into the CPU but never used, is avoided for column store-friendly queries.

Making the DBMS more aware of NUMA can significantly improve the per-
formance [7]. By ensuring that data is moved across the NUMA network only

Accepted at Australasian Database Conference. 
The final authenticated version is available online at https://dx.doi.org/10.1007/978-3-319-92013-9_1



when it is unavoidable, the memory access costs can be reduced. Still, there re-
main cases in which a load from a distant node cannot be avoided. This happens
when joins access data from a remote table or when the data (and thus the load)
is imbalanced and an operator cannot be executed on the optimal node.

In addition to NUMA optimization and better data layouts, developers use
dedicated hardware to increase the effective bandwidth [1, 6, 9]. There are sev-
eral approaches, but no one-size-fits-all technique. In this paper, we look at one
specific method that is used to improve the physical bandwidth available to
database operators, namely the Global Reference Unit (GRU) built into sys-
tems like SGI’s UV series or HPE’s Superdome Flex. The GRU provides an API
that can be used to offload certain memory operations, allowing the CPU to
work on other data in the meantime. Previous work [3] has shown that this can
result in a performance benefit of up to 30% for table scans. We extend on this
by evaluating which factors lead to an advantage of the GRU over the CPU in
some cases and what causes it to be slower in others. This knowledge can be used
by the DBMS to automatically choose between the CPU and GRU access paths.
Furthermore, we present relaxed cache coherence as another access method.

This paper is organized as follows: Section 2 gives background information
on the hardware discussed in this paper. To gather data on the memory bus
utilization and better profile the physical properties of database operations, we
use performance counters as described in Section 3. These are then used in
Section 4 to discuss the factors that influence if one method or another gives
the higher effective bandwidth. Section 5 explains how a DBMS can use these
results in order to choose an access method. In Section 6, we show how relaxing
cache coherency could further improve the physical bandwidth of a table scan.
Related work is discussed in Section 7 and a summary is given in Section 8.

2 Hardware used for accelerating DRAM reads

In the previously mentioned scale-up systems, four NUMA nodes (i.e., proces-
sors) are grouped into blades as shown in Figure 1. Each node is connected via
QPI links to other processors on the same blade, however the two diagonal QPI
connections are omitted. The free QPI port on each processor is then connected
to one of the two so-called HARPs that are part of each blade.

CPU CPU

CPU CPU

H
A
R
P

H
A
R
P

CPU CPU

CPU CPU

H
A
R
P

H
A
R
P

QPI
NUMAlinkBl

ad
e 

1
Bl

ad
e 

2

Fig. 1: General architecture
of the discussed system

HARPs connect the entire scale-up system,
as each HARP is directly connected with every
other using a special interconnect called NUMA-
link. This creates an all-to-all topology that allows
the addition of more CPUs and more memory by
attaching additional blades to the machine. In or-
der to make the memory of one blade accessible to
another blade, the HARPs participate in the QPI
ring of their blades and mimic a NUMA node with
a large amount of main memory, i.e., the memory
of every other blade [8].

Accepted at Australasian Database Conference. 
The final authenticated version is available online at https://dx.doi.org/10.1007/978-3-319-92013-9_1



The component in the HARP that is responsible for transparently extending
the memory space and translating memory addresses is the Global Reference
Unit (GRU). In addition to this transparent access, the GRU also provides a
user-level API that enables developers to instruct the GRU directly.

Previous work has shown that using the GRU API for database operations
improves throughput by up to 30% when scanning remote data [3]. For a more
in-depth discussion of the GRU hardware and the actual implementation of the
GRU scan, we refer to that paper. This performance advantage is achieved by
using the gru_bcopy function, a block copy instruction that is executed by the
GRU, and a double-buffered scan. We divide the data vector into equally sized
chunks, and allocate two temporary buffers of that chunk size. The asynchronous
bcopy operation is used to copy chunks from the data vector into one of the local
buffers, which is processed while bcopy is filling the other buffer. The buffers are
switched and the process is repeated until the entire vector is scanned.

There are three reasons why this can achieve better performance compared
to a regular CPU scan: Firstly, bcopy executes asynchronously and allows the
CPU to run other computations while the GRU handles the memory transfer.
As a result, the CPU can process one local chunk while the GRU is loading
the other chunk in the background. Secondly, the HARP can access remote
memory more efficiently than the CPU. This is because a CPU’s memory access
performance is limited by the number of outstanding read requests that it can
handle before it stalls and waits for loads to complete. Stalls are especially
noticeable in large NUMA systems with high memory access latencies, because it
takes longer for a read request to return and allow the next request to be issued.
This means that for the systems discussed here, an increase in latency results in a
decrease in bandwidth. The HARPs can handle more outstanding read requests
than a CPU and can therefore achieve higher throughput. Thirdly, because the
cache coherency directories (used to maintain a consistent view of data across
processors) are located on the HARP, we expect the HARPs to handle cache
coherency more efficiently. While this does not improve single operations, the
decreased cache coherency overhead can improve memory performance over time.

3 Quantifying the Memory Bandwidth Utilization

To better utilize the available memory bandwidth, it is vital to understand how
much of it is actually used and where the bottleneck is. This information is both
needed by developers of database operators and by the DBMS itself when it
decides which scan will be used. We use the Intel Processor Counter Monitor
(PCM) to monitor the QPI traffic on relevant nodes.

For every QPI link, PCM can measure the amount of both incoming data and
outgoing traffic. Incoming data (dataIn) only includes the transferred payload.
Outgoing traffic (trafficOut) includes both the payload as well as any overhead
such as cache coherency traffic. The incoming traffic or the outgoing data cannot
be retrieved from PCM, but can be computed in most cases. Also, the informa-
tion from where and to where data flows is not available.

Accepted at Australasian Database Conference. 
The final authenticated version is available online at https://dx.doi.org/10.1007/978-3-319-92013-9_1



0.0 0.5 1.0 1.5 2.0
Time (s)

0

5000

10000
Q

P
I T

ra
ffi

c 
(M

B
/s

)

CPU local

0.0 0.5 1.0 1.5 2.0
Time (s)

CPU blade-local

0.0 0.5 1.0 1.5 2.0
Time (s)

CPU off-blade

0.0 0.5 1.0 1.5 2.0
Time (s)

0

5000

10000

Q
P

I T
ra

ffi
c 

(M
B

/s
)

GRU local

0.0 0.5 1.0 1.5 2.0
Time (s)

GRU blade-local

0.0 0.5 1.0 1.5 2.0
Time (s)

GRU off-blade

Fig. 2: QPI traffic when scanning a 4 GB vector of integers

Figure 2 displays the QPI traffic as measured1 by PCM for a scan on a 4 GB
vector of integers, i.e., approximately one billion integers. In the benchmark, the
same scan is executed three times, each time with a different memory placement
relative to the executing thread. After each run, the CPU caches are flushed
using CLFLUSH. The data is always located on NUMA node 0 (”storage node”),
while the executing thread is pinned to nodes 0, 2, and 7 (”execution node”) for
the node-local, blade-local, and off-blade cases respectively. For the local scan
using the CPU, no QPI traffic is seen because the traffic is node-local. The GRU
implementation, on the other hand, copies data from the storage node to the
execution node even when these are identical. This explains why a GRU scan
is detrimental for local data. Continuing to blade-local CPU scans (top center),
we see two significant lines, one for outgoing traffic of the storage node, and one
for incoming data of the executing node. The difference between the two can be
attributed to the cache coherency overhead. When using the GRU, the overall
bandwidth is higher, resulting in a lower execution time. A similar image can
be seen for off-blade scans. Here, the bandwidth difference between CPU and
GRU is even more pronounced. The fact that Socket 2 appears in the graph is
surprising at first. We attribute it to additional caches that we have no control
over and take this as a reason to look into non-cache coherent loads in Section 6.

The same library can be used to get numbers on the current load on the
memory bus. We gather information about the QPI utilization of all relevant
nodes and feed it into the adaptive model described in Section 5.

1 All benchmarks were executed on an SGI UV 300H with 6 TB RAM and eight Intel
E7-8890 v2 processors. Our code was compiled with gcc 7.2 at -O3.

Accepted at Australasian Database Conference. 
The final authenticated version is available online at https://dx.doi.org/10.1007/978-3-319-92013-9_1



4 Factors that influence the CPU/GRU Tradeoff

In this section, we describe how the throughput of the GRU scan is affected
by different factors and how deciding between GRU and CPU scans is only
possible by looking at a combination of these factors. We classify these factors
into two groups: Internal and external factors. The former are parameters that
come from the scan itself, such as the size of the table. The latter are unrelated
to the particular scan operator, for example the utilization of the system.

We use the table scan as an example for an operator with sequential access
patterns. Compared to operators such as the join, it is strictly memory-bound,
so the influences of improved memory bandwidth utilization are better to see.
Latency-bound operators cannot be improved by the bcopy approach.

4.1 Internal Influences

Data Size One of the most important factors is the size of the scanned table.
Figure 3 shows how the throughput of different access methods is influenced by
the size of the table when accessing an off-blade table. Both approaches reach
their maximum throughput only when the table has a certain size. For GRU
scans, this happens when the data size reaches at least 60 MB. CPU scans
deliver the maximum throughput for smaller table sizes, approximately 1 MB.

This can be explained with fixed setup costs for the table scan as well as
having to wait for the first cache lines to arrive from a remote location. For the
GRU scan, the additional system calls required to obtain the execution contexts
and to execute the bcopy method mean that bigger tables are needed to reach
the break-even point.

64 KiB

256 KiB
1 M

iB
4 M

iB
16 M

iB
64 M

iB

256 M
iB

1 G
iB

Data Size (byte)

0

2

4

6

8

Th
ro

ug
hp

ut
 (G

B
/s

) method = CPU

64 KiB

256 KiB
1 M

iB
4 M

iB
16 M

iB
64 M

iB

256 M
iB

1 G
iB

Data Size (byte)

method = GRU 0

16 M

Output Rows

Fig. 3: Influence of the input data size for off-blade CPU and GRU scans - each
dot is one measured data point

Data Locality Depending on where the input data is located relative to the
executing CPU, it needs to be transferred through zero to multiple NUMA hops.
Figure 4 shows that the throughput for the regular CPU scan changes depending
on NUMA distance. The highest throughput of 8 GB/s is achieved on the same

Accepted at Australasian Database Conference. 
The final authenticated version is available online at https://dx.doi.org/10.1007/978-3-319-92013-9_1



node-local blade-local off-blade
NUMA Distance

0

2

4

6

8

Th
ro

ug
hp

ut
 (G

B
/s

)

method = CPU

node-local blade-local off-blade
NUMA Distance

method = GRU

Fig. 4: Influence of the NUMA distance for CPU and GRU scans

node. With increasing NUMA distance, the throughput rates decrease. For a
blade-local scan, the throughput rates reach up to 5 GB/s, and scanning an off-
blade vector only nets approximately 3 GB/s. The GRU scan performance stays
stable for all NUMA distances at around 6 GB/s. For both CPU and GRU, a
high variance is measured. This is dependent on the other execution parameters
as described in this section. It shows that there are parameters other than the
data locality, especially for small tables, that play an important role in deciding
if the CPU or the GRU is faster.

For the model described in Section 5, we take the latency (instead of the
number of hops) between source and destination node as it describes a linear
variable, not a discrete one. This makes it easier to adapt the model to other
systems where the latency between hops is different.

Result Size When scanning the input data vector, i.e., the column in an in-
memory database, the operation also needs to save the results. In this implemen-
tation, the scan returns a vector of indexes of the input vector where a certain
search value was found. This means that both the value distribution and the
given search value have an impact on how large the result gets. We have chosen
to take both the data size and the result size as parameters instead of just using
the selectivity. This is because the impact of the selectivity on the scan cost
varies for different data sizes.

4 byte
s

32 byte
s

256 byte
s

2 KiB
16 KiB

128 KiB

Output Size

0

2

4

6

Th
ro

ug
hp

ut
 (G

B
/s

) method = CPU

4 byte
s

32 byte
s

256 byte
s

2 KiB
16 KiB

128 KiB

Output Size

method = GRU

Fig. 5: Influence of the output size when scanning an off-blade vector of 512 KiB

Accepted at Australasian Database Conference. 
The final authenticated version is available online at https://dx.doi.org/10.1007/978-3-319-92013-9_1



Figure 5 shows the performance of scans with different result sizes. As the
output size grows, the amount of time spent for writing the output vector slowly
grows as well, and at some point, surpasses the value comparisons in terms of
runtime. Consequently, after that point the benefits gained from our improved
scanning method become insignificant.

4.2 External Influences

Background QPI Traffic In a production environment, the executed operator
is not the only memory-intensive operation on the system. Therefore, it makes
sense to also take a look at the influence of memory traffic caused by other
processes. To identify how this affects performance, we use PCM (as described
in Section 3) to measure QPI traffic right before executing our scan operations.

For the benchmark, we generate background traffic by using two types of
background workers. One copies data between the worker and the data node
and then scans the remote data with a SIMD scan on 32 bit integers. The
second worker uses bcopy to asynchronously copy data back and forth between
the worker and data node. This generates both QPI and Numalink traffic.

By doing so, we can vary the background traffic and measure the performance
for varying QPI loads. Our measurements show that the impact of high QPI
utilization is higher on CPU scans. If no parallel workers are consuming QPI
bandwidth, the throughput is unaffected. In the worst case, a busy QPI interface
decreases the throughput by 2 GB/s. For the GRU, scans on a high-load system
only have a throughput that is 1 GB/s lower.

Background HARP Traffic Because the GRU is responsible for referencing
memory of other blades, it is involved in memory accesses even when the GRU
API is not used. Consequently, the load of the GRUs has an effect on other
memory operations in the system as shown in Figure 6. Different from previous
figures, all combinations of data sizes and data locality are combined in the
graph. For GRU scans, the scan throughput stays in a small window just below
7 GB/s when the GRU is not busy. When other explicit GRU operations are
run simultaneously, the throughput is reduced significantly. For the CPU scans,
background GRU traffic does not affect the maximum throughput as much.

no yes
Other GRU background task

0

2

4

6

8

Th
ro

ug
hp

ut
 (G

B
/s

)

method = CPU

no yes
Other GRU background task

method = GRU

Fig. 6: Influence of a GRU background traffic for vectors bigger than 32 MB

Accepted at Australasian Database Conference. 
The final authenticated version is available online at https://dx.doi.org/10.1007/978-3-319-92013-9_1



5 Self-Tuning Access Path Selection

The measurements presented in Section 4 have shown that directly utilizing the
GRU has performance benefits in some situations. In others, such as with local
data, small tables, or a high number of output results, the CPU is preferred. We
have identified the most important parameters that impact GRU performance
with microbenchmarks. This chapter introduces a cost model for table scans.
Such a model can be used by the query optimizer or scheduler of a database
system to decide whether to use a GRU or regular table scan. The features of
the model are the above presented influence factors. Because different database
servers have different characteristics, the model can be trained for other sys-
tems easily. This allows the DBMS to adapt to varying factors, such as NUMA
topologies and latencies.

5.1 Scan Decision Model

The model is part of the query optimizer where estimated execution costs are
calculated before every scan execution. A vital requirement for the model is a low
prediction time. In addition, models vary for different hardware characteristics.
Therefore, a new model is trained for each machine individually which demands
for low training times and robustness. Thus, we decided to use linear regression.
For these models, inference is achieved by multiplying the observation values
with their respective feature coefficients. The overhead of such calculations is
negligible compared to query execution times.

We measure the execution times for a large number of randomized feature
combinations. By repeating the experiments for each combination at least 50
times with and without GRU, we collect more than 200 000 observations and
minimize variability effects. The resulting data is used to create models that
predict the runtime of normal and GRU scans. Table 1 shows the models’ weights
as calculated on our system.

When generating the query plan, the optimizer collects the necessary param-
eters for inference from the database’s statistics component and the PCM API.
The retrieved parameters are applied to both models which return predicted
execution times. Based on these, the faster scan is scheduled/planned.

Model Data Size Data Locality Result Size QPI Traffic HARP Traffic

Scan Runtime CPU 174.091 33.335 96.436 -2.135 -4.049
Scan Runtime GRU 345.849 -6.756 332.176 3.215 5.942

Table 1: Weights of linear regression model features

5.2 Evaluation

To validate the models used for decision-making, we evaluate their accuracy in
this section. The R2 score is our metric to determine how well the model explains

Accepted at Australasian Database Conference. 
The final authenticated version is available online at https://dx.doi.org/10.1007/978-3-319-92013-9_1



the observed runtime. We also consider the model’s precision, recall, and the F1
score to judge the decision between normal and GRU scan. These metrics were
evaluated with a training and testing set split of 80% and 20%.

Table 2 shows that both models can explain over 93% of the occurring vari-
ance with the above presented features. For the GRU, the model is slightly more
accurate with a higher R2 coefficient. This is mostly due to the stability of
GRU operations with different NUMA distances or latencies as seen in Figure 4.
Precision, recall and F1 score are used for classification models and only the
combination of both models, as described above, can be used for classification.

We also compared our linear regression model to another lightweight model, a
decision tree. Some of the presented scores outperform linear regression slightly,
but our linear regression model offers more flexibility since it returns run times
and not only a decision on which of the scan types is more efficient. In addition,
predictions can be made faster. Since variance is not an appropriate metric for
classification models, R2 is not reported for the decision tree.

As an additional quality metric, we looked at how close to optimal the per-
formance of such a self-adapting DBMS is. For this, we chose between CPU and
GRU using the two models described above. Over all table scans in the test set,
the performance was within 2% of the best possible solution.

Model R2 Precision Recall F1 score

Scan Runtime CPU 0.9347
0.9 0.77 0.83

Scan Runtime GRU 0.9671
Decision Tree – 0.87 0.95 0.91

Table 2: Cost model accuracy

5.3 Model adaptivity

We have discussed the overhead of predicting the runtime for new observations
above. Another important factor for the viability of using the model is the
overhead caused by training and observation gathering. The training for lin-
ear regression models of such size is negligible, but generating large numbers of
observations is time-consuming. Since the results highly depend on the specific
hardware configuration, it is necessary to calibrate the model on each particular
system upfront. To speed up this process, the database system can run the mea-
surements for only a subset of features with a reduced number of parameters
at system start and train models based on this small amount of observations.
Later, during normal system operation, further observations can be collected.
With these new observations, we improve the model by adapting it to the spe-
cific hardware configuration. This adaptive approach also ensures that the model
is accurate when the data held in the database itself changes since data char-
acteristics are one of the considered features. Unfortunately, because we only
have access to HARP-based systems with the same hardware layout, we cannot
evaluate this for varying hardware configurations.

Accepted at Australasian Database Conference. 
The final authenticated version is available online at https://dx.doi.org/10.1007/978-3-319-92013-9_1



6 Non-Cache Coherent GRU Scan

So far, we have looked at cache-coherent memory accesses where the CPUs
coordinate to make sure that all cores access the same version of the data. This
greatly simplifies multithreading and many DBMS programmers (us included)
would not want to work without it. In certain cases, however, cache coherency is
not needed. If a part of the data reaches a state in which it will not be modified
anymore, cache coherency increases the communication overhead and uses up
bandwidth that could be used for actual data.

An example for this can be found in databases that use insert-only Multi-
version Concurrency Control (MVCC) [5]. Instead of physically updating rows,
the database invalidates them by setting a flag for that row and inserts the new
version at the end of the table. This means that the data part of the row will
not be modified until it is removed as part of some clean up job.

For cases like this, where the life time of an area of memory is well-defined,
cache coherency could be seen as unnecessary overhead. Especially when data is
stored in a large read-only main partition and a small differential buffer (delta
partition), it is easy to see how most of the data does not require any cache
synchronization. By using the GRU’s IAA_NCRAM instead of the IAA_RAM access
method, we can copy data without checking its cache coherency state. It is both
undocumented and unsupported, likely because of the issues discussed next.

1 M
iB

4 M
iB

16 M
iB

64 M
iB

256 M
iB

Data Size

0.0

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 (G

B
/s

)

location = node-local

1 M
iB

4 M
iB

16 M
iB

64 M
iB

256 M
iB

Data Size

location = blade-local

1 M
iB

4 M
iB

16 M
iB

64 M
iB

256 M
iB

Data Size

location = off-blade

Access Type
cache-coherent
cache-incoherent

Fig. 7: Throughput of a cache-coherent and non-cache coherent GRU table scan

Figure 7 shows the performance of the previously discussed GRU bcopy scan
compared to that of a non-coherent implementation. For this benchmark, the
output size has been set to one element and no further background QPI traffic
is present. The input data sizes and NUMA distances vary.

With an effective throughput of almost 9 GB/s for off-blade scans, the non-
cache coherent scan is approximately 3.5 GB/s faster than the regular scan in
the best case. Unfortunately, even though we have carefully flushed all buffers
that we are aware of using CLFLUSH, gru_vflush, and gru_flush_tlb, the
scan results are not completely correct. Most likely, there are still some buffers
or directory caches that have not yet been flushed. Also, this instruction is
not officially supported. As such, we did not include this access method in the

Accepted at Australasian Database Conference. 
The final authenticated version is available online at https://dx.doi.org/10.1007/978-3-319-92013-9_1



previous sections and are not using it for actual table scans. Instead, we are
presenting it here to show the potential of relaxed cache coherency.

7 Related Work

Copying or moving blocks of data is a very common operation, especially in
applications that make use of buffering. Examples include the TCP/IP stack
and applications in data centers [4]. Traditionally, copies use CPU instructions
like memcpy, which blocks the CPU from doing other work. That is why some
applications offload memory accesses to other components.

In the database world, an example are the database accelerators (DAX) built
into Oracle’s Sparc M7 processors [6]. These can be used to decompress, scan,
filter, or translate the data in a table. Located on the memory controller, the
DAX has direct access to the DRAM and, according to the documentation, access
to additional bandwidth that is not used by the cores. In addition to a higher
bandwidth, it can be used to free the processor to do other work and reduce cache
pollution by only forwarding data that is actually needed [6]. Compared to the
hardware-accelerated table scan discussed in this paper, the DAX has a bigger
feature set and can be used to execute some database operators (mostly) without
support from the CPU. This is different from our approach, where only the data
transfer is offloaded to the GRU and the CPU still has to do the scanning.

Ungethüm et al. discuss adaptions to the Tomahawk platform, a multipro-
cessor system-on-a-chip [9] that add database-related primitives like hashing and
sorted set operations to the instruction set of the processor. They optimize mem-
ory access by pushing down filters to a custom memory controller. It contains an
intelligent DMA controller (iDMA) that is able to filter and search data before
giving it to the processor. Instead of retrieving a large vector from the memory
controller and have the CPU search for a specific value, this can be pushed down
to the iDMA, which will then return the results to the application.

8 Summary

By directly instructing the memory hardware using the GRU API, the effective
throughput of an in-memory table scan can be improved by up to 30%. In
this paper, we have shown how this best-case result is influenced by a number
of factors, both internal factors regarding the scan and external factors of the
system. These include the size of the scanned table, the output size, but also the
amount of parallel QPI traffic. For a DBMS to make effective use of this new
access method, it has to take these factors into account and estimate the runtimes
for normal and GRU supported scans. We have shown how a self-adapting model
can be trained and how runtimes can be inferred using linear regression. This
model can be used by a self-tuning database that automatically decides between
regular and GRU scans. Compared to an omniscient model that always chooses
the most efficient scan type, our model performs within 2% of the optimum as
an evaluation on our test set demonstrates.

Accepted at Australasian Database Conference. 
The final authenticated version is available online at https://dx.doi.org/10.1007/978-3-319-92013-9_1



Furthermore, we have discussed non-cache coherent bcopy as a hardware
method that could be considered for improving the effective memory throughput
This delivers significantly higher bandwidth in cases where the DBMS can ensure
that the data will not change during the execution of an operator. However, even
though we have flushed all caches that we are aware of, the results were still
slightly incorrect. Because of that, we do not use non-cache coherent bcopy at
this point but suggest that this is an area worth exploring.

Future work shall be directed into exploring more hardware-supported mem-
ory access methods. We see great potential in allowing the DBMS developer to
selectively relax cache coherency.

Acknowledgments. We thank Martin Boissier and Rainer Schlosser for
their helpful input on the estimation model.

References

[1] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. “Integrating Com-
pression and Execution in Column-Oriented Database Systems”. In: ACM
SIGMOD International Conference on Management of Data. 2006.

[2] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. “Database Ar-
chitecture Optimized for the New Bottleneck: Memory Access”. In: 25th
International Conference on Very Large Data Bases. 1999.

[3] Markus Dreseler et al. “Hardware-Accelerated Memory Operations on Large-
Scale NUMA Systems”. In: Eighth International Workshop on Accelerat-
ing Analytics and Data Management Systems Using Modern Processor and
Storage Architectures (ADMS). 2017.

[4] Annie P Foong et al. “TCP Performance Re-visited”. In: IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
2003.

[5] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. “Fast Serializ-
able Multi-Version Concurrency Control for Main-Memory Database Sys-
tems”. In: ACM SIGMOD International Conference on Management of
Data. 2015.

[6] Oracle. Oracle’s SPARC T7 and SPARC M7 Server Architecture. Tech. rep.
url: https://www.oracle.com/assets/sparc-t7-m7-server-
architecture-2702877.pdf (visited on 12/06/2017).

[7] Iraklis Psaroudakis et al. “Adaptive NUMA-aware data placement and task
scheduling for analytical workloads in main-memory column-stores”. In:
Proceedings of the VLDB (2016).

[8] Greg Thorson and Michael Woodacre. “SGI UV2: A Fused Computation
and Data Analysis Machine”. In: International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis. 2012.

[9] Annett Ungethüm et al. “Overview on Hardware Optimizations for Database
Engines”. In: Datenbanksysteme für Business, Technologie und Web (BTW).
2017.

Accepted at Australasian Database Conference. 
The final authenticated version is available online at https://dx.doi.org/10.1007/978-3-319-92013-9_1




