
A Cockpit for the Development and Evaluation of
Autonomous Database Systems

Jan Kossmann, Martin Boissier, Alexander Dubrawski*, Fabian Heseding*,
Caterina Mandel*, Udo Pigorsch*, Max Schneider*, Til Schniese*, Mona Sobhani*,

Petr Tsayun*, Katharina Wille*, Michael Perscheid, Matthias Uflacker†, Hasso Plattner
Hasso Plattner Institute, University of Potsdam, Germany

{firstname.lastname}@hpi.de, *{firstname.lastname}@student.hpi.de, †{firstname.lastname}@sap.com

Abstract—Databases are highly optimized complex systems
with a multitude of configuration options. Especially in cloud
scenarios with thousands of database deployments, determining
optimized database configurations in an automated fashion is of
increasing importance for database providers. At the same time,
due to increased system complexity, it becomes more challenging
to identify well-performing configurations. Therefore, research
interest in autonomous or self-driving database systems has
increased enormously in recent years. Such systems promise both
performance improvements and cost reductions.

In the literature, various fully or partially autonomous op-
timization mechanisms exist that optimize single aspects, e.g.,
index selection. However, database administrators and developers
often distrust autonomous approaches, and there is a lack of
practical experimentation opportunities that could create a better
understanding. Moreover, the interplay of different autonomous
mechanisms under complex workloads remains an open question.
The presented cockpit enables an interactive assessment of the
impact of autonomous components for database systems by
comparing (autonomous) systems with different configurations
side by side. Thereby, the cockpit enables users to build trust in
autonomous solutions by experimenting with such technologies
and observing their effects in practice.

I. AUTONOMOUS DATABASE SYSTEMS

Tuning database management systems (DBMS) for optimal
performance is an increasingly challenging task for human
database administrators (DBA). Nowadays, DBMSs offer an
ever-growing number of options for physical database design
and configuration; often, hundreds of knobs are available [1].
These knobs cannot be tuned independently as the performance
impact of a particular knob might depend on the current setting
of other knobs. Besides, workloads are often complex, combine
transactional as well as analytical patterns, and are difficult to
anticipate because of seasonal effects and unexpected events.

Self-tuning or even autonomous database systems can
support DBAs in such complex optimization tasks. However,
interviews with DBAs and customers show that autonomous
solutions are often distrusted [2]: they believe that such
solutions only work for synthetic benchmarks and are not
robust enough to handle the challenges originating from real-
world scenarios.

An evaluation of the actual benefit on workload performance,
as well as the introduced resource and processing overheads by
autonomous techniques, is necessary to build trust and demon-
strate the advantages of autonomous approaches. Furthermore,
creating an understanding of the reasoning behind the decisions

taken by autonomous systems (cf. explainability) facilitates the
adoption process [3]. Thus, a system that enables validation of
and experimentation with autonomous database systems should
be provided to database administrators and engineers.

An interactive system that provides the possibility to directly
compare autonomous with conventional systems regarding their
performance during operation could create the necessary trust
and opportunities for practical experimentation. For example,
in their recent work, Das et al. [4], describe an approach to
this problem employed for Microsoft Azure SQL databases:
the same customer workload is sent to two systems, system A
and B. System A is conventional. In contrast, system B is a
copy of system A that is used for autonomous administration
experiments. Thereby, the performance of both systems can be
compared in a real-world scenario, while it is guaranteed that
the customer system’s performance is not affected in any way.

Contributions. In this paper, we present our cockpit for
autonomous database systems that builds on the aforementioned
concept of directly comparing multiple systems. Workloads
and system configurations can be modified to evaluate database
performance in specific situations and scenarios. Our cockpit
builds on the following key concepts:

• Monitoring: Important metrics to inspect performance
(e.g., throughput or latency), system resources (e.g.,
CPU utilization and memory footprint), and the current
workload (e.g., expensive statements and access counters)
are continuously monitored and stored in a time-series
database for convenient analysis.

• Interactivity: Users can activate autonomous components,
observe their impact on workload performance as well as
on the system’s resources.

• Explainability: We provide the opportunity to inspect
the reasoning behind autonomously taken decisions to
facilitate a better comprehension of such decisions.

• Variable workloads and load intensity: Users can provide
their own workloads and datasets or choose from a variety
of synthetic ones (e.g., the TPC-H, TPC-DS, TPC-C, and
JoinOrder Benchmark) and regulate the pressure, in terms
of parallel queries per second, that is put on the system.

Thereby, our system allows us to evaluate the impact of
autonomous components, supports building trust, and facilitates
further development of autonomous database technologies.

Martin Boissier
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Plugin
Repository

Indexing

Compression

Clustering

Backend

DB Object II

DB Object I
DBA Frontend

Workload
Control

Plugins

Workload
Analysis

Performance
Metrics

Queues

Pu
bl

ish
er

Enqueue
Worker

Execution
WorkerWorkload

Workloads

User-def.
TPC-*
JOB

Query
Generator

Periodic Monitoring

Database Control

Enqueue
Worker

Execution
Worker

Queue I
User-def. 17

JOB 11c

TPC-H 6

Queue II
User-def. 17

JOB 11c

TPC-H 7

Hyrise

Hyrise
User-defined

Workload

Queries

Dataset

Fig. 1. Architecture of our cockpit for autonomous database systems. The currently active workload represents a mixture of a used-provided workload trace
(User-def.), TPC-H and Join Order Benchmark based queries.

II. SYSTEM OVERVIEW

We first give an overview of Hyrise1, the database system that
is currently supported by our cockpit. Afterward, we present
the cockpit’s architecture and provide implementation details.

A. Hyrise
The current foundation of the presented cockpit is the

research database system Hyrise [5] and its plugin approach
to handling autonomous components. However, other database
systems could be easily integrated as long as the relevant
metrics can be obtained via SQL by the cockpit.
Architecture. Hyrise is a relational, open-source, main memory,
columnar database system for hybrid transactional and analyt-
ical transaction processing (HTAP). It employs a vectorized
execution model, follows an insert-only approach, and utilizes
multi-version concurrency control (MVCC) to ensure correct
concurrent transaction handling.

Columns can be encoded with various techniques, e.g.,
dictionary, run-length, or LZ4 encoding, to reduce the memory
footprint and improve memory bandwidth utilization. Tables
are implicitly divided into horizontal partitions (65 535 tuples)
that are called chunks. Chunking serves two primary purposes:
increased opportunities for data access avoidance by pruning
and more flexible and fine-granular configuration and tuning
decisions. For instance, decisions upon indexes to create or
which encoding to apply can be taken on chunk level and do
not have to be made for a complete column. Thereby, more
precise decisions can be made, and the overhead of applying
new configurations is reduced.

Hyrise implements the PostgreSQL wire protocol2 to provide
network access via widely available clients and libraries.
Metrics, for instance, the current process CPU utilization, chunk
access counts, or the memory footprint of a table, can be easily
accessed via SQL. For more details on Hyrise, we refer the
interested reader to [5] and the source code.
Plugins. Hyrise offers a plugin interface that allows adding
functionality without affecting the code base of the database
core to keep it as self-contained as possible. We use plugins to
implement capabilities for autonomous database configuration.
Plugins are implemented as dynamic libraries in C++, thus
enabling direct access to the database core without providing
specialized interfaces while guaranteeing native speed.

1Hyrise repository: https://github.com/hyrise/hyrise
2https://www.postgresql.org/docs/12/protocol.html

B. Cockpit

In the following, we discuss the architecture and imple-
mentation details of the presented cockpit3. The cockpit was
developed with nine undergraduate students as part of their
final project.

Our cockpit allows for interactive evaluation of autonomous
database configuration techniques. Besides, it enables a better
understanding of the decisions taken by the autonomous
approaches by providing their decision logs and insights about
the processed workload and stored data.

The components of the cockpit (see Figure 1) solve three
main tasks: (i) the frontend displays performance metrics,
allows the user to interactively examine the processed workload
as well as current system configuration, and provides access
to the plugins of the DBMS, (ii) the cockpit backend handles
the communication between the frontend and the investigated
systems, periodic monitoring and storing of the displayed
metrics. (iii) The workload generator is responsible for creating
queries and putting pressure on the evaluated systems.

While the frontend is implemented in Vue.js, we use Python3
throughout all other components. One of the main challenges
during implementation was the harmonization of the, sometimes
contrary, design requirements.

• High load generation: For insightful evaluations, the ability
to stress the systems at hand with high system loads is
mandatory because trust in autonomous approaches is
only achieved if extreme situations can be handled well.

• Fair load distribution: Even though it is technically
impossible to generate the same workload, including equal
arrival times for queries, for all evaluated systems, the
workload generator must ensure that differences are kept
as small as possible.

• Simple workload extension: The cockpit should serve as
an evaluation platform for DBAs and developers. Thus,
providing synthetic queries and data is not sufficient.
Instead, users need to be able to add their own workloads
and data in a simple fashion.

To achieve a fair load distribution, generate a sufficient
number of queries, and follow a clear separation of concerns,
we decided to decouple query generation from actually sending
the queries. Thereby, these tasks can operate independently in
different processes and on different CPU cores to avoid that

3Source code: https://git.io/AutonomousDBMSCockpit

https://github.com/hyrise/hyrise
https://www.postgresql.org/docs/12/protocol.html
https://git.io/AutonomousDBMSCockpit

the workload generation is becoming a bottleneck. The query
generator implements the logic for creating a configurable
number of queries per second from a predefined query set. By
default, all queries of a workload are chosen with the same
probability. The cockpit user can modify the query distribution
to emphasize specific queries and reproduce realistic scenarios.

Afterward, the workload generator passes the queries to
the backend database objects, which maintain query queues
(implemented with Python’s multiprocessing library) and
handle the actual query sending with psycopg2. We utilize
ZeroMQ’s4 publisher-subscriber pattern for efficient inter-
process communication. The task of enqueueing new queries
also has to be uncoupled from sending them, because otherwise,
a poorly performing database instance could affect the fair
and even query distribution. Replays of existing real-world
workloads are supported by simply providing the necessary
table data and queries as CSV.

Flask handles the communication between the backend and
frontend. Furthermore, the time series database InfluxDB is
used to store the relevant metrics permanently and allows for
analyzing historical performance data to comprehend particular
system and plugin behavior. We facilitate reproducibility and
the cockpit’s setup process by providing a docker setup for all
components.

III. AUTONOMOUS PLUGINS IN HYRISE

In this section, we explain the high-level functionality of
three exemplary autonomous database configuration approaches
that are implemented as Hyrise plugins.

A. Automated Compression Configuration

Hyrise supports various encoding schemes, e.g., dictionary,
frame of reference, and run-length encoding. Further, also
heavy-weight compression such as LZ4 is supported.

The compression plugin (cf. [6]) aims to reduce the footprint
of main memory-resident data. However, data access costs
could be elevated during query processing caused by expensive
decoding operations. Therefore, the plugin also minimizes
potential performance degradations.

Given a user-defined memory budget, the plugin analyzes the
current workload and optimizes the compression configuration
in fixed intervals accordingly: The plugin applies a compression
configuration that results in the best runtime performance and
still complies with the given main memory budget.

B. Automated Clustering

Clustering or sorting a table can significantly impact the
performance of several operators, e.g., joins or table scans.
With clustered data, Hyrise can exploit its chunked storage
concept for data access avoidance. Filters or small materialized
aggregates [7], can be utilized to determine prunable chunks
during the plan optimization phase, cf. partition pruning.

The clustering plugin aims to improve the system’s per-
formance by clustering the table along frequently accessed
dimensions. The goal is to (i) improve the pruning of chunks

4ØMQ project website: https://zeromq.org

during plan optimization time and (ii) improve the scan runtime
as the resulting chunks are sorted to allow binary searches.
As of now, the plugin clusters a table in the background and
swaps the whole table atomically.

C. Indexing

In general, secondary indexes are one possible measure to
enhance the performance of a DBMS. However, the positive
effects on the throughput and latency results have to be balanced
with an increased memory footprint.

The indexing plugin utilized in the cockpit is an implemen-
tation of the index selection approach proposed by Schlosser
et al. [8]. Similar to the compression plugin, it allows to set a
user-defined memory budget. In addition, the maximum number
of attributes per index can be adjusted. For this budget, the
plugin identifies the best secondary indexes for the current
workload based on the query plan cache.

IV. DEMONSTRATION OVERVIEW

In this section, we first explain which information is
displayed and which options regarding interaction are offered in
the presented cockpit. Afterward, we sketch a possible scenario
for using our cockpit in practice with the help of an example.

A. User Interface Overview

Fig. 2. Treemap as displayed by the cockpit for the TPC-H dataset (scale factor
1). This diagram allows to quickly identify the largest tables and columns and
offers detailed information about the currently used encoding schemes.

The browser-based cockpit’s main visual components are
three monitoring views and three configuration panels. The
three monitoring views give an overview of the currently
evaluated database instances and the current workload. The
database views include charts depicting general metrics, such as
latency, throughput, or CPU and memory utilization. Users can
choose to either show the metrics for all instances (Overview)
in a single graph or to display each instance separately side by
side (Comparison, Figure 3). The Comparison view also allows
for showing diagrams that cannot be aggregated, e.g., treemaps

https://zeromq.org

Fig. 3. Crop of the throughput and system details part of the comparison view as displayed by the cockpit. Both Hyrise instances have the same hardware
configuration and run an identical workload, but the left was tuned by the autonomous clustering plugin and shows a better throughput.

(Figure 2) for per-attribute memory consumption or heatmaps
(Figure 4) displaying access patterns per chunk and attribute.
We display the most expensive queries per database instance
and the runtime share of the different database operators in
the Workload Analysis view to enable quick analyses of the
currently processed workload.

Fig. 4. Access heatmap as displayed by the cockpit for TPC-H’s lineitem
table. Cells represent segments, i.e., an attribute’s part of a chunk (Section II-A).
Warmer colors indicate frequent accesses; such information can be utilized
for comprehending clustering decisions.

Configuration panels allow the user to adjust the workload
and the plugins. The workload configuration allows loading and
unloading of table data for the supported benchmarks, starting
single or multiple workloads, and modifying the number of
queries generated per second. Plugins can be (de)activated, and
their settings, e.g., the memory budget, can be modified via
the plugin panel. Further, the panel displays the log messages
of the plugins. These log messages are also displayed in the
aforementioned charts to enable the user to directly relate
performance changes with plugin activity.

The flexible interaction with plugins per database instance
enables users to exchange and compare plugins with each other.
Thereby, not only the interplay of different plugins (cf. [9])
can be evaluated, but also alternative approaches to the same
problem (e.g., various index selection approaches) can be easily
compared.

B. Demonstration Scenario
Marilena is a database administrator of a large company. The

company uses the relational database system Hyrise, which
provides various means to self-optimize. This includes opti-
mizations regarding, e.g., the main memory footprint, secondary

indexes, or data clustering. While Marilena is interested in the
advantages of all these approaches, she usually refrains from
automated approaches as (i) their impacts are hard to predict,
(ii) she has experienced devastating performance impacts when
using heavy compression in database systems, (iii) she fears that
these approaches fail when unexpected events, e.g., load spikes,
occur, and (iv) she is afraid that combining multiple approaches
might lead to undesired behavior. However, by using our cockpit
for autonomous database systems, Marilena utilizes a recorded
query trace of the production system to replay the workload of
last year’s Black Friday and the surrounding days to evaluate
the impact of the offered plugins in different scenarios. She
gains confidence in applying compression selections as she
learns how much the system can be compressed without
affecting the performance of the real system. Simultaneously,
she learns that modern index selection approaches provide
valuable configurations in an instant and that the improved
pruning rates caused by automated table clustering quickly set
off the initial costs. Combining the provided heatmap displaying
access counts with the plugin’s output, she comprehends its
actions. As the cockpit also allows us to examine the correlation
and interplay of autonomous components, Marilena balances
the memory reduced via compression with the memory invested
into additional secondary indexes.

REFERENCES

[1] D. V. Aken et al., “Automatic database management system tuning through
large-scale machine learning,” in SIGMOD, 2017, pp. 1009–1024.

[2] A. Pavlo et al., “Self-driving database management systems,” in CIDR,
2017.

[3] Q. Meteier et al., “Workshop on explainable AI in automated driving: a
user-centered interaction approach,” in Adjunct Proceedings of Automo-
tiveUI, 2019, pp. 32–37.

[4] S. Das et al., “Automatically indexing millions of databases in microsoft
azure SQL database,” in SIGMOD, 2019, pp. 666–679.

[5] M. Dreseler et al., “Hyrise re-engineered: An extensible database system
for research in relational in-memory data management,” in EDBT, 2019,
pp. 313–324.

[6] M. Boissier et al., “Workload-driven and robust selection of compression
schemes for column stores,” in EDBT, 2019, pp. 674–677.

[7] G. Moerkotte, “Small materialized aggregates: A light weight index
structure for data warehousing,” in VLDB, 1998, pp. 476–487.

[8] R. Schlosser et al., “Efficient scalable multi-attribute index selection using
recursive strategies,” in ICDE, 2019, pp. 1238–1249.

[9] J. Kossmann et al., “Self-driving database systems: a conceptual approach,”
Distributed Parallel Databases, vol. 38, no. 4, pp. 795–817, 2020.

	Autonomous Database Systems
	System Overview
	Hyrise
	Cockpit

	Autonomous Plugins in Hyrise
	Automated Compression Configuration
	Automated Clustering
	Indexing

	Demonstration Overview
	User Interface Overview
	Demonstration Scenario

	References

