Attitudes, Beliefs, and Development Data
Concerning Agile Software Development Practices

Christoph Matthies, Johannes Huegle, Tobias Diirschmid*, and Ralf Teusner
Hasso Plattner Institute, University of Potsdam, Germany
Email: {first.last} @hpi.de
* Now at Carnegie Mellon University, Pittsburgh, USA, Email: duerschmid@cmu.edu

Abstract—The perceptions and attitudes of developers impact
how software projects are run and which development practices
are employed in development teams. Recent agile methodologies
have taken this into account, focusing on collaboration and shared
team culture. In this research, we investigate the perceptions
of agile development practices and their usage in Scrum soft-
ware development teams. Although perceptions collected through
surveys of 42 participating students did not evolve significantly
over time, our analyses show that the Scrum role significantly
impacted participants’ views of employed development practices.
We find that using the version control system according to agile
ideas was consistently rated most related to the values of the Agile
Manifesto. Furthermore, we investigate how common software
development artifacts can be used to gain insights into team
behavior and present the development data measurements we
employed. We show that we can reliably detect well-defined
agile practices, such Test-Driven Development, in this data and
that usage of these practices coincided with participants’ self-
assessments.

Index Terms—Agile, software engineering, metrics, Scrum

I. INTRODUCTION

As Software Engineering is an activity conducted by hu-
mans, developers’ perceptions, beliefs, and attitudes towards
software engineering practices significantly impact the devel-
opment process [1], [2] If the application of a particular idea
or method is regarded as more promising compared to an
alternative, software developers will prefer the first method to
the second. The human aspects of Software Engineering, the
perceptions and beliefs of the people performing the work,
have repeatedly been recognized as important throughout the
history of the discipline [3]. They are influenced by personal
experience as well as a multitude of external factors, such
as recorded second-hand experiences, arguments, anecdotes,
community values, or scholarship [4], [5]. In this context, these
bodies of knowledge, i.e., collections of beliefs, values and
best practices are referred to as development methodologies or
processes. While much research has focused on the technical
aspects and benefits of these practices, little research has been
conducted on the perceptions and attitudes of development
team members towards them and their influence on adoption.

A. Agile Development Methodologies

In terms of modern software engineering, agile software
development methodologies, such as Scrum, have highlighted
the importance of people, collaboration and teamwork [6].

Scrum, currently the most popular agile software development
methodology employed in industry [7], has been described as
a “process framework* that is designed to manage work on
complex products [8]. The authors of the Scrum Guide em-
phasize its adaptability, pointing out that Scrum is specifically
not a technique or definitive method, but rather a framework in
which various processes can be employed [8]. Which concrete
practices are selected then depends on a team’s assessments
and prior beliefs. The agile manifesto [9] defines agile values,
such as “responding to change over following a plan”, which
are designed to serve as a guiding light for practice selection
and process implementation. However, due to their relative
vagueness, these values themselves are open to interpretation
by team members.

B. Perception vs. Empirical Evidence

Software developers are influenced in their work by their
prior experiences. Their attitudes and feelings towards certain
agile development practices stem mainly from applying these
practices in software projects [2]. It is these attitudes towards
agile practice application and developers’ perceptions of them,
that we aim to study. While human factors are integral to
the software development process, the main goal remains to
produce a product that serves the intended purpose. To this
end, a large variety of primary artifacts, such as executable
code and documentation as well as secondary, supportive
development artifacts, such as commits in a version control
repository or user stories containing requirements, are created.
All the data produced by software engineers on a daily basis,
as part of regular development activities, is empirical evidence
of the way that work is performed [10] and represents a
“gold-mine of actionable information” [11]. Combining and
contrasting the perceptions of developers with the empirical
evidence gathered from project data can yield insights into
development teams not possible by relying on only a single
one of these aspects.

In work that partly inspired this research, Devanbu et al.
conducted a case study at Microsoft on the beliefs of software
developers concerning the quality effects of distributed devel-
opment and the relationship of these beliefs to the existent
project data [2]. They found that developers’ opinions did not
necessarily correspond to evidence collected in their projects.
While respondents from a project under study had formed
beliefs that were in agreement with the collected project

Copyright ©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers

or lists, or reuse of any copyrighted component of this work in other works.

evidence, respondents from a second team held beliefs that
were inconsistent with the project’s actual data. The authors
conclude that further and more in-depth studies of the interplay
between belief and evidence in software practice are needed.
Due to the issues involved with recruiting professional
developers for studies, such as having to offer competitive fees
and the requirement of not interfering with normal work [12],
we, as much of the related literature [13], rely on software
engineering students for our study. In the context of an under-
graduate collaborative software engineering course employing
agile methodologies, which has become standard practice in
universities [14], we study the usage and application of agile
practices by developers and other Scrum roles and the related
perceptions of these practices during software development.

C. Research Questions

The following research questions related to the perceptions
of agile development teams and their relationship to agile
practices and development data guide our work:

RQ1 How do perceptions of agile software development prac-
tices change during a software engineering course?
What agile practices are perceived by students to be most
related to agile values?

Does the role within a Scrum team influence the per-
ception of agile practices?

Do students in teams agree with each other in their
assessments of the executed process?

How can software development artifacts be used to gain
insights into student behavior and the application of agile
practices?

What is the relationship between perceptions of agile
practices and the development data measurements based
on these?

RQ2
RQ3
RQ4

RQ5

RQ6

The remainder of this paper is structured as follows:
Section III presents the software engineering course which
served as the context of this study. Section IV describes and
discusses the survey that was employed to collect student
perceptions of agile practice use in their teams. In particular,
Section IV-C details the motivations and backgrounds of each
survey item. Similarly, Section V discusses the development
data measurements that were employed, with Section V-B
providing details on their construction. Section II presents
related work while Section VI summarizes our findings and
concludes.

II. RELATED WORK

Previous work on the human aspects of software engineering
has also focused on the attitudes of developers towards devel-
opment practices and attempts at relating these to empirical
data. Most closely related is the case study of Devanbu,
Zimmermann, and Bird of developers at Microsoft [2]. The
authors study the prior beliefs of participants towards the
quality effects of distributed development and investigate the
relationships of these beliefs to empirical project data, includ-
ing development data from code repositories. The authors con-
clude that beliefs vary between projects, but do not necessarily

correspond with the measurements gathered in that project.
Kuutila et al. employed daily experience sampling on well-
being measures in order to determine connections between the
self-reported affective states of developers and development
data such as the number of commits or chat messages [15].
While the authors report significant relationships between
questionnaire answers and development data measures, they
also point out that some of these relationships went contrary to
previous lab-experiments in software engineering, highlighting
the importance of study contexts. Furthermore, there is a
body of related research on the aspects that drive process
methodology and application. Hardgrave et al. [16] report,
based on a field study, that developers’ opinions towards
methodologies and their application are directly influenced
by their perceptions of usefulness, social pressure, and com-
patibility. Their findings suggest that organizational mandates
related to methodology adoption are not sufficient to assure
use of the methodology in a sustained manner.

III. STUDY CONTEXT

In this paper, we describe a case study on the application
of agile practices and the perceptions of these practices by
students of an undergraduate software engineering course.
The simulated real-world setting which is employed during
the accompanying development project is ideally suited for
collecting data on these aspects. The main focus of the
course is teaching collaboration and agile development best
practices in a setting featuring multiple self-organizing student
teams [17] jointly working in a real-world, hands-on project.
The course was most recently taught in the winter semester of
2017/18. Students employ the same development tools that are
used in industry, including issue trackers and version control
systems, which are hosted on GitHub. These systems, while
allowing for easier collaboration, also contain a large amount
of information on how students work in their teams [18],
[19]. In addition to students gaining experience with a popular
industry tool, research has shown that students benefited from
GitHub’s transparent workflow [20]. Usage of these tools
predicted greater positive learning outcomes [21]. Due to the
nature of the capstone course, participants already have a
working knowledge of software development and have worked
in small development teams as part of their undergraduate
studies. Nevertheless, project work is supported by junior
research assistants acting as tutors who are present during
regular, organized Scrum team meetings. Regular lectures on
agile development topics supplement the project work.

In order to gain insights into the perceptions regarding agile
practices as well as the application of these by students, we
employed a two-fold approach. We conducted a survey on
the implementation of agile practices at the end of every
development iteration and we analyzed development artifacts
for every student and their team in that same time frame.

A. Development Process

During the project, four iterations of the Scrum method
are employed, which due to its more descriptive nature is

especially suited for introducing agile concepts [22]. Follow-
ing this, after students have gained some experience in their
teams, the less descriptive, more dynamic Kanban method is
introduced towards the end of the course.

Weekly Scrum
Meeting

Stakeholder

Input 2-3 Week
Sprint -

s - - o~
1 Product 7 Sprint A Sprint { Sprint Review \’
2 Backlog I Planning |‘| Backlog \ _ Meeting
3 \\Meeting/’ 4 iterations ~—=="
: = P s
5 E 7 sprint N
3 ’\ Retrospective , - Finished
7 N \Meeting/ 7 Increment

Fig. 1. Overview of the adapted Scrum process employed in the course.

During the Scrum sprints of the development project, an
adapted version of the Scrum process, which considers the
time constraints of students, i.e., that other courses are running
in parallel, is employed, see Figure 1. In this paper, we focus
on these four Scrum sprints. Later iterations, which feature dif-
ferent development methodologies for shorter amounts of time
are excluded. The course relies heavily on the self-organization
of agile teams [23]. Students form teams of up to 8 members
and assign the roles of Product Owner (PO) and Scrum Master
(SM) to team members, while all others act as developers. The
usual Scrum meetings of planning, sprint review, retrospective
as well as a weekly stand-up synchronization meeting are
held by every team in the presence of a tutor, who is able to
provide consultation and instruction. These meetings, through
the use of surveys, as well as the development data produced
by students during their unsupervised work time, serve as data
collection opportunities to gain insights into team behavior.

IV. SURVEY
A. Construction

The survey employed during the course started from a
series of common agile practices and violations thereof drawn
from software engineering research. This related research deals
with prevalent agile practices, such as Test-Driven Devel-
opment and Collective Code Ownership [24], team meeting
and collaboration best practices [25], team environment and
capability [26] as well as practices that are common pitfalls
for students [27]. In following the survey design of related
literature [2], we chose a small number of practices to focus
on. We used the following three criteria for selection: (i) The
topic is actively discussed during the course and participants
have had experience with the practice or concept, allowing
them to form an informed opinion. (ii) Following or straying
from practices is consequential for software projects. (iii) The
practice or concept allows gathering evidence based on already
existent software development data of teams.

All claims of the survey are listed in Table 1. We asked
course participants to rate these on a 5-point Likert scale
(strongly disagree, disagree, neutral, agree, strongly agree).

TABLE I
OVERVIEW OF SURVEY CLAIMS.

£

Claim

I wrote code using a test-driven approach

I practiced collective code ownership

The user stories of the sprint were too large

There were duplicates of user stories

I started implementing only shortly before the deadline
We followed the “check in early, check in often” principle
I worked on too many user stories simultaneously

We conducted useful code reviews

O 00 1 O W N =

Our team has successfully implemented the agile values

B. Administering the Survey

The survey was presented to the students during the sprint
review meeting at the end of each sprint, see Figure 1. The
questionnaire was given to participants as a hard copy, to be
filled out by hand, before or after the meeting, according to
the time of arrival. The survey indicated that the information
given by the students had no influence on their grading and that
results will be published in anonymized form. Furthermore,
participants were informed beforehand, that survey results
were used solely for research purposes. Students were encour-
aged to answer only the questions they were able to answer,
e.g., to ignore programming questions if they did not program
during the development iteration or to ignore questions that
were not relevant to their Scrum role.

C. Survey Claims in Detail

This section presents the claims of the conducted survey in
detail and provides background information on the relevance
of the development practice in question.

1) Test-first Programming Approach: Test-driven develop-
ment (TDD) describes a very short, repeated, software de-
velopment approach: test cases are written for the user story
to be implemented, then code is written to pass the new
tests [28]. Previous research has highlighted the value of
TDD in education and has established positive correlations
between the adherence to TDD and students’ solution code
quality and their thoroughness of testing [29]. Sampath showed
that introducing TDD at higher learning levels, such as the
capstone course described here, held more promise than at
lower levels [30]. Application of the TDD method has been
shown to have a positive effect on the quality of software
design and assures that code is always tested [31].

‘ Q1: I wrote code using a test-driven approach

2) Code Ownership: Collective Code Ownership (CCO) is
one of XP’s core practices, focusing on the shared responsi-
bility of teams [32]. It describes the idea that no developer
“owns” the code. Instead, anyone on the team should improve
any part of the software at any time if they see the opportunity
to do so [32]. CCO allows any developer to maintain code if
another is busy [33] and enables all code to get the benefit

of many developers’ attention, increasing code quality [34].
It furthermore plays a role in encouraging team interaction,
cohesiveness, and creativity [35].

‘ Q2: I practiced collective code ownership

3) User Story Size: User Stories offer a natural language
description of a software system’s features that hold value
to a user or purchaser [36]. Empirical research has shown
a correlation between high-quality requirements and project
success [37]. However, measuring the quality of user sto-
ries is an ongoing challenge and little research is currently
available [38]. In a survey with practitioners, Lucassen et al.
found that the largest group of respondents (39.5%) did not
use user story quality guidelines at all, while 33% indicated
they followed self-defined guidelines [39]. Only 23.5% of
respondents reported the use of the popular INVEST list [40]
to gauge user story quality. The “S” in this mnemonic stands
for small, which should apply to the amount of time required
to complete the story, but also to the textual description
itself [40].

‘ Q3: The user stories of the sprint were too large

4) User Story Duplication: The sprint backlog, filled with
user stories, is the main artifact that tracks what a development
team is working on in a sprint. Mismanaging the product or
sprint backlog by including highly similar stories can lead
to duplicated effort and “software development waste” [41].
Therefore, every user story should be unique and duplicates
should be avoided [38]. While all user stories should follow
a similar layout and format, they should not be similar in
content.

Q4: There were duplicates of user stories

5) Work Distribution: Agile projects should follow a work
pace that can be “sustained indefinitely” [9] and which does
not put unduly stress on team members. “Death marches” [42],
the practice of trying to force a development team to meet,
possibly unrealistic, deadlines through long working days and
last-minute fixes have been shown to not be productive and to
not produce quality software. As Lindstrom and Jeffries point
out, development teams are “in it to win, not to die” [34]. If
work is not evenly distributed over the sprint and more work
is performed towards the end this can make the development
process unproductive. Team meetings conducted throughout
the sprint cannot discuss the work, as it is not ready yet,
blockers and dependencies with other teams might not be
communicated on time and code reviews are hindered [27].

QS: I started implementing only shortly before
the deadline

6) Version Control Best Practices: Part of the agile work
ethos of maximizing productivity on a week by week and
sprint by sprint basis [34] is an efficient usage of version
control systems. A prevailing motto is to “check in early, check
in often” [43]. This idea can help to reduce or prevent long and
error-prone merges [44]. Commits can be seen as snapshots

of development activity and the current state of the project.
Frequent, small commits can, therefore, provide an essential
tool to retrace and understand development efforts and can
be reviewed by peers more easily. Research has shown that
small changesets are significantly less associated with risk
and defects than larger changes [45]. We encourage student
teams not to hide the proverbial “sausage making”, i.e., not to
disguise how a piece of software was developed and evolved
over time by retroactively changing repository history [46].

Q6: We followed the “check in early, check in
often” principle

7) Working in Parallel: Focusing on working on a single
task, instead of trying to multitask, leads to increased devel-
oper focus [47] and less context switching overhead [48]. The
number of user stories developers should work on per day or
sprint unit cannot be stated generally as it is highly depen-
dent on context. In Lean thinking, strongly related to agile
methods, anything which does not add value to the customer
is considered “waste” [41]. This includes context switches
and duplicated effort by developers, and work handoff delays.
Little’s Law is a basic manufacturing principle, also applicable
to software development, which describes the relationship
between the cycle time of a production system as the ratio
of work in progress (WIP) and system throughput [49]. Cycle
time is the duration between the start of work on user story
and the time of it going live. This time span can be reduced by
either reducing the number of WIP user stories or by increas-
ing throughput. As throughput increases are usually limited
by the number of team members, the cycle time can only
reasonably be decreased by reducing the maximum number of
user stories being worked on. Delivering stories faster allows
for quicker feedback from customers and other stakeholders.
Furthermore, limiting the work in progress in a team can
help in identifying opportunities for process improvement [47].
When loaded down with too much WIP, available bandwidth
to observe and analyze the executed process is diminished.

Q7: I worked on too many user stories simulta-
neously

8) Code Reviews: Code reviews are examinations of source
code in order to improve the quality of software. Reviewing
code as part of pull requests in GitHub, following a less formal
and more lightweight approach, has been called “modern code
review”, in contrast to the previously employed formal code
inspections [50]. Code reviews by peers routinely catch around
60% of defects [51]. However, finding defects is not the only
useful outcome of performing modern code reviews. They can
also lead to code improvements unrelated to defects, e.g.,
unifying coding styles, and can aid in knowledge transfer.
Furthermore, code reviews have been connected to increased
team awareness, the creation of alternative problem solutions
as well as code and change understanding [50].

‘ Q8: We conducted useful code reviews

9) Agile Values: The Agile Manifesto is the foundation of
agile methods. It describes the principles and values that the
signatories believe characterize these methods. These include
principles such as early and continuous delivery of valu-
able software, welcoming changing requirements and building
projects around motivated individuals [9]. Scrum defines five
the values of commitment, focus, openness, respect, and
courage [52] that agile teams should follow in order to fa-
cilitate collaboration. Extreme Programming similarly defines
values that a team should focus on to guide development.
They include simplicity, communication, feedback, respect,
and courage [32]. Kropp et al. consider these values, compared
to technical practices and collaboration practices, to be hardest
to teach and learn as they require students to adapt their
attitudes and evaluations [52].

Q9: Our team has successfully implemented agile
values

D. Survey Results

42 students (3 female and 39 male), participated in the
course. The students formed six teams: One of six students,
one of eight students, and four of seven students. Although
participation in the survey was voluntary, every student who
attended their team’s Scrum meetings filled in a questionnaire.

TABLE 11
DESCRIPTIVE STATISTICS OF RESPONSES TO SURVEY QUESTIONS
Q1 - Q9 ON A 5-POINT LIKERT SCALE
(FROM 1 ”STRONGLY AGREE TO 5 "STRONGLY DISAGREE).

QI Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Valid 132138 158 160 137 131 141 132 159
Missing 36 30 10 8 31 37 271 36 9
Mean 27 23 34 38 35 27 44 19 20
Median 20 20 40 40 40 30 50 20 20
Stdev 14 11 11 13 12 1.0 1.0 1.0 06
Skewness 04 06 -03 -08 -03 02 -19 13 03
StderrSkew 02 02 02 02 02 02 02 02 02

Table II presents the mean and median ratings as well as the
standard deviations of all the claims in the survey. Figure 2
displays summarized participant answers using centered bar
plots. High agreement with a claim was coded as 1, disagree-
ment as 5 on the Likert scale. Therefore, the lower the mean,
the more survey participants agreed with the stated claim. The
higher the variance, the higher the disagreement was within
respondents regarding the claim. Over all sprints, the claims
that survey participants disagreed with most concerned usage
of user stories.

Participants stated that they on average had not worked on
multiple user stories simultaneously during an iteration (Q7,
mean of 4.4) and that there were few issues with duplicate user
stories (Q4, mean of 3.8). The claim that students on average
agreed with the most concerned conducting useful code re-
views (Q8, mean of 1.9), closely followed by high agreement
on the claim that the team had successfully implemented agile
values in their project work (Q9, average 2.0).

Q9
Qs
Q7
Q6
Q5
Q4

84%
79%
9%
44%
22%
24%
Q3 22%
Q2 63% 19%
Q1 51% 23:%

100 50 0 50
Percentage

1%

8%

85%
21%
51%
67%
51%
18%
26%

100

1 5I%
1 4I%
6%
35-%
27I%
%%
27:%

Response 1 2 3 4 5

Fig. 2. Summary of responses to survey questions Q1-Q9 on the 5-point Likert
scale (1 “strongly agree to 5 “’strongly disagree) over teams and sprints.

E. Survey Discussion

As the collected Likert data is ordinal we have to build our
statistical inference on nonparametric methods [53].

1) Perception change during the course (RQ1): Our survey
design involves repeated measurements, therefore, the first
research question examines changes of developers’ perceptions
over in these measurements over time.

5]
Question
B ——— B ———
X == — - e —— —e— Q1
44 ’ =R aeAe- Q2
-+- Q3
g - - Q4
o3
b= <O - Q5
C=7 - Q6
24 —=— Q7
-=¥-- Q8
-=&— Q9
1
1 2 3 4
Sprint

Fig. 3. Means of survey questions (Q1-Q9) on the 5-point Likert scale (1
“strongly agree to 5 “strongly disagree) and their developments over the
sprints (1-4)

Figure 3 depicts the history of survey response means over
the four sprints, giving an overview of the variability of
participants’ responses. Besides the responses to survey claim
Q4, the developments of the means are comparatively stable
indicating that the perceptions of participants do not change.
This intuition is supported by the application of a Friedman
test, which allows analyzing effects on Likert responses from
a repeated measurement experimental design [53].

As depicted in Table III, the conducted Friedman tests
reveal that only the responses to the claim of duplicated user
stories (Q4) show a significant change over time (p < .01).
Moreover, a post hoc test using Wilcoxon signed rank test with
Bonferroni correction showed the significant change during
the second sprint as there are significant changes (p < .01) in
the responses at the end of the first sprint compared to other
responses. This finding can be related to the course context.

TABLE III
FRIEDMAN RANK SUM X2, AND STATISTICAL SIGNIFICANCE ON Q1 - Q9
FOR CHANGES IN RESPONSES DURING THE COURSE

2 2

Question X p-value Question X p-value
Ql 7.340 0.062 Q5 3.969 0.265
Q2 5.281 0.152 Q6 1.980 0.577
Q3 6.211 0.101 Q7 4.686 0.196
Q4 34.658 1.4e THwk Q8 6.423 0.093

Q9 1.6343 0.652

* p<.05, #* p<.01, *** p<.001

At the beginning of the project, the team’s Product Owners
need to work together to create initial user stories for the first
development sprint from interviews with the product customer.
While they are guided by extensive tutoring, our experience
has shown that this task of collaboration in combination with
new tasks is challenging for students [54]. As a result, the
distribution of responsibilities and user stories between teams
can lead to duplications of user stories. As development goes
on, these duplications are detected and removed. For the
other survey claims, the findings of reluctance to change in
development processes are in line with related work. Zazworka
et al. report that even with specific interventions in teams, agile
practices continued to be violated. The authors attribute this
in part to the notion, that during project work, satisfying the
customer had higher a priority than following the steps of a
defined practice [24].

Research Question 1: How do perceptions of agile soft-
ware development practices change during a software
engineering course?

Answer: Only change: perceived duplication of user
stories significantly decreased after the initial sprint.

2) Agile practices and agile values (RQ2): When exam-
ining associations within survey responses, the relationships
of perceptions of agile practice application (Q1-Q8) with the
assessments of agile value implementation (Q9) are especially
interesting. They allow for an identification of those practices
that survey participants most relate to adopting the mindset
of agile methodologies. In the context of Likert data, a well-
known measure of association is Kendall’s Tau whose statis-
tical significance can be tested by the application of Fisher’s
exact test of independence [53]. The computed Kendall’s Tau
coefficients and p-values are depicted in Table IV.

We find significant relationships between the ratings of
successful agile value implementation (Q9) to survey claims
concerning practicing Collective Code Ownership (Q2, 7 =
0.15, p < .05), not starting implementation shortly before the
deadline (Q5, 7 = —0.21, p < .01), and following the “check
in early, check in often” principle (Q6, 7 = 0.24, p < .01).

Research Question 2: What agile practices are per-
ceived by students to be most related to agile values?
Answer: There are significant relationships of perceived
success in implementing agile values with Collective
Code Ownership, checking in early and often and not
working at the last minute.

TABLE IV
KENDALL’S 7 COEFFICIENTS, FISHER’S Z, AND STATISTICAL
SIGNIFICANCE AS MEASURE OF RELATIONSHIP BETWEEN AGILE
PRACTICES AND TO AGILE VALUES

Relationship T Z p-value
QI to Q9 0.049 0.650 0.517
Q2 to Q9 0.149 1.978 0.048*
Q3 to Q9 —-0.114 —-1.638 0.102
Q4 to Q9 —0.020 —-0.289 0.773
Q5 to Q9 —0.212 —2.827 0.005%*
Q6 to Q9 0.238 3.075 0.002%*
Q7 to Q9 —0.040 —0.519 0.606
Q8 to Q9 0.084 1.060 0.291

*p < .05, ¥Fp < .01, ¥ p < .001

3) The influence of Scrum roles (RQ3): A major principle
of the Scrum method is the division of a team into roles. These
include a Product Owner, a Scrum Master, and the develop-
ment team. Hence, the third research question examines the
influence of the team members’ Scrum role on their perception
of agile practices.

Qal Qt
Dev 46% 26% 289 108
SM 71% 12% 179 24
PO | 0% ofe 0%
Q2 Q2
Dev 64% 20% 169 109
SM 63% 15% 229 27
PO | 0% ofe 10¢
Q3 Q3
Dev 24% 25% 519 109
SM 19% 30% 529 27
PO 18% 36% 459 22
Q4 Q4
Dev 23% 12% 659 109
SM 22% 7% 709 27
PO 29% 0% 719 24
Q5 Qs
Dev 22% 26% 529 109
SM | 9% 35% 579 23
PO 80% 20% 0%
Q6 Q6
Dev 44% 33% 239 108
SM 48% 43% 9% 23
PO | 0% ofe 0%
Q7 Q7
Dev | 6% 4% 909 109
SM | 8% 12% 799 24
PO 88% 25% 389
Q8 Q8
Dev 75% 16% 9% 106
SM 96% A 0% 25
PO 00% ofe 0%
Q9 Q9
Dev 83% 17% 0% 109
SM 96% 4% 0% 27
PO 74% 17% 9% 23
100 50 0 50 100 0 40 80
Percentage n
Response 1 2 3 4 5 . NA AV

Fig. 4. Ratings of survey claims on the 5 point Likert scale (1 “strongly
agree” to 5 “strongly disagree”) on the left side, and overview on missing
data divided according to role on the right side

As depicted in Figure 4 Product Owners did not rate the
majority of survey claims regarding agile development prac-

tices, as they were mostly not directly involved with develop-
ment tasks and implementation. This aggravates the statistical
examination for this role. Furthermore, we found only small
differences in the responses among roles. Disregarding Product
Owners, the bar plots indicate a small variation of responses
to survey claims Q1, QS5, and Q7.

A nonparametric statistical method to compare the re-
sponses against between-subject factors, such as the roles of
the survey attendees, is provided by the Kruskal-Wallis rank
sum test [53]. As depicted in Table V, the Kruskal-Wallis rank
sum tests reveal significant effects of the attendees’ role on the
perception of TDD (Ql, X2 = 4.126, p < .05), last-minute
work (Q5, X2 = 8.671, p < .05), and working on too many
user stories simultaneously (Q7, x? = 17.42, p < .001).

TABLE V
KRUSKAL-WALLIS RANK SUM X2 AND STATISTICAL SIGNIFICANCE OF
ROLE EFFECTS ON RESPONSES

2

Question X p-value Question X p-value
Ql 4.126 0.042% Q6 0.451 0.502
Q2 5.336 0.069 Q7 17.42 1.649e~4##x
Q3 0.769 0.681 Q8 0.754 0.888
Q4 1.038 0.595 Q9 0.239 0.888
Q5 8.671 0.014*

F p<.05, ** p<.01, *** p<.001

In the context of TDD (Q1l), a Dunn’s test of multiple
comparisons based on using rank sums with Bonferroni correc-
tion showed a significant difference in the perception between
Scrum Masters compared to developers (Z = 2.03, p < .05).
Here, the amount of missing values, as depicted in 4, precludes
a statistical inference compared to Product Owners.

The same post hoc test showed significant differences in
perceptions regarding last-minute work (Q5) of Product Own-
ers, who worked on user stories, compared to both developers
(Z = 2.859, p < .05) and Scrum Masters (Z = 2.860,
p < .05), who were mainly concerned with coding activities.

Regarding perceptions of working on too many user stories
simultaneously (Q7), there exists a significant difference be-
tween Product Owners and developers (Z = 4.036, p < .01) as
well as Scrum Masters (Z = 2.791, p < .05). These findings
highlight the different nature of the Product Owner role,
concerned with backlog and user story maintenance, and the
other team roles who are performing the coding work. As POs
work almost exclusively with user stories, they have a higher
chance of working simultaneously on them. While the tasks of
the Product Owner are mostly concentrated at the beginning
of a user story’s lifecycle, i.e., creating it, interacting with the
customer and iteratively refining it, the work of implementing
it by the developers must necessarily follow after this initial
step. As Product Owners are not actively involved with user
story implementation [8], they are mostly unaware of the
(technical) challenges involved in the implementation.

Research Question 3: Does the role within a Scrum
team influence the perception of agile practices?
Answer: Scrum roles influenced the perceptions of
few practices: SMs perceived TDD usage to be higher
than developers. POs perceived they had started their
management tasks only shortly before deadline more
strongly than developers and SMs did regarding their
development tasks.

4) Agreement within teams (RQ4): In Software Engineering
the perception of agile practices and agile values is highly
influenced by personal experience [2]. Since all members of
a team interact during the development process, the fourth
research question examines whether this interaction leads to
an agreement in the assessments within a team. In order to
quantify the extent of agreement between the members of a
team, we calculate Krippendorff’s alpha that is a statistical
measure of the inter-rater reliability [55].

TABLE VI
KRIPPENDORFF’S ALPHA AS MEASURE OF INTER-RATER AGREEMENT
REGARDING THE SURVEY RESPONSES FOR THE SIX DEVELOPMENT TEAMS

Team | 1 2 3 4 5 6
« ‘ 0.272 0.424 0.554 0.608 0.425 0.285

As o = 1.00 denotes a perfect agreement and o = 0.00
represents the total absence of agreement in a team, Table VI
reveals a moderate level of agreement in the six teams. In our
survey, merely team 3 and team 4 show a substantial level
of agreement in their perception of agile practices and agile
values. Moreover, team 1 and team 6 reveal a tendency towards
disagreement. Note that with moderate Krippendorff’s alphas
Scrum Masters (o = 0.437) as well as developers (o = 0.408)
demonstrate a higher level of agreement across all teams while
Product Owners show only a slight level of agreement (o =
0.238). This may be an indication that Product Owners, with
their role requiring more focus on their teams’ outcomes than
the application of agile best practices, have a tendency towards
more divergent perceptions. A slight increase in the level of
agreement in team 1 (o = 0.288) and team 6 (o = 0.313)
when excluding the teams’ product owners from the analysis
supports this notion.

Research Question 4: Do students in teams agree with
each other in their assessments of the executed process?
Answer: There are moderate levels of agreement in
teams. Teams differ: two show a tendency towards
disagreement, two share substantial agreement.

V. DEVELOPMENT DATA ANALYSIS

Regular surveys are effective tools for collecting the per-
ceptions of development team members regarding agile prac-
tices [56]. However, they do not allow insights into whether
these gathered assessments are rooted in actual project reality,
i.e., whether the perception of following a specific practice is
traceable in project data.

A. Development Data collection

Evaluating the development data produced during project
work can thus provide another dimension of analysis and takes
advantage of the fact that usage of development practices is
“inscribed into software artifacts” [57]. For every sprint and
development team, we collected the produced development
artifacts from the course’s git repository hosted at the col-
laboration platform GitHub. GitHub allows programmatically
extracting the stored data stored through comprehensive ap-
plication programming interfaces (APIs) [58]. The extracted
data points included version control system commits as well
as tickets from an issue tracker, which was used by teams to
manage user stories and the product and sprint backlogs. User
stories included labels (e.g., “Team A”) and assignments to
users which allowed connecting them to developers and teams
as well as title and body text, current and previous statuses
(e.g., open or closed) and associated timestamps. Extracted
commits contain the committing user ID, the diff (source code
line changes), a commit message describing the change and a
timestamp when check-in occurred.

B. Measurement Definition

Based on the background research described in Section IV-C
as well as related research on process metrics [59] and team
evaluation [60], [61], we defined a set of data measurements
related to the agile practices mentioned in the survey. As we
had intimate knowledge of development teams, their processes,
development tools, and their work environment during the
project, we could design measurements specifically for the
context, taking advantage of the available data sources. There-
fore, in order to use apply these measurements more generally,
adaptations to the different context will be necessary. However,
the development data measurements we employed require no
additional documentation overhead for developers, next to the
agile development best practices taught in the course, meaning
that necessary data is collected in a “non-intrusive” man-
ner [24]. Measurements are furthermore designed to be simple
for two main reasons: First, an analytics cold-start problem
exists [11], as the project environment is completely new
and no previous data is available to draw from, e.g., to base
sophisticated prediction models on. Second, all measurements
should be intuitively traceable to the underlying data points, in
order to allow comprehension of analysis results by non-expert
users and students without detailed explanation.

1) Test-Driven Development: Test-driven Development, as
one of the core principles of Extreme Programming, has
been around since the late ’90s [31]. As such, a number
of approaches and techniques to detect and rate the use of
TDD have been developed [29], [31], [62]. For this study,
we follow the approach of Buffardi and Edwards [29], which
quantifies the usage of TDD based on the measurement of
Test Statements per Solution Statement (TSSS). It relates the
number of programming statements in test code to the number
of statements in solution code, i.e., code which contains
business logic and makes the tests pass. The programming
language employed during our course is Ruby. The Ruby

style guide, which students are strongly encouraged to follow,
recommends employing a single programming statement per
line [63], therefore lines of code can be used as a proxy for
statement amount. Furthermore, the chosen web development
framework Ruby on Rails, through the idea of “convention over
configuration” [64], mandates a strong separation between test,
application, configuration and glue code in projects; they all
reside in specific directories. While business logic is contained
in an app/ folder, test files are included in a separate
directory. Using commit data, this allows calculating the ratio
of changed lines (the sum of added, modified and deleted lines)
of test and implementation code for every developer in a sprint
as a measure of TDD practice application.

Measurement RTA: Ratio of line changes in Test
code to line changes in Application code

2) Collective Code Ownership: Recent research on (col-
lective) code ownership has proposed approaches of assigning
ownership of a specific software component to individuals or
groups of developers [65], [66]. A contributor’s proportion of
ownership concerning a specific software component is defined
as the ratio of commits of the contributor relative to the total
number of commits involving that component [66]. However,
our focus in this study lies on the individual contributions of
development team members to the practice of CCO for a par-
ticular given time frame, i.e., a Scrum sprint. As development
iterations are relatively short, ownership of particular software
components varies strongly between these time frames. For a
Scrum sprint, therefore, we compute a proxy for an individual
developer’s contribution to the concept of CCO in the team
as the number of unique files that were edited, identified by
their commit timestamps.

Measurement UFE: Amount of Unique Files
Edited by a developer in a sprint

3) Last-Minute Commits: Performing required work mostly
close to a looming deadline, as is often the case in group
collaborations, goes counter to the agile idea of maintaining a
“sustainable pace” [34]. Tutors communicated that students
procrastinated [67] as somewhat expected in group work,
reporting that it was not unusual to see developers still coding
during the sprint review meeting to maybe still fix a bug or fin-
ish a user story. As tutors were available at all Scrum meetings
during project work, we were aware of the exact times that
team meetings took place and when teams started and finished
sprints. With this information, we extracted commits from the
code repository for every developer that were made “at the last
minute”, i.e., 12 hours before the closing of the sprint, usually
defined by the sprint review meeting. We then computed the
ratio of a developer’s last-minute commits relative to the total
number of commits made by the developer in the sprint.

Measurement LMC: Percentage of Last-Minute
Commits within 12 hours before a team’s sprint
review meeting

4) Average LOC change: 1t is in the nature of agile develop-
ment to require code and software systems to evolve over time
and over development iterations due to requirement changes,
code optimization or security and reliability fixes. The term
code churn has been used to describe a quantization of the
amount of code change taking place in a particular software
over time. It can be extracted from the VCS’s change history
to compute the required line of code (LOC) changes made by
a developer to create a new version of the software from the
previous version. These differences form the basis of churn
measures. The more churn there is, i.e., the more files change,
the more likely it is that defects will be introduced [68]. In this
study, we employ a modified version of the “LinesChanged”
metric used by Shin et al. [69] in that we compute the
accumulated number of source code lines changed in a sprint
by a developer instead of since the creation of a file. In modern
VCS lines can be marked as added, changed, or deleted. In
git, line modifications are recorded as a deletion followed by
an insertion of the modified content. The average LOC change
per commit is then computed by summing all insertions and
deletions of a developer’s commits in a sprint, divided by total
amount of that developer’s sprint commits.

Measurement ALC: Average Line of code
Changes per commit by a developer in a sprint

5) Simultaneous User Stories: ldeally, developers minimize
the number of user stories being worked on simultaneously, by
keeping as few tasks open as possible [70]. This helps reduce
error rates and variability [47] and avoids integration problems
and missed deadlines at the end of the sprint [70]. Gauging
whether multiple stories were being worked on simultaneously
requires information on the code changes necessary for imple-
menting a story. As these two types of information are stored
in separate systems, i.e., the VCS and the issue tracker, they
need to be connected for analysis. This connection is enabled
by the development best practice of linking commits to user
stories via their issue tracker number in commit messages,
e.g., “Rename class; Fixes #123”. This convention can provide
additional information needed to understand the change and
can be used to interact with the issue tracker, which parses
commit messages for keywords [71]. We extracted the men-
tions of user story identifiers from the version control system
for every developer and sprint. The amount of “interweaving”
ticket mentions, i.e., a series of commits referencing issue A,
then issue B, and then A again, was extremely low. Post hoc
interviews revealed that tagging was not viewed as critical by
developers and was often forgotten. However, the problem of
too many open tasks per developer naturally only occurs if a
developer worked on multiple stories during a sprint; if only
one story is mentioned in a developer’s commits there is no
problem. As 38% of developers referenced no or only a single
ticket identifier during a sprint (median 1, see Table VII), we
focused on this aspect. The higher the amount of mentioned
unique user story identifiers, the higher the chance that too
much work was started at the same time.

Measurement UUS: Amount of Unique User
Story identifiers in commit messages

6) Code Reviews: Code reviews as part of modern code
review procedures using GitHub are facilitated through com-
ments on Pull Requests (PR) [50]. Comments help spread
knowledge within teams and can focus on individual lines of
code or code fragments as well as overall design decisions.
These techniques are taught to students during the course.
Due to the wide variety of possible feedback that can be
given using natural language, measuring the quality of code
review comments without human intervention is an ongoing
challenge. However, our data set of extracted PR comments
showed two main clusters of developers: those that did not
leave any comments in a sprint and those that left two or
more. Developers who did not comment at all are unlikely to
have had an impact of the code review process, whereas those
developers who commented freely were much more helpful.
We rely on the number of comments to a PR by a developer to
measure the intensity of discussion and developer involvement.

Measurement PRC: Amount of Pull Request
Comments made by a developer in a sprint

C. Development Data Analysis Results

Table VII shows descriptive statistics of the data collected
using the six presented development data measures in the
examined software engineering course.

TABLE VII
DESCRIPTIVE STATISTICS OF DEVELOPMENT DATA MEASURES

RTA UFE LMC ALC UusS PRC
Valid 121.0 168.0 124.0 1240 168.0 168.0
Missing 47.0 0.0 44.0 44.0 0.0 0.0
Mean 1.7 12.8 0.8 38.4 1.4 6.7
Median 0.5 9.0 0.9 27.3 1.0 1.0
Stdev 5.7 15.4 0.3 40.8 1.5 12.0
Variance 31.9 235.9 0.0 1661.0 22 1428
Skewness 7.1 2.4 -1.2 3.00 1.29 2.67
Std. Error 0.2 0.2 0.2 0.2 0.2 0.2
Skewness

Figure 5 shows histograms including density estimations
of the data produced by the six development data measures.
These follow previous software engineering findings, espe-
cially in an education context. The vast majority of developers
changed more application code than they modified test code in
a sprint (RTA). Similarly, we identified more developers who
edited few unique files in a sprint, between 0 and 20, than
developers who edited more than that (UFE). In accordance
with common student teamwork dynamic, many more commits
were made to the version control system towards the end of the
sprint than were made towards the beginning (LMC). Devel-
opers had followed best practices and had made mostly small
and medium-sized commits, with most commits containing up
to 50 changed lines of code (ALC). In line with common
issues in software engineering courses was also the fact, that
most developers left 10 or fewer comments on Pull Requests

Density
Density

20 40 60 80 100

(L

T
50 100 200 300
ALC

UDDDE__
UUS

Fig. 5. Histograms of development data measurement results.

10 20 40 50 60

MméH
\N

10 20 30 40 50 60 TO

Density
Density

Density
S PWE O

[elelelelele]e]

Frequency

helping other students or reviewing code (PRC). Lastly, too
few developers tagged commits with a corresponding issue id,
with most developers referencing no more than a single user
story per sprint (UUS).

D. Development Data Discussion

All six development data measures returned actionable re-
sults for the data collected in our software engineering course.

1) Gaining insights into student teams (RQ 5): The pre-
sented measurements represent consolidated observations of
the behavior of development teams concerning selected as-
pects. In addition to perceptions gathered through surveys, they
allow another perspective based on data.

Research Question 5: How can software development
artifacts be used to gain insights into student behavior
and the application of agile practices?

Answer: We present six measurements of agile devel-
opment practice application based on non-intrusively
collected project data, see Section V-B, which can be
compared over development iterations.

2) Survey answers and measurements (RQ6): In order to
evaluate, whether the perception of agile values and agile
practices are rooted in actual project reality, we repeat-
edly examined the corresponding relationships by calculating
Kendall’s Tau and tested its statistical significance by applying
Fisher’s exact test of independence. Kendall’s Tau and the
corresponding p-values in Table VIII show that two devel-
opment data measures had a significant relationship to survey
claim responses. There is a significant relationship between
QI regarding TDD and the RTA measurement (7 = —0.362,
p < .001). This indicates that course participants were able to
accurately self-assess their success in working in accordance
with TDD and that the RTA measurement captured the work
that was performed. Those students who self-assessed that
they had followed the test-driven approach during a sprint

TABLE VIII
MEASURES OF RELATIONSHIP BETWEEN SURVEY QUESTIONS Q1-Q9 AND
DEVELOPMENT DATA MEASURES.

Relationship ~ Kendalls-7 Z p-value

QI - RTA —0.361 —5.114 3.1e Twwx
Q2 - UFE —0.022 —0.332 0.740

Q5 - LMC —0.274 3.738 1.8e~dwwx
Q6 - ALC —0.074 —1.059 0.290

Q7 - UUS —0.052 —0.716 0.474

Q8 - PRC —0.110 —1.560 0.119

Fp < 05, ¥ p < 01, ** p < 001

also had a high ratio of test to application code line changes.
Furthermore, we found a significant relationship between Q5
regarding working shortly before sprint deadline and the
LMC measurement (7 = —0.274, p < .001). We conclude
that students were able to critically self-assess whether they
had worked mostly in a deadline-driven fashion, postponing
work until close to the deadline. This common behavior was
captured by the percentage of last-minute commits (LMC
measurement).

Research Question 6: What is the relationship between
perceptions of agile practices and the development data
measurements based on these?

Answer: There are two significant relationships: (i)
survey answers on TDD usage (Ql) and the RTA
measurement, (ii) survey answers on last-minute work
(Q5) and the LMC measurement.

VI. CONCLUSION

In this paper, we investigated software developers’ percep-
tions of agile practices in the context of an undergraduate
software engineering course. We developed a set of survey
claims concerning agile practice application to collect these
assessments and presented the results of the survey. We show
that the concepts of Collective Code Ownership, usage of the
version control system in line with agile ideas, and not working
at the last minute, correlated with high self-assessments of
agile value application. Furthermore, we developed a set
of six development data measures based on non-intrusively
collected software development artifacts, which allow insights
into team behaviors. We show that measurements regarding
Test-Driven-Development and last minute work correlate with
corresponding self-assessments. These findings highlight areas
where assumptions of project team work were validated as
well as those areas where perceptions of agile practices
and measurements diverged. These represent opportunities
for further investigation. In line with related research [24],
we consider translating development practices into workable
definitions and measures as one of the biggest challenges and
opportunities. By sharing our development data measurements
and their background in detail we hope to take another step
towards this goal.

[1]
[2

—

[3

[t

[4]

[5]

[6]

[7

—

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

G. M. Weinberg, The psychology of computer programming. Van
Nostrand Reinhold New York, 1971, vol. 29.

P. Devanbu, T. Zimmermann, and C. Bird, “Belief & evidence
in empirical software engineering,” in Proceedings of the 38th
International Conference on Software Engineering - ICSE ’16. New
York, New York, USA: ACM Press, 2016, pp. 108-119. [Online].
Available: https://doi.org/10.1145/2884781.2884812

P. Lenberg, R. Feldt, and L. G. Wallgren, “Behavioral software
engineering: A definition and systematic literature review,” Journal
of Systems and Software, vol. 107, pp. 15-37, sep 2015. [Online].
Available: https://doi.org/10.1016/j.jss.2015.04.084

I. Ajzen, “Nature and Operation of Attitudes,” Annual Review of
Psychology, vol. 52, no. 1, pp. 27-58, feb 2001. [Online]. Available:
https://doi.org/10.1146/annurev.psych.52.1.27

C. Bogart, C. Kistner, J. Herbsleb, and F. Thung, “How to break an api:
Cost negotiation and community values in three software ecosystems,”
in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2016.
New York, NY, USA: ACM, 2016, pp. 109-120. [Online]. Available:
https://doi.org/10.1145/2950290.2950325

K. Schwaber, “Scrum development process,” in Business Object Design
and Implementation. Springer, 1997, pp. 117-134.

VersionOne Inc., “The 11th Annual State of Agile Report,” VersionOne
Inc., Tech. Rep., 2017. [Online]. Available: https://explore.versionone.
com/state-of-agile/versionone- 1 1 th-annual-state- of-agile-report-2

K. Schwaber and J. Sutherland, “The Scrum Guide - The Definitive
Guide to Scrum: The Rules of the Game,” scrumguides.org,
Tech. Rep., 2017. [Online]. Available: http://scrumguides.org/docs/
scrumguide/v2017/2017-Scrum-Guide- US.pdf

M. Fowler and J. Highsmith, “The agile manifesto,” Software Develop-
ment, vol. 9, no. 8, pp. 28-35, 2001.

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M.
German, and D. Damian, “An in-depth study of the promises
and perils of mining GitHub,” Empirical Software Engineering,
vol. 21, no. 5, pp. 2035-2071, oct 2016. [Online]. Available:
https://doi.org/10.1007/s10664-015-9393-5

J. Guo, M. Rahimi, J. Cleland-Huang, A. Rasin, J. H. Hayes, and
M. Vierhauser, “Cold-start software analytics,” in Proceedings of the
13th International Workshop on Mining Software Repositories - MSR
’16. New York, New York, USA: ACM Press, 2016, pp. 142-153.
[Online]. Available: https://doi.org/10.1145/2901739.2901740

O. Dieste, N. Juristo, and M. D. Martinc, “Software industry
experiments: A systematic literature review,” in 2013 Ist International
Workshop on Conducting Empirical Studies in Industry (CESI). 1EEE,
may 2013, pp. 2-8. [Online]. Available: https://doi.org/10.1109/CESI.
2013.6618462

D. I. K. Sjoberg, J. E. Hannay, O. Hansen, V. By Kampenes,
A. Karahasanovic, N.-K. Liborg, and A. C. Rekdal, “A Survey
of Controlled Experiments in Software Engineering,” [EEE Trans.
Softw. Eng., vol. 31, no. 9, pp. 733-753, 2005. [Online]. Available:
https://doi.org/10.1109/TSE.2005.97

M. Paasivaara, J. Vanhanen, V. T. Heikkild, C. Lassenius, J. Itkonen,
and E. Laukkanen, “Do High and Low Performing Student Teams
Use Scrum Differently in Capstone Projects?” in Proceedings of
the 39th International Conference on Software Engineering: Software
Engineering and Education Track, ser. ICSE-SEET ’17. Piscataway,
NJ, USA: IEEE Press, 2017, pp. 146-149. [Online]. Available:
https://doi.org/10.1109/ICSE-SEET.2017.22

M. Kuutila, M. Mintyld, M. Claes, M. Elovainio, and B. Adams,
“Using Experience Sampling to link Software Repositories with
Emotions and Work Well-Being,” in Proceedings of the 12th
ACMY/IEEE International Symposium on Empirical Software Engineering
and Measurement, aug 2018, pp. 29:1-29:10. [Online]. Available:
https://doi.org/10.1145/3239235.3239245

B. C. Hardgrave, F. D. Davis, C. K. Riemenschneider, and K. Bradberry,
“Investigating Determinants of Software Developers’ Intentions to
Follow Methodologies,” Journal of Management Information Systems,
vol. 20, no. 1, . 123-151, jul 2003. [Online]. Available:
https://doi.org/10.1080/07421222.2003.11045751
C. Matthies, T. Kowark, and M. Uflacker, “Teaching Agile the Agile
Way Employing Self-Organizing Teams in a University Software
Engineering Course,” in American Society for Engineering Education

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

(36]

[37]

(ASEE) International Forum. New Orleans, Louisiana: ASEE, 2016.
[Online]. Available: https://peer.asee.org/27259

C. Rosen, B. Grawi, and E. Shihab, “Commit guru: analytics and risk
prediction of software commits,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering - ESEC/FSE 2015, ser.
ESEC/FSE 2015. New York, New York, USA: ACM Press, 2015, pp.
966-969. [Online]. Available: https://doi.org/10.1145/2786805.2803183
C. Matthies, R. Teusner, and G. Hesse, “Beyond Surveys: Analyzing
Software Development Artifacts to Assess Teaching Efforts,” in IEEE
Frontiers in Education Conference (FIE). 1EEE, 2018.

J. Feliciano, M.-A. Storey, and A. Zagalsky, “Student experiences using
GitHub in software engineering courses,” in Proceedings of the 38th
International Conference on Software Engineering Companion - ICSE
’16. New York, New York, USA: ACM Press, 2016, pp. 422-431.
[Online]. Available: https://doi.org/10.1145/2889160.2889195

C. Hsing and V. Gennarelli. (2018) 2018 GitHub Education
Classroom Report. [Online]. Available: https://education.github.com/
classroom-report/2018

V. Mahnic, “From Scrum to Kanban: Introducing Lean Principles to
a Software Engineering Capstone Course,” International Journal of
Engineering Education, vol. 31, no. 4, pp. 1106-1116, 2015.

R. Hoda, J. Noble, and S. Marshall, “Organizing self-organizing teams,”
in Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - ICSE ’10, vol. 1. New York, New
York, USA: ACM Press, 2010, p. 285. [Online]. Available: https:
//doi.org/10.1145/1806799.1806843

N. Zazworka, K. Stapel, E. Knauss, F. Shull, V. R. Basili, and
K. Schneider, “Are Developers Complying with the Process: An
XP Study,” in Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement -
ESEM ’10, ACM. New York, New York, USA: ACM Press, 2010,
p- 1. [Online]. Available: https://doi.org/10.1145/1852786.1852805

M. T. Sletholt, J. E. Hannay, D. Pfahl, and H. P. Langtangen, “What Do
We Know about Scientific Software Development’s Agile Practices?”
Computing in Science & Engineering, vol. 14, no. 2, pp. 24-37, mar
2012. [Online]. Available: https://doi.org/10.1109/MCSE.2011.113

T. Chow and D.-B. Cao, “A survey study of critical success
factors in agile software projects,” Journal of Systems and Software,
vol. 81, no. 6, pp. 961-971, 2008. [Online]. Available: https:
//doi.org/10.1016/].jss.2007.08.020

C. Matthies, T. Kowark, M. Uflacker, and H. Plattner, “Agile metrics
for a university software engineering course,” in IEEE Frontiers in
Education Conference (FIE). Erie, PA: 1IEEE, oct 2016, pp. 1-5.
[Online]. Available: https://doi.org/10.1109/FIE.2016.7757684

K. Beck, Test-driven development : by example. Boston: Addison-
Wesley Professional, 2003.

K. Buffardi and S. H. Edwards, “Impacts of Teaching Test-Driven Devel-
opment to Novice Programmers,” International Journal of Information
and Computer Science IJICS, vol. 1, no. 6, pp. 135-143, 2012.

P. Sampath, “Challenges in Teaching Test-Driven Development,” in I7X
2014, 5th annual conference of Computing and Information Technology
Research and Education New Zealand (CITRENZ2014), M. Lopez and
M. Verhaart, Eds., 2014.

L. Madeyski, Test-Driven Development: An Empirical Evaluation of
Agile Practice, 1st ed. Springer Publishing Company, Incorporated,
2010.

K. Beck and E. Gamma, Extreme Programming Explained: Embrace
Change. Addison-Wesley Professional, 2000.

B. Fitzgerald, G. Hartnett, and K. Conboy, “Customising agile
methods to software practices at Intel Shannon,” European Journal of
Information Systems, vol. 15, no. 2, pp. 200-213, apr 2006. [Online].
Available: https://doi.org/10.1057/palgrave.ejis.3000605

L. Lindstrom and R. Jeffries, “Extreme Programming and
Agile Software Development Methodologies,” Information Systems
Management, vol. 21, no. 3, pp. 41-52, jun 2004. [Online]. Available:
https://doi.org/10.1201/1078/44432.21.3.20040601/82476.7

M. Nordberg, “Managing code ownership,” IEEE Software, vol. 20,
no. 2, pp. 26-33, mar 2003. [Online]. Available: https://doi.org/10.
1109/MS.2003.1184163

M. Cohn, User Stories Applied: For Agile Software Development.
Addison-Wesley Professional, 2004.

M. I. Kamata and T. Tamai, “How Does Requirements Quality Relate to
Project Success or Failure?” in I5th IEEE International Requirements
Engineering Conference (RE 2007). 1EEE, oct 2007, pp. 69-78.
[Online]. Available: https://doi.org/10.1109/RE.2007.31

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

G. Lucassen, F. Dalpiaz, J. M. E. van der Werf, and S. Brinkkemper,
“Forging high-quality User Stories: Towards a discipline for Agile
Requirements,” in 2015 [EEE 23rd International Requirements
Engineering Conference (RE). 1EEE, aug 2015, pp. 126-135.
[Online]. Available: https://doi.org/10.1109/RE.2015.7320415

G. Lucassen, F. Dalpiaz, J. M. E. M. van der Werf, and S. Brinkkemper,
“The Use and Effectiveness of User Stories in Practice,” in Requirements
Engineering: Foundation for Software Quality, M. Daneva and O. Pastor,
Eds. Cham: Springer International Publishing, 2016, pp. 205-222.

B. Wake. (2003) INVEST in good stories, and SMART tasks.
Accessed: 2019-01-15. [Online]. Available: http://xp123.com/articles/
invest-in-good- stories-and- smart-tasks/

T. Sedano, P. Ralph, and C. Peraire, “Software Development Waste,”
in 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). 1EEE, may 2017, pp. 130-140. [Online].
Available: https://doi.org/10.1109/ICSE.2017.20

E. E. Yourdon, Death March: The Complete Software Developer’s Guide
to Surviving ”Mission Impossible” Projects, 1st ed. Upper Saddle River,
NJ, USA: Prentice Hall PTR, 1999.

J. Atwood. (2008) Check In Early, Check In Often. [Online]. Available:
http://blog.codinghorror.com/check-in-early-check-in-often/

S. Mandala and K. A. Gary, “Distributed Version Control for
Curricular Content Management,” in 2013 IEEE Frontiers in Education
Conference (FIE). 1EEE, oct 2013, pp. 802-804. [Online]. Available:
https://doi.org/10.1109/FIE.2013.6684936

R. Purushothaman and D. Perry, “Toward understanding the rhetoric
of small source code changes,” [EEE Transactions on Software
Engineering, vol. 31, no. 6, pp. 511-526, jun 2005. [Online]. Available:
https://doi.org/10.1109/TSE.2005.74

S. Robertson. (2018) Commit Often, Perfect Later, Publish Once:
Git Best Practices. Accessed: 2018-05-14. [Online]. Available:
http://sethrobertson.github.io/GitBestPractices/

P. Middleton and D. Joyce, “Lean Software Management: BBC
Worldwide Case Study,” I[EEE Transactions on Engineering
Management, vol. 59, no. 1, pp. 20-32, feb 2012. [Online].
Available: https://doi.org/10.1109/TEM.2010.2081675

P. Johnson, Hongbing Kou, J. Agustin, C. Chan, C. Moore, J. Miglani,
Shenyan Zhen, and W. Doane, “Beyond the Personal Software
Process: Metrics collection and analysis for the differently disciplined,”
in 25th International Conference on Software Engineering, 2003.
Proceedings., vol. 6. IEEE, 2003, pp. 641-646. [Online]. Available:
https://doi.org/10.1109/ICSE.2003.1201249

J. D. C. Little, “Little’s Law as Viewed on Its 50th Anniversary,”
Operations Research, vol. 59, no. 3, pp. 536-549, jun 2011. [Online].
Available: https://doi.org/10.1287/opre.1110.0940

A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in 2013 35th International Conference on
Software Engineering (ICSE). 1EEE, may 2013, pp. 712-721. [Online].
Available: https://doi.org/10.1109/ICSE.2013.6606617

B. Boehm and V. R. Basili, “Software Defect Reduction Top 10
List,” Computer, vol. 34, pp. 135-137, 2001. [Online]. Available:
https://doi.org/10.1109/2.962984

M. Kropp, A. Meier, and R. Biddle, “Teaching Agile Collaboration
Skills in the Classroom,” in 2016 IEEE 29th International Conference
on Software Engineering Education and Training (CSEET), no.
June 2018. IEEE, apr 2016, pp. 118-127. [Online]. Available:
https://doi.org/10.1109/CSEET.2016.27

M. R. Sheldon, M. J. Fillyaw, and W. D. Thompson, Nonparametric
Statistical Methods. Wiley Online Library, 1996, vol. 1, no. 4.

C. Matthies, T. Kowark, K. Richly, M. Uflacker, and H. Plattner,
“How surveys, tutors, and software help to assess Scrum adoption in
a classroom software engineering project,” in Proceedings of the 38th
International Conference on Software Engineering Companion (ICSE).
New York, New York, USA: ACM Press, 2016, pp. 313-322. [Online].
Available: https://doi.org/10.1145/2889160.2889182

A. F. Hayes and K. Krippendorff, “Answering the call for a standard
reliability measure for coding data,” Communication methods and mea-
sures, vol. 1, no. 1, pp. 77-89, 2007.

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

M. Kropp, A. Meier, C. Anslow, and R. Biddle, “Satisfaction, Practices,
and Influences in Agile Software Development,” in Proceedings of
the 22nd International Conference on Evaluation and Assessment
in Software Engineering 2018 - EASE’IS8. New York, New
York, USA: ACM Press, 2018, pp. 112-121. [Online]. Available:

https://doi.org/10.1145/3210459.3210470
C. de Souza, J. Froehlich, and P. Dourish, “Seeking the Source:

Software Source Code as a Social and Technical Artifact,” in
Proceedings of the 2005 international ACM SIGGROUP conference
on Supporting group work - GROUP ’05, ACM. New York,
New York, USA: ACM Press, 2005, p. 197. [Online]. Available:
https://doi.org/10.1145/1099203.1099239

GitHub Inc. (2019) GitHub Developer: REST API v3 Overview.
Accessed: 2019-02-01. [Online]. Available: https://developer.github.
com/v3/

F. Rahman and P. Devanbu, “How, and Why, Process Metrics Are
Better,” in Proceedings of the 2013 International Conference on Software
Engineering, ser. ICSE *13. Piscataway, NJ, USA: IEEE Press, 2013,
pp. 432-441.

A. Ju, E. Glassman, and A. Fox, “Teamscope: Scalable Team Evaluation
via Automated Metric Mining for Communication, Organization,
Execution, and Evolution,” in Proceedings of the Fourth (2017) ACM
Conference on Learning @ Scale - L@S ’17. New York, New
York, USA: ACM Press, 2017, pp. 249-252. [Online]. Available:
https://doi.org/10.1145/3051457.3053997

C. K. I. C. Ibrahim, S. B. Costello, and S. Wilkinson, “Establishment
of Quantitative Measures for Team Integration Assessment in Alliance
Projects,” Journal of Management in Engineering, vol. 31, no. 5,
p. 04014075, sep 2015. [Online]. Available: https://doi.org/10.1061/
(ASCE)ME.1943-5479.0000318

P. M. Johnson and H. Kou, “Automated Recognition of Test-
Driven Development with Zorro,” in AGILE 2007 (AGILE 2007),
vol. 7, Citeseer. IEEE, aug 2007, pp. 15-25. [Online]. Available:
https://doi.org/10.1109/AGILE.2007.16

Ruby style guide contributors. (2019) ruby-style-guide: A community-
driven Ruby coding style guide. Accessed: 2019-02-14. [Online].
Available: https://github.com/rubocop-hq/ruby-style-guide

I. P. Vuksanovic and B. Sudarevic, “Use of web application frameworks
in the development of small applications,” 2011 Proceedings of the 34th
International Convention MIPRO, no. November, pp. 458-462, 2011.
M. Greiler, K. Herzig, and J. Czerwonka, “Code Ownership and
Software Quality: A Replication Study,” in 2015 [EEE/ACM 12th
Working Conference on Mining Software Repositories, ser. MSR ’15.
Piscataway, NJ, USA: IEEE, may 2015, pp. 2-12. [Online]. Available:
https://doi.org/10.1109/MSR.2015.8

C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t touch
my code!” in Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software engineering
- SIGSOFT/FSE ’11. New York, New York, USA: ACM Press, 2011,
p. 4. [Online]. Available: https://doi.org/10.1145/2025113.2025119

D. Ariely and K. Wertenbroch, “Procrastination, deadlines, and perfor-
mance: self-control by precommitment.” Psychological science, vol. 13
3, pp. 219-224, 2002.

N. Nagappan and T. Ball, “Use of relative code churn measures to
predict system defect density,” in Proceedings of the 27th international
conference on Software engineering - ICSE 05, IEEE. New York,
New York, USA: ACM Press, 2005, p. 284. [Online]. Available:
https://doi.org/10.1145/1062455.1062514

Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
Complexity, Code Churn, and Developer Activity Metrics as
Indicators of Software Vulnerabilities,” IEEE Transactions on Software
Engineering, vol. 37, no. 6, pp. 772-787, nov 2011. [Online]. Available:
https://doi.org/10.1109/TSE.2010.81

J. Sutherland and K. Schwaber. (2007) The Scrum Papers : Nuts
, Bolts , and Origins of an Agile Process. [Online]. Available:
http://jeffsutherland.com/ScrumPapers.pdf

GitHub Inc. (2019) GitHub Help: Closing issues using keywords.
Accessed: 2019-02-01. [Online]. Available: https://help.github.com/
articles/closing-issues-using-keywords/

