
Order-Independent Constraint-Based Causal Structure Learning
for Gaussian Distribution Models using GPUs

Christopher Schmidt
Hasso Plattner Institute
Potsdam, Germany

christopher.schmidt@hpi.de

Johannes Huegle
Hasso Plattner Institute
Potsdam, Germany

johannes.huegle@hpi.de

Matthias Uflacker
Hasso Plattner Institute
Potsdam, Germany

matthias.uflacker@hpi.de

ABSTRACT
Learning the causal structures in high-dimensional datasets allows
deriving advanced insights from observational data, thus creating
the potential for new applications. One crucial limitation of state-
of-the-art methods for learning causal relationships, such as the PC
algorithm, is their long execution time. While, in the worst case, the
execution time is exponential to the dimension of a given dataset,
it is polynomial if the underlying causal structures are sparse. To
address the long execution time, parallelized extensions of the algo-
rithm have been developed addressing the Central Processing Unit
(CPU) as the primary execution device. While modern multicore
CPUs expose a decent level of parallelism, coprocessors, such as
Graphics Processing Units (GPUs), are specifically designed to pro-
cess thousands of data points in parallel, providing superior parallel
processing capabilities compared to CPUs.
In our work, we leverage the parallel processing power of GPUs
to address the drawback of the long execution time of the PC algo-
rithm and develop an efficient GPU-accelerated implementation for
Gaussian distribution models. Based on an experimental evaluation
of various high-dimensional real-world gene expression datasets,
we show that our GPU-accelerated implementation outperforms
existing CPU-based versions, by factors up to 700.

CCS CONCEPTS
•Mathematics of computing→ Causal networks; • Comput-
ing methodologies → Machine learning approaches; Learn-
ing in probabilistic graphical models; Parallel algorithms;

KEYWORDS
GPU-Acceleration, Parallelization, PC algorithm, Causal Inference,
Conditional Independence Testing, Gaussian Distribution Model,
Probabilistic Statistics

ACM Reference Format:
Christopher Schmidt, Johannes Huegle, and Matthias Uflacker. 2018. Order-
Independent Constraint-Based Causal Structure Learning for Gaussian Dis-
tribution Models using GPUs. In SSDBM ’18: 30th International Conference

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6505-5/18/07. . . $15.00
https://doi.org/10.1145/3221269.3221292

on Scientific and Statistical Database Management, July 9–11, 2018, Bozen-
Bolzano, Italy. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3221269.3221292

1 INTRODUCTION
Deriving knowledge from observational data is an active field of
research in statistics and data mining. Understanding the rela-
tionships between observed variables in complex systems enables
new insights and is of particular interest in the context of high-
dimensional settings such as in personalized medicine or Internet
of Things (IoT). For example, in genetic research the construction
of gene regulatory networks inferred from gene expression data is
of major importance. As gene regulatory networks can be seen as
a practical embodiment of systems biology, they allow for solving
a number of different biological and biomedical problems, e.g., for
drug design or diagnostics [42]. In the context of IoT, the appli-
cation of sensors results in an increased size and complexity of
data sets collected from manufacturing processes. The derivation
of causal structures enables the root cause analysis of errors in
manufacturing processes [30].

Due to the work of Judea Pearl [38] and Spirtes et al. [47], the
notion of causality has grown from a nebulous concept into a
mathematical theory based on the probabilistic graphical modeling.
Constraint-based algorithms for learning the underlying causal
structure, e.g., the PC algorithm [48], use conditional independence
(CI) tests on observational data to derive an undirected skeleton of
the causal relationships. Building on this skeleton, the algorithms
determine the orientation of the detected relationships in order to
construct a causal graphical model. In this graphical model directed
edges represent the causal relationships between the observed vari-
ables, depicted as vertices.

The distribution of the observed variables directly determines
the selection of the appropriate CI tests [12]. In the context of
IoT and genetic research the multivariate normal distribution is
an often considered distribution model of the observed variables,
e.g., see [25, 30, 42]. The corresponding CI tests are based on the
partial correlations of the involved variables. In the worst case,
the computational complexity of the algorithm is exponential with
regard to the number of variables, which hinders its application
in practice. However, even the polynomial complexity for sparse
graphs introduces performance issues for the application in the
context of high-dimensional datasets [20].

To address the long execution time, we investigate the use of
GPUs for constraint-based causal structure learning in the context
of Gaussian distribution models. GPUs have been proven to be
suitable execution devices for computationally intensive machine

Accepted at SSDBM.
The final authenticated version is available online at https://dx.doi.org/10.1145/3221269.3221292

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Christopher Schmidt, Johannes Huegle, and Matthias Uflacker

learning algorithms, e.g., deep learning [18] or enterprise simula-
tions [45]. Current devices, such as the NVIDIA Tesla V100 GPU,
reach a peak performance of up to 14 TFLOPS, are equipped with
16 GB of on-chip High Bandwidth Memory (HBM) and outperform
CPUs for certain machine learning tasks [36]. Achieving the peak
performance of the device requires the adaption of the algorithm to
match the Single Instruction Multiple Threads (SIMT) [24] execu-
tion model of a GPU. Our goal is to harness the parallel processing
capabilities of the GPU to address the PC algorithm’s long execu-
tion time for high-dimensional datasets. In particular, we target the
skeleton discovery of the constraint-based causal structure learning
algorithms. Our work builds upon the order-independent version of
the PC algorithm that was introduced by Colombo et al. [9], the so-
called PC-stable algorithm. On the basis of an underlying Gaussian
distribution model we develop a GPU-accelerated implementation
to process the first two levels of the constraint-based discovery
algorithm.

Our contributions are the following:

• We examine real-world gene expression datasets with regard
to the number of tests per level of the skeleton discovery
within the PC-stable algorithm to determine performance
critical parts.
• We develop a GPU-accelerated version for level 0 and level
1 of the skeleton discovery.
• We compare our GPU-accelerated implementation with the
standard PC-stable algorithm’s implementation executed on
a CPU to demonstrate the performance benefits of a GPU.

The remainder of the paper is organized as follows. In Section 2
we provide preliminary information of causal graphical models
and the Gaussian distribution model. This allows to introduce algo-
rithms for constraint-based causal structure learning in Section 3.
We investigate real-world gene expression datasets to show chal-
lenges in the application of the PC-stable algorithm in Section 4.
Using these findings, we present our GPU-accelerated version of
the skeleton discovery based on the Gaussian distribution model in
Section 5 and provide an experimental evaluation in Section 6. We
discuss related work in Section 7, summarize our work, and give
an outlook in Section 8.

2 PRELIMINARIES
In this section, we introduce some necessary terminology in the
context of causal graphical models and background information
about the Gaussian distribution assumption.

2.1 Causal Graphical Model
Let G = (V,E) be a graph consisting of a finite set of N vertices
V = (V1, . . . ,VN), each representing the observed variables Vi ,
i = 1, . . . ,N , and a set of edges E ⊆ V×V. An edge (Vi ,Vj) ∈ E
is called directed, i.e., Vi → Vj , if (Vi ,Vj) ∈ E but (Vj ,Vi) ! E. If
both (Vi ,Vj) ∈ E and (Vj ,Vi) ∈ E the edge is called undirected, i.e.,
Vi −Vj .

In this context, two vertices Vi and Vj , Vi ,Vj ∈ E, are called
adjacent if there is an undirected edge Vi −Vj . The adjacency set
adj (G,Vi) of the vertex Vi ∈ V in G are all vertices Vj ∈ V that are
directly connected to Vi by an edge.

A graph G where all edges E are directed and G does not contain
any cycle is a Directed Acyclic Graph (DAG). In the framework
of causal inference, a directed edge Vi → Vj of a DAG represents
a direct causal relationship of Vi to Vj [38, 48]. Moreover, a DAG
entails information about the conditional independencies of the
vertices via the d-separation criterion [38]. In this context, two
variables Vi ,Vj ∈ V are conditionally independent given a set S ⊂
V \{Vi ,Vj } if and only if the vertices Vi and Vi are d-separated
by the set S. A distribution P of the variable set V1, . . . ,VN that
satisfies the above condition is called faithful. It is well known, that
several DAGs can describe exactly the same CI information and
form a Markov equivalent class [3]. Two Markov equivalent DAGs
have the same skeleton C, i.e., the undirected version of the DAGs,
and the same v-structures. V-structures are triples (Vi ,Vj ,Vk) with
directed edges Vi → Vj and Vk → Vj for not adjacent vertices Vi
and Vk . Moreover, the corresponding Markov equivalent class can
be described uniquely by a Complete Partially Directed Acyclic
Graph (CPDAG) [8]. A CPDAG is a partially directed acyclic graph
where all DAGs in the Markov equivalence class incorporate the
same directed edges, and there exist two DAGs that incorporate
the two directed versions of every undirected edge Vi −Vj in the
Markov equivalence class.

Hence, the focus lies on the estimation of the equivalence class
of the DAG G based on the corresponding probability distribution
P . In particular, if P is faithful with respect to G, we have the case
that

there is an edge Vi −Vj in the skeleton of G
⇔ Vi , Vj are dependent given all S ⊂ V \{Vi ,Vj },

(1)

see [48]. Hence, the examination of the CI information of the ob-
served variablesV1, . . . ,VN allow for the estimation of the skeleton
C of the corresponding DAG G. All constraint-based algorithms for
causal structure learning share the estimation of the skeleton by an
adjacency search of the involved variables as a common first step,
see Section 3.1. The extension of the skeleton to the equivalence
class of the DAG G can be done by the repeated application of
deterministic orientation rules on the result of the first part, e.g.,
see [9, 16, 47].

2.2 Gaussian Distribution Model
In this work, we limit ourselves to the Gaussian case, where the
vertex setV = {V1, . . . ,VN } is multivariate normal distributed. Note,
that non-faithful multivariate normal distributions form a Lebesgue
null set in the space of distributions associated with the underlying
DAG G [32] such that we can assume faithfulness of our Gaussian
distribution model. Moreover, from standard statistical theory, e.g.
see [2], it follows that two variables Vi and Vj are independent
if and only if the correlation coefficient ρ (Vi ,Vj) is equal to zero.
Moreover, two variables Vi and Vj are conditionally independent
given the set S ⊂ V \{Vi ,Vj } if and only if the partial correlation
ρ (Vi ,Vj | S) between Vi and Vj given S is equal to zero [19, 51].

Thus, we estimate correlations and partial correlations of the
involved variables to obtain information about the independencies.
Given n observations the sample correlation coefficient ρ̂ (Vi ,Vj) of

Accepted at SSDBM.
The final authenticated version is available online at https://dx.doi.org/10.1145/3221269.3221292

Causal Structure Learning using GPUs SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

the variables Vi ,Vj ∈ V is given by

ρ̂ (Vi ,Vj) =

n
∑

s=1

(

V
(s)
i −Vi

) (

V
(s)
j −Vj

)

√

n
∑

s=1

(

V
(s)
i −Vi

)2
√

n
∑

s=1

(

V
(s)
j −Vj

)2
(2)

with the arithmetic meansVi , andVj of the corresponding variables
Vi , and Vj , i.e.,

Vi =
n

∑

s=1

V
(s)
i , Vj =

n
∑

s=1

V
(s)
j ,

where V
(s)
i , and V

(s)
j denotes the s-th entry of the variable Vi , and

Vj , respectively, e.g., see [22]. The estimation of the partial corre-
lation coefficient ρ (Vi ,Vj | S) can be efficiently derived via the in-
verse of the corresponding correlation matrix Cor(Vi ,Vj , S), where
Cor(Vi ,Vj , S)k,l is the sample correlation coefficient ρ̂ (Vk ,Vl) for
all Vk ,Vl ∈ S∪{Vi ,Vj } [51]. Given the corresponding correlation
matrix Cor(Vi ,Vj , S), the sample partial correlation coefficient can
then be expressed as

ρ̂ (Vi ,Vj | S) =
−ri, j
√
ri,ir j, j

, (3)

where ri, j = Cor(Vi ,Vj , S)
−1
i, j . Note, that when the determinant of

the correlation matrix is zero, we compute the pseudo-inverse using
the Moore-Penrose generalized matrix inverse [40].

For testing whether the (partial) correlation is zero or not, we
apply standard statistical hypothesis testing theory, e.g., see [23].
With ρ̂ (Vi ,Vj | S) = ρ̂ (Vi ,Vj) for S = ∅, i.e., the correlation case,
we apply Fisher’s z-transform on the sample (partial) correlation
coefficient

Z (Vi ,Vj | S) =
1

2
log

(

1 + ρ̂ (Vi ,Vj | S)
1 − ρ̂ (Vi ,Vj | S)

)

. (4)

On this basis, we calculate the corresponding p-value

p(Vi ,Vj | S) = 2
(

1 − Φ
(√

n − | S | − 3 !!
!
Z (Vi ,Vj | S)

!
!
!

))

, (5)

where Φ(·) denotes the cumulative distribution function of a stan-
dard normal distribution. Hence, given the significance level α , we
reject the null-hypothesis ρ̂ (Vi ,Vj | S) = 0 against the two sided
alternative ρ̂ (Vi ,Vj | S) " 0 if for the corresponding p-value it holds
that p(Vi ,Vj | S) ≤ α . Since we need to perform many CI tests, α
should not be interpreted as an overall significance level but as a
tuning parameter, where smaller values of α tend to derive sparser
graphs. Beside the possibility of optimizing a Bayesian Information
Criterion [26], and stability selection [33] for choosing α given
the true DAG, we are not aware of a fully satisfactory method in
real-world applications. Oftentimes, α = 0.01 is used as tuning
parameter for application, see e.g. [9].

3 CAUSAL STRUCTURE LEARNING
In this section, we introduce the concept of constraint-based causal
structure learning for estimating the CPDAG.

3.1 Constraint-Based Methods
As described in Section 2, one can use conditional independence
tests to obtain the skeleton C of the CPDAG. Following (1), a naive
strategy for learning the skeleton C would be to check the condi-
tional independencies of all vertices Vi ,Vj ∈ V given all possible
subsets S ⊆ V \{Vi ,Vj } [39]. Obviously, this would become compu-
tationally infeasible for a larger number of variables V1, . . . ,VN .

A much better approach is the PC algorithm by Spirtes et al. [48]
that starts from a complete, undirected graph, and is estimating
the skeleton C by recursively deleting edges based on the condi-
tional independencies given increasing separation sets based on
the adjacency structure. If the true DAG G is sparse, which is often
a reasonable assumption, this method decreases the exponential
complexity to a polynomial with respect to the number of ver-
tices [16]. The PC algorithm was designed under the assumption
of causal sufficiency, that is that there are no unmeasured common
causes and no selection variables In order to allow for latent and
selection variables, the FCI and RFCI algorithms were introduced
[10, 48]. These algorithms extend the adjacency search of the PC
algorithm through subsequently applied conditional independence
test because of the latent variables. In order to allow for directed
cyclic graphs under the assumption of causal sufficiency, another
extension of the original adjacency search of the PC algorithm is
the so called CCD-algorithm [43]. Since all these extensions share
the adjacency search of the PC algorithm as a common first step,
our improvements can be carried out directly.

The original version of the PC algorithm has shown to be de-
pending on the order of the variable set V1, . . . ,VN . Therefore, we
build our work upon the order-independent version of the PC al-
gorithm that was introduced by Colombo et al. [9], the so-called
PC-stable algorithm.

3.2 The PC-stable Algorithm
A sketch of the adjacency search, i.e. the first step of the PC-stable
algorithm, is given in Algorithm 1. Starting with a complete undi-
rected skeleton C the PC-stable algorithm uses CI-tests given an
increasing separation set S of adjacent vertices in order to subse-
quently thin out the skeleton C. Hence, we only need to query CI
tests of vertices Vi and Vj given separation sets S with size l = 0
up to the maximum size of the adjacency sets of the vertices in the
underlying DAG G, i.e., up to maxVi ∈V |adj (G,Vi) \ {Vj }| (see lines
8-16 in Algorithm 1). This makes the algorithm computationally
feasible even for a large number of variables, and allows for its
application even in high-dimensional settings [16].

For every level l = 0, . . . ,maxVi ∈V |adj (G,Vi)\{Vj }|we compute
and store the adjacency sets a(Vi) = adj (C,Vi) of variablesVi with
respect to the current skeleton C (see lines 4-6). Hence, at each
level l the algorithm records the edges that need to be removed, but
deletes these edges only when entering the next level l + 1. Note
that this allows for an order-independent implementation of the
original PC algorithm as proven by Colombo et al. [9].

First, for l = 0 all pairs of vertices Vi ,Vj ∈ V are tested for mar-
ginal independence given an empty separation set S = ∅. Therefore,
given an overall tuning parameter α we apply the independence
test derived in Subsection 2.2 and examine whether p(Vi ,Vj |∅) =
p(Vi ,Vj | S) ≤ α , or not. If the two variables Vi ,Vj are independent,

Accepted at SSDBM.
The final authenticated version is available online at https://dx.doi.org/10.1145/3221269.3221292

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Christopher Schmidt, Johannes Huegle, and Matthias Uflacker

Algorithm 1 Adjacency search of PC-stable algorithm [9]
Input: Vertex set V , correlation matrix Cor
Output: Estimated skeleton C, separation sets Sepset

1: Start with fully connected skeleton C and l = −1
2: repeat
3: l = l + 1
4: for all Variables Vi in C do
5: Let a(Vi) = adj (C,Vi);
6: end for
7: repeat
8: Select pairs (Vi ,Vj) adjacent in C with |a(Vi) \ {Vj }| ≥ l
9: repeat
10: Choose separation set S ⊆ a(Vi) \ {Vj } with | S | = l .
11: if p(Vi ,Vj | S) ≤ α then
12: Delete edge Vi −Vj from C;
13: Set Sepset(i, j) = Sepset(j, i) = S;
14: end if
15: until edge Vi −Vj is deleted in C
16: or all S ⊆ a(Vi) \ {Vj } with | S | = l have been chosen
17: until all adjacent vertices Vi , and Vj in C such that
18: |a(Vi) \ {Vj }| ≥ l have been considered
19: until each adjacent pair Vi ,Vj in C satisfy |a(Vi) \ {Vj }| ≥ l
20: return C, Sepset

the edge Vi − Vj is deleted from C and the empty set ∅ is saved
as separation set in Sepset(Vi ,Vj) and Sepset(Vj ,Vi) (see lines 11-
13). After all pairs of vertices have been considered, the algorithm
proceeds to the next step with l = 1.

When l = 1, the algorithm applies the CI-tests for verticesVi and
Vj that are still adjacent in the skeleton C. Therefore, we examine
whether p(Vi ,Vj | S) ≤ α given the separation set S ⊂ adj (C,Vi) \Vj
for subsets of size l = 1. Hence, if the variables Vi and Vj are found
to be conditionally independent given the corresponding separation
set S, the edge Vi −Vj is removed, and S is saved in Sepset(VI ,Vj)
and Sepset(Vj ,Vi). If all pairs of adjacent vertices Vi and Vj of the
current version of the skeleton C are considered, the algorithm
again increases l by one.

This process continues until l reaches the maximum size of
the adjacency sets of the vertices in the underlying DAG G. At
this point, the resulting skeleton C is then used as basis for the
application of deterministic orientation rules in order to extend C
to the corresponding CPDAG, e.g., see [9, 16, 47]

Note that Kalisch et al. [16] have proven the uniform consistency
of the PC algorithm in our Gaussian distributionmodel. This implies
that the algorithm consistently estimates the equivalence class of
the underlying DAG G as the sample size increases.

4 RUNTIME ANALYSIS OF THE PC
ALGORITHM

One limiting factor to the application of the PC algorithm in a
real-world scenario is its computational complexity, which is, in
the worst case, exponential to the number of variables V1, . . . ,VN
within the data, see Section 3. Hence, the number of CI tests con-
ducted during the skeleton discovery has the strongest impact on
the execution performance. While most CI tests come with a certain

complexity with respect to both the number of variables and the
number of observations, e.g., based on categorical data, CI tests
for multivariate normal data benefit from the use of the correla-
tions. In this particular case the observational data is processed
prior to the skeleton algorithm and the CI tests itself are based on
the pre-computed correlation matrix Cor(V1, . . . ,VN) as described
in Section 2. As the CI test for evaluating the conditional inde-
pendence of the variables Vi ,Vj ∈ V given a set S ⊆ V \{Vi ,Vj } is
based on the corresponding partial correlation ρ̂ (Vi ,Vj | S), it has a

computational complexity of O
(

!
!
!
{Vi ,Vj } ∪ S

!
!
!

3
)

.

In order to develop a parallel GPU-accelerated implementation
of the adjacency search of the PC algorithm (see Algorithm 1), we
conducted an investigation of several high-dimensional datasets
and counted the number of conducted tests per level l . We base
our investigation on gene expression datasets [14, 21, 31], which
have been the foundation for the evaluation of the Parallel-PC
algorithm by Le et al. [20].

Table 1: Characteristics of the gene expression datasets

Dataset | V | Observations | E |

NCI-60 1,190 47 530
MCC 1,380 88 643
BR51 1,592 50 478

S.aureus 2,810 160 2,058
S.cerevisiae 5,361 63 2,086

Characteristics of the high-dimensional datasets are described
in Table 1. They range from 1, 190 to 5, 361 variables. The number
of observations is noted, as it influences the acceptance of a CI
test. Hence, it has an impact on the number of detected edges
for the skeleton discovery, also shown in Table 1. As described in
Section 2, another criterion for the acceptance of a CI test and the
corresponding deletion of an edge in the graphical model is given
by the tuning parameter α . In our work, we follow Kalisch et al.
[16] and chose α = 0.01.

Table 2: Percentage of conditional independence (CI) tests in
skeleton discovery per level with tuning parameter α = 0.01

Dataset Total number Level 0 Level 1 Levels
of CI tests remaining

NCI-60 4,017,475 17.61% 82.16% 0.23%
MCC 21,950,296 4.34% 93.00% 2.66%
BR51 29,696,242 4.26% 95.61% 0.13%

S.aureus 170,430,911 2.32% 95.48% 2.20%
S.cerevisiae 69,321,855 20.73% 78.76% 0.51%

In Table 2, we depict the percentage of required CI tests per
level l and state the total number of CI tests for each dataset. It
becomes visible that most CI tests are conducted within level l = 1
and that, for all datasets, the second largest number of CI tests is
conducted within level l = 0. The number of CI tests within the
remaining levels reach at the most 2.66% of all conducted CI tests,

Accepted at SSDBM.
The final authenticated version is available online at https://dx.doi.org/10.1145/3221269.3221292

Causal Structure Learning using GPUs SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

e.g., for the MCC dataset. For all datasets the skeleton discovery
reaches a maximum depth of level 4. Looking at the dataset with
the highest number of dimensions, S.cerevisiae, 14, 367, 480 CI
tests are conducted in level 0, 54, 598, 391 CI tests in level 1 and the
remaining levels account for 355, 984 CI tests.

Since the computational complexity of the CI test for variables

Vi ,Vj ∈ E given S is O
(

!
!
!
{Vi ,Vj } ∪ S

!
!
!

3
)

, CI tests becomemore expen-

sive for separation sets in higher levels l . Therefore, taking only the
number of conducted CI tests into consideration is not sufficient in
order to determine the most time consuming part. Identifying this
spot allows us to address the most critical part in order to improve
the overall execution time of the PC algorithm.

Hence, we measure the execution time of an existing implemen-
tation of the PC algorithm. We choose the implementation provided
by the R-package pcalg [17], which runs on a CPU. For the mea-
surements we use the system and setup described in Section 6.

Table 3: Percentage of execution time in skeleton discovery
per level with tuning parameter α = 0.01

Dataset Execution Level 0 Level 1 Levels
time remaining

NCI-60 8.06 s 0.27% 98.96% 0.77%
MCC 59.39 s 0.05% 94.57% 5.38%
BR51 67.57 s 0.05% 99.57% 0.38%

S.aureus 1037.23 s 0.01% 98.03% 1.96%
S.cerevisiae 479.59 s 0.09% 99.28% 0.63%

The results of our experimental investigation are shown in Table
3. We depict the percentages of the execution time for level l = 0,
level l = 1 and all remaining levels l ≥ 2. The impact of the tests
within level l = 0 on the overall execution time of the skeleton
discovery is almost non-existent on all datasets. Looking at the
S.cerevisiae dataset it accounts for only 0.09% of the execution
time, although 20.73% of all tests were conducted in this level.
For the remaining levels 2 ≤ l ≤ 4 we see that these also only
have a small influence on the overall execution time. Compared
to the percentages of CI tests conducted within levels 2 ≤ l ≤ 4
an increase in their impact on the overall execution time becomes
visible. This is due to the increased cost for the computations within
higher levels l of the skeleton discovery. Level l = 1 dominates the
overall runtime for all investigated gene expression datasets. For
our GPU-accelerated version of the skeleton discovery, we will
therefore focus on the first two levels with l = 0, 1. Extending our
implementation to work for the remaining levels l ≥ 2 is part of
our future work.

5 GPU-ACCELERATED LEVEL 0 & 1
SKELETON DISCOVERY KERNELS

For the GPU-accelerated implementation of the first two levels
l = 0, 1 of the adjacency search in Algorithm 1 we use CUDA as the
parallel computing platform and programming model [34]. CUDA
allows us to reuse existing mathematical functions required for the
CI tests of variablesVi ,Vj given S. In particular, for the calculation of
the corresponding p-value p(Vi ,Vj | S), as shown in Equation 5, we

utilize the log1p() and normcdf() functions, from the CUDAMath
API [35]. We implement a separate kernel for Level 0 and Level 1,
as we require synchronization between the levels l = 0 and l = 1.
The calculations are based on the corresponding correlation matrix
Cor(Vi ,Vj , S), the adjacency set a(Vi) = adj (C,Vi), the number
of n, the tuning parameter α , and the number of variables N and
produce output containing the current version of the skeleton C,
the calculated p-values p(Vi ,Vj | S) and the vector of separation sets
Sepset, for all Vi with adjacent Vj and S ⊆ a(Vi) \ {Vj }.

For an efficient CUDA-based implementation GPU hardware
specific characteristics need to be considered. The processing of a
kernel follows the SIMT [24] execution model. Threads are orga-
nized in thread blocks, which are all executed on the same Streaming
Multiprocessor (SM). Within a thread block 32 threads are grouped
together into a warp executing the same instruction at the same
time. In case of conditional branches, different instructions may
be processed by threads within one warp, called warp divergence.
This leads to inefficiencies, as all threads process all conditional
branches. Note that only the correct result for a given thread and
its conditional branch is stored.

Besides the specific execution model, the GPU provides several
gigabytes of global memory, as well as some kilobytes of shared
memory. While global memory is shared between all thread blocks,
data within shared memory is only accessible within a thread block.
Shared memory is also used for caching, as it provides lower la-
tency and higher bandwidth than global memory. It is important
to access global memory of the GPU efficiently. Threads within a
warp should access global memory in a coalesced fashion to allow
for optimal usage of the available bandwidth. Therefore, for our
GPU-accelerated implementation of the two levels l = 0, 1 we need
to avoid warp divergence, use shared memory and aim for coalesced
memory accesses to global memory.

The kernel for Level 0 calculates the p-values p(Vi ,Vj | S) for all
variables Vi ,Vj ∈ V, given a separation set S of size 0. Hence, only
the correlation between the two variables tested is required, see
Section 2.2. To process the calculations for level l = 0 in parallel,
a separate thread is started on the GPU for each pair of variables
Vi ,Vj that has to be tested for conditional independence. Internally
each thread calculates the corresponding p-value using the equation
shown in Equation 5.

For level l = 1 the p-values p(Vi ,Vj | S) for the variables Vi ,Vj
are calculated for all adjacent separation sets S ⊆ a(Vi) \ {Vj } with
cardinality | S | = 1 based on the remaining edges in C.

Depending on the result from level l = 0, the number of tests
to be calculated within level l = 1 varies, as variables have already
been tested as conditional independent. For our CUDA-based kernel
implementation we considered the following strategies to compute
the tests for level l = 1 in parallel.

In a first version, the kernel is started with a thread for each test
that has to be calculated, not considering any knowledge about
removed edges from level l = 0. Prior to the calculation of the
p-value p(Vi ,Vj | S) the thread checks, whether it tests an existing
edge or not using the stored adjacency set a(Vi) = adj (C,Vi), and
stops in case the calculation is not necessary.

This approach requires to either store multiple candidates for
the separation set or to randomly chose an accepted candidate.
The first option leads to a larger memory footprint in the GPU’s

Accepted at SSDBM.
The final authenticated version is available online at https://dx.doi.org/10.1145/3221269.3221292

Accepted at SSDBM.
The final authenticated version is available online at https://dx.doi.org/10.1145/3221269.3221292

Accepted at SSDBM.
The final authenticated version is available online at https://dx.doi.org/10.1145/3221269.3221292

Accepted at SSDBM.
The final authenticated version is available online at https://dx.doi.org/10.1145/3221269.3221292

Causal Structure Learning using GPUs SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

is an active field of research. A lot of the work in this domain focuses
on accelerating machine learning algorithms [1, 6] or statistical
computations, e.g., calculating the correlation coefficients [4]. Of
particular interest for GPU-acceleration, are Deep Convolutional
Neural Networks Deep Learning [18], which operate on matrices.
Libraries, such as cuDNN [7] provide implementations to process
these matrices efficiently on a GPU. We see these approaches as an
inspiration for our work, to investigate the applicability of a GPU
for the learning phase of the PC algorithm, the skeleton discovery,
which is an example of a computationally expensive algorithm,
since it has a runtime exponential to the number of variables.

8 SUMMARY AND OUTLOOK
In our work, we present an extension of the PC-stable algorithm,
which utilizes the parallel processing capabilities of a GPU. Through
an investigation of real-world gene expression datasets, we argue
for the relevance of improving the performance of CI tests, consid-
ering Gaussian distribution model, within the levels l = 0, 1 of the
adjacency search of the PC algorithm. We discuss our CUDA-based
implementation of these two kernels and provide an evaluation
regarding the scalability of the implementation with regards to the
number of CI tests. For both cases, we include data transfer to the
GPU.While it has a significant overhead for level l = 0, its overhead
for level l = 1 is neglectable. Additionally, we compare our GPU-
accelerated implementation with an existing implementation from
the R-package pcalg, executed on the CPU. The measurements are
based on the real-world gene expression datasets, which motivate
our work, and show an improvement of factors up to 122 for level
0, up to 746 for level 1 and up to 729 for the combination of both,
including data transfer. Therefore, we conclude that the parallel pro-
cessing capabilities of a GPU are well suited to accelerate parts of
the PC algorithm, in order to improve its application for real-world
scenarios.

In the future, we aim to further investigate and improve the
performance of our implementation of the kernel for Level 0 and
Level 1. We want to examine if processing multiple CI tests within
a single thread can lead to performance improvements and increase
the achieved occupancy of the SMs. This could be realized by us-
ing shared memory and reducing the number of accesses to global
memory. Furthermore, a major goal in future work is an exten-
sion of our implementation to the remaining levels, and to provide
a complete GPU-accelerated skeleton discovery implementation.
Part of future work also needs to address the current limitation
to datasets that fit in the on-device memory of the GPU. On the
one hand it remains open to investigate the extension to multiple
GPUs, thus having more memory. On the other hand one could also
consider a strategy to split the graph into subgraphs, which fit in
the on-device memory and to process these sequentially.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-scale Machine
Learning. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI’16). USENIX Association, Berkeley, CA, USA,
265–283. http://dl.acm.org/citation.cfm?id=3026877.3026899

[2] H. Ahrens. 1975. Dempster, A. P.: Elements of Continuous Multivariate Analysis.
Addison-Wesley Publ. Co., Reading, Mass. 1969. XII, 388 S. Biometrische Zeitschrift
17, 7 (1975), 468–468. https://doi.org/10.1002/bimj.19750170714

[3] Steen A. Andersson, David Madigan, and Michael D. Perlman. 1997. A Charac-
terization of Markov Equivalence Classes for Acyclic Digraphs. The Annals of
Statistics 25, 2 (1997), 505–541. http://www.jstor.org/stable/2242556

[4] Joshua Buckner, Justin Wilson, Mark Seligman, Brian Athey, Stanley Watson, and
Fan Meng. 2010. The gputools package enables GPU computing in R. Bioinfor-
matics 26, 1 (Jan. 2010), 134–135. https://doi.org/10.1093/bioinformatics/btp608

[5] A. Cano, M. Gómez-Olmedo, and S. Moral. 2008. A Score Based Ranking of the
Edges for the PC Algorithm. In Proceedings of the Fourth European Workshop on
Probabilistic Graphical Models, Manfred Jaeger and Thomas D. Nielsen (Eds.).
41–48.

[6] Bryan Catanzaro, Narayanan Sundaram, and Kurt Keutzer. 2008. Fast Support
Vector Machine Training and Classification on Graphics Processors. In Proceed-
ings of the 25th International Conference on Machine Learning (ICML ’08). ACM,
New York, NY, USA, 104–111. https://doi.org/10.1145/1390156.1390170

[7] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN: Efficient Primitives
for Deep Learning. CoRR abs/1410.0759 (2014). arXiv:1410.0759 http://arxiv.org/
abs/1410.0759

[8] David Maxwell Chickering. 2002. Learning Equivalence Classes of Bayesian-
network Structures. J. Mach. Learn. Res. 2 (March 2002), 445–498. https://doi.
org/10.1162/153244302760200696

[9] Diego Colombo and Marloes H. Maathuis. 2014. Order-independent Constraint-
based Causal Structure Learning. J. Mach. Learn. Res. 15, 1 (Jan. 2014), 3741–3782.
http://dl.acm.org/citation.cfm?id=2627435.2750365

[10] Diego Colombo, Marloes H. Maathuis, Markus Kalisch, and Thomas S. Richard-
son. 2011. Learning High-dimensional DAGs with Latent and Selection Vari-
ables. In Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial
Intelligence (UAI’11). AUAI Press, Arlington, Virginia, United States, 850–850.
http://dl.acm.org/citation.cfm?id=3020548.3020648

[11] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An Industry-Standard
API for Shared-Memory Programming. IEEE Comput. Sci. Eng. 5, 1 (Jan. 1998),
46–55. https://doi.org/10.1109/99.660313

[12] A. P. Dawid. 1979. Conditional Independence in Statistical Theory. Journal of
the Royal Statistical Society. Series B (Methodological) 41, 1 (1979), 1–31. http:
//www.jstor.org/stable/2984718

[13] Dirk Eddelbuettel and Conrad Sanderson. 2014. RcppArmadillo: Accelerating R
with High-performance C++ Linear Algebra. Comput. Stat. Data Anal. 71 (March
2014), 1054–1063. https://doi.org/10.1016/j.csda.2013.02.005

[14] Marloes H Maathuis, Diego Colombo, Markus Kalisch, and Peter Bühlmann. 2010.
Predicting causal effects in large-scale systems from observational data. 7 (04
2010), 247–8. https://doi.org/10.1038/nmeth0410-247

[15] J. Abellán and M. Gómez-Olmedo and S. Moral. 2006. Some Variations on the
PC Algorithm. In Proceedings of the Third European Workshop on Probabilistic
Graphical Models (PGM’ 06). 1–8.

[16] Markus Kalisch and Peter Bühlmann. 2007. Estimating High-Dimensional Di-
rected Acyclic Graphs with the PC-Algorithm. J. Mach. Learn. Res. 8 (May 2007),
613–636. http://dl.acm.org/citation.cfm?id=1248659.1248681

[17] Markus Kalisch, Martin Mächler, Diego Colombo, Marloes H. Maathuis, and
Peter Bühlmann. 2012. Causal Inference Using Graphical Models with the R
Package pcalg. Journal of Statistical Software, Articles 47, 11 (2012), 1–26. https:
//doi.org/10.18637/jss.v047.i11

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classi-
fication with Deep Convolutional Neural Networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume 1
(NIPS’12). Curran Associates Inc., USA, 1097–1105. http://dl.acm.org/citation.
cfm?id=2999134.2999257

[19] Steffen L Lauritzen. 1996. Graphical models. Vol. 17. Clarendon Press.
[20] Thuc Le, Tao Hoang, Jiuyong Li, Lin Liu, Huawen Liu, and Shu Hu. 2015. A

fast PC algorithm for high dimensional causal discovery with multi-core PCs.
IEEE/ACM Transactions on Computational Biology and Bioinformatics (02 2015).

[21] Thuc Duy Le, Lin Liu, Junpeng Zhang, Bing Liu, and Jiuyong Li. 2015. From
miRNA regulation to miRNA-TF co-regulation: computational approaches and
challenges. Briefings in Bioinformatics 16, 3 (2015), 475–496. https://doi.org/10.
1093/bib/bbu023

Accepted at SSDBM.
The final authenticated version is available online at https://dx.doi.org/10.1145/3221269.3221292

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Christopher Schmidt, Johannes Huegle, and Matthias Uflacker

[22] Joseph Lee Rodgers and W Alan Nicewander. 1988. Thirteen Ways to Look
at the Correlation Coefficient. The American Statistician 42, 1 (1988), 59–66.
https://doi.org/10.1080/00031305.1988.10475524

[23] Erich L Lehmann and Joseph P Romano. 2006. Testing statistical hypotheses.
Springer Science & Business Media.

[24] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. 2008. NVIDIA
Tesla: A Unified Graphics and Computing Architecture. IEEE Micro 28, 2 (March
2008), 39–55. https://doi.org/10.1109/MM.2008.31

[25] Ren C Luo, M-H Lin, and Ralph S Scherp. 1988. Dynamic multi-sensor data fusion
system for intelligent robots. IEEE Journal on Robotics and Automation 4, 4 (Aug
1988), 386–396. https://doi.org/10.1109/56.802

[26] Marloes H Maathuis, Markus Kalisch, and Peter Bühlmann. 2009. Estimating
high-dimensional intervention effects from observational data. The Annals of
Statistics 37, 6A (12 2009), 3133–3164. https://doi.org/10.1214/09-AOS685

[27] Anders L. Madsen, Frank Jensen, Antonio Salmerón, Martin Karlsen, Helge
Langseth, and Thomas D. Nielsen. 2014. ANewMethod for Vertical Parallelisation
of TAN Learning Based on Balanced Incomplete Block Designs. In Probabilistic
Graphical Models, Linda C. van der Gaag and Ad J. Feelders (Eds.). Springer
International Publishing, Cham, 302–317.

[28] Anders L. Madsen, Frank Jensen, Antonio Salmerón, Helge Langseth, and
Thomas D. Nielsen. 2015. Parallelisation of the PC Algorithm. In Proceedings of
the 16th Conference of the Spanish Association for Artificial Intelligence on Advances
in Artificial Intelligence - Volume 9422. Springer-Verlag New York, Inc., New York,
NY, USA, 14–24. https://doi.org/10.1007/978-3-319-24598-0_2

[29] Anders L. Madsen, Frank Jensen, Antonio Salmerón, Helge Langseth, and
Thomas D. Nielsen. 2017. A Parallel Algorithm for Bayesian Network Struc-
ture Learning from Large Data Sets. Know.-Based Syst. 117, C (Feb. 2017), 46–55.
https://doi.org/10.1016/j.knosys.2016.07.031

[30] Katerina Marazopoulou, Rumi Ghosh, Prasanth Lade, and David Jensen. 2016.
Causal Discovery for Manufacturing Domains. CoRR abs/1605.04056 (2016).
arXiv:1605.04056 http://arxiv.org/abs/1605.04056

[31] Daniel Marbach, James C. Costello, Robert Küffner, Nicole M. Vega, Robert J.
Prill, Diogo M. Camacho, Kyle R. Allison, Manolis Kellis, James J. Collins, Andrej
Aderhold, Gustavo Stolovitzky, and et al. 2012. Wisdom of crowds for robust
gene network inference. Nature Methods 9, 8 (8 2012), 796–804.

[32] Christopher Meek. 1995. Strong Completeness and Faithfulness in Bayesian
Networks. In Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence (UAI’95). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
411–418. http://dl.acm.org/citation.cfm?id=2074158.2074205

[33] Nicolai Meinshausen and Peter Bühlmann. 2010. Stability selection. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 72, 4 (2010), 417–473.
http://dx.doi.org/10.1111/j.1467-9868.2010.00740.x

[34] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008. Scalable
Parallel Programming with CUDA. , Article 16 (2008), 14 pages. https://doi.org/
10.1145/1401132.1401152

[35] NVIDIA Corporation. 2017. CUDA Math API. Retrieved March 10, 2018 from
http://docs.nvidia.com/cuda/pdf/CUDA_Math_API.pdf

[36] NVIDIA Corporation. 2017. NVIDIA TESLA V100 GPU ACCELERA-
TOR. Retrieved February 12, 2018 from http://www.nvidia.com/content/PDF/
Volta-Datasheet.pdf

[37] NVIDIA Corporation. 2018. Profiler User’s Guide. Retrieved March 10, 2018
from http://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf

[38] Judea Pearl. 2009. Causality: Models, Reasoning and Inference (2nd ed.). Cambridge
University Press, New York, NY, USA.

[39] Judea Pearl and Thomas Verma. 1991. A Theory of Inferred Causation. In Proceed-
ings of the Second International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR’91). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 441–452. http://dl.acm.org/citation.cfm?id=3087158.3087202

[40] Roger Penrose. 1955. A generalized inverse for matrices. In Mathematical
Proceedings of the Cambridge Philosophical Society, Vol. 51. Cambridge Uni-
versity Press, Cambridge University Press, 406–413. https://doi.org/10.1017/
S0305004100030401

[41] R Core Team. 2017. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.
org/

[42] Andrea Rau, Florence Jaffrézic, and Grégory Nuel. 2013. Joint estimation of causal
effects from observational and intervention gene expression data. BMC systems
biology 7, 1 (Oct 2013), 111. https://doi.org/10.1186/1752-0509-7-111

[43] Thomas Richardson. 1996. A Discovery Algorithm for Directed Cyclic Graphs.
In Proceedings of the Twelfth International Conference on Uncertainty in Artificial
Intelligence (UAI’96). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
454–461. http://dl.acm.org/citation.cfm?id=2074284.2074338

[44] Conrad Sanderson and Ryan Curtin. 2016. Armadillo: a template-based C library
for linear algebra. Journal of Open Source Software 1, 2 (Oct 2016), 26. https:
//doi.org/doi:10.21105/joss.00026

[45] Christian Schwarz, Christopher Schmidt, Michael Hopstock, Werner Sinzig, and
Hasso Plattner. 2016. Efficient Calculation and Simulation of Product Cost Lever-
aging In-Memory Technology and Coprocessors. In The Sixth International Con-
ference on Business Intelligence and Technology (BUSTECH 2016).

[46] Marco Scutari. 2010. Learning Bayesian Networks with the bnlearn R Package.
Journal of Statistical Software, Articles 35, 3 (2010), 1–22. https://doi.org/10.18637/
jss.v035.i03

[47] Peter Spirtes. 2010. Introduction to Causal Inference. J. Mach. Learn. Res. 11 (Aug.
2010), 1643–1662. http://dl.acm.org/citation.cfm?id=1756006.1859905

[48] Peter Spirtes, Clark N Glymour, and Richard Scheines. 2000. Causation, Prediction,
and Search. MIT press.

[49] Peter Spirtes and Kun Zhang. 2016. Causal discovery and inference: concepts
and recent methodological advances. Applied Informatics 3, 1 (18 Feb 2016), 3.
https://doi.org/10.1186/s40535-016-0018-x

[50] Michail Tsagris, Giorgos Borboudakis, Vincenzo Lagani, and Ioannis Tsamardi-
nos. 2018. Constraint-based causal discovery with mixed data. International
Journal of Data Science and Analytics (02 Feb 2018). https://doi.org/10.1007/
s41060-018-0097-y

[51] Joe Whittaker. 2009. Graphical Models in Applied Multivariate Statistics. Wiley
Publishing.

Accepted at SSDBM.
The final authenticated version is available online at https://dx.doi.org/10.1145/3221269.3221292

