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ABSTRACT
Current in-memory databases clearly outperform their disk-
based counterparts. In parallel, recent PCIe-connected
NAND flash devices provide significantly lower access la-
tencies than traditional disks allowing to re-introduce clas-
sical memory paging as a cost-efficient alternative to storing
all data in main memory. This is further eased by new,
dedicated APIs which bypass the operating system, opti-
mizing the way data is managed and transferred between
a DRAM caching layer and NAND flash. In this paper,
we will present a new approach for in-memory databases
that leverages such an API to improve data management
without jeopardizing the original performance superiority of
in-memory databases. The approach exploits data relevance
and places less relevant data onto a NAND flash device. For
real-world data access skews, the approach is able to effi-
ciently evict a substantial share of the data stored in mem-
ory while suffering a performance loss of less than 30%.

1. INTRODUCTION
Storage Class Memory (SCM) is a class of solid state mem-

ory whose performance characteristics set it apart from main
memory as well as classical disk drives. The latest gener-
ation of PCIe-connected NAND flash cards has consider-
ably lowered the performance gap between main memory
as the fastest storage layer and disks, promising improved
I/O latency and bandwidth [21]. These characteristics make
SCM especially attractive to be used as a memory extension
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for main memory intensive systems such as main memory-
resident databases.

Main memory-resident databases are databases whose pri-
mary persistence is main memory, therefore also called in-
memory databases (IMDBs). In-memory databases have re-
cently been in the focus of database research [8, 11, 12] as
well as in the focus of commercial database vendors as Mi-
crosoft [5], SAP [7], Oracle [15], or IBM [17]. While the
first in-memory databases were optimized for transactional
enterprise workloads (so-called Online Transaction Process-
ing, OLTP), more recent approaches focus on mixed work-
loads. A mixed workload combines a transactional workload
with a more complex and computation intensive analytical
workload (so-called Online Analytic Processing, OLAP).

Observations of production enterprise systems have shown
that data is kept over a period of five to ten years for reg-
ulatory or ‘just-in-case’ purposes. However, looking at the
actual workload reveals that accesses are highly skewed to-
wards small portions of the data, while the larger part re-
mains rarely accessed or even untouched. While storing all
data in dynamic random-access memory (DRAM) is viable
when bandwidth requirements are high [2], storing irrelevant
data on DRAM can be considered a waste of resources, as
DRAM is expensive and limited in capacity. Consequently,
one of the major research questions of this paper is “How to
place less relevant data on an SCM tier in a mixed workload
scenario with minimal performance impact?”. This research
topic of how to allocate data on different tiers is well known
in the context of transactional workloads by tracking re-
cently accessed tuples or blocks [4, 6]. But mixed workloads
pose totally new challenges as analytical queries often ac-
cess data that is of low relevance for the daily transactional
business, but of high relevance for analytical tasks.

If the database is able to evict substantial parts of the
database to secondary storage without sacrificing the per-
formance advantages of in-memory databases, the total cost
of ownership (TCO) can be reduced. Not only are large
main memory-based server systems more expensive to ac-
quire than their disk-based counterparts, they are also more
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Figure 1: Cost calculations for an in-memory-only
system and a tiered memory system (costs for a GB
database storage).

expensive in terms of operational costs as large DRAM in-
stallations contribute a substantial part to the energy con-
sumption [18] of a server.

Figure 1 shows an exemplary TCO calculation for two
server systems (calculated using a configuration tool from
a large server vendor). The main memory system has 1024
GB of main memory. The tiered memory system has 384
GB of main memory and a 700 GB PCIe-connected NAND
flash SSD. Comparing the price per GB of database storage
shows that the three-year TCO for the full main memory
system is almost a factor of two more expensive.

In this paper, we will present a new approach called Rele-
vance-Based Partitioning (RBP) using tiered memory. The
approach improves memory utilization by placing less rele-
vant data on SCM using the EMC Memory Tiering API 1

and is aware of mixed workload access patterns. Instead of
a plain horizontal partitioning of a whole table, RBP is able
to partition each column of a table individually, tuning the
allocation as well as the data eviction policy for each column
exactly to the workload. This way the partitioning of a table
can reflect both the OLTP and the OLAP access patterns.
Our concept is integrated into HYRISE [8], an open source
research database.

In this paper, we will make the following contributions:

• Introduction of the SCM-optimized EMC Memory
Tiering API (henceforth referred to as EMT ) in Sec-
tion 2 and evaluation of its performance compared
with malloc and mmap under memory pressure for
typical database access patterns in Section 3.

• In Section 4, we present a data tiering concept for
HYRISE – called Relevance-Based Partitioning – that
uses so-called hot data views to classify data as well as
to optimize data accesses. The result is a transparent
data tiering approach that places less frequently ac-
cessed data onto PCIe-connected NAND flash devices
while hot data is pinned in main memory.

• Performance of the tiered memory approach is evalu-
ated for a mixed enterprise workload in Section 5.

The remainder of the paper presents related work in Sec-
tion 6, a discussion and future work in Section 7, and con-
cludes with Section 8.

2. BACKGROUND
The EMT API provides an optimized software interface

to access an SCM device as secondary storage by means of
virtual memory. Bypassing the OS layer, the EMT’s de-
sign goal is to provide a more predictable alternative to the
standard Linux mmap and paging implementation in terms
of access latency. This section discusses SCM in general,
the EMC Memory Tiering API, and the system model of an
in-memory database for mixed workloads.

2.1 Storage Class Memory Characteristics
In a traditional, disk-based database architecture, the en-

gine performs its own read/write IO to the underlying stor-
age layer that contains the database files. In order to avoid
performance penalties due to that direct IO access, the data-
base engine will typically employ one or more database buffer
pools to hold recently used database blocks/pages. These
buffer pools are typically resident in DRAM and the data-
base engine will manage when pages need to be written to
the underlying media to make room for new pages.

For in-memory databases, traditional buffer pools – which
are responsible for a substantial part of the execution time
of disk-based databases [9] – are no longer necessary. Even
though there are direct IO to persistence layer to handle
data changes and inserts it is expected that all data resides
in volatile memory.

Today, applications do not address the physical memory
directly but instead use the operating system to translate
between the application’s virtual address space and the sys-
tem’s physical address space. In this approach, every pro-
gram has its own private address space and thus can run in-
dependently from other programs on the system. The mem-
ory is organized in pages of typically 4 kB and the translation
between virtual and physical address space is done using a
page table. This mechanism would theoretically allow an in-
memory database system to extend its storage beyond the
installed memory by using a swapfile on disk. In practice,
however, the system suffers from unpredictable slowdowns
due to the transparent execution of the page fault handler
and swap subsystem.

In an SCM scenario, the desired functionality is to have
multiple page caches of various sizes, page caches backed by
multiple types of physical media, functional design improve-
ment to the memory management that take next generation
flash media into account, and a way for the application to
interact with these improvements.

2.2 Storage Class Memory Tiering API
The EMC Memory Tiering (EMT) API allows the data-

base software to have granular control over OS memory tier-
ing, yet there is a fundamental re-write of the Linux virtual
memory management sub-system beneath the API level that
allows for this functionality. It provides an alternative to the
Linux mmap, msync, runtime malloc and page fault handler
implementations [19]. The EMT mmap promises better per-
formance, more predictable access latencies, and additional
control over the paging process. It is not intended as a gen-
eral purpose page fault handler, but as an efficient interface
to create SCM tiers to extend memory and for accessing and
caching SCM tiers by means of virtual memory.

Rather than allocating physical pages from the entire
memory when needed, EMT provides a facility to pre-allo-
cate one or more system-wide fixed-size page caches. Appli-
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cations control which page cache to use. This results in a
more predictable execution time per process, because Linux
no longer is managing a single system-wide page cache be-
tween competing processes. The EMT supports pluggable
mmap and extensible page cache management policies. Two
different policies for deciding which pages to evict from a
cache are currently supported: a simple first-in, first-out
(FIFO) principle and a more complex least recently used
(LRU) mechanism. In addition, the application can tune
the caching behavior by setting a low water level and an
eviction size.

Each page cache maintains the availability of free physi-
cal pages via two settings: The low water level specifies a
threshold for the free memory in a page cache below which
an eviction is triggered and the eviction size determines the
number of pages evicted in such an event. This eviction
strategy attempts to ensure page slot availability upon page
fault. The page fault latency is further reduced by bypassing
the Linux virtual file system and directly accessing the stor-
age device driver when combined with a compatible storage
device.

The EMT supports coloring of individual pages to maxi-
mize page cache residency times and minimize the number
of page faults. A page color (or temperature) is represented
as a 16-bit integer, where higher values mean the page is ac-
cessed more frequently and should be kept in the page cache
when possible. Individual pages may also be pinned which
maintains residency. It is the applications responsibility to
set the colors appropriately according to its access pattern.
In addition to the explicit specification, the EMT tracks ac-
cess to pages and dynamically adjusts page colors based on
those statistics.

Furthermore, EMT employs a technique called dynamic
read ahead, where it reads a number of subsequent pages
starting from the faulting page, comparable to modern OS’s
read ahead mechanisms. In contrast to the OS’s read ahead,
EMT automatically adapts the number of read ahead pages
to the applications access patterns. The algorithm starts
reading ahead based on a given minimum value. Every suc-
cessive read ahead will double the amount until the defined
maximum value is reached, or it will get reset back to the
minimum for any out-of-order major page faults.

These features promise better performance and control for
accessing secondary storage in an in-memory database. This
may form the basis of an effective memory tier containing
colder data, where the classification of data (e.g. hot and
cold) by the database is mapped onto page colors. The
underlying EMT library can use this information as a hint
for which data should be kept in memory and thus reduce
the number of page faults.

2.3 In-Memory Databases for Mixed Work-
loads

The data tiering concepts presented in this paper are
based on the HYRISE2 database system [8]. HYRISE is an
open source research database – sharing many concepts with
SAP HANA – and is a column-oriented, in-memory database
system designed for mixed enterprise workloads [7].

As opposed to row-oriented databases, columnar data-
bases store all values of a column in a contiguous block.
This layout exploits the locality principle of CPU caches in
analytical queries. It eliminates gaps between the values of
a column. Full column scans and aggregations on arbitrary

columns can be performed very fast especially when the op-
eration is split across multiple CPU cores.

A table in HYRISE is separated in two main data struc-
tures: The immutable main store contains the majority of
the data, while the delta store (also differential buffer) con-
tains recently changed data. The delta store is periodically
merged with the main store, thereby creating a new main
store that replaces the current. This separation allows to op-
timize the main store towards reading accesses and allows
higher compression, while the delta store is optimized for
modifying accesses. Both stores are dictionary encoded with
the addition that the main store has an order-preserving dic-
tionary for improved read performance. HYRISE as well as
SAP HANA is an insert-only database using multiversion
concurrency control (MVCC). Tuple updates implicitly re-
sult in the invalidation of a tuple and its reinsertion into the
delta partition.

2.4 Characteristics of Mixed Workloads
Mixed workloads combine both the workloads of typical

transactional OLTP systems as well as the workloads of an-
alytical OLAP systems (e.g., data warehouses). Both work-
loads have very diverging characteristics. OLTP queries typ-
ically request rather small numbers of tuples and project
many attributes. A typical system would be a sales system
with an OLTP query receiving all items of a given sales or-
der. Most OLTP queries select on primary key columns (at
least partially) and rarely trigger scans on a table.

In contrast, OLAP queries require accessing many rows
but few attributes. A typical analytical query would request
the sum of sold items of the past six months. Such analytical
queries project very few columns but trigger large scans on
(multiple) tables.

Combining both workloads not only poses challenges to
the database in general, but especially to the question of
how to evict less relevant data, because the definition of
relevant data differs for both workloads. While hot data
for transactional workloads is usually a list of most recently
accessed tuples, hot data for analytical queries are columns
that are typically scanned or aggregated.

3. EMT PERFORMANCE EVALUATION
In order to obtain an overview of the performance im-

pact of using the EMT API over OS functionalities such
as malloc and mmap, this section presents two evaluations.
First, different allocators are benchmarked with an increas-
ing memory pressure. Second, the allocators are bench-
marked with a varying access skewness.

The experiments presented in this section simulate a sin-
gle table column (5 GB) that can be split into various par-
titions. For each partition, possible configuration options
include different memory allocation strategies, workloads,
access skewness, as well as the possibility to limit the phys-
ical memory available for the benchmark. The performance
metrics used for the experiments include execution time and
major page faults.

We run sequential and random access tests to reflect the
access patterns of mixed workloads on a columnar database.
The sequential access tests reflect typical patterns for ana-
lytical workloads. The random access tests reflect patterns
of transactional workloads.

All tests have been executed on a Hewlett-Packard Pro-
Liant DL580 G7 machine with four Intel Xeon X7560 CPUs
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and 512 GB DDR3 memory at 1066 MHz. A Micron P320
PCIe card with 350 GB of SLC-flash was used as SCM for
cold data, either via the EMT API or configured as Linux
swap space. The system ran on Ubuntu Server 12.04 with
Kernel 3.2. For all tests, the default read-ahead settings of
128 kB have been used.

3.1 Increasing Memory Pressure
This first benchmark of the EMT API evaluates sequential

and random reads with different main memory limitations.
It provides a baseline representing the cached SCM perfor-
mance without partitioning as well as without access skew-
ness. The benchmark provides a side-by-side performance
comparison of the EMT API, malloc, and mmap. The data
vector consists of a single partition without coloring. Dur-
ing the benchmark, 50 sequential scans of the entire data
set are performed, as well as 10,000,000 random accesses
reading 4 kB each.

Figure 2a shows the total execution time of the sequential
scans (y-axis) for all configurations. As expected, malloc

and mmap perform equally due to the implementation of
malloc as an anonymous mmap call in most Kernels. Both
exhibit drastic performance losses by factors of 28-81× in
the case where insufficient main memory is left (0% evicted
data corresponds to unlimited memory), where the effect
worsens with increasing memory pressure (x-axis).

The loss in performance is less distinctive for EMT, rang-
ing around a 6.5× slowdown for all three evicted data ratios
(20%, 33% and 50%) compared to unlimited memory.

The major page fault counts in Figure 2b confirm this
observation: For malloc and mmap, lower limits lead to more
page faults, causing the longer execution time. The results
for EMT demonstrate the effects of the dynamic read ahead
mechanism, which adjusts to read-access patterns.

Due to the strictly sequential access, EMT’s LRU-cache
acts like a window moving across the data, effectively de-
grading to a FIFO-queue (first in, first out). This explains
the constant performance of EMT under memory pressure.

In case of unlimited memory, all three allocators perform
similarly with major page fault counts tending towards zero.

Similar to sequential reads, mmap and malloc perform
equally for random reads as well (Figure 2c). The execu-
tion times for mmap and malloc grow exponentially with in-
creasing memory pressure in the tested range resulting in a
slow down of up to a 120× at 50% evicted data compared
to unlimited memory.

EMT outperforms the Linux page fault handler again, al-
though the difference is less distinctive.

Since no access prediction is possible for fully random-
ized accesses, the number of page faults is expected to grow
linearly with decreasing memory limit. Figure 2d confirms
this expectation for all three allocators in the case of ma-
jor faults. Furthermore, all three allocators exhibit similar
amounts of major page faults, suggesting EMT’s dynamic
read-ahead mechanism was automatically disabled. The rea-
son that EMT outperforms mmap and malloc while having
the same number of page faults is the direct I/O bypassing
the OS’s virtual file system.

The results obtained from this test show a significantly im-
proved performance of EMT compared to malloc and mmap

under increasing memory pressure.

3.2 Performance for Skewed Accesses

The proposed approach for Relevance-Based Partitioning
using EMT (see Section 4) builds on the assumption that
accesses are skewed towards hot/relevant data. Typical ex-
amples are financial systems where data of the current fiscal
year is of much higher relevance for transactional process-
ing than previous fiscal years. In contrast, analytical ac-
cesses usually cover a large range of data (e.g., comparing
the current fiscal year’s performance with previous years).
Our approach strives to statistically identify relevant data
and partition a table accordingly (not part of this paper)
in order to eventually prune the query processing to hot or
warm partitions. Random reads and especially sequential
scans are supposed to gain performance benefits while cor-
rect query results must be ensured. To measure the effect of
such an access skewness and subsequent query pruning un-
der increasing memory pressure we have benchmarked dif-
ferent configurations.

3.2.1 EMT and Partition Pruning
In order to better reflect real-world access patterns, the

benchmark in Section 3.1 was extended to simulate a data-
base workload that exposes skewness towards a small parti-
tion of hot (10%) and warm (30%) data of the 5 GB sized
vector. The benchmark assumes that 80% of all random
and sequential reads (partial scans) only access the hot data
partitions. The remaining 20% of random reads access the
warm partition. The remaining 20% of sequential reads have
to scan the entire vector including the 60% cold data (i.e.,
all three partitions). This execution path is based on the as-
sumption that the database is able to pin 80% of all column
scan operations to the hot partition (see hot-only pruning
in Section 4.1.1) and prune the other partitions.

We compare three scenarios:

• All partitions allocated with malloc

• Warm and cold partitions allocated using EMT using
coloring

• Warm and cold partitions allocated using EMT with-
out coloring

For the latter two configurations, the hot partition is al-
located using malloc.

The configurations are again tested with different mem-
ory limits. The hot partition (10% of the data) is always
allocated with malloc and pinned in main memory. The
remaining main memory can be used as a cache. E.g., a
memory limit of 50% with 10% hot data means that the
cache size is 40% of the overall data.

The execution times of the sequential read operation in
Figure 3a show a significant performance benefit of EMT
over malloc under memory pressure. The latter suffers from
a 21-44× slowdown when less memory than data is avail-
able compared to unlimited memory. As for the test in Sec-
tion 3.1, EMT’s performance without coloring for all three
actual memory limits is rather constant with a 3.4× slow-
down compared to unlimited memory. This confirms the
expected effect of query pruning for sequential reads, as
the slowdown is considerably lower than the 6.5× slowdown
from the test without query pruning in Figure 2a. When
EMT is used with explicit coloring, performance improves,
resulting in a 2.9× speedup for higher memory limits.
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(d) Random Read: Major Page Faults

Figure 2: Results in terms of execution time ((a), (c)), and major ((b), (d)) page faults for the benchmark
described in Section 3.1.

3.2.2 Impact of Access Skewness
In order to evaluate the impact of an access skewness to-

wards the hot data partition, a setup with changing access
distributions was performed. Again, execution times for se-
quential reads (Figure 4a) and random reads (Figure 4b) are
compared with different shares of queries that can be pinned
to the hot partition only (50%, 65%, 80%, and 95%), and dif-
ferent memory limits (30%, 60%, and 90%). All benchmarks
assume a hot data share of 10% that is always allocated with
malloc and pinned in main memory.

Figures 4a and 4b reveal that access distribution has a
considerable impact on overall runtime for random as well
as for sequential reads. The impact of the memory limit is
less significant if the skewness towards hot data is high. The
cache size can be reduced without impacting performance
severely. The additional cache size that comes with a higher
memory limit does not improve performance in Figure 4b.
However, for sequential reads the cache size as well as the
memory limit has a high impact when the query skewness
towards hot data is low as the whole column needs to be
processed. As shown in Figure 4a performance losses by low
query skewness can be compensated by bigger cache sizes. If
an application is able to prune accesses in 95% of the cases,
memory limits can be set more aggressively.

3.3 Results
The presented results reveal that memory tiering using the

standard Linux paging mechanism is clearly outperformed
by EMT for scenarios where the amount of data grows be-

yond the available memory. In addition, the application has
little control over the process which is a major drawback
for applications that are aware of relevant and less relevant
data.

Besides EMT’s performance gains through the dynamic
read-ahead and virtual file system bypassing, the additional
support for coloring can improve performance further, given
that data accesses are skewed.

The results in Section 3.2.2 show that an in-memory data-
base system using the EMT library can potentially handle
data sets larger than the available main memory when skew-
ness is high. Consequently, if the application – in our case
HYRISE – pins 10% of hot data in memory and is able to
limit ∼90% of the transactional query accesses to the hot
partition, the resulting performance impact is within a fac-
tor of 2-3× of a full in-memory database. In Section 4, we
will present an approach that provides such pruning rates.

4. DATA TIERING IN HYRISE
This section describes the concept of data tiering for in-

memory databases focussing on mixed workloads. First, we
introduce the basic concept of data tiering for HYRISE in
Section 4.1. Afterwards, we briefly outline how we imple-
mented the concept in Section 4.2.

The data tiering concept is built on the idea of reorga-
nizing and splitting tables into hot and cold data partitions
based on workload relevance. Hot data comprises relevant
data that is required to process the major portion of the
workload. For optimal performance, hot data is allocated
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Figure 4: Execution run times for sequential reads (a) and random reads (b) for changing memory limits
(ML), hot-only access ratios, and hot/cold ratios.

using malloc while cold data is allocated on secondary stor-
age using the EMT API. Our concept of data tiering is the
periodical optimization of storage allocation and data struc-
tures that help HYRISE to optimize memory utilization and
performance.

The most differentiating aspects of our approach is the
individual, horizontal split of each column instead of apply-
ing a horizontal partitioning across all columns of a whole
table. This partitioning scheme is explained in more detail
in Section 4.1.2.

4.1 Data Tiering Concept
Tracing the relevance of single data blocks, tuples or even

per data item is a considerable overhead during query pro-
cessing, especially when many pages or tuples need to be
processed during query execution. Instead of classifying
fine-granular data packages, our tiering approach defines hot
data for a table using a set of conjunct views, so called hot
data views (HDVs). Before a query is executed, it is matched
against the corresponding HDVs. This operation called tier-
ing check concludes if a query can be executed solely on the
hot partition while still guaranteeing correct query results.

The foundation of our data tiering concept, are work-
load statistics on the usage of query templates and attribute
bindings that are extracted asynchronously from the work-
load. These statistics are used to create the HDVs. In this
paper we do not go into details about the workload tracing
as well as parsing and assume, that these characteristics are
already available to us.

4.1.1 Hot Data Views
As the name suggests, HDVs define hot data within a ta-

ble. These views are conceptually similar to SQL views as
they define a subset of a given table. Hot data views leverage
patterns in the application workload, such as time-related,
recurring query templates and binding attributes. Logically
an HDV consists of a view definition and a range of bind-
ing attributes extracted from the workload. Once defined,
HDVs are used for two purposes: First, the separation of
hot and cold data in order to partition the data. Secondly
the subsequent check of whether a query can be partition-
pruned and only needs to be executed on the hot partition.

Listing 1 shows an exemplary HDV for the columns ol -
amount, ol w id, ol delivery d which declares all values of

CREATE VIEW hot data v i ew 001 AS
SELECT ol amount , o l w id , o l d e l i v e r y d
FROM o r d e r l i n e
WHERE o l d e l i v e r y d >= ’ 2014−05−25 ’

Listing 1: Hot Data View OLAP.

CREATE VIEW hot data v i ew 002 AS
SELECT ∗
FROM o r d e r l i n e
WHERE o l o i d in (88573 , 87736 , . . . )

Listing 2: Hot Data View OLTP.

these attributes with a delivery date starting from ‘2014-05-
25’ as hot. To create such an HDV, the binding attributes on
predicate ol delivery d are constantly sampled and analyzed
right before the tiering run that is explained in Section 4.2.

The number of HDVs that are necessary to classify the hot
data of a table depends on the diversity (different selection
and projection paths) of the workload.

A hot data view is like a promise that all queries that
match this view can be answered from hot data only. Scan
and search operations on cold data can be pruned during
query execution. The overall system load is supposed to
be reduced and single query runtime is supposed to be re-
duced. Because of the insert-only, main / delta architecture
of HYRISE (see: Section 2.3) update operations on cold
data cannot break this promise because the delta partition
is always part of query execution.

4.1.2 Hybrid Table Layout
Mixed workloads may include data access characteristics

of typical OLTP as well as of OLAP workloads. OLTP
queries select single or few tuples and have wide projections
on many attributes. While they rely on the existence of cor-
responding indices in order to avoid full column scans and
provide predictable response times, OLAP queries process
large data ranges and require scanning of entire columns.
However, OLAP queries only select and project on a low
number of attributes.
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Figure 3: Execution times for sequential (a) and ran-
dom (b) read operations comparing malloc to EMT
with and without coloring (80% queries skewed to-
wards 10% hot data).

For this mixed set of access patterns, a strict horizontal or
vertical partitioning is not optimal. Plain horizontal parti-
tioning results either in a very low eviction rate when tuples
required for analytical queries are considered entirely hot
or in a high number of cold accesses when many tuples are
evicted.

Listing 1 and 2 show two exemplarily HDVs. While List-
ing 1 is used to classify few columns over many tuples as
hot, Listing 2 is used to classify few distinct tuples as hot.
This way each column can be split individually into a single
hot and multiple cold partitions as shown in Figure 5.

4.2 Implementation
In order to implement memory tiering in HYRISE several

components had to be adapted or newly implemented. First
of all, the data store needs to be aware of the secondary
storage in order to allocate memory selectively for cold data
column partitions. A new process called Tiering Run is
introduced for managing the classification as well as physical
sorting and partitioning of the data using HDVs. Before a
query is executed the Tiering Check is used to evaluate, if
pruning to hot data only is possible. Finally, a “hot-data-
only” processing mode was implemented for operations such
as the Tiering Scan, a modified full column scan to leverage
query pruning.

Tiering Store. The Tiering Store exploits HYRISE’s hybrid
layout capabilities [8] to partition each column individually.
That means the Tiering Store provides the capabilities to
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Figure 5: Hybrid table layout, showing one OLTP
tiering column, one OLAP tiering column as well as
hot and cold data partitions.

partition a column horizontally into a single hot partition
and multiple cold partitions with each partition having its
own memory allocator and colorization. While the hot par-
tition still supports reallocation during a merge from delta
to main, cold partitions have a fixed size, and only support
invalidation of single tuples during update and delete oper-
ations. These invalidated tuples need to be collected and
cleaned from time to time. However, this is not part of the
current implementation as we optimize for a workload, with
few updates and deletes [14].

Tiering Columns. Tiering Columns are bit-vectors (as shown
in Figure 5) that are added to each table that is subject of
tiering. They are used during the tiering run to mark tuples
as being part of a hot data view. Each HDV requires its
own Tiering Column. The example in Figure 5 illustrates a
table that has one Tiering Column for its OLTP hot data
view and one for its OLAP hot data view. Depending on the
complexity of the workload there could be more than two
Tiering Columns. Tiering columns are not subject of tiering,
i.e., they are always kept completely in main memory.

Tiering Run. The Tiering Run is the core operation added
to the existing system model. It is responsible for parti-
tioning and allocating a given table. The data of a table is
divided into one hot and several cold partitions using HDVs
(one new cold partition during each Tiering Run). The Tier-
ing Run decides which allocator to use for each partition and
given that the allocator is EMT, the colorization of the al-
location is adjusted.

The overall process consists of the following steps: First,
evaluate recent workload statistics and extract hot data views.
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Second, scan table using the hot data views updating Tier-
ing Columns accordingly, and third, Sort table using Tiering
Columns and allocate new cold partitions.

Because physically re-sorting a table and creating new
cold partitions is a potentially expensive operation, we inte-
grated the tiering run into the merge process [14] of HYRISE.
Step one and two can be done offline without affecting the
table’s data structures. Then step three is being executed
in conjunction with the delta merge. New tuples from the
delta are considered hot. Tuples in a hot partition that are
not marked as relevant by a Tiering Column, are moved into
a new cold partition of the column allocated on secondary
storage. Existing cold partitions do not need to be sorted.
As a result, a continuous hot data partition arises for each
column with as few cold data elements as possible.

With the ability to separate the tiering run into steps
that are partially not time-critical and combine the final
allocation with the already highly optimized merge process,
the overall overhead is kept low.

Tiering Check. Before a plan operation of a query can be
limited to hot-only data, it must be matched against a cor-
responding HDV. This is the most time-critical and defining
step of the tiering concept.

In order to evaluate if the binding variables of the query
embody a hot-only data selection, the HDVs are checked. In
case the query can be matched to an HDV and the query’s
selection criteria matches the HDV’s selection criteria, the
query is partition-pruned to the hot partition only.

Tiering Scan. Fast full column scans are essential for an-
alytical queries. Basic plan operations and especially the
column scan need be adapted in order to utilize the Tiering
Check. The Tiering Scan extends the full column scan plan
operation. It is able to limit the scan and compare expres-
sions to the hot part of a column only. Depending on the
Tiering Check, only the hot partition or the entire column
is processed.

5. DATA TIERING PERFORMANCE
In this Section, the implemented data tiering approach for

HYRISE is evaluated using the well-known mixed workload
CH-benCHmark.

5.1 Benchmark
The dataset and queries for the benchmark are derived

from the CH-benCHmark, which is a combination of the
TPC-C benchmark for transactional workloads and the an-
alytical TPC-H benchmark [3]. We focus on the ORDER LINE

table containing the elements of each order. It is a table
well-suited for tiering, since it is comparatively large and
stores transactional data, most of which is rarely accessed in
transactional workloads (e.g., closed orders from past years).

To evaluate our current implementation for mixed work-
loads, we have chosen four queries: three analytical queries
of the CH-benCHmark and one transactional query access-
ing tuples via the primary key (see Listing 3 and Listing 4).
The benchmark execution is divided into rounds, whereby in
each round the three analytical queries are executed once,
followed by 100 executions of the transactional query. As
with the benchmarks in Section 3, we adapt hot data ratio,
hot query ratio, and memory allocations.

−− CH−BenCHmark Query 1
SELECT ol number ,

SUM( o l q u a n t i t y ) AS sum qty ,
SUM( ol amount ) AS sum amount ,
AVG( o l q u a n t i t y ) AS avg qty ,
AVG( ol amount ) AS avg amount ,
COUNT(∗ ) AS count order

FROM o r d e r l i n e
WHERE o l d e l i v e r y d > ?
GROUP BY ol number
ORDER BY ol number
−− Custom Query 1
SELECT SUM( ol amount ) AS sum amount
FROM o r d e r l i n e
WHERE o l w i d = ?

AND o l d e l i v e r y d >= ?
−− Custom Query 2
SELECT SUM( ol amount ) AS sum amount
FROM o r d e r l i n e
WHERE o l i i d = ?

Listing 3: Analytical benchmark queries.

SELECT ∗
FROM o r d e r l i n e
WHERE OL O ID = ?

AND OL D ID = ?
AND OL W ID = ?

Listing 4: Transactional benchmark query.

The benchmarks are executed on a dataset with a TPC-
C scale factor of 1000, resulting in a table size of about
19 GB. The database was configured to use 15 query execu-
tion threads and an EMT-managed secondary storage region
of 110 GB accessed via a page cache with a size of 2.5 GB, a
low water level of 260 MB, and an eviction size of 13 MB.

The benchmark was executed for 200 rounds using seven
concurrent requests and 4×-parallelization within the plan
operations. For each scenario, the runtime was measured
using the time-utility shipped with typical Linux distribu-
tions for four different access skews (hot query ratio): 50%,
65%, 80%, and 95% (i.e., the share of queries that need to
access the hot partition only). The remaining queries re-
quire data from the cold partition as well and thus trigger
page faults for both tiered configurations. The benchmarks
were executed on the same hardware as the benchmarks in
Section 3.

5.2 Benchmark Configurations
In order to compare the performance impact of first, the

usage of the EMT API compared to a fully memory-resident
database and second, the impact of hot and cold partition-
ing, we decided to evaluate the following four configurations:

Full In-Memory: represents the default HYRISE scenario in
which all data is kept in main memory and is allocated
via malloc.

Full In-Memory with RBP: similar to the In-Memory con-
figuration, but with applied partitioning and query
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Figure 6: Run time comparison for the four configurations presented in Section 5.2 with hot data sizes of
10% and 20% of the overall data.

pruning of the data tiering concept.

Tiered Memory: simulates the worst-case scenario where the
system is forced to swap out parts of the data. For fair-
ness, data is stored in EMT-managed memory due to
its more efficient paging mechanism rather than de-
fault OS-managed memory.

Tiered Memory with RBP: the full implementation of data
tiering concept combining malloc to allocate the hot
data partition and EMT for the cold data allocation.

5.3 Results
Figure 6 shows the performance results for the HYRISE

benchmarks. The status quo of HYRISE, i.e. the Full
In-Memory configuration, sees only minor performance im-
provements for a growing access skew, while all Tiered Mem-
ory configurations see clear improvements as accessed data
is more likely to be cached by EMT.

Most interestingly, given a certain skew, the Tiered Mem-
ory with RBP configuration outperforms the Full In-Mem-
ory configuration. Also, performance decreases only by a
factor of 1.3-1.8× for 10% hot data and by a factor of 1.2-
1.7× for 20% hot data compared to the Full In-Memory with
RBP configuration.

6. RELATED WORK
Recently, several publications presented concepts for ex-

tending in-memory databases with a secondary storage. In
contrast to the approach presented in this paper with a fo-
cus on mixed workloads, most approaches are aimed towards
OLTP workloads. The following paragraph discusses the
most recent work in that direction.

OLTP-optimized in-memory databases. Stoica et al.
propose an extension to the in-memory database VoltDB
(based on H-Store [11]) which rearranges data to move fre-
quently accessed records to the beginning of the mmap’ed
allocation [22]. The separation of hot and cold data is done
using access statistics on tuple level and an offline analysis
of these statistics. While the first part of the allocation –
storing the frequently accessed data – is pinned in memory,
the remainder is handled by the OS’s paging mechanism.

The approach uses a memory layout comparable to our ap-
proach but does not leverage different allocators and relies
on mmap, which has been shown to be outperformed by the
EMT API (see Section 3.1).

DeBrabant et al. describe a strategy called Anti-Caching
implemented in the H-Store database in which the database
system manages tuple movements and accesses to the sec-
ondary storage itself [4]. In contrast to [22], Anti-Caching
directly handles data movements for a more predictable be-
havior over the OS’s mmap. Tuple eviction is done based
on a sampled LRU chain, comparable to our tracking of
tuple accesses for the OLTP bit vector (see Section 4.1.2).
Their approach outperforms a combination of MySQL and
Memcached by a factor of ∼7× for a modified and H-Store-
optimized TPC-C benchmark.

Eldawy et al. present Siberia [6], which is an extension
to the in-memory OLTP Engine Hekaton of the MS SQL
Server [5]. Eviction is done tuple-wise based on workload
traces [16]. In contrast to Anti-Caching, Siberia stores in-
dices for hot data exclusively and uses adapted Bloom filters
and adaptive range filters (ARFs [1]) to avoid accesses to the
cold storage for OLTP workloads. In cases where no HDV
is able to prune a query, additional indices as space-efficient
bloom filters to further avoid cold accesses might further
improve the performance of our implementation.

Columnar in-memory databases. Höppner et al. describe
a hybrid-memory approach for the in-memory columnar data-
base SAP HANA separating the columns of a columnar in-
memory database into hot, warm, and cold
columns [10]. While hot columns reside in main memory,
warm columns are stored on a PCIe-connected solid state
disk and are partially buffered in main memory. Cold col-
umns are moved to hard disk. While this approach is theo-
retically suited for mixed workloads, it is not well suited for
OLTP-dominated workloads as updates or full-width selects
might require access to cold columns. Furthermore, tables
which show a strong age-access correlation (i.e., only recent
data is accessed) will not yield significant storage savings as
several columns are kept in main memory entirely without
any horizontal partitioning.

7. DISCUSSION & FUTURE WORK
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Taking a look at recent enterprise systems [20] and general
trends in data science, we believe that the focus on mixed
workloads is very promising and not sufficiently covered in
current research. However, projecting how upcoming work-
loads might look is challenging. At this point, more studies
examining upcoming applications and their workloads are
required.

As future work, several aspects are of high interest for
us. The strong correlation of major page faults and ex-
ecution time in all tests suggest that new emerging SCM
devices will reduce the penalty of accessing cold data fur-
ther. Therefore, we want to evaluate next generation SCM
devices as discussed by Kim et al. [13]. Such new technolo-
gies continue to close the gap between non-volatile storage
and disk, potentially making the presented approach in this
paper increasingly viable and feasible.

Besides further research on surrounding topics of our ap-
proach as the automated generation of hot data views or
improved merging of cold data, we also see the following
issues especially worth looking into:

• Boot and recovery time: tiering large portions of data
to SCM allows for much faster boot and recovery times
for in-memory databases as only hot data has to be
loaded.

• Partitioning and profiling of cold data: create multi-
ple cold partitions and keep basic statistics for each
partition to not only allow query pruning for hot/cold
queries but also for cold-only queries.

• Further evaluation of the coloring-feature offered by
the EMT API to introduce different levels of cold data
based on their access probability.

• Explore the use of EMT malloc for finer-grained al-
locations and the use of EMT persistent malloc for
persisting cold data structures.

• Tiered memory interactions in hyper-virtualized and
containerized environments.

8. CONCLUSION
The presented results of data tiering for an in-memory

database combined with the SCM-optimized tier manage-
ment provided by the EMT API show that it is viable to
place substantial parts of a data set without significantly
sacrificing performance, even for mixed workloads. Further-
more, using memory tiering with an in-memory database
can improve memory utilization and thus reduce costs.

In fact, the usage of an SCM-optimized API to efficiently
access tiered storage not only improves performance com-
pared to OS functionality such as mmap but also introduces
a clean separation of concerns. This way the database is re-
sponsible for classifying data relevance and efficient query
pruning, while the tiered memory API is responsible for
handling storage accesses and efficient memory tier man-
agement.

We think that modern in-memory databases can greatly
benefit from the approach presented here, both from a
workload-aware partitioning based on data relevance as well
as an optimized handling of an SCM-based memory tier.
Looking at recent developments in the area of storage tech-
nology as presented by Kim et al. [13] leads us to the conclu-
sion that tiered memory will become increasingly important

for main memory-resident applications as the performance
gap between main memory and non-volatile storage increas-
ingly shrinks.
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