
A Cost-Aware and Workload-Based Index
Advisor for Columnar In-Memory Databases

Martin Boissier, Timo Djürken, Rainer Schlosser, and Martin Faust

Hasso Plattner Institute, Potsdam, Germany
{firstname.lastname}@hpi.de

https://epic.hpi.de

Abstract. Optimal index configurations for in-memory databases differ
significantly from configurations for their traditional disk-based counter-
parts. Operations such as full column scans that have previously been
prohibitively expensive in disk-based and row-oriented databases are
now computationally feasible with columnar main memory-resident data
structures and even outperform index-based accesses in many cases. Fur-
thermore, index selection criteria are different for in-memory databases
since maintenance costs are often lower while memory footprint consid-
erations have become increasingly important.
In this paper, we introduce a workload-based and cost-aware index ad-
visor tailored for columnar in-memory databases in mixed workload en-
vironments. We apply a memory traffic-driven model to estimate the
efficiency of each index and to give a system-wide overview of the in-
dices that are cost-ineffective with respect to their size and performance
improvement. We also present our Index Advisor Cockpit applied to a
real-world live production enterprise system of a Global 2000 company.

Keywords: column store, main memory, index advisor, live production
system

1 Indices for Columnar In-Memory Databases

The evaluation of database indices typically boils down to three major aspects:
(1) performance, (2) maintenance, and (3) storage costs. Indexing large database
systems (particularly enterprise systems) is a thoroughly researched topic, espe-
cially for transactional enterprise workloads on row-oriented and disk-resident
databases. However, recent hardware and software achievements introduced a
completely new kind of database system into the field of enterprise systems:
columnar in-memory databases. While in-memory databases have been used
for decades for special purpose applications, modern servers with terabytes of
DRAM allow storing entire enterprise systems completely in main memory. Fur-
thermore, the same hardware developments as well as database research achieve-
ments made columnar databases – already established for analytical workloads
– suitable for enterprise systems and their increasingly mixed workloads with
transactional and analytical workloads on the same machine.

22nd International Conference, ICIST 2016, Druskininkai, Lithuania, October
13-15, 2016, Proceedings, CCIS 639, pp 285-299.
The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-46254-7 23.



2 Workload-Based Index Advisor for In-Memory Databases

For these new database systems, previous assumptions about indices are
no longer true in many cases. For example, indices on row-oriented databases
basically always improve the read performance, because full table scans are pro-
hibitively expensive on disk-based row stores. For columnar in-memory databases
in contrast, scanning compressed columns outperforms accesses via an index in
many cases (see Section 2.1).

The picture looks similar for maintenance costs. Columnar in-memory data-
bases usually deploy a multi-level partition hierarchy with small write-optimized
partitions handling modifying queries while the remaining tuples are stored in
read-optimized partitions (e.g., SAP HANA [3], HYRISE [7], or HyPer [9]). Both
partitions are then merged periodically in most systems. In HYRISE and SAP
HANA, e.g., indices of read-optimized partitions are solely written when par-
titions are merged [4]. In this way, the maintenance overhead of indexing has
significantly shifted.

Last but not least, storage cost considerations gained more importance. While
disk-resident indices with buffer management can almost be considered as free of
charge, their main memory-resident counterparts incur high costs since DRAM
is still a comparatively expensive resource.

Consequently, the aspects with which an index evaluation is done have shifted
notably with the recent rise of columnar in-memory databases. In this paper, we
propose a workload-based index heuristic that focuses on performance through
evaluating memory traffic and costs. We decided against an automated index
evaluation and selection. Instead, we created a tool set that guides database
administrators and gives thorough insights into the performance impact of each
index and the added costs. We think this tool is of importance for several reasons:
First, indices are still one of the major means of performance optimization for
database administrators as indices can be added and removed relatively fast com-
pared to other performance optimizations, such as application changes or data
model adaptations. Second, automated index selection approaches still have not
gained any relevance for real-world systems, as many situations still require the
domain knowledge of human experts. One example are indices that are required
to meet service level agreements (SLAs) but which might be both expensive and
only adding little performance advantage, thus being a good candidate for au-
tomated removal. As potential SLA violations can incur serious penalties, these
indices have to be kept in the system. Third, existing index evaluations often
fail to provide understandable and comparable results that can be interpreted
without a comprehensive understanding of the database implementation.

Throughout this paper, we make the following contributions:

– We reason why a memory traffic-based index evaluation provides a decent
trade-off between precision and simplicity (Section 2).

– We argue that analyzing the database plan cache provides both thorough
insights for the index evaluation on the basis of the actual workload while also
making the analysis process simple and comparatively inexpensive, allowing
to iteratively run analyses or react fast to sudden issues (Section 3).



Workload-Based Index Advisor for In-Memory Databases 3

– We present a simple and understandable but yet powerful index coefficient
that simplifies the evaluation of particular indices as well as allowing to
compare an index’s performance-cost trade-offs (Section 4).

– We present exemplary results of our advisor applied on a live production
enterprise resource planning system: the index advisor cockpit. This cockpit
assists database administrators by analyzing the currently deployed indices
and determining how much they are utilized under the current workload.
Based on that information, the DBA can make an informed decision about
which indices to keep, add, or remove from the system to improve perfor-
mance or to reduce the memory footprint (Section 5).

2 Memory Traffic & Data Structures

Evaluating an index is a challenging task. First, an index’s main characteris-
tics performance and space consumption are often orthogonal. While it is trivial
to calculate the space consumption, a thorough performance evaluation is of-
ten not feasible for large database systems. On the one hand, measuring the
real-world performance is challenging as dynamically changing workloads often
show high contention that is hard to measure and simulate accurately. On the
other hand, estimating an index’s performance is hard since there is a multi-
tude of factors involved. Manegold et al. studied cost models for operations in
an in-memory database [11]. They found that a good model is hardly possible
without exact knowledge about the underlying hardware (e.g., the cache sizes).
Even worse, modern system architectures with multi-hop NUMA and highly
contending mixed workloads add additional unknowns.

For our index evaluations, we decided to concentrate on memory traffic as
the dominating factor in order to evaluate performance and completely disregard
any low-level hardware aspects. With steadily improving processing power (e.g.,
15-core CPUs, vectorized instructions, such as SSE/AVX, et cetera) memory
access has become the main bottleneck and dominating cost factor in modern
database systems [10]. Especially systems without NUMA-optimized physical
partitioning to optimize local data access (compare Kissinger et al. [8]) suffer
from NUMA effects, making memory traffic increasingly important for steadily
growing NUMA architectures. Following Manegold, our model combines both
logical costs and physical costs.

2.1 Data Structures

Throughout this paper, we describe data structures and explain our calcula-
tions in the context of HYRISE [7]. HYRISE is an open source1 columnar
in-memory database for mixed workloads (OLxP). It shares several concepts
with SAP HANA [3], e.g., the main delta architecture, insert-only modifications,
dictionary-encoded columns, and MVCC concurrency control.

In this paper, we focus on the following two data structures of HYRISE:

1 HYRISE on Github: https://github.com/hyrise/hyrise



4 Workload-Based Index Advisor for In-Memory Databases

Table 1. Symbols used in this paper

Symbol Description

Nc Length of column c

Dc Length of the dictionary of column c

Ep Execution count of plan p

Dictionary-Encoded Columns: HYRISE splits a table vertically into multi-
ple columns. Each column consists of two data structures: a sorted dictionary
that stores all distinct values of the column and an attribute vector that re-
flects the actual column. Instead of the actual values, the attribute vector
stores the positional identifier (i.e., value ID) of the corresponding value in
the dictionary. To reduce the memory footprint further, the attribute vector
is fixed-width bit-packed [7].

Group-Key Indices: The group-key index is HYRISE’s primary index struc-
ture [4]. The group-key index solely indexes the static main partition that is
created periodically by merging the delta partition with it. Since the index
is maintained during the merge phase as explained by Faust et al. [4], we do
not consider maintenance costs throughout this paper.

The basic idea of the group-key index is to provide a mapping from dictio-
nary values to all positions in the attribute vector that store this value. When
creating a group-key index on a dictionary-encoded column, two structures will
be created: Firstly, an Index Offset vector (IO) that contains the position in the
Index Positions vector (IP) for each dictionary value. The IP vector contains all
the positions in the attribute vector (AV) for each dictionary entry. An example
is depicted in Figure 1 with a column storing countries and the corresponding
index offset vectors and index position vectors.

The IO vector has one entry for each dictionary entry and follows the same
order. For each value in the dictionary, the IO vector contains the offset in the
IP vector at which the list of positions for that specific value ID starts. The IP
vector is a list of all attribute vector positions (or row IDs) where the attribute
vector has a certain value. There is no implicit indicator for the value IDs, but
instead the IO vector is used as an index for the IP.

In terms of memory consumption, the IP vector has Nc entries (Table 1) with
a size of dlog2(Nc)e bits per entry as it points to a value in the attribute vector.
The IO vector contains the same number of entries like the dictionary, i.e., Dc,
and because it maps to the IP vector, each entry has a size of dlog2(Nc)e bits.
Thus, we denote MIc as the total memory consumption of an index for column
c:

MIc = Nc · dlog2(Nc)e+Dc · dlog2(Nc)e (1)

The actual benefit of indices is the fast lookup of values. When using an
index to look up the value “Hungary”, the first step is to find the value ID
in the dictionary. However, this step is also necessary when doing a regular



Workload-Based Index Advisor for In-Memory Databases 5

0 1 Hungary 0 Germany

1 3 USA 1 Hungary

2 3 USA 2 Norway

3 0 Germany 3 USA

4 2 Norway

5 1 Hungary

Attribute Vector Dictionary

(a) Column

0 0 0 3

1 1 1 0

2 3 2 5

3 4 3 4

4 1

5 2

Index Offsets Index Positions

(b) Index

Fig. 1. Data structures for an indexed column storing countries. The two elements on
the left show the default data structures in HYRISE to a table column: an (bit-packed)
attribute vector that stores positional information referring to the (sorted) dictionary
with all distinct column values. The two index structures on the right depict HYRISE’s
group-key index with an offset vector to find the row identifies in the position list.

column scan without an index, so this can be discarded when comparing the
two approaches. The next step is to read the lower and upper bounds in the
IO vector. With a complexity of O(1) this step can also be safely ignored when
analyzing the performance of an index look-up. The final step is reading the list
of positions in the IP vector. Of course, the number of values to be read here
depends on the value distribution in that column. However, on the assumption
that the values are uniformly distributed, we need to read Nc/Dc entries. And
since each entry in the IP vector has a size of dlog2(Nc)e the average amount of
data that needs to be read is:

Nc · dlog2(Nc)e
Dc

(2)

In most cases, the memory to read using an index is significantly lower than
the memory traffic of a regular column scan. Figure 2 shows a direct comparison
between IP vector look-up and attribute vector scan (which is basically reading
Nc · dlog2(Nc)e bits). The graph shows that an index results in reduced memory
traffic if the dictionary contains at least nine dictionary values (assuming uniform
distribution).

3 Workload Analyses

The value of an index depends to a large extend on the characteristics of the
actual workload. As a result, we built our analyses on top of the database plan
cache2 of a live production system to obtain both thorough insights into the
workload as well as an overview of the system-wide load. The plan cache is
a standard component of every major database product (e.g., Microsoft SQL

2 The Plan Cache of SAP HANA contains frequently executed query plans (including
prepared SQL statements) as well as a number of monitoring statistics per plan,
such as the aggregated execution count or the minimal/average/maximal run times.



6 Workload-Based Index Advisor for In-Memory Databases

●

●
●

● ● ● ●
● ● ● ● ● ●

0.0001

0.0100

1.0000

100.0000

1 2 4 8 16 32 100 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000
Dictionary Length

M
em

or
y 

T
ra

ffi
c 

[M
B

]
Access Path

●

index

scan

Fig. 2. Memory traffic for a single equi-predicate. Comparing scans on a dictionary-
encoded and bit-packed column with index accesses using a group-key on a column
with 100 million rows. For columns with fewer than nine distinct values, scanning a
compressed column reads less memory from DRAM than an indexed access.

Server’s Plan Cache Object, Oracle’s Optimizer Statistics, IBM DB2’s Query
engine Plan cache) and can easily be exported and analyzed offline. Many index
advisors require a complete copy of the running system in order to evoke the
plan optimizer and evaluate indices. While these approaches are highly accurate,
the costs of a second system copy are immense. Other advisors rely on static and
simplified assumptions. We decided for a trade-off between both approaches and
evaluate our cost-based index heuristics using the database plan cache of the
production system. In this way, analyses can be executed offline on an export of
the plan cache with minimal additional costs while still preserving a detailed view
on the current workload of the system. With this setup, we gain the advantage
of having different plan caches for different server nodes. In this way, each node
can independently create the indices that yield the best performance for the
given workload. Especially systems that partition data along a time dimension
see different workloads on server nodes storing recent data compared to server
nodes storing historical data [13].

Comparing an index against the default selection mechanism of a database
(i.e., column scanning) is helpful to obtain a first decent idea of the efficiency of
an index. However, even the best index does not provide any advantages when
the indexed column is never accessed during query execution. Even worse, for
in-memory databases with limited DRAM resources a never or rarely used index
wastes resources, because most in-memory databases deploy DRAM-resident
indices to ensure optimal performance.

Consequently, we evaluate indices with their actual usage in the workload.
The reason is simple: the later a selection on a column is executed in the query
plan, the lower the advantages of an index are. We assume the traditional ap-
proach of query plan optimization. Here, first all selections on indexed columns
are executed, then selections on non-indexed columns are performed. Both times
the attributes are sorted by the selectivity of each attribute, beginning with the
lowest selectivity (i.e., the smallest expected number of tuples to be returned).



Workload-Based Index Advisor for In-Memory Databases 7

While the costs of scanning increase linearly with the size of the vector, the
costs for index accesses increase logarithmically. Let us consider a typical scan
operation that is broken down into multiple chunks that are scanned in parallel
on different cores. With a higher selectivity, the probability increases that fewer
blocks of the following attribute are qualifying for further accesses. This sim-
plified assumption is not always true. Even for selections with low selectivities
there is the chance that all scanned blocks store qualifying tuples. However, for
our model we assume that the first evaluated attribute is the one with the lowest
selectivity and thus yields a smaller set of blocks including qualifying tuples.

In contrast, for the group-key index the position in the query plan does not
matter. For every selection in the plan, the index will be accessed. In case that
one or more selections have already been evaluated, the input position list from
the previous operator will be merged with the result of the index access.

Consequently, we evaluate each attribute by looking at every query plan that
executes a selection on that attribute and adapt the index coefficient depending
on the selectivity of the attribute (i.e., the estimated position in the query plan).

4 Index Evaluation

In our model, the objective of an index is to reduce the memory traffic that is
required to filter on an attribute. In this section, we present the Index Coefficient
that quantifies the advantage of an index over the scan in respect to the required
memory traffic and the Index Cost Score that puts the index memory traffic
savings in relation with the index size.

4.1 Index Coefficient

It is an important index evaluation requirement that the coefficient is easy to
understand and comparable. Thus, our index coefficient is a linear scalar repre-
senting the memory traffic saved by a particular index over the scan.

For example, index accesses on a particular attribute for the entire workload
read on average 2 MB for a single equi-predicate to evaluate. The memory traffic
for scan accesses on that attribute is 10 MB on average. In that example, the
index coefficient would be 5×.

We decided for a two-phase approach for the evaluation of indices. In the first
phase, the index is measured solely by comparing the index and its workload with
the default non-index access (i.e., column scanning). The second phase adapts
the coefficient according to the given workload to incorporate the frequency of
potential accesses to the index and the order in the query plans. For simplicity,
we will concentrate on single equi-predicates throughput this paper.

Columns are denoted by c while C denotes the set of all columns in the
system. We consider a set of query plans P . For simplification and only assuming
equi-predicates, a query plan p, p ∈ P , is characterized by a set of predicates on
columns c, i.e., every plan p is a subset of C, p ⊆ C. Note, to evaluate the index



8 Workload-Based Index Advisor for In-Memory Databases

coefficient for a given attribute c, it is sufficient to consider solely plans p that
contain the column index c (i.e., evaluate a predicate on c).

As already mentioned, we do not aim for an automated index selection that
finds the best index configuration for a system. We consider a given global status
Z of the system that is characterized by values zc ∈ {0, 1}, c ∈ C. zc denotes
whether column c is indexed (i.e., zc = 1) or not (i.e., zc = 0). The index
coefficient for column c evaluates the effect of having an index over not having
an index, where Z with the exception of zc is stable.

We define the selectivity for single equi-predicates as follows, c ∈ C:

Sc =
1

Dc
(3)

To compare the memory traffic for a predicate on a particular attribute c in
a given plan p, we define function M for the binary case that c is not indexed
(denoted by (0)) or is indexed (denoted by (1)). In case c is not indexed, the ex-
pected data transfer (i.e., number of tuples to read) depends on all other columns
that are indexed and thus are accessed first plus all non-indexed columns with
a lower selectivity. Please note that the indexed case does not incorporate the
position in the query plan by multiplying the selectivities of previous selections
in contrast to the scanned access as explained in Section 3.

M (0)
c,p = dlog2(Dc)e ·Nc ·

∏
i∈p
Zi=1

Si ·
∏
j∈p
Zj=0
Sj<Sc

Sj

M (1)
c,p = dlog2(Nc)e · dNc/Dce

(4)

The next step is to calculate the memory traffic for a given workload (i.e.,
set P of query plans). Which set of query plans is considered depends on what
aspects are of interest. If the user wants to evaluate the efficiency of a particular
index, P only needs to include query plans accessing the indexed attribute. If
the question is which indices of a particular table are the most/least efficient, P
should include all query plans for that particular table. To obtain a system-wide
overview and to determine the least efficient indices, P might even include all
query plans. Depending on the current focus, the database administrator can
adjust the current focus by defining what query plans to consider.

To denote the workload-adjusted traffic we define function MW for a given
set of query plans P as follows (Ep denotes the execution count of plan p):

MW (0)
c =

∑
p∈P

M (0)
c,p · Ep

MW (1)
c =

∑
p∈P

M (1)
c,p · Ep

(5)



Workload-Based Index Advisor for In-Memory Databases 9

With these functions at hand we can finally calculate the index coefficient
ICc for a given column c that determines the relative memory benefit:

ICc =
MW

(0)
c

MW
(1)
c

(6)

4.2 Index Cost Score

So far, the index coefficient helps to calculate the expected memory transfer
reduction when having an index on a particular column. Although scans are
comparatively efficient on in-memory column stores and outperform index ac-
cesses in many cases, for most cases indices will have a better coefficient. But
since every main memory-resident index increases the memory footprint and
thus potentially also the overall system costs, we need to compare the relative
index benefit against the costs of that particular index. In our case, the cost is
the main memory-allocated space to store the index.

The Index Cost Score ICSc puts the overall saved memory traffic for a given
set of query plans P in relation to the cost of the index for a given column c
(see Equation (1) for the calculation of index size MIc):

ICSc = MW (0)
c −MW (1)

c − α ·MIβc (7)

We use two penalty parameters α and β. α is used to scale the index size
accordingly to the size of the workload (i.e., the number of query plans and their
execution counts), since the overall memory traffic reduction is relative to the
size of the workload. The scaling parameter β is used to penalize large indices
in a suitable way. Since performance gains and memory footprint reductions are
usually orthogonal optimization objectives, α allows balancing the trade-off (also
directly by the DBA in the front end to analyze the impact).

The model is well suited for dynamic programming approaches with which it
is also possible to calculate (near) optimal index configurations with respect to
given footprint constraints (see [12] for a such an approach). However, further
use cases for the model are part of continued research.

5 Advisor Cockpit

In this section, we present the Index Advisor Cockpit. We also give a short
overview of the production system we have run our analyses on. Then, we show
exemplary screenshots of the HTML-based front end as well as a few insights
from the analyzed real-world system.

Besides obvious requirements like accurate performance indicators and valu-
able insights for DBAs, we think a suitable user interface is crucial for any advisor
tool. Nowadays, there is a vast array of tools for DBAs to control and monitor
their databases. Unfortunately, many of them lack simple and easy understand-
able metrics that provide valuable insights without the need to fully understand
the underlying database engines.



10 Workload-Based Index Advisor for In-Memory Databases

An easy to understand user interface is especially important for systems, such
as enterprise systems. The analyzed SAP ERP installation consists of ∼112,000
tables with over 240,000 indices. We think our tool set with a workload-driven
approach and a straightforward index evaluation model is a promising approach
helping database administrators to handle such large systems.

5.1 Plan Cache Analysis

All data in this demo has been extracted from the live production enterprise
system of a Global 2000 3 company:

– the uncompressed data amounts to over seven terabytes
– one of the most recent versions of an SAP ERP system including operational

reporting on transactional data (i.e., OLxP)
– database system handles ∼1.5 billion queries each day

For our analyses, we have exported the plan cache table as well as several
statistic/administrative tables (e.g., column and index information of the sys-
tem). The extracted plan cache included ∼300,000 query plans accounting for ∼5
billion query executions. All analyses shown here can also be executed directly on
the production data. The computation overhead on the production is manage-
able, because most queries simply request data that has already been aggregated
by the database system itself (e.g., overall plan executions of a particular query
plan, average run times, et cetera).

An important capability of our tool set is the analysis of query plans that
access logical database views. The inclusion of database views is increasingly
important as modern enterprise systems use them, e.g., to ease the transition to
new systems [13] and to disassemble sophisticated queries into multiple layers of
logical views.

5.2 Table Information

The user has the opportunity to examine specific tables in detail. The table detail
page displays details about the table in general, its columns and indices as well
as information about primary key indices. To give the user a fast overview of
the memory footprint of the table, the top of the page displays a graph about
the overall memory footprint broken down in the table’s elements (Figure 3).

5.3 Index Information

Figure 4 shows two aspects of the index detail page. This page presents in-
formation about the currently viewed index, i.a., the ratio between all queries
accessing the corresponding table and queries on the corresponding table that
furthermore potentially access this index (see Figure 4a). Most importantly, the

3 Global 2000: http://www.forbes.com/global2000/



Workload-Based Index Advisor for In-Memory Databases 11

Fig. 3. Memory consumption overview for table ADRC storing customer address infor-
mation. It is shown that text indices are responsible for most of the DRAM consumption
of that – comparatively small – master data table.

user can analyze the index’s ranking. In this example, the index ranks compara-
tively well with its rank 275 out of the 18,487 indices (see Figure 4b) that have
been ranked (we limited the ranking to indices that have been accessed at least
once). Additionally, all factors used to calculate the coefficient are shown to ease
understanding of the resulting coefficient. In this particular case, the evaluation
of a single equi-predicate using a scan reads over 800 MB from DRAM, while an
access via the index only reads three Bytes from DRAM.

(a) Workload information. (b) Index ranking.

Fig. 4. Index detail page: (a) ratio of queries on table ADCP that potentially access this
particular index, (b) the ranking information.

5.4 Index Ranking and Issues

The Index Ranking page lists all indices that have been ranked according to
their coefficient. The table can be searched and sorted. For each index, additional
information, such as the column size, number of query executions and the source
table are displayed as well.

The Issues page prepares two lists of indices that could be of interest to the
database administrator. The first list displays all indices that are not used by the



12 Workload-Based Index Advisor for In-Memory Databases

traced workload at all. That means that not even a single query with a selection
on the indexed column has been found.

Secondly, a list of the least economical indices is provided for the user.
Amongst these indices are typically indices that are automatically created by
the ERP system, because they are advantageous for row stores. More impor-
tantly, for main memory column stores these indices are often wasting resources.
Furthermore, they might even slow down the entire system in case the query
optimizer does not recognize that scanning incurs a lower memory transfer.

Workload analyses have shown that over 5,000 indices in the system have
not been accessed once during the recorded plan cache period. The footprint of
these indices is 18.1 GB. We think this information is important for database
administrators as those indices waste resources. Nevertheless, we do not propose
to automatically remove these indices since even though they might be accesses
rarely, they can still be necessary for a variety of reasons (e.g., to avoid SLA
violations for certain processes).

6 Related Work

In this section, we briefly discuss related work in the areas of cost models for
in-memory databases and index selection.

6.1 Cost Models for In-Memory Databases

Manegold et al. published an extensive low-level cost model for database opera-
tors for in-memory databases [11]. Using their cost model, the authors estimate
the cost for accesses to different levels in the memory hierarchy. They compare
the effects of different memory access patterns to create building blocks that can
be used to estimate the costs of query plan alternatives. In contrast to our com-
paratively simple approach, Manegold et al. can adjust their model to a given
hardware setup using a calibrator tool.

Schwalb et al. published a cost model for estimating query costs for different
physical column organizations (e.g., uncompressed or bit-packed columns, sorted
or unsorted dictionaries, et cetera) [15]. In contrast to Manegold et al., who focus
on join operators, Schwalb et al. compare scan and lookup operators on different
column layouts. Furthermore, the authors focus on mixed workload with the
additional evaluation of inserts into read-optimized data structures. However,
similar to Manegold et al. the work by Schwalb et al. does not investigate more
complex systems with highly concurrent mixed workloads that falsify several
assumptions made throughout this work.

6.2 Index Selection

Finkelstein et al. worked on the topic of index selection as early as 1988 [5].
Similar to our solution, they analyzed the workload queries to gather informa-
tion about how tables and their attributes are accessed. Based on these access



Workload-Based Index Advisor for In-Memory Databases 13

statistics and the execution frequencies of workload queries, the authors try to
find an optimal index configuration.

Another tool that allows the analysis of existing indices is AutoAdmin by
Chaudhuri et al. [1]. AutoAdmin aims to be a multi-purpose tool set to analyze
currently deployed indices, assist the database administrator in index selection
and also perform what-if analysis for hypothetical indices. The tool integrates
into the Microsoft SQL Server and gathers information about the workload dur-
ing run time. This information can then be used to assess the benefits of the
current indices, propose new (better) indices and do what-if analyses for theo-
retical changes to the current index setup.

The index selection approach by Finkelstein et al. has a clear focus on the
workload similar the tools proposed in this paper, however, they focus on indices
that are about to be created instead of evaluating the ones that are already in
place. AutoAdmin, on the other hand, is much closer to what we are trying
to achieve and offers workload-driven analysis of indices that are currently in
place. However, since AutoAdmin is tightly integrated into the SQL Server, it
only allows live analysis and no offline analysis.

The aforementioned approaches as well as most other approaches in this field
are designed for disk-resident row stores. And since the index selection for col-
umnar in-memory database differs considerably in many cases, those approaches
cannot be simply adapted by changing expected access latencies and block sizes.

7 Future Work

There are several additional aspects we want to cover with our index coefficient
and the index cost score. One aspect is the inclusion of additional data struc-
tures and approaching new hardware technologies, such as non-volatile memory
(NVM). Another aspect is a declarative language than could narrow the gap
between application requirements and the database.

7.1 Additional Data Structures

Besides the bit-packed and (sorted) dictionary-encoded columns and the group-
key indices, we want to include additional data structures. On the one side, there
are several alternatives to store columns, e.g., uncompressed columns as used in
HyPer [6] or run-length encoded columns [14]. Both approaches have a significant
impact on the expected memory traffic for a column scan. On the other side, we
want to incorporate additional indices into our cost model, e.g., block indices [14]
and compressed group-key indices (e.g., using Golomb or Simple9 compression
as used in SAP HANA).

7.2 New Storage Technologies

Upcoming non-volatile memory (NVM) promises to provide a persistent and
byte-addressable DRAM alternative with larger capacities than DRAM. With



14 Workload-Based Index Advisor for In-Memory Databases

the expected capacity increase of 5× at a lower price point and an expected
latency orders of magnitudes better than PCIe-connected devices [2], NVM is a
natural fit for index cost considerations. At the moment, data access to other
storage tiers than DRAM is considered as too slow for applications with low
latencies requirements. This is even the case when data is stored on high per-
formance PCIe-connected NVMe NAND flash drives. However, the expected
performance of NVM adds a new layer to the cost model for indices that provide
performance advantages but are currently too large to be stored in DRAM.

While it is simple to add complexity to a cost model, let us emphasize that
we explicitly decided for a model yielding results that are simple to interpret.
We think that the main challenge will not be to find a cost model incorporating
NVM, additional data structures and more. The main challenge will be to find
a simple, yet powerful, and applicable cost model.

7.3 Declarative Languages for Business Requirements

As of now, one of the main tasks of a database administrator is to ensure that
the database meets business requirements. Such requirements include highly
prioritized processes, such as end-of-quarter closings or service-level agreements
(SLAs). As already mentioned, we think that a completely automated index
selection approach is not feasible for real-world systems since the database is
not aware of external application requirements. We think a declarative language
could narrow this gap. Using such a language, the application developer can
define requirements of the application, e.g., certain processes that need to finish
within a defined time frame. The language can be parsed and interpreted by the
database to automatically optimize itself within the given constraints.

8 Conclusion

We presented a workload-aware heuristic to evaluate indices of columnar in-
memory databases. The proposed model is cost-aware. This is increasingly im-
portant for main memory-resident indices that have a direct impact on the
DRAM footprint and thus on the overall costs of a system.

The index coefficient is a straightforward linear scalar helping database ad-
ministrators to understand and interpret the efficiency of a particular index
without requiring a comprehensive understanding of the implementation details
of the database system. The coefficient ranking allows making informed deci-
sions about the benefits and costs of an index configuration. We think that the
presented heuristic with its focus on memory traffic is simple, but yet powerful.

Furthermore, we presented our index advisor cockpit applied on a production
enterprise system of a Global 2000 enterprise. Particularly interesting was – as
soon as the actual workload was incorporated – the unexpected high number of
apparently unused indices that exist in a standard ERP installation and that
waste main memory without further index tiering concepts. Furthermore, we
determined indices that are no longer necessary using columnar data structures.



Workload-Based Index Advisor for In-Memory Databases 15

References

1. Surajit Chaudhuri and Vivek R. Narasayya. Autoadmin ’what-if’ index analysis
utility. In SIGMOD 1998, Proceedings ACM SIGMOD International Conference
on Management of Data, 1998, Seattle, Washington, USA, pages 367–378, 1998.

2. Subramanya Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan Sundaram, Na-
dathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten Schwan. Data tiering in
heterogeneous memory systems. In Proceedings of the Eleventh European Confer-
ence on Computer Systems, EuroSys 2016, London, United Kingdom, April 18-21,
2016, pages 15:1–15:16, 2016.

3. Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo Müller, Hannes
Rauhe, and Jonathan Dees. The SAP HANA database – an architecture overview.
IEEE Data Engineering Bulletin, 35(1):28–33, 2012.

4. Martin Faust, David Schwalb, Jens Krüger, and Hasso Plattner. Fast lookups
for in-memory column stores: Group-key indices, lookup and maintenance. In
International Workshop on Accelerating Data Management Systems Using Modern
Processor and Storage Architectures - ADMS 2012, pages 13–22, 2012.

5. Sheldon J. Finkelstein, Mario Schkolnick, and Paolo Tiberio. Physical database
design for relational databases. ACM Trans. Database Syst., 13(1):91–128, 1988.

6. Florian Funke, Alfons Kemper, and Thomas Neumann. Compacting transactional
data in hybrid OLTP & OLAP databases. PVLDB, 5(11):1424–1435, 2012.

7. Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier, Philippe Cudré-
Mauroux, and Samuel Madden. HYRISE - A main memory hybrid storage engine.
PVLDB, 4(2):105–116, 2010.

8. Thomas Kissinger, Tim Kiefer, Benjamin Schlegel, Dirk Habich, Daniel Molka, and
Wolfgang Lehner. ERIS: A NUMA-aware in-memory storage engine for analytical
workload. In International Workshop on Accelerating Data Management Systems
Using Modern Processor and Storage Architectures - ADMS 2014, pages 74–85,
2014.

9. Harald Lang, Tobias Mühlbauer, Florian Funke, Peter Boncz, Thomas Neumann,
and Alfons Kemper. Data blocks: Hybrid OLTP and OLAP on compressed storage
using both vectorization and compilation. In International Conference on Man-
agement of Data, SIGMOD 2016, San Francisco, CA, USA, 2016.

10. Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. Optimizing database
architecture for the new bottleneck: memory access. VLDB J., 9(3):231–246, 2000.

11. Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. Generic database cost
models for hierarchical memory systems. In VLDB 2002, Proceedings of 28th In-
ternational Conference on Very Large Data Bases, 2002, pages 191–202, 2002.

12. Stratos Papadomanolakis and Anastassia Ailamaki. An integer linear programming
approach to database design. In ICDE 2007, 15-20 April 2007, Istanbul, Turkey,
pages 442–449, 2007.

13. Hasso Plattner. The impact of columnar in-memory databases on enterprise sys-
tems. PVLDB, 7(13):1722–1729, 2014.

14. Hasso Plattner and Alexander Zeier. In-Memory Data Management: An Inflection
Point for Enterprise Applications. Springer, 1st edition, 2011.

15. David Schwald, Martin Faust, Jens Krüger, and Hasso Plattner. Physical column
organization in in-memory column stores. In Database Systems for Advanced Appli-
cations, 18th International Conference, DASFAA 2013, Lecture Notes in Computer
Science, pages 48–63. Springer, 2013.


