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Abstract: Many markets are characterized by pricing competition. Typically, competitors are involved that adjust their
prices in response to other competitors with different frequencies. We analyze stochastic dynamic pricing
models under competition for the sale of durable goods. Given a competitor’s pricing strategy, we show how to
derive optimal response strategies that take the anticipated competitor’s price adjustments into account. We
study resulting price cycles and the associated expected long-term profits. We show that reaction frequencies
have a major impact on a strategy’s performance. In order not to act predictable our model also allows to
include randomized reaction times. Additionally, we study to which extent optimal response strategies of active
competitors are affected by additional passive competitors that use constant prices. It turns out that optimized
feedback strategies effectively avoid a decline in price. They help to gain profits, especially, when aggressive
competitors are involved.

1 INTRODUCTION

In many markets, firms have to deal with competition
and stochastic demand. Sellers are required to choose
appropriate pricing decisions to maximize their ex-
pected profits. In E-commerce, it has become easy to
observe and to change prices. Hence, dynamic pric-
ing strategies that take the competitors’ strategies into
account will be used increasingly. However, optimal
price reactions are not easy to find. While some market
participants use mostly constant prices others use auto-
mated price adjustment strategies. Applications can be
found in a variety of contexts that involve perishable
(e.g., fashion goods, seasonal products, event tickets)
as well as durable goods (e.g., books, natural resources,
gasoline). In many markets, it can be observed, that
the application of response strategies typically leads to
cyclic price patterns over time, cf. Edgeworth cycles,
see, e.g., Maskin, Tirole (1988), Noel (2007). We want
to explain such effects from a theoretical perspective.

In this paper, we study oligopoly pricing models
in a stochastic dynamic framework. In our model,
the sales probabilities are allowed to be an arbitrary
function of time and the competitors’ prices. Our aim
is to take into account (i) various competitors’ strate-
gies, (ii) different (randomized) reaction times, and
(iii) additional passive competitors that use constant
prices.

Selling products is a classical application of rev-
enue management theory. The problem is closely
related to the field of dynamic pricing, which is
summarized in the books by Talluri, van Ryzin
(2004), Phillips (2005), and Yeoman, McMahon-
Beattie (2011). The survey by Chen, Chen (2015)
provides an excellent overview of recent pricing mod-
els under competition.

In the article by Gallego, Wang (2014) the authors
consider a continuous time multi-product oligopoly
for differentiated perishable goods. They use opti-
mality conditions to reduce the multi-dimensional dy-
namic pricing problem to a one-dimensional one. Gal-
lego, Hu (2014) analyze structural properties of equi-
librium strategies in more general oligopoly models
for the sale of perishable products. The solution of
their model is based on a deterministic version of the
model. Martinez-de-Albeniz, Talluri (2011) consider
duopoly and oligopoly pricing models for identical
products. They use a general stochastic counting pro-
cess to model customer’s demand.

Further related models are studied by Yang, Xia
(2013) and Wu, Wu (2015). Dynamic pricing models
under competition that also include strategic customers
are analyzed by Levin et al. (2009) and Liu, Zhang
(2013). Dynamic pricing competition models with lim-
ited demand information are analyzed by Tsai, Hung
(2009), Adida, Perakis (2010) and Chung et al. (2012)
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using robust optimization and learning approaches.
Many models consider continuous time models with
finite horizon and limited inventory. In most existing
models, discounting is not included and the demand is
assumed to be of a special functional form. We con-
sider infinite horizon models with unlimited inventory
(i.e., products can be reproduced or reordered). De-
mand is allowed to depend generally on time as well
as the prices of all market participants.

While many publications concentrate on (the ex-
istence of) equilibrium strategies, we do not assume
that all market participants act rationally. In many mar-
kets it can be observed that automated strategies that
are used by firms are relatively simple and aggressive.
The most common strategy is to slightly undercut the
competitor’s price, cf. Kephart et al. (2000). In order
to be able to respond to various potentially subopti-
mal pricing strategies we provide applicable solution
algorithms that allow to compute optimal response
strategies.

The main contribution of this paper is threefold.
We (i) derive optimal price response strategies that an-
ticipate competitors’ prices, (ii) we quantify the impact
of different (randomized) reaction times on expected
long-term profits of all market participants, and (iii)
we are able to explain different types of price cycles.

This paper is organized as follows. In Section 2,
we describe the stochastic dynamic oligopoly model
with infinite time horizon (durable goods). We allow
sales probabilities to depend on competitor prices as
well as on time (seasonal effects). The state space
is characterized by time and the actual competitors’
prices. The stochastic dynamic control problem is ex-
pressed in discrete time. In Section 3, we consider a
duopoly competition. The competitor is assumed to
frequently adjust its prices using a predetermined strat-
egy. We assume that the price reactions of competitors
as well as their reaction times can be anticipated. We
set up a firm’s Hamilton-Jacobi-Bellman equation and
use recursive methods (value iteration) to approximate
the value function. We are able to compute optimal
feedback prices as well as expected long-term profits
of the two competing firms. Evaluating price paths
over time, we are able to explain specific price cycles.
Furthermore, the results obtained are generalized to
scenarios with randomized reaction times and mixed
strategies.

In Section 4, we analyze optimal response strate-
gies in the presence of active and passive competitors.
We study how the duopoly game of two active com-
petitors is affected by additional passive competitors.
We show how to compute optimal pricing strategies
and to evaluate expected profits. We also illustrate
how the cyclic price paths of the active competitors are

affected by different price levels of passive competi-
tors. Finally, we evaluate the expected profits when
different strategies are played against each other. Con-
clusions and managerial recommendations are offered
in final Section 5.

2 MODEL DESCRIPTION

We consider the situation where a firm wants to sell
goods (e.g., gasoline, groceries, technical devices) on
a digital market platform (e.g., Amazon, eBay). We as-
sume that several sellers compete for the same market,
i.e., customers are able to compare prices of different
competitors.

We assume that the time horizon is infinite. We
assume that firms are able to reproduce or reorder prod-
ucts (promise to deliver), and the ordering is decoupled
from pricing decisions. If a sale takes place, shipping
costs c have to be paid, c ≥ 0. A sale of one item at
price a, a≥ 0, leads to a net profit of a− c. Discount-
ing is also included in the model. For the length of one
period, we will use the discount factor δ, 0 < δ < 1.

Since in many practical applications prices cannot
be continuously adjusted, we consider a discrete time
model. The sales intensity of our product is denoted
by λ. Due to customer choice, the sales intensity will
particularly depend on our offer price a and the com-
petitors’ prices. We also allow the sales intensity to
depend on time, e.g., the time of the day or the week.
We assume that the time dependence is periodic and
has an integer cycle length of J periods. In our model,
the sales intensity λ is a general function of time, our
offer price a and the competitors’ prices ~p. Given the
prices a and ~p in period t, the jump intensity λ satisfies,
t = 0,1,2, ..., a≥ 0, ~p≥~0,

λt(a,~p) = λt mod J(a,~p). (1)

In our discrete time model, we assume the sales
probabilities (for one period) to be Poisson distributed.
I.e., the probability to sell exactly i items within one
period of time is given by, t = 0,1,2, ..., a≥ 0, ~p≥~0,
i = 0,1,2, ...,

Pt(i,a,~p) =
λt(a,~p)

i

i!
· e−λt (a,~p). (2)

For each period t, a price a has to be chosen. We
call strategies (at)t admissible if they belong to the
class of Markovian feedback policies; i.e., pricing de-
cisions at ≥ 0 may depend on time t and the current
prices of the competitors. By A we denote the set of



admissible prices. A list of variables and parameters
is given in the Appendix, cf. Table 3.

By Xt we denote the random number of sales in
period t. Depending on the chosen pricing strategy
(at)t , the random accumulated profit from time/period
t on (discounted on time t) amounts to, t = 0,1,2, ...,

Gt :=
∞

∑
s=t

δ
s−t · (as− c) ·Xs. (3)

The objective is to determine a non-anticipating
(Markovian) pricing policy that maximizes the ex-
pected total profit E(G0).

In the following sections, we will solve dynamic
pricing problems that are related to (1) - (3). In the next
section, we study a duopoly situation. We assume that
the competitor frequently adjusts his/her prices and
show how to derive optimal response strategies. We
analyze the impact of different reaction times as well
as randomized reaction times. We also consider the
case in which the competitor plays mixed strategies. In
Section 4, we compute pricing strategies for oligopoly
scenarios with active and passive competitors.

3 OPTIMAL REACTION
STRATEGIES IN A DUOPOLY

3.1 Fixed Reaction Times

In some applications, sellers are able to anticipate tran-
sitions of the market situation. Such information can
be used to optimize expected profits. In particular, the
price responses of competitors as well as their reaction
time can be taken into account. In this case, a change
of the market situation ~p can take place within a period.
A typical scenario is that a competitor adjusts its price
in response to our price with a certain delay. In this
section, we assume that the pricing strategy and the
reaction time of the competitor is known; i.e., we as-
sume that choosing a price a at time t is followed by a
state transition (e.g., a competitor’s price reaction) and
the current market situation ~p changes to a subsequent
state described by a transition function F , which can
depend on ~p and a.

In the following, we want to derive optimal price re-
sponse strategies to a given competitor’s strategy. For
simplicity, we consider the sale of one type of product
in a duopoly situation. We assume that the state of the
system (the market situation) is one-dimensional and
simply characterized by the competitor’s price p, i.e.,
we let ~p := p.

In real-life applications, a firm is not able to adjust
its prices immediately after the price reaction of the

competing firm. Hence, we assume that in each period
the price reaction of the competing firm takes place
with a delay of h periods, h < 1. I.e., after an interval
of size h the competitor adjusts its price from p to
F(a), see Figure 1.

 

 
R. Schlosser: Dynamic Pricing under Competition: Evidence from the Amazon Marketplace 

 

Sequence of Events (Duopoly Price Reactions) 
 
 
 
 
 
 
 
 
 
 

|
t h+

||

1Phase| ||

( )adjusted competitor s price F a′competitor s price p′

our price a

2Phase

t 1t +

Figure 1: Sequence of price reactions in case of a duopoly.

Thus in period t, the probability to sell exactly i
items during the first interval of size h is P(h)

t (i,a, p) :=
Pois(h ·λt(a, p)), while for the rest of the period
the sales probability changes to P(1−h)

t (i,a,F(a)) =
Pois((1−h) ·λt (a,F(a))).

We will use value iteration to approximate the
value function, which represents the present value
of future profits. For a given ”large” number T ,
T � J, we let VT (p) = 0 for all p, and compute,
t = 0,1,2, ...,T −1, 0 < h < 1, p ∈ A,

Vt(p) = max
a∈A

{
∑

i1≥0
P(h)

t (i1,a, p)

· ∑
i2≥0

P(1−h)
t+h (i2,a,F(a))

·
(
(a− c) · (i1 + i2)+δ ·Vt+1 (F(a))

)}
. (4)

The associated pricing strategy a∗t (p), t =
0,1,2, ...,J−1, p ∈ A, is determined by the argmax of

a∗t (p) = argmax
a∈A

{
∑

i1≥0
P(h)

t (i1,a, p)

· ∑
i2≥0

P(1−h)
t+h (i2,a,F(a))

·
(
(a− c) · (i1 + i2)+δ ·Vt+1 (F(a))

)}
. (5)

In case a∗t (p) is not unique, we choose the largest
one.

Remark 3.1. Our recursive solution approach also
allows to solve problems with perishable products and
finite horizons T . Equations (4)-(5) just have to be
evaluated for all t = 0,1,2, ...,T −1.

To illustrate our approach we will consider a nu-
merical example for durable goods. We assume that



the competitor applies one of the most common strate-
gies: the competitor undercuts our current price by ε

down to a certain minimum (e.g., the shipping costs c).
The sales dynamics of the following example above
are based on a large data set from the Amazon market
for used books, see Schlosser et al. (2016).

Definition 3.1. We define the sales probabil-
ities P(h)

t (i,a, p) := Pois
(

h · e~x(a,p)′~β/(1+ e~x(a,p)
′~β)
)

,
using linear combinations of the following five regres-
sors~x =~x(a, p) given coefficients~β = (β1, ...,β5):

(i) constant / intercept

x1(a, p) = 1

(ii) rank of price a compared to price p

x2(a, p) = 1+
(
1{p<a}+1{p≤a}

)
/2

(iii) price gap between price a and price p

x3(a, p) = a− p

(iv) total number of competitors

x4(a, p) = 1

(v) average price level

x5(a, p) = (a+ p)/2

Example 3.1. We assume a duopoly. Let c = 3,
δ = 0.99, 0 ≤ h ≤ 1, and let F(a) := max(a− ε,c),
ε=1, a ∈ A := {1,2, ...,100}. For the computation of
the value function, we let T := 1000. We assume
the sales probabilities P(h)

t (·,a, p), see Definition 3.1,
where~β = (−3.89,−0.56,−0.01,0.07,−0.02).

Figure 2a and Figure 3a show optimal response
strategies for different reaction times h=0.1 and h=0.9.
The case h = 0.1 illustrates a fast reaction time of
the competitor; h = 0.9 represents a slow reaction of
the competitor. If h = 0.5 both competing firms react
equally fast. In all three cases the optimal response
strategy are of similar shape. If the competitor’s price
is either very low or very large, it is optimal to set the
price to a certain moderate level. If the competitor’s
price is somewhere in between (intermediate range),
it is best to undercut that price by one price unit ε. If
h is larger, the upper price level is increasing and the
intermediate range is bigger.

The application of optimal response strategies
leads to cyclic price patterns over time, cf. Edgeworth
cycles, see, e.g., Maskin, Tirole (1988), Kephart et
al. (2000), or Noel (2007). The resulting price paths
are shown in Figure 2b and Figure 3b. If the reaction
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(b) Evaluated price paths over time.
Figure 2: Optimal response policy and price paths for Exam-
ple 3.1 with h = 0.1.

time of the competitor is longer, we observe that the
cycle length and the amplitude of the price patterns are
increasing. Note, roughly h ·100% of the time our firm
is offering the lowest price; i.e., the parameter h can
also be used to model situations in which one firm is
able to adjust its prices more often than another firm.

In addition, we are able to analyze the impact of the
reaction time on expected long-term profits of our firm
as well as the competitor. We assume that the com-
petitor faces the same sales probabilities and shipping
costs as we do. The competitor’s expected profits can
be recursively evaluated by, cf. (4), t = 0,1,2, ...,T−1,
0 < h < 1, a ∈ A, V (c)

T+h(a) = 0,

V (c)
t+h(a) = ∑

i2≥0
P(1−h)

t+h (i2,F(a),a)

· ∑
i1≥0

P(h)
t+1

(
i1,F(a),a∗t+1 mod J(F(a))

)
·
(
(F(a)− c) · (i1 + i2)+δ ·V (c)

t+h+1

(
a∗t+1 mod J (F(a))

))
.

(6)
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(b) Evaluated price paths over time.
Figure 3: Optimal response policy and price paths for Exam-
ple 3.1 with h = 0.9.

Due to the cyclic price paths, the expected future
profits V0(p) and V (c)

h (a) are (almost) independent of
the initial states/prices. Figure 4 depicts V as well as
the competitor’s expected profits V (c) as a function
of h. We observe that the expected profit V is linear
increasing in the competitor’s reaction time; the com-
petitor’s profit V (c) is decreasing in h. Note, the impact
of h is substantial. The disadvantage of the player that
stops the undercutting phase can already be compen-
sated if our reaction time is smaller than 0.46, i.e., if h
exceeds the value 0.54.

3.2 Randomized Reaction Times

Due to the significant impact of reaction times, firms
will try to minimize their reaction times by anticipating
their competitor’s time of adjustment. In order not to
act predictable, firms will randomize their reaction
times. Moreover, firms will try to gain advantage by
updating their prices more frequently.

In case the reaction time is not deterministic, the
model can be adjusted. If the distribution of the re-
action time of competitors is known, the Hamilton-
Jacobi-Bellman (HJB) equation, cf. (4), can be modi-
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Figure 4: Expected profit for different reaction times of the
competitor; Example 3.1.

fied. The different reaction scenarios just have to be
considered with the corresponding probability. Note,
the reaction times of different competitors can be ob-
served in the long run.

Strategic firms will try to optimally time their price
adjustments. In order not to act predictable, firms
might use randomized strategies. In the following, we
consider such a scenario. We assume that each firm
adjusts its price with a certain intensity (e.g., on aver-
age once a period of size 1). We model that approach
as follows: we assume that at each point in time d,
d = t +∆, t +2∆, ..., t +1, 0 < ∆� 1, our firm adjusts
its price with probability q, 0 < q� 1; i.e., on average
we adjust our price q/∆ times a period of size 1. Simi-
larly, the competitor adjusts its price with probability
q(c), 0 < q(c)� 1.

The competitor applies a certain strategy F(a). By
a− we denote our current price at time d, the beginning
of the sub-period (d,d +∆). With probability q(c), the
competitor adjusts its price from p to F(a−). With
probability q, we adjust the price a− to price a. Since q
and q(c) are assumed to be ”small” we do not consider
the case in which both firms adjust their prices at the
same time. The related value function is given by,
a−, p ∈ A, t = 0,∆,2∆, ...,T −∆, ṼT (a−, p) = 0,

Ṽt(a−, p) = (1−q−q(c))

·∑
i≥0

P(∆)
t (i,a−, p) ·

(
(a−− c) · i+δ

∆ ·Ṽt+∆(a
−, p)

)
+q(c) ·∑

i≥0
P(∆)

t (i,a−,F(a−))

·
(
(a−− c) · i+δ

∆ ·Ṽt+∆(a
−,F(a−))

)
+q ·max

a∈A

{
∑
i≥0

P(∆)
t (i,a, p)

·
(
(a− c) · i+δ

∆ ·Ṽt+∆ (a, p)
)}

. (7)



The optimal price ã∗t (a
−, p), t = 0,∆,2∆, ...,J−∆,

is determined by the arg max of (7). The competitor’s
expected profit corresponds to, t = 0,∆,2∆, ...,T −∆,
Ṽ (c)

T (a−, p) = 0,

Ṽ (c)
t (a−, p) = (1−q−q(c))

·∑
i≥0

P(∆)
t (i, p,a−) ·

(
(p− c) · i+δ

∆ ·Ṽ (c)
t+∆

(a−, p)
)

+q(c) ·∑
i≥0

P(∆)
t (i,F(a−),a−)

·
(
(F(a−)− c) · i+δ

∆ ·Ṽ (c)
t+∆

(a−,F(a−))
)

+q ·∑
i≥0

P(∆)
t
(
i, p, ã∗t mod J(a

−, p)
)

·
(
(p− c) · i+δ

∆ ·Ṽ (c)
t+∆

(
ã∗t mod J(a

−, p), p
))

. (8)

Example 3.2. We assume the duopoly setting of
Example 3.1. We let c = 3, F(a) := max(a− ε,c),
ε = 1, a ∈ A := {1,2, ...,100}, δ=0.99, ∆=0.1. We use
T := 1000. We consider different reaction probabili-
ties q and q(c).

Table 1 contains the expected profits (Ṽ , Ṽ (c)) of
the two competing firms for different reaction prob-
abilities. We observe that Ṽ is increasing in q and
decreasing in q(c). For Ṽ (c) it is the other way around.
It turns out, that the ratio q/q(c) of the adjustment
frequencies is a critical quantity.

Table 1: Expected profits Ṽ and Ṽ (c) for different reaction
probabilities q, q(c) = 0.05,0.1,0.2, δ = 0.99, ∆ = 0.1; Ex-
ample 3.2.

q(c)\q 0.05 0.1 0.2

0.05 (16.53, 17.07) (16.80, 16.81) (17.01, 16.62)
0.1 (16.26, 17.36) (16.48, 17.09) (16.75, 16.84)
0.2 (16.03, 17.59) (16.22, 17.37) (16.48, 17.12)

The overall adjustment frequency plays a minor
role as long as the ratio q/q(c) is the same. Hence, the
expected profits of both firms can be approximated
by the profits from the model with deterministic reac-
tion time, cf. Section 3.1, where h = q/q(c), i.e., the
percentage of time our firm has the most recent price.

Figure 5b illustrates the (simulated) price paths for
the parameter setting of Example 3.2. Figure 5a shows
the deterministic case of Example 3.1 for h = 0.5. We
observe that overall the price patterns have similar
characteristics. However, in the randomized case, the
timing of the price reactions is not predictable. While
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(a) Deterministic reaction times h = 0.5, Example 3.1.
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(b) Randomized reaction times for ∆ = 0.1, q = q(c) = 0.1;
Example 3.2.

Figure 5: Evaluated price paths over time.

in the deterministic h = 0.5 case (cf. Section 3.1) we
have Ṽ = 16.44 and Ṽ (c) = 17.13, in the randomized
case (∆ = 0.1, q = q(c) = 0.1) the expected profits
are Ṽ = 16.48 and Ṽ (c) = 17.09. I.e., in both models
the advantage of the aggressive player is basically the
same; in the model with randomized reaction times the
advantage is slightly smaller.

3.3 Mixed Competitors’ Strategies

Our results show that if the competitor’s strategy is
known, suitable response strategies can be computed.
Hence, firms might try to randomize their strategies.
In this section, we will analyze scenarios in which
competitors play a mixed pricing strategy.

We assume that the competitor plays strategy Fk(a),
a ∈ A, with probability πk, 1≤ k ≤ K < ∞, ∑k πk = 1.

We assume deterministic reaction times. We ad-
just our model, cf. Section 3.1, by using a weighted
sum of the potential price reactions. The Hamilton-
Jacobi-Bellman (HJB) equation can be written as,
t = 0,1,2, ...,T −1, 0 < h < 1, p ∈ A,



Vt(p) = max
a∈A

{
∑

i1≥0
P(h)

t (i1,a, p)

·∑
k

πk · ∑
i2≥0

P(1−h)
t+h (i2,a,Fk(a))

·
(
(a− c) · (i1 + i2)+δ ·Vt+1 (Fk(a))

)}
, (9)

where VT (p) = 0 for all p. The associated pric-
ing strategy a∗t (p), t = 0,1,2, ...,J − 1, 0 < h < 1,
p ∈ A, is determined by the argmax of (9). The result-
ing competitor’s expected profits can be computed by
(starting from, e.g., V (c)

T+h(a) = 0), t = 0,1,2, ...,T −1,
0 < h < 1, a ∈ A,

V (c)
t+h(a) = ∑

j
πk· ∑

i2≥0
P(1−h)

t+h (i2,Fk(a),a)

· ∑
i1≥0

P(h)
t+1

(
i1,Fk(a),a∗t+1 mod J(Fk(a))

)
·
(
(Fk(a)− c) · (i1 + i2)+δ ·Ṽ (c)

t+h+1

(
a∗t+1 mod J (Fk(a))

))
.

(10)

The models described above allow computing suit-
able pricing strategies in various competitive markets.
As long as the number of competing firms is small, the
value function and the optimal prices can be computed.
Note, due to the coupled state transitions in general
the value function has to be computed for all states in
advance. When the number of competitors is large this
can cause serious problems since the state space can
grow exponentially (curse of dimensionality). Hence,
the approach is suitable, if the number of competitors
is small and their strategies are known. If the num-
ber of competitors is large and the firm’s strategies
are unknown, we recommend using simple but robust
strategies, see Schlosser et al. (2016).

4 COMPETITION WITH ACTIVE
AND PASSIVE SELLERS

If the pricing strategies and the reaction times of
different competitors are known the model can be ex-
tended to an oligopoly setting. For each additional
competitor the state space of the model has to be ex-
tended by one dimension. Note, only active competi-
tors that frequently adjust their prices should be taken
into account. Inactive customers will be treated as
external fixed effects.

In the following, we assume one active competi-
tor and Z passive competitors. The prices of the pas-
sive competitors are denoted by~z = (z1, ...,zZ), z j ≥ 0,
j = 1, ...,Z, and assumed to be constant over time.
The active competitor plays a (non-randomized) strat-
egy F(a) that refers to our price a (not the passive
one). The Hamilton-Jacobi-Bellman (HJB) equation
can be written as, t = 0,1,2, ...,T−1, 0< h< 1, p≥ 0,
VT (p,~z) = 0 for all p,~z,

Vt(p,~z) = max
a∈A

{
∑

i1≥0
P(h)

t (i1,a, p,~z)

· ∑
i2≥0

P(1−h)
t+h (i2,a,F(a),~z)

·
(
(a− c) · (i1 + i2)+δ ·Vt+1 (F(a),~z)

)}
. (11)

The associated pricing strategy amounts to, t =
0,1,2, ...,J−1, 0 < h < 1, p ∈ A,

a∗t (p,~z) = argmax
a∈A

{
∑

i1≥0
P(h)

t (i1,a, p,~z)

· ∑
i2≥0

P(1−h)
t+h (i2,a,F(a),~z)

·
(
(a− c) · (i1 + i2)+δ ·Vt+1 (F(a),~z)

)}
. (12)

The competitor’s profits can be computed by
(starting from, e.g., VT+h(a,~z) = 0 for all a,~z), t =
0,1,2, ...,T −1, 0 < h < 1, a≥ 0,

V (c)
t+h(a,~z) = ∑

i2≥0
P(1−h)

t+h (i2,F(a),a,~z)

· ∑
i1≥0

P(h)
t+1

(
i1,F(a),a∗t+1 mod J(F(a),~z),~z

)
·
(
(F(a)− c) · (i1 + i2)+δ ·V (c)

t+h+1

(
a∗t+1 mod J (F(a),~z) ,~z

))
.

(13)

Note, the value function does not need to be com-
puted for all price combinations of passive competitors
in advance. The value function and the associated pric-
ing policy can be computed separately for specific
market situations (e.g., just when they occur).

In the following, we consider an example with
active and passive competitors.

Example 4.1. We assume the duopoly setting of
Example 3.1. We let F(a) := max(a−ε,c), ε = 1, c =
3, h = 0.5, a ∈ A := {1,2, ...,100}, δ = 0.99, and T =
1000. Furthermore, we consider an additional passive
competitor with the constant price z, z = 15,20,25.
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Figure 6: Optimal response strategy and evaluated price
paths for Example 4.1; h = 0.5, z = 15.

The results of the three cases z = 15, z = 20, and
z = 25 are illustrated in Figure 6, 7 and 8. We observe
three different characteristics. If the passive competi-
tor’s price is low (z = 15) the cyclic price battle be-
tween our firm and the aggressive firm takes place
at a higher price level, see Figure 6b. The response
strategies of the three firms are displayed in Figure 6a.

If the price of passive firm is sufficiently high
(z = 20), then the cyclic price paths of the two ac-
tive firms take place below that level. If the constant
price is ”moderate” (z = 20), then a mixture of the
characteristics shown in Figure 6 and 7 is optimal. We
also observe that it is not advisable to place price offers
that slightly exceed competitors’ prices, cf. Figure 8.

At the end of this section, we want to generally
evaluate the outcome when different (time homoge-
neous) strategies are played against each other. We as-
sume time homogeneous demand and h= 0.5. If firm 1
plays a pure strategy S1 and firm 2 plays the pure strat-
egy S2 then the associated expected profits can be com-
puted by, t = 0,1,2, ...,T −1, V (1)

T (a) = V (2)
T (a) = 0,

for all a≥ 0,

V (1)
t (a) = ∑

i1≥0
P(0.5) (i1,S1(a),a)
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Figure 7: Optimal response strategy and evaluated price
paths for Example 4.1; h = 0.5, z = 25.

· ∑
i2≥0

P(0.5) (i2,S1(a),S2(S1(a)))

·
(
(S1(a)− c) · (i1 + i2)+δ ·V (1)

t+1 (S2 (S1(a)))
)
,

(14)

V (2)
t (a) = ∑

i1≥0
P(0.5) (i1,S2(a),a)

· ∑
i2≥0

P(0.5) (i2,S2(a),S1(S2(a)))

·
(
(S2(a)− c) · (i1 + i2)+δ ·V (2)

t+1 (S1 (S2(a)))
)
.

(15)
By SU we denote the response strategy F(a) :=

max(a− ε,c), which slightly undercuts the competi-
tor’s price. By SRU we denote the optimal response
strategy to SU . By SRRU we denote the optimal re-
sponse strategy to SRU , cf. (11)-(12). Considering
Example 4.1 with z = 20, the expected profits of the
different strategy combinations are summarized in Ta-
ble 2.

We observe that the aggressive strategy SU yields
very good results with the exception when the competi-
tor also plays SU . The strategy SRU yields good results
in all three constellations. Strategy SRRU is excellent
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Figure 8: Optimal response strategy and evaluated price
paths for Example 4.1; h = 0.5, z = 20.

Table 2: Expected profits V (1)
0 (50) of firm 1 when its

strategy S1 = {SU ,SRU ,SRRU} is played against a strategy
S2 = {SU ,SRU ,SRRU}, z = 20, Example 4.1.

S1\S2 SU SRU SRRU

SU 1.69 9.85 9.91
SRU 9.42 9.66 9.58
SRRU 8.76 10.62 8.76

when played against SRU but yields only moderate re-
sults in the other two cases. For other z values, cf.
Example 4.1, the results are similar. Iterating mutual
strategy responses further is a way to identify equilib-
rium strategies.

Finally, our example shows that optimal response
strategies have a significant impact on expected profits.
They help to gain profits when aggressive competitors
are involved. On the other hand, we learn that it is
also important to know the competitors’ strategies. In
practical applications, the competitors’ price reactions
can be inferred from market data over time.

5 CONCLUSION

With a rise in E-commerce it has become easier to
observe and to adjust prices automatically. As a result,
dynamic pricing strategies are applied by an increas-
ing number of firms. This paper analyzes stochastic
dynamic infinite horizon oligopoly models character-
ized by active and passive competitors. We set up
a dynamic pricing model including discounting and
shipping costs. The sales probabilities are allowed to
depend on time and can arbitrarily depend on our price
as well as the competitors’ prices. Hence, our model
is suitable for practical applications. Data-driven esti-
mations of sales intensities under pricing competition
can be used to calibrate the model.

Given a competitor’s response strategy, we are able
to compute optimal reaction strategies that take the an-
ticipated competitors’ price adjustments into account.
In general, it is optimal to slightly undercut competi-
tor’s prices. However, when the price falls below a
certain lower bound it is advisable to raise the price to
an optimally chosen upper level. Our examples show
that the model can be used to explain and to study
Edgeworth price cycles.

We also verify that reaction times have a significant
impact on long-term profits. Hence, firms will try to
strategically time their price adjustments. In order not
to act predictable firms might use randomized strate-
gies. Using a generalized version of our model, we
show how to derive optimal response strategies when
reaction times are randomized. We observe that the
ratio of frequencies of the competitors’ prices adjust-
ments is crucial for the firm’s expected profits, i.e., to
be able to adjust prices more often than the competitors
do is an important competitive advantage.

In an extension of the model, we have considered
additional players with fixed price strategies. We have
presented a solution approach that allows deriving op-
timal response strategies. We have analyzed how the
presence of additional passive competitors affects the
price battle of active players that frequently adjust their
prices. The solution approach is even applicable when
the number of passive competitors is large. Our tech-
nique to compute prices remains simple and is easy to
implement.

Moreover, we have evaluated the outcome when
different reaction strategies are played against each
other. It turned out that our optimized feedback strate-
gies effectively avoid a decline in price. Especially,
when competitors play aggressive strategies it is impor-
tant to react in a reasonable way in order not to loose
potential profits. Our approach allows to derive and
to study price response strategies for various real-life
applications especially in E-commerce.



Iterating mutual strategy responses, cf. Table 2,
may also be the key to identify equilibrium strategies.
Note, mutual strategy responses do not necessarily
have to converge as pure strategy equilibria might not
exist, see Kephart et al. (2000). In such cases, the
approach used in Section 3.3 might help to identify
equilibria in mixed strategies.

In future research we will use market data to esti-
mate competitors’ response strategies. We will also
extend the model to study the sale of perishable prod-
ucts with finite initial inventory levels.

REFERENCES

Adida, E., G. Perakis. 2010. Dynamic Pricing and
Inventory Control: Uncertainty and Competition.
Operations Research 58 (2), 289–302.

Chen, M., Z.-L. Chen. 2015. Recent Developments in
Dynamic Pricing Research: Multiple Products,
Competition, and Limited Demand Information.
Production and Operations Management 24 (5),
704–731.

Chung, B. D., J. Li, T. Yao, C. Kwon, T. L. Friesz.
2012. Demand Learning and Dynamic Pricing
under Competition in a State-Space Framework.
IEEE Transactions on Engineering Management
59 (2), 240–249.

Gallego, G., M. Hu 2014. Dynamic Pricing of Per-
ishable Assets under Competition. Management
Science 60 (5), 1241–1259.

Gallego, G., R. Wang. 2014. Multi-Product Optimiza-
tion and Competition under the Nested Logit
Model with Product-Differentiated Price Sensi-
tivities. Operations Research 62 (2), 450–461.

Kephart, J. O., J. E. Hanson, A. R. Greenwald. 2000.
Dynamic Pricing by Software Agents. Computer
Networks 32, 731-752.

Levin, Y., J. McGill, M. Nediak. 2009. Dynamic Pric-
ing in the Presence of Strategic Consumers and
Oligopolistic Competition. Operations Research
55, 32–46.

Liu, Q., D. Zhang. 2013. Dynamic Pricing Compe-
tition with Strategic Customers under Vertical
Product Differentiation. Management Science 59
(1), 84–101.

Martinez-de-Albeniz, V., K. T. Talluri. 2011. Dynamic
Price Competition with Fixed Capacities. Man-
agement Science 57 (6), 1078–1093.

Maskin, E., J. Tirole. 1988. A Theory of Dynamic
Oligopoly, II: Price Competition, Kinked De-
mand Curves and Edgeworth Cycles. Economet-
rica 56 (6), 571–599.

Noel, M. D. 2007. Edgeworth Price Cycles, Cost-
Based Pricing, and Sticky Pricing in Retail Gaso-
line Markets. The Review of Economics and
Statistics 89 (2), 324–334.

Phillips, R. L. 2005. Pricing and Revenue Optimiza-
tion. Stanford University Press.

Schlosser, R., M. Boissier, A. Schober, M. Uflacker.
2016. How to Survive Dynamic Pricing Compe-
tition in E-commerce. Poster Proceedings of the
10th ACM Conference on Recommender Systems,
RecSys 2016, Boston, MA, USA.

Talluri, K. T., G. van Ryzin. 2004. The Theory and
Practice of Revenue Management. Kluver Aca-
demic Publishers.

Tsai, W.-H., S.-J. Hung. 2009. Dynamic Pricing and
Revenue Management Process in Internet Retail-
ing under Uncertainty: An Integrated Real Op-
tions Approach. Omega 37 (2-37), 471–481.

Wu, L.-L., D. Wu. 2015. Dynamic Pricing and Risk
Analytics under Competition and Stochastic Ref-
erence Price Effects. IEEE Transactions on In-
dustrial Informatics 12 (3), 1282–1293.

Yang, J., Y. Xia. 2013. A Nonatomic-Game Approach
to Dynamic Pricing under Competition. Produc-
tion and Operations Management 22 (1), 88–103.

Yeoman, I., U. McMahon-Beattie. 2011. Revenue Man-
agement: A Practical Pricing Perspective. Pal-
grave Macmillan.

APPENDIX

Table 3: List of variables and parameters

t time / period
X random number sold items
G random future profits
c shipping costs
δ discount factor
F competitor’s reaction strategy
Z number of passive competitors
A set of admissible prices

V,V (c) value functions
a offer price
~p,~z competitors’ prices
λ sales intensity
P sales probability
J cycle length
h reaction time

q,q(c) reaction probabilities


