
Main Memory Databases for Enterprise
Applications

Jens Krueger, Florian Huebner, Johannes Wust, Martin Boissier, Alexander Zeier, Hasso Plattner
Hasso Plattner Institute for IT Systems Engineering

University of Potsdam
Potsdam, Germany

{jens.krueger, florian.huebner, johannes.wust, martin.boissier, alexander.zeier, hasso.plattner}@hpi.uni-potsdam.de

Abstract—Enterprise applications are traditionally divided in
transactional and analytical processing. This separation was
essential as growing data volume and more complex requests
were no longer performing feasibly on conventional relational
databases.

While many research activities in recent years focussed on
the optimization of such separation – particularly in the last
decade – databases as well as hardware continued to develop. On
the one hand there are data management systems that organize
data column-oriented and thereby ideally fulfill the requirement
profile of analytical requests. On the other hand significantly
more main memory is available to applications that allow to
store the complete compressed database of an enterprise in
combination with the equally significantly enhanced performance.

Both developments enable processing of complex analytical
requests in a fraction of a second and thus facilitate complete
new business processes and –applications. Obviously the question
arises whether the artificially introduced separation between
OLTP and OLAP can be revoked and all requests be handled
on a combined data set.

This paper focuses on the characteristics of data process-
ing in enterprise applications and demonstrates how selected
technologies can optimize data processing. A further trend is
the use of cloud computing and with it the outsourcing of the
data centre to optimize cost efficiency. Here column-oriented in-
memory databases are helpful as well as they permit a greater
throughput, which in turn enables more effective use of the
hardware and thus saves costs.

I. INTRODUCTION

Data management in enterprise application has hardly
changed in the last decades. Relational databases are in use
whose architecture is based on characteristics of transactional
data processing defined 20 years ago. In the meantime however
demands on enterprise applications have changed. In one
respect shorter processing times in complex applications are
necessary, but it is also vital to use the most current data as
decisive support for analytical requests. Further the automated
processes in enterprise application result in larger data volume
which must be processed efficiently – transactional as well as
analytically.

In addition enterprise applications have become more com-
plex over time to meet more sophisticated demands and to
counter balance properties lacking in data management sys-
tems. Examples include the redundant storage of aggregates,
the materialization of pre-computed result sets in dedicated
tables or the outsourcing of processes in specialized systems
or asynchronous programs.

While most of these variants see the solution in the redun-
dant storage of data to achieve adequate response times for
specific requests, the flexibility of the system is compromised
through the necessity of a predefined materialization strategies.
Furthermore this greater complexity increases total costs of the
system.

The trend of Cloud Computing of recent years offers
additionally potential for saving costs. Both - providers as
well as customers benefit as operational savings are passed
on to service users. As well the inherent flexibility of the
use of the cloud concept, including its customized payment
model for clients to optimize their costing as only the really
needed computer capacity is employed. In relation to data
management demands arise that want to be considered in the
context of enterprise applications and their architecture.

This paper will address these requirements by examining
the data processing technologies and how these requirements
and data characteristics optimize supporting modern enterprise
applications. Section II is devoted to the latest trends in the
field of data management of enterprise applications. Section
III analyses current requirements of enterprise applications
and how these can be addressed with column-oriented main
memory databases. Section IV demonstrates the potential
advantages and innovations possible through the employment
of column-oriented in-memory databases. Work done so far
in this field is introduced in section V. The article concludes
with a summary and an outlook in section VI.

II. TRENDS IN DATA PROCESSING

This section will focus on different developments in the
area of data processing, that looked at individually are nothing
new – for example already at the end of the 70s the vertical
partitioning (column-orientation) was examined – however the
merging has resulted in new deployment areas whose require-
ment are directly derived from current enterprise applications.
This follows another trend of recent years that views the
specialized data base as advantageous to the general purpose
Database [1] and thus motivates a data management special-
ized towards enterprise applications, where the processing of
data in main memory alone plays a central role.

On one hand the development of hardware in recent years
increasing the size of main memory has led to in-memory
databases becoming possible and so moving it into the focus

___________________________________ 
978-1-61284-449-7/11/$26.00 ©2011 IEEE  
  



of research. On the other hand in-memory databases that
store data column-oriented make it possible to merge already
existing transactional and analytical databases again, as this
enables a substantially faster data access and an analysis based
on the transactional data available [2].

This is made possible through the combination of different
technologies and the consideration that today’s enterprise
technologies primarily use read access. Besides data struc-
tures optimized for main memory access for example also
compression methods and Insert-Only strategies are employed
and which will be discussed in the following section. Another
current trend is enterprises move to no longer operating their
own computer centers but use the services of so-called Cloud
Computing. So finally we will focus on Cloud Computing and
how column –oriented main memory databases fit in there.

A. In-Memory Databases
As mentioned above today servers with large main memory

capacities are at our disposal that may reach hard disk size.
Servers with a size up to 2TB of main memory are available
as standard, so that database management systems (DBMS)
that respond to all requests directly from main memory are
possible without using hard disks or others as a primary per-
sistent source, called In-Memory Databases(IMDB) or Main-
Memory-Databases (MMDB) [3], [4]. Today it is basically
possible for conventional database systems to become interim
data storage facilities, where a buffer pool manages adminis-
tration. This as well as the characteristics of the data structures
optimized for hard disk access, as for example B+ trees and
pages create on one hand a greater admin burden and on the
other hand a less than ideal filing storage in comparison to a
database that is completely main storage based. Nevertheless
the question arises to what extend complete databases can
be maintained in an only main memory based storage. But
although data volume in enterprise applications is steadily
increasing, the growth of data in general is by no means
as fast as is unstructured data, as for example in social
networks. Transactional processing in enterprises is based on
actual events connected to the real world as is the number of
customers, products and other entities in the real world. These
events of transactional processing do not grow as rapidly as
final main memory capacities. On the basis of organizational
and functional partitioning most systems do not exceed the
active size of 1TB.

Compared to the increase in main memory capacity the
memory access latency and the memory range have improved
little. In order to optimize full memory range utilization
modern CPUs use multilevel cache architectures. It is possible
to circumvent range limitations in memory access or at least
minimize it as shown in [5] and [6]. These so-called memory
hierarchies use the fact that smaller but significantly faster
memory technologies operate closer to the CPU, but lead to
that access in main memory depend on it. The fact that data
is being read in cache lines with a typical size of 64 bytes
is essential. The consequence of this is that memory access
happens in blocks and that all algorithms and data structures

1

2

...

8697

Jones

Miller

...

Hammet

42342.34

63454.65

...

84503.39

c_1
id

c_2
name

c_3
salary

...

...

...

...

4

c_89
department

4

...

5

r_1

r_2

...

r_n

...

...

...

...

... ...

Fig. 1. Data access on employee table: row- and column-wise access.

need to be optimized in view of this fact, to use existing
architecture efficiently [7], [8].

In [9] Manegold et al. show that processing time of memory
internal data access is determinable by the number of cache
misses. In this way CPU cycles and cache misses can be
used as an equivalent of time. What follows is that to op-
timize performance of main memory driven systems primarily
optimizing cache utilization as well as reduction of cache
misses are of importance. Data is read sequentially to achieve
best possible performance, so that the loaded cache lines are
utilized as complete as possible and only the data is read that
is required.

Figure 1 shows the sample table employees, highlighting
row- and column-wise data access. Different access patterns
and workloads as online transactional processing (OLTP) or
online analytical processing (OLAP) are directly affecting
the number of cache misses. In OLTP typical single row
selections, the number of cache misses increases with the
higher selectivity of attributes. This enables row-stores to
utilize the cache very effectively when complete rows are
accessed. With narrow projections (e.g. “SELECT id, name,
department FROM employees WHERE id = 1”, 1) on a single
row access, row-stores are comparably behaving as column-
stores, potentially resulting in a cache miss per requested
attribute and a low utilization of cache lines. Columnar stores
in contrast are able to use caches effectively when a high
number of rows is accessed using a high attribute selectivity,
as shown in section II-B.

A potential optimization in regard to cache-use could be
for example a table structure that groups attributes that are
requested most frequently, if not the entire row is requested,
that these fit into a cache-line and prevent cache misses. [7]

In IMDBs the focus is therefore on the optimization of
the physical data layout in main memory, which is optimized
towards the actual occurring access pattern. These patterns
are normally defined by existing OLTP or OLAP workloads.
Furthermore it is important to ensure that the available mem-
ory range is fully exploited and data, if possible is read
sequentially. These demands are analogue to hard drive based
database systems as these also benefit from whole blocks being
read and utilized. However other optimizations are being used
here as parameters are altered as well as the hard drive being
superfluous in the access hierarchy as external memory.



B. Column Oriented Databases

In the last decade, due to the growing demand for analytical
functions like ad-hoc requests for transactional data, column-
oriented databases, particular in the environment of OLAP
applications, have became the focus of academia.

Column-oriented databases are founded on a vertical parti-
tioning by columns, which were considered for the first time
at the end of the 70s and developed further by Coupeland and
Khoshafian 1985 [10]. Each column is stored separately while
the logical table schema is retained through the introduction
of unique positioning keys. The use of positioning keys leads
to further memory consumption however can implicitly be
avoided with the aid of positioning information of these
attributes in columns. The latter prevents sorting the attributes
singularly, but offers a more efficient reading in case of
accessing further attributes, as the implicit positioning key is
used directly for addressing purposes.

The column-wise organization of data offers in particular
advantages to reading fewer attributes, as during requests no
unnecessary columns must be read as is the case for example
in row-oriented structures on hard drives.

Therefore greater speed is achieved simply through reduc-
tion of the data volume to be read for attribute-focussed re-
quests, as they occur in analytical cases [11]. The downside is
that vertical partitioning raises costs compared to conventional
row oriented structure in the production of complete ratios. In
case of a hard drive based database system all files must be
accessed so that the sequential reading of a tuple is replaced
by random and therefore slow access. The same is true for
written access as the complete ratio has to be distributed to
the files. Figure 2 illustrates both access patterns in relation
to the storage variant.

Especially in the context of transactional or rather combined
workloads the above described disadvantages have prevented
the use of column oriented schema. Only the combination
of these filing patterns and the in-memory database enables
such scenarios. In addition assumptions regarding transactional
processing have changed over the years. It is of note that in
the transactional world most requests are of a reading nature.
Even when those consists of approximately 50% access keys
a column oriented main memory database can play out its
advantages as the configuration of complete ratios through
fast random access functionality of the main memory in
comparison to the hard drive can offset the disadvantages of
vertical decomposition. Particularly when the benefits in the
reading sector taken into account in the overall assessment are
based on few attributes distributed over many rows.

Here the possibility of sequential reading on dedicated
columns comes into its own that is faster by factors than
random access, and applies to main memory as well as hard
disk systems even after multiple shifting. As later shown in
section III, this is useful for the optimal storage of enterprise
data. Further advantages of column orientation become obvi-
ous through the data characteristics in enterprise applications.
An attribute shown in later sections, is low level occupation of

tables. This means that many columns have a low cardinality
of distinct values. This fact as well as one of the qualities of
column oriented data organization that columns are maintained
separately, enables attributes to be compressed individually
with the benefit that the range of a dedicated column is limited
by its contents.

C. Compression in Databases
Moore’s law says that computing capacity of processors

doubles every 18 months and this has shown to be valid
for more than 35 years. However it is not valid for the
development of hard disk and main memory access speeds,
so that for the majority of requests, despite cache optimized
data structures, I/O delay represents the biggest bottleneck.
The growing gap between speed increase of CPUs on one
hand and storage on the other hand is a known problem
and will be described for example in [6] as well as [12].
Lightweight and lossless compression techniques assist to
diminish the bottleneck as they allow using the available range
more efficiently, where potential additional costs for unpacking
are absorbed by improved CPU performance.

While early work as shown in [13] had its focus on
improving the I/O performance by reducing the data to be
loaded, latter work [14], [15] focuses on the compression
effects in regards to read performance, for example through the
application of ‘late-materialization’ strategies. In this instant
the focus is on light compressions that allow direct access to
single values without having to unpack the entire data.

Compression techniques use the redundancy within the data
and knowledge of the particular data domain to be compressed
to do so most efficiently. On the basis of different prop-
erties of column oriented data structures compressing these
is especially efficient [16]. As all data within a column a)
belong to the same type of data and b) usually have a similar
semantic, this results in a low information contents (entropy),
which means there are many instances of little differing values.
Especially enterprise applications, concerned with working
through or capturing repeating processes and events, never
exhaust the value range available to them based on the type of
data they are working with. It is very often the case that only
few values are being used, because the business for example
uses only a few and a limited amount of different materials
and products.

During Run Length Encoding (RLE) the repetition of a
value is stored via a value couple (value, run-length). For
example the sequence ”aaaa” is compressed to “a[4]”. This
approach is particularly applicable to sorted columns with
little variety in their attribute values. In unsorted columns the
efficiency is lowered, so that a sorting appears to be obligatory.
In a column oriented scenario an ID becomes necessary for the
tuple, leading to the above described increase in expenditure.
However is the column unsorted, Bit-Vector-Encoding is suit-
able. Essentially a frequently occurring attribute value within a
column is associated with a bit-string, where the bits reference
the position within the column and only those bits fix the
occurring attribute value through their positioning. The column



Cache line width

a b c d e f g

SELECT * FROM table WHERE d=?

Cache line width

a1 a2 a3 a4 a5 a6 a7 a8

SELECT SUM(a1) FROM table WHERE a4=?

a b c d e f g

C
ac

he
 li

ne
 w

id
th

a1 a2 a3 a4 a5 a6 a7 a8

C
ac

he
 li

ne
 w

id
th

SELECT * FROM table WHERE d=?

SELECT SUM(a1) FROM table WHERE a4=?

Accessed data
Read but unused data

h h

Column-storeRow-store

Fig. 2. Data access: row- and column-oriented

is then stored without the attribute value and can be restored
with the assistance of the bit-vector. This procedure is ideal
when the cardinality of the individual values is low or a single
value dominates the load. Another prominent example of a
light weight compression technique is dictionary encoding,
where frequently occurring patterns are replaced by shorter
symbols. In case of a table attribute every distinct value is put
down in a dictionary and the value in the column replaced
by a key that points to the value in the dictionary. A further
optimization is the bit-wise compression of these keys in order
to reduce length, so that only the required cardinality can be
shown with it in the dictionary, which increases the benefits
of this process especially when only few distinct values exist.
A sorted dictionary however allows further optimization on
the request page, as original sorting can be deducted from the
keys without looking them up in the dictionary.

Information density in relation to the used storage space is
increased through the compression within the columns. This
enables more relevant information to be loaded into the cache
for simultaneous processing, which leads to a better use of the
frequency range. These techniques are also applicable for row
oriented storage schema, but only than produce real advantages
when used in combination with column oriented filing and data
processing in main memory.

Another important aspect of compression is the disadvan-
tage that modification of data results in further compression
of the data stock. To circumvent this effort and nevertheless
to allow speedy insert-, update- and delete operations all
alterations are collected in a buffer, where data sets are placed
uncompressed. The result of all requests to the system is the
unification of the compressed main area and the buffer, so that

also non-compressed alterations are taken into account. The
collected alterations are integrated asynchronously in defined
intervals in the already compressed existing data. This process
is called merge.

Beyond that performance can be improved as the column
oriented request operation – as described in [16] has knowl-
edge of the compression method used, so that CPU – while
reading the data – decompresses it in a parallel process. An
important aspect during compression is to compare compres-
sion ratio and the cost for decompression. Generally the aim
is to delay decompression as long as possible, to make the
most of the decompressed data and only to decompress those
data that is really necessary.

Particularly in the field of enterprise application leveraging
compression for analytical queries can create significant ad-
vantages. Requests that do not rely on pre-aggregate results,
but are computed in real-time can be processed considerably
faster, when compression techniques are used where aggrega-
tion is possible without decompression.

D. Insert-Only Strategies
Insert-Only data systems define a category of database

management systems where new data sets are only inserted.
Even update and delete operations are handled as inserts.
However that does not mean that viewed logically data sets
cannot be deleted or updated. These modifying operations
are transferred in a technical insertion, during which a time
reference is logged. Inserted data sets are only valid for a
period of time and values are therefore time dependent and
thus the entire history of data modification is stored. Storage
of complete histories of all enterprise data is particularly im-
portant in the context of enterprises as the tracing and storing



of such histories is legally required in many countries. An
example is a client who has a billing complaint that has been
forwarded to an outdated address. In such a case it must be
possible to reconstruct this. Another example is the alteration
of an accounting document. Here the alteration history is vital.
Also this kind of data storage enables analysis of historical
data as any moment in time can be reconstructed. Today
dedicated business warehouse systems are being used that offer
this functionality by allocating a time dimension during the
loading process to the received data of transactional systems.
In addition to the aforementioned benefits does the holding of
older versions enable Snapshot Isolation, this means without
an explicit locking procedure the database can guarantee that a
transaction will operate over the entire run-time of the data that
have not been altered by other transactions. This consistency
is implemented during read requests by the time reference by
which the version of the data can be produced at the beginning
of the transaction. This simplifies data management and usu-
ally is sufficient for enterprise applications as due to complex
locking logic implementing locking on the application level of
the data to be processed is necessary anyway.

There are several techniques for the storage of time depen-
dent values. Delta sets are used for the storage of alterations
in discreet representations. Here all older versions have to
be read to determine the actual valid data set. In order to
modify a data entry it is not necessary to read the entire row
as all unaltered values can be filled with, for example a pre-
modified standard value, like a Not Altered reference. This
reduces the data volume to be read required for insertion.
Besides not all columns have to be read for this operation.
The main disadvantage of this method is based on the fact that
all previous versions must be read to generate the actual valid
version. This becomes the more costly the more modifications
occur over time.

The second option to store time-based values in a row is
interval storage. The difference is that for every row a validity
interval is stored. When a new row is inserted the actual point
of time is fixed as starting point and the end point is left
open. In case this row is modified the point of ending is fixed
and a new row is inserted with this very time reference as
its starting point. Although the old row had to be read, there
are advantages during the search as the previously valid row,
thanks to the stored interval, is easy to find and not all rows
have to read.

A further frequently referred criticism of the Insert-Only
technique is the expected increase of storage requirements. To
counter this, on one hand update operations in the context of
enterprise applications occur significantly less than anticipated
and on the other hand the applied compression technique
‘Dictionary Encoding’ makes sure that unaltered attributes
use little additional storage space as the dictionary remains
untouched.

E. Cloud Computing
Traditionally the server and their applications of a busi-

ness are located in private or exclusive computer centers.

The availability of broadband internet connections makes it
possible to dispense of internal computer centers and to utilize
dynamically the computer capacity of a Computing Cloud of
an external server. Cloud Computing is of interest to business
as no capital expenditure occurs and through the use of scale
effect running costs can be minimized.

The cost to customers can also be reduced by taking
advantage of the elasticity of the cloud concept. Enterprises
pay only for the required computing performance. Is less or
more computing output required, the supplier can make this
automatically available through an interface. While in classical
computer centers hardware has to be dimensioned for a
maximum load, using cloud computing enables to employ only
the actually required hardware resources which are expanded
or minimized depending on the required capacity.

Cloud computing systems are not customer-based (on-
premise) but are used and scaled depending on demand
(on-demand). The operating risk of the computer center is
outsourced from the enterprise to the manager of the cloud.
This goes together with the promise that employees from
everywhere at any time have access to their data within the
cloud, although this can lead to security problems.

Apart from outsourcing to computer centers companies can
receive complete applications as a service. This is generally
described as ‘Software –as-a-Service’. Within the context
of software-as-a-service are three different levels on which
services are offered. Complete applications can be received as
a service. This is called Application-as-a-Service. If a provider
only makes a platform available, e.g. a data database as a
service, it is called Platform-as-a-service. At the most basic
level the provider makes exclusive infrastructure as computers
or virtual machines available and we speak of Infrastructure-
as-a-Service.

Priorities for database systems running for customers ex-
clusively on-premise are not identical with systems that are
offered as Platform-as-a-service or in combination with use of
Application-as-a-Service. The latter are offered by a service
provider to a wide circle of customers. Therefore they must
scale well with many different customers, but must be low
cost for the service provider, so that he can offer it profitably
to the customers.

In traditional disk based database systems the throughput
and speed of the hard drive are the limiting factors. Particularly
in database systems which are used as service, it is important
that these can achieve a high throughput and a guaranteed high
speed. As here the hard disk is the particularly limiting factor,
is it possible through the use of main memory data bases to
achieve a higher throughput that in turn leads to lower costs
for the service provider.

Newer proposals as RAM Cloud [17] therefore promote
to operate cloud environments only in main memory based
storage. Through the use of main memory architectures the
throughput and speed of the hard disk are no longer the
bottleneck but the speed of the processor, how fast it can read
data from main memory. As these systems are much more
effective more customers can be served by one system (multi-



tenancy) and existing hardware can be utilized more efficiently,
which in turn is more cost effective.

III. REQUIREMENTS OF BUSINESS APPLICATIONS

Due to increasing data volume, new requirements of busi-
ness processes and growing demands for timely business
data, enterprise applications are becoming more complex to
compensate for defects within data management infrastructure.
This includes for example the redundant storage of transac-
tional and analytical data. The reason that current database
systems can’t fulfill the requirements of modern enterprises
is that these usually are only optimized for one application
case: either OLTP- or OLAP- processes. This fact leads to
a discrepancy of enterprise applications in relation to the
underlying data management, as with conventional databases
particularly complex operations are not run within reason-
able time. While these problems are largely recognized for
analytical applications and therefore usually data warehouses
are used, they also apply to transactional applications, which
are complex in modern systems. To compensate for this
disadvantage of the data management infrastructure, complex
operations and longer running processes are outsourced in
batch-jobs.

As a result this approach slows down the speed of busi-
ness processes and external requirements can possibly no
longer be fulfilled. Another frequently used approach is the
materialization of pre-rendered results. Materialized views of
analytical applications in data warehouses are one example of
this. However, they lead to a diminished flexibility and hinder
maintenance of such OLAP systems. An analogue procedure
is applied in OLTP systems where the materialization is
administered by the application as application logic has to
be considered. The performance problem of redundant data
storage by predefined characteristics is met, while at the same
time greater complexity and diminished flexibility is accepted.
Besides the growing program complexity necessary for con-
sistent safety the lack of flexibility in current applications
presents as an obstacle as requirements of the program cannot
be implemented.

The actual enterprise applications used represent only a
fraction of the database functions available particularly with
regard to transactional behavior and complex calculations on
data. In summary it can be said that the current approach of
today’s enterprise applications leads to greater complexity in
data modification and storage. The following section will show
the characteristics of enterprise applications, how these can
be employed to current software technologies (e.g., column
oriented in-memory databases) and which improvement and
simplifications this enables.

A. Request Distribution

Databases in enterprise management are generally classified
through their particular optimization –either for OLTP or
OLAP. It has been assumed that the work loads of enterprise
applications largely consist of insert-, update-, and delete

OLTP OLAP
select 84% 94%
insert 8% 2%
update 5% 3%
delete 3% 1%

TABLE I
DISTRIBUTION OF select-, insert-, update- AND delete-OPERATIONS

requests. So the TPC-C benchmark [18] is made up of only
54% of read request and 46% of write requests.

To determine whether read or write optimized databases
are more suitable for such workloads 65 installations of
Enterprise Resource Planning Systems (ERP) were examined
with regard to their performed database requests. The result
of this research can be seen in figure I. This clearly shows
that distribution of requests is rather more read focused. A
minimum of 80% of all requests are select requests. This
fact underpins the application of read optimized databases,
potentially with a write optimized buffer as described in [19]
and [20].

B. Value Distribution of Enterprise Data

Apart from the distribution of database queries the value
distribution and characteristics of data are of importance for
column oriented databases. A broad assumption for enterprise
application data is that it presents with a high value distribu-
tion, i.e., that many different values exist for each attribute.
However, studies have shown that values of each column are
barely distributed, i.e., that only few different values exist.

To proof this result the frequency of various values per
attribute was measured. This analysis was done using the
main tables of the finance management as well as sales and
distribution data of a variety of customer systems. In the
enterprise application examined for example an accounting
note of around 100 attributes exist while the corresponding
positions consist of 300 attributes each. The table of material
movements consists of 180 attributes.

Figure 3 shows the frequency percentage grouped together
according to value distribution per column of all examined
tables of customer systems analyzed. It obviously shows that
most table attributes correspond with the last group with only
one value. This value can either be a zero or a default value.
What follows is that not all attributes are used in the applica-
tion which is of great interest for application optimization. It
has to be noted that these are average values of all customer
systems examined and that their signature depends on the
individual business and its respective sector.

As shown in fig. 3(a) only 43 of 180 attributes in the
material movement table have a significant number of distinct
values. Therefore approx. 75% of all columns have a relatively
low value distribution. The attribute with the highest number
of distinct values is the attribute ‘motion number’ which at
the same time is the primary key of the table. Furthermore,
‘transport request number’, ’number’, ‘date’ and ‘time’ have



a high value distribution. It is worth noting that 35% of all
columns only have one value.

Consequently very important corporate characteristics can
be determined. Depending on the application and the industrial
sector in many columns only one value is deposited. These
applications benefit significantly from a light weight com-
pression. Additionally, only columns that are of importance
for analytical requests show a certain cardinality of different
values. This fact speaks for the use of column oriented
databases that only have to read the projected attributes.

C. Single-and Mass Data Processing
Although transactional systems work on each instance of

objects, analysis shows that the majority of used data is pro-
cessed jointly. It is generally distinguished between processing
individual instances of business entities and the common
processing of multiple instances. The former for example
include an order or a customer, while determining all payable
accounts or the top ten clients on the basis of the turnover
require processing many data sets.

In principal, enterprise applications are based on individual
business instances, nevertheless it is not possible to establish
the state of an enterprise on the basis of individual data sets.
E.g., to ascertain the progress of a project, first of all the
context must be clarified. Various attributes of various events
are read to construct it and usually are aggregated. Examples
of such contexts include dashboards or work inventory lists.
Dashboards are used to demonstrate the current state of a
project or another semantic unit. Work inventory lists are
used to create performance tasks from other objects –such as
updates and invoices. Furthermore there are business entities
whose state is only dependent on current events instead of
being determinable by pre-rendered aggregation. Examples
include the accounts of financial accounting or the inventory
management.

In general this kind of mass data processing involves reading
of few sequential attributes instead of individual relations.
Regarding the use of column oriented in-memory databases
it can be said that these benefit the more, the more operations
belong to this category.

D. Application Characteristics
Different enterprise applications have different requirements

of data processing. Table II shows the analysis cut by different
types of business applications.

The transactional characteristics were drawn in light grey
and the analytical characteristics in dark grey to highlight the
different requirements of each application. It is immediately
apparent that no application can be categorized as purely trans-
actional or analytical. Although for example the processing of
orders is inherently transactional, the sales analysis as well
as the reminder management with their analytical functions
depend on it. The last two mentioned applications work -
reading as well as writing- directly on transactional data.
The reading operations are thereby mostly complex analytical
queries on large amount of data [2].

How transactional and analytical behavior interacts with
one another can be determined through the context of the
respective operation. Thereby the context is defined as the
metric. This is established by the required data which is needed
to enable decision making in a business process. When the
context of a decision is relatively small, the data volume
required is minimal. The larger the context, the larger becomes
the data volume to be read.

E. Insights
While the considered applications can be understood as

independent software applications, the main task of complex
business systems is to unite these applications and to link them
to one and the same data source.

Transactional applications typically work on atomic busi-
ness entities and generally require databases optimized for
transactional workloads. However, analytical applications have
different requirements of a database. Applications in this
area follow clear patterns and usually cover clear business
requirements as data cleansing, data consolidation etc. Typical
requests of such applications often select all existing data and
reduce step-by-step, normally following a navigation path or
a drill-down-strategy, i.e., forming aggregations on all data
then adding restrictions like selecting a particular product or
a specific region.

With the aid of column oriented in-memory databases it is
now possible again to combine database systems for transac-
tional and analytical workloads. Column oriented in-memory
databases are ideal to form aggregations over columns. Due
to the compression process it is far more complex to insert,
delete, and update data. It could however be shown that
in the described enterprise applications even in transactional
applications these operations are only a small part of the total.
Due to the fact that most columns present with a slight value
distribution, the application of column-based compression is
ideally suited to conserve memory and reduce reading time of
individual values. Even in transactional workloads, generally
several data sets are read and altered at the same time. The
advantage of row based database systems in such scenarios is
of minor importance in the reconstruction of individual tuples.

IV. ADVANTAGES OF COLUMN ORIENTED DATABASES FOR
ENTERPRISE APPLICATIONS

The following section will show how the above suggested
data management in the context of enterprise application can
generate advantages.

A. Technical Advantages for Enterprise Applications
The possibility to analyze transactional data also creates

new opportunities for business intelligence. So for example
there are new options for the implementation of event-driven
systems, vastly improved networking of independent enterprise
applications, and cost savings in the maintenance of corporate
environments. Especially the aspect of networking is essential
in enterprise applications as value creation takes place through
the integration of individual processes.



0!%

12!%

24!%

36!%

48!%

60!%

1024 - 100000000 33 - 1023 2 - 32 1 - 1

35!%

29!%

12!%

24!%

Distinct values per column

0!%

15!%

30!%

45!%

60!%

1024 - 100000000 33 - 1023 2 - 32 1 - 1

56!%

22!%

9!%
13!%

Distinct values per column

( a ) ( b )

Fig. 3. Grouped value distribution of inventory and finance tables

Demand Plan-
ning

Sales Order
Processing

Available to
Promise

Dunning Sales Analysis

Data granularity Transactional Transactional Transactional Transactional Aggregated
Data operations Read & Write Read & Write Read & Write Read & Write Read-Only
Data preprocessing No No No No Yes
Data timeframe Historical &

Recent
Recent Only Historical &

Recent
Historical &
Recent

Historical &
Recent

Data update cycles Always Up-to-
Date

Always Up-to-
Date

Always Up-to-
Date

Always Up-to-
Date

Cyclic Updates

Data volume per
query

Large Small Large Large Large

Query complexity High Standard High High High
Query predictability Medium High Medium Medium Low
Query response time Seconds Seconds Seconds Seconds to

Hours
Seconds to
Hours

OLTP Characteristics are colored light grey OLAP Characteristics are colored dark grey

TABLE II
COMPARISON OF IDENTIFIED APPLICATION CHARACTERISTICS

It is now possible to pose analytical questions directly
within transactional processes. A whole range of new pos-
sibilities arises, e.g., for the real-time detection of credit card
fraud or the query of current reminder items of a customer.
Currently such functionality is usually implemented with the
help of Operational Data Stores or rather real-time optimized
Data Warehouses, whereby either only time restricted data can
be processed or it comes to considerably delayed response
times (Data Warehouses).

Because the entire enterprise application data is now unified
in a single source, not only real-time access to all data becomes
inherently possible, but the often propagated but in actual
systems ultimately unrealizable goal of a ‘single source of
truth’ is achieved.

Event-Driven-Enterprise Systems become possible with the
association of analytical requests on the finest granular data
in real-time. Analytical events (i.e., events that are not just
specific to individual business entities, but are only recog-
nizable by strong analytical queries), which previously came
from a Data Warehouse on a deferred basis and for which
the corresponding data had to exist in the DW anyway, are
now recognizable at any point in the source system and are
immediately propagated to the respective component. Also,

the data analyzed is not limited to predefined data sets within
the DW. This enables for example a far more precise Event-
Driven Process Optimization which allows a company to react
to specific events of running processes in real-time and respond
where appropriate.

A further trend in enterprise applications is the increased
Cross-Linking of analytical and transactional systems. An ex-
ample of this is the linking of Supply Chain Management with
Customer Relationship Management. This enables for example
to ascertain whether or when certain stocks or discounts are
available during a customer enquiry. These connections are
currently implemented individually which is elaborate and
costly due to the lack of standardized data models and the
use of systems from different suppliers. Besides the horizontal
linking of business applications as cross-linking, new possibil-
ities arise also with vertical linking. Vertical linking connects
analytical and transactional systems. Today this connection is
often uni-directionally implemented via ODS. It is referred
to as Closed-Loop-Function in bi-directional connections. De-
pending on the requirements of actuality of data this can mean
integration on multiple levels (transactional systems as receiver
and transmitter, ODS as integrator, DW as transmitter and
receiver). Column oriented in-memory databases help to keep



the entire business data in one source which means inherently
the unified modeling of data as well as the immediately
availability of networking between all components.

Last not least the use of high performance systems has
cost saving potentials. By way of avoiding redundancies, com-
plex system landscapes with subsystems that hold the same
business data in different formats (individual business entities
versus pre-aggregated totals) no longer exist. This does not
mean just less hardware and thus less maintenance costs, but
also less expense for keeping redundant data consistent. This
in turn means a faster and easier development and maintenance
of systems in general.

B. Advantages from a User’s Perspective
An interesting question arises from the technological poten-

tials referred to in the previous chapter about how far processes
can benefit from already existing or rather now possible
analytical techniques. Now that employees below management
level have access to complex analyses, they are enabled to
work more independently and take on more responsibilities.
Better overviews facilitate managers to reach more accurate
decisions more independently than before. Be it proposals
or error correction procedures via a sensory perception test
during handing-in of forms or far more complex analytical
functions. Furthermore, business processes become far easier
to control. Sales figures or customer feedback can directly
control production or oil rigs produce depending on current
market prices or demand etc.

Of course, upper management levels benefit the most. In
today’s enterprises they more than ever have to take decisions
fast and accurately or recognize trends – particularly since
the crisis in 2008. Here it is important that the possibility
of performance predictions as well as back-links into running
operations exist. Current systems do not fulfill these criteria.
Systems which allow analysis directly on transactional data
enable changes in decision support. Current analytical systems
are primarily push systems. In such systems the management
poses questions to the people in the IT department with
respective competence who only deliver answers after at times
a delay of days. The problem here is that the data radius around
the originally posed question is relatively small. New and
further reaching questions arise out of the answers (so called
follow-ups), which cannot be answered by already existing
analyses, new time consuming analysis needs to be conducted.
However, in in-memory databases it is possible to pose
analytical questions directly to transactional systems. There
are no intermediate cleansing-, integration-, or transformation
processes and just one data source is queried. This indicates
a shift from push to pull systems. It enables the management
to access all data and information in real-time without risk
that these do not represent the current state of their company
100%. Thus a 360◦ view of the enterprise is possible. This
allows direct intervention into time-critical processes which
previous reporting made impossible. Particularly in emergency
situations this is a crucial advantage as time-critical decisions
have to be taken.

Analysis on transactional data combined with possibility
of deriving predictions from real-time data permits much
more precise decision support. Prognosis and simulations
require transactional data of an enterprise including break and
irregularities – instead of pre-aggregated events – for most
accurate predictions. Current prediction options are limited
in their viability. Not only with more precise but especially
with more flexible predictions and time-critical interventions
into running processes, corporate governance is able to gain
more precise insights into their company and control running
processes.

C. Column Oriented Databases in SaaS Applications
To achieve high scalability, applications offered as Software-

as-a-service often use the same tables for different clients.
Nonetheless it is frequently necessary that some customers can
adjust the data model according to their needs. For this reason
in row oriented databases various techniques are used, as
for example virtual tables (pivot table layout [21]), extension
tables or reserve columns that can be used later.

Due to the row oriented positioning of data sets in classical
database systems, it is also too work-intensive to insert new
columns, as in the extreme case, it leads to a reorganization
of the entire storage area and makes tables temporarily un-
available as locks prevent read- or write operations during the
process. Especially in the software-as-a-service area applica-
tions must remain available during upgrades which include
alterations of the data model. As far as columns to be inserted
in a column oriented database are concerned, not the entire
storage area has to be re-organized as new columns are added
in a complete new storage area.

If a new column has to be added, only a stub needs to be
created and the meta-information of the table has to be updated
so that new attributes are accessible. This is a great advantage
allowing for interruption free development and integration of
new software. Additionally a new column only materializes
after an attribute has actually been inserted.

If a table is used by different clients, it is no longer
a problem with column oriented databases to add further
columns for each customer.

V. RELATED WORKS

As already mentioned in section II the main part of related
work concerns specialized databases. This research area con-
tains in-memory databases as well as column oriented data
structures. The former was treated in [3] while the latter
work on in-memory databases focuses on rather specialized
applications. The authors of [22] and [23] describe in-memory
databases for transactional workloads, however they use row
oriented data structures. In contrast Boncz et.al. in [6] deal
with main memory processing and binary association tables,
which store data complete vertically partioned and optimized
for analytical workloads.

In the meantime the idea of column oriented databases was
implemented in many academic projects, for example the main
memory based MonetDB [6] or the hard disk based C-Store



[24]. Ramamurthy et.al. describe in [1] a database design for
mixed workloads in which various physical data structures are
used similar as described in [25].

Another important research subject in the area of enterprise
applications addresses the possibility of Real-Time Reporting
and Operational Reporting. The latter is a typical application
in the area of Active Warehousing [26] which primarily assists
decision support. But tactical decisions require typically most
current information. To provide theses more accurately than in
Active Warehouses Operational Data Stores were developed
(ODS). In contrast to data warehouses, which usually update
in intervals, in ODS updates occur in real-time of the actual
transaction. [27] describes ODS as a hybrid with characteris-
tics of transactional systems as well as data warehouses. ODS
offers transactional response times to most current data with a
decision support function. In contrast to data warehouses only
a small data-set is preserved.

It is possible to work directly on business entities with
in-memory databases instead of materializing aggregates and
views. Grund et.al. [28] have developed a concept which
uses Insert-Only to enable the use of reporting on historical
data. Materializing techniques as for example in [29] and [30]
use redundancy to cover transactional as well as analytical
workloads. However any redundancy offers little flexibility
as for example redundancy-free strategies implemented with
column oriented in-memory databases where at any time all
data are accessible instead of subsets or materialized data.

There are different service providers for cloud computing
which offer cloud services promising reducing costs and
almost unlimited scalability. Kossmann et.al. [31] have exam-
ined a number of architectures of OLTP workloads and found
out that there are great variations regarding costs and speed.
Depending on workload a company should choose a service
provider accordingly.

VI. OUTLOOK

This paper has presented a new approach to data man-
agement in enterprise application. By means of analysis
of realistic systems and particularly of productive systems
characteristics of enterprise application could be determined.
The most important realization during data analysis was the
minimal distribution of data, i.e. the relative low number of
distinct attribute values. Interesting is also that most attributes
in enterprise systems are hardly used.

These characteristics have benefits for column oriented in-
memory databases. These features of this data management
enables enterprise applications which are not possible with
conventional databases and this with clearly simplified data
schema. Newly created possibilities as for example Opera-
tional Reporting on transactional data enable a more precise,
a more grounded and faster decision support as no interme-
diately stored transformations for analytical systems have to
be performed and instead transactional real-time data can be
used at all times.

With help of the discovered characteristics a prototype on
the basis of the SAP ERP finance management was developed

which runs directly on a column oriented in-memory database.
It could be demonstrated that these surpass conventional
databases theoretically as well as through a prototypical im-
plementation in the area of financial accounting and inventory
management. Further an extension of the dunning procedure
was implemented. Here it was shown that through use of a read
optimized database not only improvements were achieved in
the run-time, but parallel to that it enabled a customer seg-
mentation, to for example treat otherwise reliable customers
differently. Therefore it is no longer necessary to use fixed
limits and configurations in payment management as this can
occur as a rule directly in business logic. This resulted in
improved run-times in inventory management and payment
procedures, but also opened complete new possibilities within
business processes, which in traditional databases would not
be able to perform anyway near as comparatively.

Looking ahead there are further interesting and promising
areas of applications for column oriented in-memory databases
in the field of enterprise. It is planned to apply the insights
gained in view of multi tenancy and cloud computing. Cloud-
based in-memory databases have advantages in the scalability
of multi tenancy systems and thus potential to optimize costs a
particular critical point in the cloud computing environment.

REFERENCES

[1] R. Ramamurthy, D. J. DeWitt, and Q. Su, “A case for fractured mirrors.”
VLDB J., vol. 12, no. 2, pp. 89–101, 2003.

[2] J. Krüger, C. Tinnefeld, M. Grund, A. Zeier, and H. Plattner, “A case
for online mixed workload processing.” in DBTest, S. Babu and G. N.
Paulley, Eds. ACM, 2010.

[3] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. Stonebraker, and
D. A. Wood, “Implementation techniques for main memory database
systems.” in SIGMOD Conference, B. Yormark, Ed. ACM Press, 1984,
pp. 1–8.

[4] H. Garcia-Molina and K. Salem, “Main memory database systems: An
overview.” IEEE Trans. Knowl. Data Eng., vol. 4, no. 6, pp. 509–516,
1992.

[5] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “Dbmss on
a modern processor: Where does time go?” in VLDB, M. P. Atkinson,
M. E. Orlowska, P. Valduriez, S. B. Zdonik, and M. L. Brodie, Eds.
Morgan Kaufmann, 1999, pp. 266–277.

[6] P. A. Boncz, S. Manegold, and M. L. Kersten, “Database Architecture
Optimized for the New Bottleneck: Memory Access.” in VLDB, M. P.
Atkinson, M. E. Orlowska, P. Valduriez, S. B. Zdonik, and M. L. Brodie,
Eds., 1999.

[7] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudré-Mauroux, and
S. Madden, “Hyrise - a main memory hybrid storage engine.” PVLDB.

[8] J. Krueger, M. Grund, M. Boissier, A. Zeier, and H. Plattner, “Data
structures for mixed workloads in in-memory databases,” 2010.

[9] S. Manegold, P. A. Boncz, and M. L. Kersten, “Generic database
cost models for hierarchical memory systems.” in VLDB. Morgan
Kaufmann, 2002, pp. 191–202.

[10] G. P. Copeland and S. Khoshafian, “A decomposition storage model.”
in SIGMOD Conference, S. B. Navathe, Ed. ACM Press, 1985, pp.
268–279.

[11] C. D. French, ““one size fits all” database architectures do not work for
dds.” in SIGMOD Conference, M. J. Carey and D. A. Schneider, Eds.
ACM Press, 1995, pp. 449–450.

[12] N. R. Mahapatra and B. Venkatrao, “The processor-memory bottleneck:
problems and solutions,” Crossroads, p. 2, 1999.

[13] G. V. Cormack, “Data compression on a database system.” Commun.
ACM, vol. 28, no. 12, pp. 1336–1342, 1985.

[14] D. J. Abadi, S. Madden, and M. Ferreira, “Integrating compression and
execution in column-oriented database systems.” in SIGMOD Confer-
ence, S. Chaudhuri, V. Hristidis, and N. Polyzotis, Eds. ACM, 2006,
pp. 671–682.



[15] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte, “The
implementation and performance of compressed databases.” SIGMOD
Record, vol. 29, no. 3, pp. 55–67, 2000.

[16] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. Madden, “Materialization
strategies in a column-oriented dbms.” in ICDE. IEEE, 2007, pp. 466–
475.

[17] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazières, S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum,
S. M. Rumble, E. Stratmann, and R. Stutsman, “The case for ramclouds:
scalable high-performance storage entirely in dram,” SIGOPS Oper. Syst.
Rev., vol. 43, no. 4, pp. 92–105, 2010.

[18] “TPC-C Benchmark - Standard Specification - Revision 5.11,”
http://www.tpc.org/tpcc/spec/tpcccurrent.pdf.

[19] P. A. Boncz, M. Zukowski, and N. Nes, “Monetdb/x100: Hyper-pipelining
query execution.” in CIDR, 2005, pp. 225–237.

[20] J. Krüger, M. Grund, C. Tinnefeld, H. Plattner, A. Zeier, and F. Faerber,
“Optimizing write performance for read optimized databases.” in DASFAA (2),
ser. Lecture Notes in Computer Science, H. Kitagawa, Y. Ishikawa, Q. Li, and
C. Watanabe, Eds., vol. 5982. Springer, 2010, pp. 291–305.

[21] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger, “Multi-tenant
databases for software as a service: schema-mapping techniques.” in SIGMOD
Conference, J. T.-L. Wang, Ed. ACM, 2008, pp. 1195–1206.

[22] S. K. Cha and C. Song, “P*time: Highly scalable oltp dbms for managing
update-intensive stream workload,” in In Proceedings of 30 nd International
Conference on Very Large Data Bases (VLDB 2004, 2004.

[23] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and
P. Helland, “The end of an architectural era (it’s time for a complete rewrite).”
in VLDB, C. Koch, J. Gehrke, M. N. Garofalakis, D. Srivastava, K. Aberer,
A. Deshpande, D. Florescu, C. Y. Chan, V. Ganti, C.-C. Kanne, W. Klas, and
E. J. Neuhold, Eds. ACM, 2007, pp. 1150–1160.

[24] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,
E. Lau, A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran,
and S. B. Zdonik, “C-store: A column-oriented dbms.” in VLDB, K. Böhm,
C. S. Jensen, L. M. Haas, M. L. Kersten, P. Åke Larson, and B. C. Ooi, Eds.
ACM, 2005, pp. 553–564.

[25] J. Schaffner, A. Bog, J. Krueger, and A. Zeier, “A hybrid row-column
oltp database architecture for operational reporting.” in BIRTE (Informal
Proceedings), 2008.

[26] A. Karakasidis, P. Vassiliadis, and E. Pitoura, “Etl queues for active data
warehousing.” in IQIS, L. Berti-Equille, C. Batini, and D. Srivastava, Eds.
ACM, 2005, pp. 28–39.

[27] W. H. Inmon, Building the Operational Data Store. New York, NY, USA:
John Wiley & Sons, Inc., 1999.

[28] M. Grund, J. Krueger, C. Tinnefeld, and A. Zeier, “Vertical Partition for Insert-
Only Scenarios in Enterprise Applications,” in IE&EM, 2009.

[29] J. Kiviniemi, A. Wolski, A. Pesonen, and J. Arminen, “Lazy aggregates for
real-time olap.” in DaWaK, ser. Lecture Notes in Computer Science, M. K.
Mohania and A. M. Tjoa, Eds., vol. 1676. Springer, 1999, pp. 165–172.

[30] W. P. Yan and P. Åke Larson, “Eager aggregation and lazy aggregation.” in
VLDB, U. Dayal, P. M. D. Gray, and S. Nishio, Eds. Morgan Kaufmann,
1995, pp. 345–357.

[31] D. Kossmann, T. Kraska, and S. Loesing, “An evaluation of alternative
architectures for transaction processing in the cloud,” in SIGMOD Conference,
A. K. Elmagarmid and D. Agrawal, Eds. ACM, 2010, pp. 579–590.


