
Reducing the Footprint of Main Memory HTAP Systems:
Removing, Compressing, Tiering, and Ignoring Data

Martin Boissier
Supervised by Prof. Hasso Plattner

Hasso Plattner Institute, University of Potsdam, Germany

martin.boissier@hpi.de

ABSTRACT
Gracefully reducing the main memory footprint (e.g., via
compression and data tiering) is an unsolved challenge for
HTAP database systems, where most traditional reduction
methods are no longer applicable. Since advantages of a
reduced footprint are manyfold, the issue is of high impor-
tance for main memory-resident databases. In this paper, we
present our work on Hyrise and discuss how we break down
this challenge into three aspects in order to reduce the main
memory consumption without losing the performance advan-
tage of in-memory databases. First, we reduce existing allo-
cations by efficiently selecting indices and workload-driven
compression configurations for table data. Second, we use
hybrid table layouts to tier data with minimal impacts on
the runtime performance. Third, we employ data structures
that efficiently eliminate unnecessary accesses to secondary
storage. As an outlook, we depict our vision to eventually
unite these aspects in a holistic footprint optimization.

1. MEMORY FOOTPRINT REDUCTION
Database systems that store their entire working set in

DRAM have a clear performance advantage over their disk-
based counterparts. But DRAM can easily become the main
cost driver for large server systems. Its capacity still remains
limited, especially when compared to modern storage arrays
with petabytes of storage. Moreover, DRAM is responsible
for up to 40% of a server’s energy consumption [15].
Besides cost considerations, growing data volumes limit

the applicability of main memory-resident database systems.
Basically, all in-memory database vendors have added capa-
bilities to handle data volumes larger than DRAM capacities,
which underlines the need of efficient means to lower the
memory footprint (i.e., main memory consumption). A lower
footprint provides obvious benefits such as decreased hard-
ware costs but also enables faster recovery times. On top
of that, gained free space can be used to execute faster al-
gorithms with larger memory requirements or for adding
auxiliary data structures such as secondary indexes.
One self-imposed condition that makes our project partic-

ularly interesting is the focus on hybrid transactional and
analytical workloads (so-called HTAP, OLxP, or mixed work-
loads). Most existing approaches, e.g., page- or tuple-based
eviction, incur disastrous performance penalties for work-
loads that are mostly dominated by sequential processing.

Proceedings of the VLDB 2018 PhD Workshop, August 27, 2018. Rio de
Janeiro, Brazil. Copyright (C) 2018 for this paper by its authors. Copying
permitted for private and academic purposes.

We implement our research in the open source database
Hyrise1. Hyrise is a columnar in-memory database optimized
for HTAP workloads. The database is ACID-compliant and
uses MVCC concurrency control. Data in Hyrise is horizon-
tally partitioned into so-called chunks with a predefined size
(comparable to [14]). Data is inserted in the most recent
mutable chunk until this chunk reaches its limit. At this
point, a new empty chunk is created and the recently filled
chunk becomes immutable (using append-only for updates
and MVCC invalidations for deletions). We approach tiering
in Hyrise by separating the problem into three aspects:

1. Before any data is evicted (to presumably significantly
slower storage tiers), existing data structures are com-
pressed or even removed (cf. Section 3).

2. We use hybrid table layouts to vertically partition and
evict data to secondary storage (cf. Section 4).

3. We employ auxiliary data structures to ignore irrelevant
data (i.e., data skipping or pruning, cf. Section 5).

In this paper, we will discuss these three aspects which are
already published or currently work in progress. The final
objective of the pursued thesis is to create a holistic view
onto these three aspects and properly balance them.

2. EXISTING WORK
In recent years, a variaty of main memory-resident data-

base systems has been released (e.g., Hekaton [8], SAP
HANA [10], H-Store [12], HyPer [13]). Even though these
databases aim to fully exploit DRAM’s performance char-
acteristics, they all have in common that means to handle
larger-than-DRAM data sets are incorporated (cf. Heka-
ton’s project Siberia [9], HANA’s paged attributes [18, 21],
anti-caching in H-Store [7], HyPer’s chunk compaction [11]).
To distinguish our work from these systems, we categorize

the related work in three groups: (i) means to classify cold
data, (ii) tiering granularity, and (iii) access avoidance.

2.1 Identifying Cold Data
The primary way to identify cold data (cold data usually

refers to the most infrequently accessed data) depends on
the workload targeted. OLTP-optimized databases such as
H-Store and SQL Server’s Hekaton evict single tuples with a
strong focus on transaction throughput and latency.
The HTAP-optimized database SAP HANA does not em-

ploy a workload-driven system but rather is the application
expected to provide business rules that define data being
1Hyrise on GitHub: https://git.io/hyrise

1

(i) no longer relevant for the daily ongoing business and
(ii) which cannot be modified anymore (e.g., due to regu-
latory agreements). The reason for this approach is SAP’s
strong devotion to enterprise systems [21]. Another HTAP-
optimized database, HyPer, assumes horizontal partitions
(chunks) become colder with their age increasing [14].

2.2 Tiering Granularity
OLTP-optimized databases usually evict fine-granular hor-

izontal entities, usually pages or tuples. Moreover, H-Store
also tiers indexes [22].
SAP HANA allows defining columns as page loadable, mak-

ing columns loadable and evictable on a page basis. Also,
indexes and column dictionaries can be page loadable. Hy-
Per varies the compression and page size with the age of a
chunk. Chunks start being completely uncompressed (hot),
then become cold, and eventually are stored as immutable
frozen chunks using huge pages and heavier compression [11].
Recently, HyPer gained the capability to also evict data to
secondary storage [16].

2.3 Access Avoidance
To avoid unnecessary accesses to evicted data, most ap-

proaches create additional data structures or aggregates that
allow pruning accesses for the majority of queries.
Hekaton uses adaptive range filters which allow pruning

both point queries (even though less effective than Bloom
filters) and range queries [2]. SAP HANA stores synopses per
attribute, which include, e.g., minimum and maximum values
of a column [18]. HyPer uses positional small materialized
aggregates storing clustered min/max aggregates to prune or
limit sequential scans to a smaller subset [14].

To our best knowledge, the discussed approaches lack the
means for a workload-driven data tiering that can be dynam-
ically configured by changing the memory budget. Further,
we see unused potential of access avoidance data structures
to be further used for more accurate cardinality estimations.

3. COMPRESSION & REMOVAL
The first step to reduce the memory footprint is compres-

sion and removal of existing data structures.

3.1 Compression
Hyrise supports different column compression schemes

(e.g., dictionary encoding, run-length encoding, frame-of-
reference, SIMD-BP128). While this topic is well researched,
there has only been little work on how to integrate various
compression schemes efficiently. The capability of compress-
ing columns individually usually either introduces (i) a high
maintenance overhead as operators have to be adapted for
each compression schema or (ii) runtime degradations due
to added indirections via virtual method calls. We imple-
ment an approach similar to QuickStep [20] and use C++
meta-programming to avoid both drawbacks at the expense
of compile time (cf. Fig. 2(a)). Similar to [5], we divide com-
pression schemes into logical-level techniques and physical-
level techniques, which allows us to use the implemented
compression techniques also for other data structures (e.g.,
indexes or position lists that are passed between operators).
When it comes to deciding which compression scheme to

use, there is a clear lack in database research. Most commer-
cial systems use simple data statistics and heuristics similar
to Abadi et al.’s decision tree for compression selection [1].

Val Dict Val Dict Val

CG1 (a1) CG2 (a2) CG3 (a3, a4, a5, … an)

Allocated in
main memory

Allocated on
secondary storage Consecutive data

MRC MRC SSCG

<
<

<

Figure 1: Depiction of a tiered hybrid layout (cf. [3]).

To our best knowledge, no existing approach incorporates
workload knowledge and allows selecting compression config-
urations for a given memory budget. As a consequence, we
developed a novel heuristic to determine optimized compres-
sion configurations. Given a workload and a memory budget,
this selection approach determines for each column in each
chunk a suitable compression scheme using analytical size
estimations and regression-based runtime predictions.

3.2 Selection & Removal
For the removal of data structures, we concentrate on

auxiliary data structures such as secondary indices. This
problem is a well-studied topic and known as the index selec-
tion problem. We employ an adapted version of the heuristic
presented in [4] for the index selection problem. First evalua-
tions show a comparable solution quality with state-of-the-art
approaches such as CoPhy [6] with a significantly shorter
runtime what allows us to process large systems with larger
sets of candidates (see short comparison in Table 1).

CoPhy CoPhy CoPhy CoPhy Our
(100) (200) (500) (9 912) Approach

Mem. traffic (TB) 5 371 4 730 2 489 403 425
Runtime in seconds 0.62 7.23 121.00 DNF 0.65

Table 1: Comparing our index selection heuristic
against CoPhy for a large production ERP system
(numbers in parentheses denote the size of the can-
didate set; unlimited set for our approach).

4. DATA TIERING
Chunks in Hyrise can use hybrid layouts that vertically

separate the attributes into two groups. The first group
contains all attributes that have been accessed apart from
projections and is stored in a columnar fashion remaining
in DRAM. The second group contains all attributes that
have only been projected or not accessed at all. Attributes
of this group are stored in a row-major format and evicted
to secondary storage. For memory budgets lower than the
size of the first group in DRAM, a workload-driven Pareto-
optimal heuristic selects which columns to keep in DRAM.
Evaluations using an Intel Optane P4800X showed eviction
rates of up to 80% with neglectable performance hits for a
real-world enterprise SAP system. This hybrid table layout
has recently been presented at the ICDE 2018 [4].
As of now, we do not consider index tiering. In the long

run, we plan to adapt a flexible storage manager comparable
to [16], which is applicable to any data structure.

2

3.84 x

1.0 x

3.68 x

1.0 x

0

1

2

3

4

Materialization Polymorphism

M
ill

io
n

Ite
m

s
pe

r
S

ec
on

d
(n

or
m

al
iz

ed
)

Dynamic Polymorphism Full Materialization

Iterator−Based Materialization Static Polymorphism

(a) Performance improvements due
to iterator-based materialization
and static polymorphism.

5.052 MB

16.902 MB

<1 KB

518 KB

1.5 KB

10

1000

Bloom Filter Full
Dictionaries

Min/Max Multi−Column
Range Filter

Range Filter

Lo
g:

 S
iz

e
of

 D
at

a
S

tr
uc

tu
re

 [K
B

]

Bloom Filter Full
Dictionaries Min/Max

Multi−Column
Range Filter Range Filter

0.91 0.92

0.58

0.83

0.72

0.00

0.25

0.50

0.75

1.00

Bloom Filter Full
Dictionaries

Min/Max Multi−Column
Range Filter

Range Filter

P
ru

ni
ng

 R
at

e

Bloom Filter Full
Dictionaries Min/Max

Multi−Column
Range Filter Range Filter

(b) Comparison of five data structures for access avoidance. Bloom filters and full
dictionaries show the highest pruning rates but also largest space consumptions.

Figure 2: Selected comparisons: (a) the effects of zero-cost abstractions for compression schemes and (b) a
comparison of access avoidance data structures for workload and data of an production ERP system.

5. ACCESS AVOIDANCE
When we talk about access avoidance in the context of

Hyrise, we mean auxiliary data structures and aggregates
that (i) enable pruning (or elimination) of chunks which are
irrelevant for processing the query result and (ii) improve car-
dinality estimations during query optimization. As Hyrise’s
chunk concept guarantees that chunks cannot be modified as
soon as they reach their size limit, we create several aggre-
gates and auxiliary data structures on each chunk without
the need of keeping them updated with every transaction.
The creation is done during chunk compaction to piggy-back
the full chunk iteration during compression.
Data gathered per attribute during compaction include

the share of NULL values, distinct values count, the number
of runs (used to estimate compression rates for run-length
encoding), and minimum/maximum values (cf. [17]). On
top of these aggregates, we use (as of now very simple)
heuristics to select which of the following – more sophisticated
– auxiliary data structures are potentially beneficial:

Pruning Histograms are extended histograms with prun-
ing capabilities, combining equi-width histograms and
range filters. These histograms store value ranges with
the objective to create as large as possible gaps be-
tween the value ranges. These gaps allow the pruning
of queries whose predicate ranges are not intersecting
with any value range in the filter. Each value range
further stores the number of elements within the range
and the number of distinct elements.

Multi-Column Pruning Histograms are each created be-
tween two selected attributes. In addition to the prun-
ing histograms of both attributes, a bitmap is stored
which signals whether tuples exist for value range com-
binations (see depiction in Figure 3). This way, queries
with conjunctive predicates might be pruned where
each predicate alone might not indicate a pruning pos-
sibility. Moreover, this data structure can be used (to
some extend) to gather information about dependencies
between attributes.

Approximate Set Membership Filters – similar to
Bloom filters – allow approximate pruning of accesses.We
use counting quotient filters (CQF) by Pandey et al. [19].
CQFs allow checking for set memberships as well as
estimating a queried item’s frequency of occurrence

in the set. Hence, besides access pruning, CQFs can
improve cardinality estimations for skewed data.

[0, 1017]Min/Max:

([0, 110], [223, 557], [820,1017])Pruning Histogram:

Vector:

[0, 103]Min/Max:

([4, 11], [22, 42], [63, 63], [81, 103])Pruning Histogram:

Vector:

Multi-Column
Pruning Histogram:

[820, 1017][223, 557][0,110]

100

10 0

1 01

011 [4, 11]

[22, 42]

[63, 63]

[81, 103]

A
ttr

ib
ut

e
#1

A
ttr

ib
ut

e
#2

Figure 3: Depiction of pruning histograms in Hyrise.

Figure 2(b) shows pruning rates and memory consumption
of various data structures for workload and data of a pro-
duction ERP system. Particularly pruning histograms and
multi-column pruning histograms offer a promising trade-off
between pruning rate and size. For highly skewed attributes
with many point accesses, CQFs are a viable alternative.

An interesting challenge is the balancing of data eviction
and creation of data structures that avoid accesses to the
evicted data. As a consequence, besides implementing and
integrating the mentioned data structures in Hyrise, the
main objective will be a selection model. For a given memory
budget, this model decides (i) which data structures to create
and (ii) how much space to allocate for each structure (all
proposed structures are dynamically sizable).

5.1 Query Planning & Optimization
Recognizing that a chunk can be pruned for a given predi-

cate (e.g., during a linear table scan) can improve efficiency

3

a=b

σx=27

R

S

σ y<11

R
Chunk #1

Chunk #2

Chunk #3

Chunk #4

Chunk #5

Chunk #6

Accesses to
chunks 1, 2, and 4

can be pruned

Accesses to
chunks 4 and 5
can be pruned

Physical Query Plan

GetTable(R) GetTable(R)’

Figure 4: Example of a query plan with two predi-
cates. For conjunctive predicates, lists of excluded
chunks per predicate can be unioned and pushed
down. For the physical query plan, the GetTable op-
erator is modified to discard non-skippable chunks.

and performance but leaves large potentials unused: (i) im-
proved cardinality estimations and (ii) combined pruning of
conjunctive filter predicates.
Cardinality Estimation: One very prominent remaining

problem of query optimization is the accurate estimation of
cardinalities. When pruning is executed as part of a physical
plan operation, strongly pruning predicates cannot directly
trigger a plan re-evaluation. In Hyrise, all auxiliary data
structures are used within the query optimizer to improve se-
lectivity estimations, which enables triggering re-evaluations
and predicate re-orderings.
Conjunctive Predicate Chains: We have analyzed pro-

duction enterprise systems and found that these systems
conjunctively filter on several dimensions frequently [3]. Of-
ten, predicates in those chains exclude different chunks of
the table. Hence, when the first filter operation scans chunks
which are later found to be irrelevant for the result, this
scan was superfluous. This is the case when pruning is solely
used within the execution engine and not as part of query
optimization. In Hyrise, we search conjunctive chains of
predicates that are directly executed on physical tables. For
conjunctive chains, we can union the lists of prunable chunks
and directly prune those chunks during loading of the table
before any operator is executed (see Figure 4).
We also plan to evaluate exploiting these data structures

as part of query execution (e.g., for semi-join reductions).

6. CURRENT STATUS & FUTURE WORK
We have presented the current state of footprint reduc-

tion and data tiering in Hyrise. Considering our preliminary
results, we are optimistic that we can make substantial contri-
butions to the database community. Especially light-weight
data structures that both improve efficiency and performance
by avoiding unnecessary accesses as well as improved accu-
racy within query optimization appear promising.
Part of our upcoming work is the holistic optimization of

Hyrise’s memory footprint, incorporating all aspects from
compression, over tiering, to access avoidance. Eventually,

a holistic optimization is required as the presented aspects
interact with each other. As soon as data is compressed or
evicted, there will be an access penalty. Data tiering and
accesses to secondary storage potentially cause devastating
performance hits unless accesses can be pruned whenever
possible. Hence, measures to avoid unnecessary accesses
must be taken in order to preserve performance. The slower
the data tier for eviction is, the more value pruning data
structures provide.

7. REFERENCES
[1] D. J. Abadi et al. Integrating compression and execution in

column-oriented database systems. In Proc. SIGMOD 2006,
pages 671–682, 2006.

[2] K. Alexiou et al. Adaptive range filters for cold data:
Avoiding trips to siberia. PVLDB, 6(14):1714–1725, 2013.

[3] M. Boissier et al. Analyzing data relevance and access
patterns of live production database systems. In Proc.
CIKM 2016, pages 2473–2475, 2016.

[4] M. Boissier, R. Schlosser, and M. Uflacker. Hybrid data
layouts for tiered HTAP databases with pareto-optimal data
placements. In Proc. ICDE, pages 209–220, 2018.

[5] P. Damme et al. Lightweight data compression algorithms:
An experimental survey (experiments and analyses). In Proc.
EDBT 2017, pages 72–83, 2017.

[6] D. Dash, N. Polyzotis, and A. Ailamaki. CoPhy: A scalable,
portable, and interactive index advisor for large workloads.
PVLDB, 4(6):362–372, 2011.

[7] J. DeBrabant, A. Pavlo, S. Tu, et al. Anti-caching: A new
approach to database management system architecture.
PVLDB, 6(14):1942–1953, 2013.

[8] C. Diaconu et al. Hekaton: SQL server’s memory-optimized
OLTP engine. In Proc. SIGMOD, pages 1243–1254, 2013.

[9] A. Eldawy et al. Trekking through siberia: Managing cold
data in a memory-optimized database. PVLDB,
7(11):931–942, 2014.

[10] F. Färber et al. The SAP HANA database – an architecture
overview. IEEE Data Eng. Bull., 35(1):28–33, 2012.

[11] F. Funke, A. Kemper, and T. Neumann. Compacting
transactional data in hybrid OLTP & OLAP databases.
PVLDB, 5(11):1424–1435, 2012.

[12] R. Kallman et al. H-Store: a high-performance, distributed
main memory transaction processing system. PVLDB,
1(2):1496–1499, 2008.

[13] A. Kemper et al. HyPer: A hybrid OLTP&OLAP main
memory database system based on virtual memory
snapshots. In Proc. ICDE 2011, pages 195–206, 2011.

[14] H. Lang et al. Data Blocks: Hybrid OLTP and OLAP on
compressed storage using both vectorization and
compilation. In Proc. SIGMOD 2016, pages 311–326, 2016.

[15] C. Lefurgy et al. Energy management for commercial servers.
IEEE Computer, 36(12):39–48, 2003.

[16] V. Leis et al. LeanStore: In-memory data management
beyond main memory. In Proc. ICDE, pages 185–196, 2018.

[17] G. Moerkotte. Small materialized aggregates: A light weight
index structure for data warehousing. In Proc. VLDB 1998,
pages 476–487, 1998.

[18] A. Nica et al. Statisticum: Data statistics management in
SAP HANA. PVLDB, 10(12):1658–1669, 2017.

[19] P. Pandey, M. A. Bender, R. Johnson, and R. Patro. A
general-purpose counting filter: Making every bit count. In
Proc. SIGMOD 2017, pages 775–787, 2017.

[20] J. M. Patel et al. Quickstep: A data platform based on the
scaling-up approach. PVLDB, 11(6):663–676, 2018.

[21] R. Sherkat et al. Page as you go: Piecewise columnar access
in SAP HANA. In Proc. SIGMOD, pages 1295–1306, 2016.

[22] H. Zhang et al. Reducing the storage overhead of
main-memory OLTP databases with hybrid indexes. In Proc.
SIGMOD 2016, pages 1567–1581, 2016.

4

