
Hasso Plattner Institute for Digital Engineering
at the University of Potsdam

Enterprise Platform and Integration Concepts Research Group
Prof. Dr. h.c. mult. Hasso Plattner

Situational Interventions and Peer Feedback

in Massive Open Online Courses

Narrowing the Gap Between Learners and Instructors
in Online Programming Education

Dissertation
submitted in partial fulfillment

of the requirements for the academic degree of

Doctor of Natural Sciences
(Dr. rer. nat.)

in the scientific discipline of
Practical Computer Science

to the
Digital Engineering Faculty
at the University of Potsdam

by
Ralf Teusner, M.Sc.

Potsdam, January 8th, 2020

Supervisors

Prof. Dr. h.c. mult. Hasso Plattner
Hasso Plattner Institute for Digital Engineering

Prof. Dr. Falk Uebernickel
Hasso Plattner Institute for Digital Engineering

Prof. Dr. Helmut Krcmar
Technical University of Munich

Published online on the
Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-50758
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-507587

Abstract

Massive Open Online Courses (MOOCs) open up new opportunities to learn a
wide variety of skills online and are thus well suited for individual education,
especially where proficient teachers are not available locally. At the same time,
modern society is undergoing a digital transformation, requiring the training
of large numbers of current and future employees. Abstract thinking, logical
reasoning, and the need to formulate instructions for computers are becoming
increasingly relevant. A holistic way to train these skills is to learn how to pro-
gram. Programming, in addition to being a mental discipline, is also considered a
craft, and practical training is required to achieve mastery. In order to e↵ectively
convey programming skills in MOOCs, practical exercises are incorporated into
the course curriculum to o↵er students the necessary hands-on experience to
reach an in-depth understanding of the programming concepts presented. Our
preliminary analysis showed that while being an integral and rewarding part
of courses, practical exercises bear the risk of overburdening students who are
struggling with conceptual misunderstandings and unknown syntax. In this the-
sis, we develop, implement, and evaluate di↵erent interventions with the aim to
improve the learning experience, sustainability, and success of online program-
ming courses. Data from four programming MOOCs, with a total of over 60,000
participants, are employed to determine criteria for practical programming ex-
ercises best suited for a given audience.

Based on over five million executions and scoring runs from students’ task
submissions, we deduce exercise di�culties, students’ patterns in approaching
the exercises, and potential flaws in exercise descriptions as well as prepara-
tory videos. The primary issue in online learning is that students face a so-
cial gap caused by their isolated physical situation. Each individual student
usually learns alone in front of a computer and su↵ers from the absence of a
pre-determined time structure as provided in traditional school classes. Further-
more, online learning usually presses students into a one-size-fits-all curriculum,
which presents the same content to all students, regardless of their individual
needs and learning styles. Any means of a personalization of content or indi-
vidual feedback regarding problems they encounter are mostly ruled out by the
discrepancy between the number of learners and the number of instructors. This
results in a high demand for self-motivation and determination of MOOC par-
ticipants. Social distance exists between individual students as well as between
students and course instructors. It decreases engagement and poses a threat to

learning success. Within this research, we approach the identified issues within
MOOCs and suggest scalable technical solutions, improving social interaction
and balancing content di�culty.

Our contributions include situational interventions, approaches for personaliz-
ing educational content as well as concepts for fostering collaborative problem-
solving. With these approaches, we reduce counterproductive struggles and cre-
ate a universal improvement for future programming MOOCs. We evaluate our
approaches and methods in detail to improve programming courses for students
as well as instructors and to advance the state of knowledge in online education.

Data gathered from our experiments show that receiving peer feedback on one’s
programming problems improves overall course scores by up to 17%. Merely the
act of phrasing a question about one’s problem improved overall scores by about
14%. The rate of students reaching out for help was significantly improved by
situational just-in-time interventions. Request for Comment interventions in-
creased the share of students asking for help by up to 158%. Data from our
four MOOCs further provide detailed insight into the learning behavior of stu-
dents. We outline additional significant findings with regard to student behavior
and demographic factors. Our approaches, the technical infrastructure, the nu-
merous educational resources developed, and the data collected provide a solid
foundation for future research.

Zusammenfassung

MOOCs (Massive Open Online Courses) ermöglichen es jedem Interessierten
sich in verschiedenen Fachrichtungen online weiterzubilden. Sie fördern die
persönliche individuelle Entwicklung und ermöglichen lebenslanges Lernen auch
dort, wo geeignete Lehrer nicht verfügbar sind. Unsere Gesellschaft befindet sich
derzeit in der sogenannten

”
digitalen Transformation“. Von vielen Arbeitneh-

mern werden in diesem Zusammenhang zunehmend Fähigkeiten wie abstraktes
Denken und logisches Schlussfolgern erwartet. Das Erlernen einer Programmier-
sprache ist eine geeignete Möglichkeit, diese Fähigkeiten zu erlangen. Obwohl
Programmieren als geistige Disziplin angesehen wird, ist es zu einem gewissen
Grad auch ein Handwerk, bei dem sich das individuelle Können insbesondere
durch stetige praktische Anwendung entwickelt. Um Programmierkenntnisse ef-
fektiv in einem MOOC zu vermitteln, sollten daher praktische Aufgaben von
vornherein in den Lehrsto↵ des Kurses integriert werden, um die vorgestellten
Konzepte geeignet zu vertiefen und zu festigen. Neben den positiven Aspek-
ten für die Lernenden weisen praktische Programmieraufgaben jedoch auch ein
erhöhtes Frustpotential auf. Kryptische Fehlermeldungen und teils unbekannte
Syntax überfordern insbesondere diejenigen Teilnehmer, welche zusätzlich mit
konzeptionellen Missverständnissen zu kämpfen haben.

Im Rahmen dieser Arbeit entwickeln und analysieren wir mehrere Interventi-
onsmöglichkeiten um die Lernerfahrung und den Lernerfolg von Teilnehmern in
Programmier-MOOCs zu verbessern. Daten von über 60.000 Teilnehmern aus
vier Programmier-MOOCs bilden die Grundlage für eine Analyse von Kriterien
für geeignete Programmieraufgaben für spezifische Teilnehmergruppen. Auf Ba-
sis von 5 Millionen Codeausführungen von Teilnehmern leiten wir Schwachstel-
len in Aufgaben und typische Herangehensweisen der Teilnehmer ab. Die Haupt-
schwierigkeit beim Lernen in einer virtuellen Umgebung ist die durch physische
Isolation hervorgerufene soziale Entkopplung. Jeder Teilnehmer lernt alleine vor
einem Bildschirm, ein gemeinsamer Stundenplan wie im klassischen Schulunter-
richt fehlt. Weiterhin präsentieren bestehende online Kurse den Teilnehmern in
der Regel lediglich universell einsetzbare Lerninhalte, welche in keiner Weise
auf die jeweiligen Bedürfnisse und Vorerfahrungen der individuellen Teilnehmer
angepasst sind. Personalisierte Lerninhalte bzw. individuelles Feedback sind in
MOOCs aufgrund der großen Anzahl an Teilnehmern und der nur kleinen An-
zahl an Lehrenden oft nur schwer bzw. gar nicht zu realisieren. Daraus resultie-
ren wiederum hohe Anforderungen an das individuelle Durchhaltevermögen und

die Selbstmotivation der MOOC-Teilnehmer. Die soziale Entkopplung manifes-
tiert sich sowohl zwischen den Teilnehmern untereinander als auch zwischen den
Lehrenden und den Teilnehmern. Negative Folgen sind ein häufig verringertes
Engagement und damit eine Gefährdung des Lernerfolgs. In dieser Arbeit schla-
gen wir als Gegenmaßnahme skalierbare technische Lösungen vor, um die soziale
Interaktion zu verbessern und inhaltliche Schwierigkeiten zu überwinden.

Unsere wissenschaftlichen Beiträge umfassen situationsabhängige Interventio-
nen, Ansätze zur Personalisierung von Lerninhalten, sowie Konzepte und An-
reize zur Verbesserung der Kollaboration der Teilnehmer untereinander. Mit
diesen Maßnahmen scha↵en wir es, kontraproduktive Blockaden beim Lernen
zu lösen und stellen damit einen universell einsetzbaren Ansatz zur Verbesse-
rung von zukünftigen Progammier-MOOCs bereit.

Die aus unseren Experimenten gesammelten Daten zeigen, dass bei Program-
mierproblemen gewährtes Feedback von anderen Teilnehmern die Gesamtpunkt-
zahl innerhalb des Teilnehmerfeldes durchschnittlich um bis zu 17% verbessert.
Bereits das Formulieren des jeweiligen individuellen Problems verbesserte die
Gesamtpunktzahl um etwa 14%. Durch situative Interventionen konnte weiter-
hin der Anteil der Teilnehmer, die nach Hilfe fragen, um bis zu 158% gestei-
gert werden. Die gesammelten Daten aus unseren vier MOOCs ermöglichen
darüber hinaus detaillierte Einblicke in das Lernverhalten der Teilnehmer. Wir
zeigen zusätzlich Erkenntnisse in Bezug auf das Verhalten der Teilnehmer und
zu demografischen Faktoren auf. Die in dieser Arbeit beschriebenen Ansätze,
die gescha↵ene technische Infrastruktur, das entworfene Lehrmaterial, sowie der
umfangreiche gesammelte Datenbestand bilden darüber hinaus eine vielverspre-
chende Grundlage für weitere zukünftige Forschung.

Acknowledgement

A PhD thesis is usually seen as an individual endeavor. Nevertheless, it is also a
team e↵ort to some extent. Given the length of this activity over several years,
this endeavor is only possible with continuous support along the way. I am truly
grateful for all of you who have encouraged, challenged, and inspired me.

First, I sincerely thank my supervisor Hasso Plattner for supporting me to
choose a field of research I truly believe in. Many thanks also to Matthias
Uflacker, who guided me along the way and provided valuable feedback at all
stages. My colleagues at the EPIC research group deserve a great thank you for
providing an intellectually challenging and pleasant atmosphere.

Thank you also to the openHPI team for showing a can-do attitude when-
ever facing unexpected challenges. My master students Philipp Giese, Nicholas
Wittstruck, Kai-Adrian Rollmann, Thomas Hille, Sebastian Serth, and Lukas
Boehme deserve my sincere thanks for positively challenging me along the way
and being good company in exploring the di↵erent areas of online education.

Probably the most intense and also most rewarding phase of this research was
developing and conducting the numerous MOOCs forming the basis for my
experiments. I am truly grateful for being able to spend most of these challenging
times together with Ann Katrin Kuessner, Thomas Staubitz, and Christiane
Hagedorn.

Finally, my foundation to confidently reach out for yet unknown endeavors is
the steady support of my friends and family. In particular, I am most grateful
to my parents Michael and Ute, and my sisters Lena and Sandra for supporting
my decisions and fueling my “inveterate optimism”, leaving me to look back
with a smile - already thinking of the next challenges to face.

Potsdam, January 8th, 2020

Ralf Teusner

Contents

1 Introduction . 1
1.1 MOOCs and Their Potential to Educate the Masses 1
1.2 Pathways to Digital Literacy . 3

1.2.1 Improving the Learning Process . 5
1.2.2 Research Context . 6

1.3 Contributions . 7
1.4 Published Results . 8
1.5 Outline . 9

2 Background . 11
2.1 Theoretical Background . 11

2.1.1 Krathwohl’s Taxonomy . 12
2.1.2 Influencing Factors of Online Education 14
2.1.3 Zone of Proximal Development . 18
2.1.4 E↵ects of Tutoring . 19
2.1.5 Personalized Learning . 21

2.2 Di↵erences Between In-Class and Distance Education 23
2.2.1 Drawbacks for Learning Programming at a Distance 24
2.2.2 The Rise of Collaborative Work and Problem Solving . . . 24
2.2.3 Mismatch of Workload (Teaching Team, Students) 28
2.2.4 Factors Impacting Learning Outcomes 29
2.2.5 Applicability to K-12 Education . 31
2.2.6 Design of Programming Exercises . 32
2.2.7 Skill Assessment . 33

2.3 Ethical Considerations and Data Privacy . 34
2.4 Status Quo in Online Programming Education 35

2.4.1 Coding Platforms . 37
2.4.2 Course Platforms: openHPI and openSAP 43

3 Approaches to Foster Collaboration in MOOCs 45
3.1 Overall Concept . 45
3.2 Understanding Struggle . 51

3.2.1 Assessing Prior Knowledge . 51
3.2.2 Tracking Progress . 53
3.2.3 Measuring E↵ects . 53
3.2.4 Identifying Struggling Students . 57

3.3 Intervening on Students . 58
3.3.1 Video Tutoring . 59

Motivation . 59
Surrounding Conditions for Collaborative Work in

MOOCs . 59
Design Decisions for Video Tutoring in Programming

MOOCs . 61
3.3.2 Code Commenting: Request for Comments 63

Motivation and Surrounding Conditions 63
Design Decisions for Request for Comments 64

3.3.3 Just-in-Time Interventions . 66
Motivation for Situational Interventions 66
Design Decisions for Intervening on Struggling Students . 66
Request for Comment Interventions 68
Break Interventions . 69

3.3.4 Tailored Bonus Exercises . 70
Motivation and Surrounding Conditions 70
Design Decisions for Tailored Bonus Exercises 70
Domain Model . 71
Student Knowledge Model . 72
Recommendation Algorithm . 74

3.4 Adapting Course Material . 74

4 Implementation . 77
4.1 CodeOcean . 77

4.1.1 Main Workflow for Student Interaction via Learning
Tools Interoperability (LTI) . 78

4.1.2 System Architecture . 79
4.1.3 Data Model . 80
4.1.4 Code Execution Workflow . 85
4.1.5 Feature Configuration . 86

4.2 CodePilot . 87

5 Evaluation . 89
5.1 Research Hypotheses . 90
5.2 Setup . 90

5.2.1 Courses . 91
5.2.2 Course Setup . 92
5.2.3 Used Data Sources . 95
5.2.4 Audience of Java 2018 . 95

5.3 Methods and Procedures . 97
5.3.1 First Experiment: A/B Testing of Just-in-Time

Interventions and Request for Comments 98
5.3.2 Second Experiment: A/B Testing of Tailored Bonus

Exercises . 99
5.4 Results . 100

5.4.1 Request for Comments and Just-in-Time Interventions . . 100
Request for Comments Increase Course Scores 101
Confounding Factor: Prior Skill Level 105
Request for Comments Accumulate on Hard Exercises . . 106
Commenting is Widely Distributed Among the Audience 106
Hiding Request for Comments Reduces Future Outreach

Attempts . 108
Just-in-Time Interventions Increase RFC Rates 109
Receiving Answers Increases Full Score Ratio 110
Receiving Answers Reduces Required Time 110
RFC Interventions Partially Countervail the E↵ects of

Hiding RFCs . 112
Request for Comments are Particularly Popular With

Beginners . 113
Written Questions Increase Likelihood to Receive Help . . 116
RFC Interventions Increase Share of RFCs Without

Questions . 116
Students Value Request for Comments Feature 117
RFC Interventions Amplify Perceived Helpfulness 117
Commenting Improves Knowledge . 118
Actionable Interventions are Preferred 118
Basic Struggle Detection is Practical 119

5.4.2 Bonus Exercises . 120
5.4.3 Video Tutoring . 121
5.4.4 Automated Anomaly Detection . 122

5.5 Discussion . 123
5.6 Threats to Validity . 125
5.7 Further Findings . 126

5.7.1 Females Create Twice as Much RFCs Than Males 126
5.7.2 Average Skill Levels are 20% Lower for Females 127

6 Future Work . 129

7 Related Work . 133
7.1 Scaling Tutoring . 133

7.1.1 Remote and Video Tutoring . 134
7.1.2 Coding Tutorials . 137

7.2 Interventions and Struggle Detection . 138
7.3 Bonus Exercises and Recommender Systems 140

8 Conclusion . 141

9 Appendix . 143
9.1 Permission for Reuse of Publications . 143
9.2 List of Published Results . 144
9.3 Additional Figures . 145
9.4 Additional Tables . 146

List of Figures . 151

List of Tables . 154

Glossary . 157

References . 165

1

Introduction

Programming skills, as part of digital literacy, have the potential to fuel a new
age of enlightenment. Looking back, the ancient Greeks established the first
formalized educational concepts1 and opened up education for broader, but
limited societal circles: free, wealthy males. This led to cultural breakthroughs in
numerous disciplines, including politics, physics, and philosophy. In the Middle
Ages, access to education expanded considerably, enabled by letterpress printing
and school systems. The slow but constant spread of literacy as well as scientific
interest among the broader public fueled and was an integral part of the Age of
Enlightenment [132], building the foundation of our current prosperity.

Nowadays, society is once more facing a dramatic change: industrialization and
its common jobs are fading away, whereas careers in the digital age often require
advanced problem solving skills and abstract thinking.

To allow for an inclusive society and therefore participation, appropriate train-
ing becomes a fundamental necessity. A major challenge society is facing when
applying traditional education approaches is that parts of the society are ex-
cluded if they are no longer attending school or university.

1.1 MOOCs and Their Potential to Educate the Masses

Massive Open Online Courses (MOOCs) are educational online courses that
allow for open-access of an unlimited number of students. Compared to the
high tuition fees of Ivy League universities, these courses, which are usually free
of charge, open up education to a large range of the population, independent of
one’s financial background or age. Furthermore given the low barriers to entry
with regards to prior knowledge and the technical ability to scale to thousands
of participants, MOOCs are a suitable approach to “educate the masses”.

Nevertheless, MOOCs also face several substantial challenges, such as a percep-
tion of anonymity and the increased gap between instructors and students. Most
prominently, this gap is induced by the virtual environment and the tremendous
disparity in numbers between a small teaching team (usually less than ten per-
sons) and enrollment numbers which can reach tens of thousands of participants.
Additionally, MOOCs face relatively low completion rates compared to class-

1 The so-called “paideia”.

2 1 Introduction

room training, low permeability for specialized topics and unsolved questions
concerning knowledge retention and employer recognition.

The phenomenon of MOOCs, starting in fall 2011 with the two massively pop-
ular MOOCs “Intro to Artificial Intelligence”2 by Sebastian Thrun and Peter
Norvig, and “Machine Learning”3 by Andrew Ng, has caused great expecta-
tions, financially as well as transformatively. The so coined “MOOC revolu-
tion” [25, 45, 73] has been proclaimed by investors, journalists as well as re-
searchers. Six to seven years later, it is safe to say that MOOCs, like many other
former trending technologies, followed Gartner’s hype cycle [95] and, depending
on whom one asks, are currently going through the “slope of enlightenment” [32]
or already reached the “plateau of productivity” [134].

The exaggerated expectations towards MOOCs stylized it as a savior to edu-
cation in general, eventually solving part of humanity’s greatest challenges and
bringing wealth and stability through free education also to developing societies.
Others feared that MOOCs might impair or even kill universities in the long
term, especially smaller, non-Ivy-League ones [179]. The general opinion was
mostly, that universities will survive. Furthermore most publications and essays
agreed, that traditional education will be disrupted and forced to reinvent it-
self [70, 104, 125], or as John Hennessy put it, “There’s a tsunami coming” [7].
Neither the glorious nor the dystopian visions have come true so far. In order
to assess the general impact MOOCs have contributed to education until now,
we first outline their most common usage scenarios. Subsequently, we briefly
showcase the advantages of MOOCs, before we outline their drawbacks.

MOOCs complement and extend traditional classroom education. They allow
for easier adoption of so-called “blended learning” and “flipped classroom” set-
tings [16, 82]. Furthermore, they bring in an additional variety of viewpoints,
presentation styles, as well as didactical approaches.

Employed funding models depend on the organizations o↵ering the courses.
Non-profit MOOCs, often created by universities or other public institutions,
are usually based on pre-existent learning material and further funded via addi-
tional research budgets. Commercial for-profit MOOC providers have found vi-
able business models for their o↵erings in the meantime. They mostly enhanced
their paid o↵erings from just advertising supplemental services (e.g. prioritized
support or additional training) to o↵ering a coherent series of multiple courses
within a given knowledge area. These courses complement each other and their
successful completion, together with a payment for the assessment, then leads to
a certification called a nanodegree. With these nanodegrees, commercial MOOC
providers attempt to improve the recognition of the acquired knowledge among
companies within their hiring processes.

Considering the e↵ects towards education in general, the impact is regarded as
positive overall, while pre-existing drawbacks unfortunately remain. On the pos-
itive side, MOOCs o↵er access to high-quality education regardless of individual
wealth and location (as long as a stable internet connection and a capable play-

2 see https://eu.udacity.com/course/intro-to-artificial-intelligence--cs271.
This link and all subsequent links, together with their last access dates, can also
be found in the appendix.

3 see https://www.coursera.org/learn/machine-learning

https://eu.udacity.com/course/intro-to-artificial-intelligence--cs271
https://www.coursera.org/learn/machine-learning

1.2 Pathways to Digital Literacy 3

back device are available). They free education from a mostly limited timeframe
in one’s life and from the location of the campus.

However, MOOCs also have to face the very same problems traditional edu-
cation is facing: low social permeability. On top of that, MOOCs also su↵er
from additional threats: a high dropout rate (or otherwise put, a low comple-
tion rate), mostly unknown retention of knowledge [161], and a low or unknown
recognition of students’ achievements.

Completion rates are generally low, and participants mostly do not come back
for additional classes after they finish (or quit) their first MOOC [127]. Addi-
tionally, the audience reached by MOOCs is mostly pre-educated and wealthy.
People living in countries that show a lower or very low Human Development
Index (HDI), could not be reached at scale [127]. This sounds plausible, as it
might either be that the prerequisites (internet and capable device) cannot be
met, or priorities are simply not focused on education, as long as one’s basic
needs are not met.

It is important to note, that MOOCs have outgrown traditional e-learning, as
they are (and have to be) more than just “learning material made available
online”. Traditional e-learning, focusing on content distribution, gathering of
submissions an organization of small to medium-sized classes, should not be
mistaken for online learning in massive context. Otherwise, this common mis-
conception omits or even negates the very nature that allows MOOCs to become
a place of individual growth, the online interaction between the students and
the resulting academic discourse.

1.2 Pathways to Digital Literacy

The term digital literacy is not yet defined clearly. The common understanding
is that the term means possessing knowledge to use digital media, in particular
the internet. What skillset, however, to be regarded as necessary to properly
“use” the internet, is open for debate. Some argue that knowledge of advanced
search techniques is part of this skillset, others opt for the ability to evaluate
online content. To further add to that, it could also include the ability to alter the
medium, allowing one to create new content and to extend existing content. The
most extensive definition and reasoning available as of now has been compiled by
David Buckingham, building on his definitions on the term “media literacy” [18].
He argues that digital literacy builds upon the four areas of media literacy being
applied to a digital medium, for example, the internet or a computer game. For
the internet, the first area, representation, covers the ability to interpret the
content and address its source as well as reliability. The second area, language,
comprises understanding words and grammar of the communication medium - in
terms of the internet, this includes concepts like hyperlinks and the structure of
web sites. The third area, production, means recognizing concepts of advertising
and its e↵ects on the credibility of the source. Finally, the fourth area, audience,
focuses on the approach the medium takes towards the consumer.

Given the necessity to understand the mechanics driving our modern world
based on data and algorithms, fundamental building blocks like understanding
the concepts of variables and basic control structures are therefore a vital part
of achieving digital literacy. In order to understand and master these concepts

4 1 Introduction

thoroughly, it is best to practically experiment with them to see their e↵ects in
di↵erent situations. And doing this means learning programming.

According to the literature, the most e↵ective way of acquiring programming
knowledge is having a skilled and experienced tutor sitting right next to the
student [37, 49, 130]. Requiring novices to describe their individual solutions
and asking them to explain details about program flow further helps to ensure
a thorough understanding of the concepts being taught.

Our research provides novel insights into the area of online programming edu-
cation and o↵ers approaches as well as evidence on how to tackle the aforemen-
tioned issues.

The main research topic of this thesis is to narrow the technical and social gap
regarding communication and learning support between students and instructors
within programming MOOCs. In order to approach this goal, we investigated
three broader research dimensions. We will later relate our more fine-grained
contributions to these dimensions, depending on their most prominent charac-
teristics.

1. E↵ects of Collaboration: Making MOOCs more personal by using techni-
cal measures, including video telephony and asynchronous question answer-
ing, is likely to increase individual positive involvement, sense of belonging
and knowledge retention. Thus, we examine the requirements of success-
ful collaboration and measure the e↵ects on performance metrics such as
completion rates and course scores.

2. Personalization of Content: Individualizing course content towards spe-
cific students’ needs potentially improves knowledge adoption and students’
satisfaction. Likewise, we measure the e↵ects on students motivation and
exercise scores.

3. Scalability of Approaches: Scaling individual feedback and learning sup-
port within MOOCs poses several challenges. Overcoming those is possible
either by technical automation or by crowdsourcing. We describe the techni-
cal implementations of our approaches and further outline steps that helped
the audience adopt and embrace our proposed crowdsourcing measures.

1.2 Pathways to Digital Literacy 5

1.2.1 Improving the Learning Process

After the initial development, our e↵orts to strengthen student collaboration and
content personalization were applied and continuously improved within several
large scale programming MOOCs. The iterative process shown in Figure 1.1
allowed us to gain a thorough scientific understanding of the induced e↵ects on
the one hand and on the other hand ensured a lasting, practical impact for the
students, specifically fitting the given setup.

The central starting point for improving learning outcomes is a good under-
standing of the students’ situation within the course. All changes being applied
to the “normal” course flow are intended to improve the learning experience
and outcomes of students. However, interventions also bear the risk of impeding
students’ experience, thus requiring us to act only on an informed basis gained
from suitable metrics which, for example, indicate that a student is struggling
with an exercise. Depending on the cause of the undesired struggle, it may be
either appropriate to a↵ect individual students (intervene), or adjust the mate-
rial that is o↵ered in general (adapt). Thus only based on a solid understanding
of what is happening within a MOOC in general and what might hinder an
individual student in particular, it is possible to purposefully intervene or adapt
the di�culty of the content.

Understand
Issues in Learning Progress

Adapt
Course Content

Intervene
on Individual Students

Improved Performance
and Learning Experience

Improved Course Content
Analyze

ActionAction

Analyze

Figure 1.1: Overall concept of improving the learning process.

In addition to providing an understanding of students’ experiences, the metrics
we have gathered also allow us to assess the e↵ects of applied measures after-
wards. Interventions that have been conducted or changes to the course material
thus subsequently add to the instructors’ understanding of issues, as they can
track and analyze e↵ects of the changes. This general, iterative model reflects
the overall structure we followed to enact our implemented approaches within
the research context of programming education in MOOCs.

6 1 Introduction

1.2.2 Research Context

My contributions include general learnings backed by several experiments con-
ducted in a series of MOOCs (13 MOOCs in total).

Concerning methodology, all challenges have been tackled from di↵erent view-
points and with di↵erent approaches. The analyzed MOOCs were run in the
timeframe from autumn 2012 to spring 2018 and provide qualitative insights as
well as quantitative results. While the first MOOCs on “In-Memory Data Man-
agement” did not address the primary goal of programming education, they
provided initial enrollment, activity and completion rates and further enabled
us to gather initial technical as well as didactical experience with this new
medium. The first programming-centric MOOCs, teaching Python to school
children, provided insights into students’ coding behavior as well as the accep-
tance of automated grading on the basis of unit tests. Although these MOOCs
were aimed at school kids, interest was sparked among all age groups. Subse-
quent programming courses, teaching Java over a timespan of between four to
six weeks, therefore were designed for beginners of all ages.

Research-wise, we enhanced the survey and quiz-based data collection with met-
rics gathered on the code execution platform CodeOcean (further described in
Section 4.1. Within several shorter, two to four-week-long workshop MOOCs,
we measured the impact of di↵erent content di�culty (i.e. completion rates
for exercises on beginners or advanced level), didactical approaches (i.e. guided
learning vs. project- and problem-centered learning) and content amount. In
addition, several experiments were run to further understand students’ motiva-
tions and validate acceptance of our approaches. Ad-hoc clustering of student
groups allowed us to further analyze students’ learning behavior and the impact
of individualized motivational mailings. Within CodeOcean, we tested user ac-
ceptance of automatic answer suggestions for programming issues and video
conferencing.

The main experiments for the central element of this thesis were designed build-
ing on the gathered insights and finally tested within two independent Java
MOOCs run in 2017 and 2018. In the first course run in 2017, the so-called “Re-
quest for Comments” feature and the “just-in-time interventions” were initially
tested for acceptance and impact. To revalidate the initial findings and answer
follow up questions, the experiments were extended and rerun in another course
in 2018. To widen the scope of students who were covered in this study and
to ensure that our experiments were conducted with a previously una↵ected
audience, the course was conducted in English.

Our overall aim is to improve the e↵ectiveness and motivation of students
through collaboration, by adding to distance education what it lacks most: per-
sonal interaction.

1.3 Contributions 7

1.3 Contributions

This work contributes the following advances to the current state of research:

• Statistical evaluation of numerous hypotheses on the e↵ects of em-
ployed collaborative measures (E↵ects of Collaboration)
Scientific evaluation of the implemented measures within several program-
ming MOOCs resulted in a comprehensive collection of students’ perfor-
mance data. We posed several hypotheses prior to each course iteration and
employed randomized A/B-testing with control groups in order to validate
our assumptions. The published findings showing statistical significance ad-
vance the status quo in MOOC research. Additionally, several null findings
are specifically outlined to further enlarge the general knowledge base and
provide data for fellow researchers to compare against.

• A scalable mechanism to provide individualized feedback and help
with programming problems (E↵ects of Collaboration)
Enabling students to reach out for help and expressing their question towards
their fellow students is a crowdsourcing approach to provide individual feed-
back to arbitrary programming problems. Our mechanism called “Request
for Comments” enriches students’ questions with the associated source code,
the program output, and errors that occurred. It furthermore forwards the
question to fellow students who are presumably capable of providing com-
petent help.

• First work to implement video-tutoring in programming education
on a massive scale (E↵ects of Collaboration)
We developed a system that allows students to connect to tutors via video
telephony directly from within the coding environment. It addresses the
specific needs of programming MOOCs, e.g., by additionally live-sharing the
student’s progress and output with the tutor. Furthermore, our solution runs
on our servers in order to comply with GDPR requirements and does not
require an additional account in contrast to most third-party tools.

• A mechanism to provide students with content tailored to their
needs (Personalization of Content)
Similar to a tutor suggesting additional training exercises to mend specific
weaknesses, we contribute an approach to automatically determine student-
specific weaknesses concerning conveyed concepts. Based on these weak-
nesses, we suggest additional learning content, in our case non-graded bonus
exercises.

8 1 Introduction

• Novel means to intervene on struggling students during their work
(Scalability of Approaches)
Intervening on struggling students while they are engaged in their stud-
ies promises to be the best situation to avoid additional context switches
and achieve the best e↵ect to counter frustration. With situational popups,
encouraging students to either request help or take a break, we increase
students’ adoption of our interventions and thus improve learning results.

• Metrics to classify and group programming students (Scalability
of Approaches)
Finding appropriate criteria to classify students into subgroups is necessary
to accurately apply and improve potential interventions. The determination
of the prior knowledge of students, for example, bears intricacy if required for
large audiences. Gathering of the necessary information has to be conducted
without obtrusion to ensure high audience coverage and prevent students’
resentment.

• First work to introduce (semi-)automated detection of weak learn-
ing material (in MOOCs) (Scalability of Approaches)
Anomalies in students’ performance metrics (e.g. a much higher mean work-
ing time in an exercise) indicate potentially flawed content. We propose a sys-
tem to automatically detect material provoking such outliers. Our approach
provides course instructors with community feedback on these exercises and
allows for timely correction to limit the negative impact on students’ moti-
vation.

• Improvement of an open-source programming platform, scalable
for MOOC requirements and capable of supporting large scale sci-
entific experiments (Scalability of Approaches)
CodeOcean, initially conceptualized and implemented within a master’s the-
sis at the HPI, has been advanced from prototype status to a field-tested
and dependable tool applicable to MOOC audiences larger than 20,000 en-
rolled students. Furthermore, numerous technical improvements have been
integrated into the system, e.g., to support synchronous user input/output,
provide detailed statistics for instructors, and allow for convenient manage-
ment of large numbers of exercises.

1.4 Published Results

Substantial parts of the following conference papers, originally published with
ACM or IEEE, have been reused in this thesis. These parts contribute to the
respective motivation, concept, implementation, evaluation, related work, and
conclusion chapters of this thesis. Reused text parts are listed in the preambles
of the respective chapters. The corresponding publications containing reused
sections are first-authored by the author of this thesis. All substantial compo-
nents of the work, including conceptualization and experiment design, have been
directly carried out or led by the author of this thesis. Reprints were made with
permission from the publishers (see Appendix 9.1).

1.5 Outline 9

The paper E↵ects of Automated Interventions in Programming Assignments:
Evidence from a Field Experiment [160], published at ACM Learning@Scale in
2018, first introduced and described our concepts Request for Comments, just-
in-time interventions, and tailored bonus exercises. Further, the results of the
experiments run in the German Java MOOC “Java für Einsteiger (2017)” are
presented in this paper. Our paper What Stays in Mind? - Retention Rates in
Programming MOOCs [161], published at IEEE Frontiers in Education in 2018,
contributes learnings gathered concerning the long-term e↵ects of MOOCs. On
the Impact of Programming Exercise Descriptions - E↵ects of Programming Ex-
ercise Descriptions to Scores and Working Times On the Impact of Program-
ming Exercise Descriptions [158], published at IEEE LWMOOCs 2018, provides
insights with regard to badly phrased task descriptions. The concept as well as
corresponding results on the topic of video conferencing were first published as
Video Conferencing as a Peephole to MOOC Participants [163] on IEEE TALE
in 2017. Partial results of Aspects on Finding the Optimal Practical Program-
ming Exercise for MOOCs [159] contribute to the concepts we use to measure
students’ learning success in order to evaluate our interventions. This work was
published at IEEE FIE in 2017. The concepts behind our employed program-
ming platform were first described in CodeOcean - A Versatile Platform for
Practical Programming Exercises in Online Environments [146], published at
EDUCON in 2016.

1.5 Outline

In the remainder of this document, we will follow the structure outlined in this
paragraph. Chapter 2 sets the stage for the following approaches, by introducing
the general background, status quo, and challenges of programming education
within MOOCs. Chapter 3 classifies and showcases the di↵erent approaches
we have implemented and evaluated in order to tackle the aforementioned chal-
lenges. Specific details about the technical realizations of the tools we developed
are described in Chapter 4. It showcases the foundation for our experiments,
the execution platform “CodeOcean”, as well as the specific tools used in con-
junction to conduct experiments and support the programming courses. Within
Chapter 5, we detail the setup and outcomes of our experiments, including the
methodologies we used, the observed results, and a reasoned discussion. We
further add several findings of additional side experiments that confirm and ex-
pand current knowledge, but are not described in full detail in this thesis for the
sake of conciseness. Chapter 6 provides an outlook of promising next steps. In
Chapter 7 we present related work, before we conclude the conducted research
with a summary of the achieved outcomes in Chapter 8.

2

Background

Having outlined the main issue of a social gap in programming MOOCs, this
chapter will give an overview of the background and foundational conditions
of our work. We first share the most common, established theories employed
in the domain of education, before we elaborate on the di↵erences between
in-class and distance education. We outline factors that impact the learning
outcomes and describe suitable metrics to trace potential e↵ects of our experi-
ments. Subsequently, in the context of measured metrics and gathered data, a
short overview over ethical questions with regard to our experiments is given.
Finally, this chapter highlights the specifics of programming education in online
environments and presents a classification of relevant programming platforms,
including the one that was used as the foundation for our experiments. Parts of
Subchapters 2.1.2 and 2.2.1 have been published in [160], respectively additional
parts of Subchapters 2.2.6 and 2.2.7 have been published in [159].

2.1 Theoretical Background

Revisiting the three research dimensions to be tackled in this research, it is
evident that many of our questions to be addressed have already been worked
on in the past and thus many proven theories already exist. This opens up an
area to put the novel questions we address into context and relate our findings
to prior results.

Considering our first research dimension, e↵ects of collaboration on learning, dif-
ferent factors come into play: the foundational content at hand and its desired
learning e↵ect, the experienced di�culty level, as well as the design of the collab-
oration session itself. In order to classify the content, conveyed knowledge, and
di↵erent process directions for learning e↵ects, we will present Krathwohl’s tax-
onomy. The concept of self-regulated learning divides the learning process into
phases to additionally distinguish and outline students’ meta-activities which
are considered to improve the learning results. Vygotsky’s idea of a zone of
proximal development further contributes theory to justify and estimate opti-
mal di�culty levels for learning.

An adjustment of the level of di�culty encountered by a student is possible
through tutoring, a collaboration activity for which the resulting e↵ects have
been extensively investigated in the past.

12 2 Background

The second dimension, personalization of content, is also a↵ected and can be
explained with Krathwohl’s taxonomy, as well as the theory of self-regulated
learning. An overview of prior approaches for personalized learning and a clas-
sification of recommender systems round up the background for our second
dimension of research.

The third dimension, scalability of approaches, wraps around the other two di-
mensions. It is not an autonomous research direction itself, but adds unique
requirements to potential approaches. The application of collaboration and per-
sonalization in the MOOC context introduces two additional circumstances,
largely reducing the existing applicable approaches. The delivery of content
online automatically implies a distance education setting, while the aspect of
massiveness prohibits approaches requiring individual instructor interference.
To account for this from the theoretical side, we outline the di↵erences between
in-class and distance education, with an additional focus on the mismatch be-
tween the numbers of students and instructors.

Summarizing, the theories and prior findings presented in the following sub-
sections individually a↵ect our three research dimensions in di↵erent aspects.
Altogether, the theories will build the foundation for a well-grounded discussion
of our experiments and the resulting findings in Chapter 5.

2.1.1 Krathwohl’s Taxonomy

In order to foster lasting learning e↵ects, we o↵er students the opportunity to
try out the presented content and practically use the conveyed concepts. On the
basis of the six hierarchical levels of reasoning skills in Bloom’s taxonomy [11]
(i.e. knowledge, comprehension, application, analysis, synthesis, and evaluation),
educators developed learning material in order to advance their students. Al-
though not presented this way by Bloom, the taxonomy is often depicted in
a pyramidal shape, as the levels build on each other, and reflect progress in
understanding and skills. On the basis of this model, learning material can be
categorized according to the a↵ected and trained levels of skills.

While helpful in general, the model also su↵ers from several shortcomings [143].
Criticized is the absence of representation of the type of skill or material that is
being taught, leaving the model unable to distinguish between teaching of, e.g.,
facts and concepts. Another mentioned issue is the hierarchical nature of the
model, resulting in disdain for the lower levels because of treating the knowledge
level as inferior instead of being fundamental [94].

Krathwohl [84] revised the taxonomy and improved the model with respect to
the mentioned weak points. Most visibly, Krathwohl added a second dimen-
sion to the original taxonomy. The existing “cognitive process” dimension is
now accompanied by a “knowledge” dimension, distinguishing between the main
categories of factual, conceptual, procedural, and metacognitive knowledge. Fur-
thermore, Krathwohl also changed the substantive forms of the cognitive process
dimension to verb forms, replacing knowledge (now being a distinct dimension)
with “remember” and placing “create” after “evaluate”. An overview of the
scheme used to structure and classify educational content is depicted in Fig-
ure 2.1.

2.1 Theoretical Background 13

Remember Understand Apply EvaluateAnalyze Create

Factual

Conceptual

Procedural

Metacognitive

Recall historic
dates in exam

Relation between
speed and distance

Find stylistic
devices in a poem

Interpret a poem
Perform

differential calculus
on equation

Finish a storyInterpret a poem

Finish a story

Figure 2.1: Examples of learning items classified into Krathwohl’s taxon-
omy.

When classifying items, a decision has to be made for each of the two dimen-
sions. The options concerning the cognitive process are shown in the horizontal
direction. Remember subsumes activities aiming to have students recall content
and knowledge that was prior presented. Such activities are often applied in tests
asking for facts, e.g., having students recall historic dates, such as the prototyp-
ical history question: “When was the Battle of Issus?”4 (factual). Understand
covers activities requiring to determine the meaning of facts or instructions,
qualifying students to summarize, compare, and interpret the presented con-
tent later on (e.g. relationship between distance and movement speed in physics
(conceptual)). Applying means to use a fact or procedure in an appropriate
situation, e.g., perform di↵erential calculus in math for a given equation (pro-
cedural). The process of breaking down presented information to its sub-parts
is analyzing, e.g., finding and naming stylistic devices in a poem (conceptual).
Making sense of such information and judge potential e↵ects is regarded as
“evaluate”, as for example when interpreting the analyzed poem (conceptual
and procedural). Create, the last cognitive process option, represents activities
to create novel content on the basis of the conveyed knowledge, e.g., finishing
an incomplete story (conceptual and procedural) [84].

The knowledge dimension further details the information conveyed. Factual
knowledge is all kind of information to be learned by heart, such as vocabu-
lary, terminology, formulas, parts of a system, or dates. Conceptual knowledge
sets these facts into relation and therefore exists in the form of models, catego-
rizations, or principles. Anything that empowers a student to perform certain
workflows, such as algorithms, skills, and techniques, is subsumed as procedural
knowledge. The last category, metacognitive, includes strategic knowledge as
well as awareness of one’s own cognition and skills [84].

Given those categories, almost all activities, content, or tasks of common ed-
ucation can be classified and placed in the matrix. In case of ambiguities, the
respective item is either placed in multiple cells or just in the predominant cell.
Placing all activities of a course into this taxonomy allows to gain a thorough
overview of the focus areas as well as shortcomings of the presented content.

4 The Battle of Issus took place 333 BC between the Hellenic League and the
Achaemenid Empire.

14 2 Background

While some shortcomings and critic remain, e.g., a lack of constructivist in-
tegration or the distinction between categories [143], the model receives wide
acceptance and usage. For the purpose of guiding the creation of an xMOOC and
estimating its didactical coverage, the revised taxonomy is well fitted. Not being
over-complicated and having relevance in the field, therefore qualifies the model
to explain aspects of our content, mainly the course videos, self-test quizzes,
and the programming exercises. The lack of constructivist integration does not
a↵ect us, as we do not require a holistic model explaining all aspects at once.
Also the separation between categories is not a major issue, if one is aware that
the borders are blurry, items will be placed based on their primary learning
goal, and the levels are non-exclusive. We will employ the taxonomy to explain
the rationale behind our educational e↵orts when describing our course setup
in Section 5.2.

2.1.2 Influencing Factors of Online Education

The general aim of this research is to improve online programming education. In
order to achieve an optimal impact, it is helpful to outline which factors influence
the quality and success of online education, which of those can be influenced
by teaching teams and researchers, and which factors reside out of scope. Two
of the most vital influences towards learning e↵ort are the student’s motiva-
tion and self-e�cacy [10]. Improving those individual factors is not possible on
a universal level, rather di�cult on individual course or item level, and hard
to measure in general, as it requires students to succeed in tasks they expect
to fail [99]. For these reasons, we abstained from trying to target these factors
directly, despite giving our best to keep these values high by o↵ering appealing,
high-quality content. As reasoned in Chapter 1, one of the central elements in
programming education are the o↵ered practical exercises. Although watching
course videos requires students’ attention, this is a passive activity apart of the
mere consumption. In contrast, practical exercises involve active reasoning, ap-
plication of knowledge, abstraction, and transfer of learning. Research shows
that engaging in active activities reduces dropouts and has a higher impact on
learning and learning results than passive activities such as reading [83]. Ac-
cordingly, solving the exercises is a critical activity in learning, both o↵ering
situations for success as well as mistakes, struggle, and frustration. From quali-
tative student feedback in course forums and quantitive data analysis [159], we
know that extended struggle often leads to frustration and ultimately to drop-
ping out of the course. High dropout numbers have often been argued to be one
of the main issues of MOOCs [81, 114]. In general, all MOOCs show the same
phenomenon that roughly between 70 and 90 percent of all enrolled students do
not finish the courses [114]. Students take courses because of di↵erent reasons,
such as general interest, job relevance, or the wish of earning a certificate [79].
It is di�cult to find the exact reason why a student dropped out from a course,
e.g., time constraints or lost interest, since the response rate of such surveys is
generally low (between 12.5% [77] and 1% [174]). A general lack of time is the
most common factor, as Kizilcec and Halawa stated in [77], with a share of 84%
of participants mentioning that reason. Other reasons could be that the students
had problems in the practical exercises, or felt bored [114]. In our research we
particularly aim at students who are interested in finishing the course but felt
overwhelmed with the exercises.

2.1 Theoretical Background 15

Dropout Prediction and Prevention

Dropout prediction has been a vivid field in MOOC research: data is being
published as a foundation for further research5, and the actual prediction is
approached with di↵erent methods including sentiment analysis on course fo-
rums [172] and using statistical reasoning or machine learning [81] on students’
clickstream data. Accuracy of the employed models relies on the used training
paradigm. Training a model on the same course (post-hoc) achieves a high ac-
curacy of about 90%, but is unusable for intervention purposes. Whitehill et. al
showed that similar accuracies of around 86% could be achieved with training
on proxy labels or data from many other courses [173]. Reasons for dropout are
manifold: students might never have had the intention to complete a course, as
they were solely interested in specific parts and happily leave the course after
their information need was satisfied, many students drop out because of a lack
of time, or overstrain with the course content.

Usually researchers take the last event, such as logging in, of a student as the
date of a dropout [157, 181]. In order to detect dropouts, supervised learning
techniques like support vector machines, hidden markov models or logistic re-
gressions have been used [62, 69, 81, 156]. The exact features used to classify
dropouts vary between the approaches but mostly consist of a mix of click-
stream data, grades, social network analysis [181] and biographical information.
While the classifiers are considerably accurate (85% to 91% within the same
course [174]) the cited work often lacks suggestions on how to prevent students
from dropping-out.

We want to address this issue by intervening on students who struggle with our
exercises. As suggested by Taylor et al. [157], we focus on features which relate
students to other students as such features are more predictive than average
grades or login durations.

Zheng et al. report that also a missing sense of community decreases retention
and thus increases dropout [185]. They furthermore state that “existing MOOC
platforms do not provide features to promote community awareness”. Although
some students are actively trying to build up a sense of belonging, either by
browsing student profiles or looking into the forum, the outcome was mostly
negative. Being presented mostly anonymous nicknames and no interesting in-
formation, they afterwards refused to say “hi” in the forum or to further provide
personal information themselves. The missing appraisal of fellow classmates and
instructors diminishes the feeling of success and recognition. As a logical conse-
quence, missing connections and trust in the community also limit help-seeking
strategies.

In a study examining students’ reasons for dropout based on data from over 20
MOOCs, Kizilcec and Halawa found four main clusters (in declining order of
significance) [77]:

1. time issues

2. course di�culty

3. format and content

4. goals and expectations

5 see http://www.katyjordan.com/MOOCproject.html.

http://www.katyjordan.com/MOOCproject.html

16 2 Background

Of these four clusters, only some are a↵ectable by instructors. Students’ time
issues (1) reside without the reach influence of instructors. Mostly the same
holds for the area goals and expectations (4). Rohlo↵ et al. show that surveying
students’ goals might improve learning outcomes, however, they could not yet
reach statistical significance [131]. Clearly communicating prerequisites clarifies
expectations towards the course, and as this should be given for every MOOC,
it cannot be further influenced. The areas course di�culty (2) and format and
content (3) are under control by instructors and thus bear potential for exper-
imentation and improvement. It is therefore our primary intention to reduce
what we call “content induced dropout” by supporting students during their
negative, critical phases.

To uncover students’ general progress as well as encountered issues, learning
analytics are employed in MOOCs. Educators lost the aforementioned “glimpse
over the shoulder” of individual students, but in return received potentially huge
amounts of clickstream data. The field of learning analytics is relatively young,
as it relies on the availability of “big data” in the educational sector. Despite
the vibrancy of the field, a corpus of generally accepted knowledge is already
present (e.g. the Handbook of Learning Analytics [90]). Further, this area builds
upon established disciplines including data mining, data visualization, and psy-
chology [44]. Learning analytics, despite o↵ering magnitudes of data, have to
be grounded in theory to allow for directed research [177]. Drawing from an
established area, a potential model for the research of this thesis can be derived
from information seeking. Same as information seeking, learning is an e↵ort to
close individual knowledge gaps. Therefore learning models can be related to
the existing models of information seeking. The many models for information
seeking behavior mostly vary in their scope and complement each other [176].
Given the di↵erent focus, not just on retrieval of information but on the under-
standing of it and subsequent construction of knowledge, additional aspects are
introduced for the learning context and existing aspects shift their importance.

A comparison of recent studies within MOOCs together with their respective
underlying learning theories [178] finds that most researchers base their exper-
iments on the theory of self-regulated learning (SRL). The ability to structure
and reflect one’s learning a↵ects students’ success in traditional online learn-
ing [14] as well as MOOCs [92]. The theory achieved relevance and is therefore
in vibrant scientific discussion, resulting in a variety of models that structure
the idea of self-regulated learning, most often by dividing it into phases [115].
According to the model of Pintrich [118], self-regulated learning consists of four
phases named (1) forethought, planning, and activation, (2) monitoring, (3)
control, and (4) reaction and reflection. Other models, including the one from
Zimmerman [186], divide the activities into three phases, in this case named
(1) forethought (task analysis, self-motivation), (2) performance (self-control,
self-observation), and (3) self-reflection (self-judgment, self-reaction).

While naming and number of phases di↵er between these two most prominent
models, the concepts expressed by the phases overlap. For example, it becomes
apparent that the phases 2 and 3 of Pintrich’s model are reflected in a merged
fashion in phase 2 of Zimmerman’s model. In the following, we will stick with the
model from Zimmerman. In general, all models contain phases that comprise
activities prior to an activity, working on the activity, and after working on

2.1 Theoretical Background 17

the activity. The models are cyclic, reflecting that either each activity can be
imagined as many sub-activities, or that each task may be interrupted and
recommenced after some additional reflection.

For our research, especially the last two phases are of increased interest, with
a clear focus on the performance phase. Figure 2.2 shows Zimmerman’s model
reduced to the aspects that will be covered within our research.

Perfomance Phase

Self-Control
Time management

Help-seeking

Self-Observation
Metacognitive monitoring

Forethought Phase

Task Analysis
Strategic planning

Self-Motivation Beliefs
Self-efficacy

Self-Reflection Phase

Self-Judgement
 Self-evaluation

Self-Reaction
Adaptive/defensive

Figure 2.2: Cyclical phase model of self-regulation from Zimmerman and
Moylan [187] reduced to aspects relevant for our research.

Students solving a programming exercise usually do not spend much time on
a forethought phase, they just open the exercise and begin working on it, in
this case by reading the exercise description. In case the student does prior
planning on program design (e.g. structuring of loops), this counts as strategic
planning in terms of task analysis. Also, prior experiences a↵ect the self-e�cacy,
therefore being depicted in this phase. Within the performance phase, we plan
to achieve the largest improvements for the students with our approaches. Es-
pecially the time management and help-seeking (a social form of information
seeking) activities are within our interest. Metacognitive monitoring might be
a↵ected since success or the lack thereof will especially be remembered after a
student seriously struggled. Coming to the Self-Reflection phase, students’ self-
evaluation as well as their adaptive or defensive behavior to the (temporarily)
achieved outcomes are of interest for our research. Students’ self-evaluation in
our case will heavily be influenced by the achieved unit test results. From prior
courses we know that most students persistently aim to achieve full score and
will be demotivated to a large extent if they are missing the slightest fraction
of the maximum score. However, also the step from zero points to at least some
points usually comes with a boost in motivation and a positive self-evaluation of
the student’s progress. Especially when struggling, student’s behavior should be
adaptive to our belief, therefore we will implement measures to push students
towards this behavior.

18 2 Background

The cyclic flow of the model represents that subsequent phases will be a↵ected
by their predecessors. For example, strategic planning in the forethought phase
will likely a↵ect time management. Likewise, the outcomes of the performance
phase will largely impact students’ self-evaluation, and their reactions will sub-
sequently a↵ect their self-e�cacy for future exercises.

The performance phase is of particular interest for us, as struggle can only
happen if a student is actively working on an exercise. Students often do not
know when to step back if they are focusing on an error [184]. To help, we aim
to induce some sort of self-reflection with the goal to interrupt the current line
of thoughts which lead to the situation where the student got stuck. Potentially,
approaching the issue from another direction or seeking for additional input, for
example by re-watching the lecture video or searching for additional examples
on the web, might enable students to overcome the problems themselves.

The less established structure in online education increases the potential for
struggle and requires more self-regulation from students [89, 155]. Compared to
in-class education, there is further an absence of a given timely structure, as
normally given by lecture hours, and educational guidance on individual level,
as normally o↵ered by the teacher or teaching assistants [78]. Consequently, de-
mands towards students’ qualities concerning self-motivation and determination
are even higher.

2.1.3 Zone of Proximal Development

A central issue in distance education, that inherently also applies to MOOCs,
is that students have to face problems mostly on their own. Whenever a stu-
dent faces an issue in the learning progress, probably caused by a lack of prior
knowledge, incomplete information presented in the learning material, or an
occurring misconception, chances are high that the student might get stuck.
Without an instructor to guide the learning e↵orts, the first necessary step is
that students realize that they face a problem. For a lack of prior knowledge
or the presented information being incomplete, the problem usually becomes
apparent to the student naturally, whereas a misconception often remains un-
detected and might cause more severe problems in later learning stages, when
advanced concepts base on misunderstood fundamentals.

Lev Vygotsky developed a model called “zone of proximal development” to
reflect stages of development and learning processes for school children in the
early 1920s [169]. His model has since been adapted and enhanced, and nowadays
provides a basic distinction between task di�culties. The main distinction is
between three continuous di�culty levels that present themselves for individual
students: tasks that a student can do alone, tasks that a student can do with
help and tasks that a student cannot do, even with help.

As an example, the task to write a “hello world” program, is a task a student
can do alone after watching an introductory video that covered the basics of
the respective programming language. A slightly more di�cult task, to incorpo-
rate a call parameter for that program and print out a passed-in name to that
“hello” program, is likely too demanding for a novice. However, on the basis of
that initial hello world program, a novice is often able to enhance the program
with the help of a more skilled tutor to solve the more di�cult task. This task

2.1 Theoretical Background 19

Figure 2.3: Zone of Proximal Development, according to Vygotsky [169].

would therefore fall in the so-called “zone of proximal development”, which is
the area where the largest potential knowledge growth is expected in classical
education. Whereas Vygotsky required more capable and experienced teachers
for the helping teacher or peer in the zone of proximal development, Ohta claims
that adult peers do not necessarily need to be more capable in order to provide
assistance [113]. Vygotsky’s model was only slightly adapted by Otha on the
basis of foreign language learning and is generally assumed to be applicable for
in-class settings. However, the basic model currently does not incorporate the
e↵ects of literary sources that improve students’ comprehension with additional
material, such as textbooks, worksheets, or in our case, videos and additional
training exercises.

With two of our proposed interventions, we specifically aim to help struggling
students into the zone of proximal development. The results of this thesis will
thus further contribute to the yet open question concerning the applicability of
Vygotsky’s model in the field of online education.

2.1.4 E↵ects of Tutoring

Tutoring describes the process of supporting an individual learner or a group of
learners by another person. Collins English Dictionary describes it as “remedial
or additional teaching, designed to help people who need extra help with their
studies”6. So in a broad sense, the term tutoring covers all activities having
a student receive additional help in understanding from either another human
being or a computer agent.

In literature, di↵erent types of tutoring are presented: academic coaching, in-
home tutoring, distance tutoring, online tutoring, and peer tutoring. General
academic coaching aims to improve general skills to improve study success, such
as time- and stress-management, research and (academic) writing skills. Specific
academic coaching covers all help given to improve knowledge in specific subjects
(e.g. quantum physics or theoretical computer science). In-home tutoring mostly
comes in the form of private lessons to improve school grades and pass critical

6 see https://www.collinsdictionary.com/dictionary/english/tutoring

https://www.collinsdictionary.com/dictionary/english/tutoring

20 2 Background

tests. Distance tutoring, in Germany also often called “tele-tutoring”, covers all
tutoring which is provided from a distance, be it via phone, email, moderated
use-groups, or postal mail exchange of study documents. Online tutoring is the
most prominent variant of distance tutoring and nowadays mostly supplanted
all other forms of distance tutoring, given the low costs, general high flexibility,
and low latency compared to the other variants. For graded assessments in non-
it-related subjects, postal mail exchange is still common of today, but also these
fields show a rise of alternative options to hand in students’ solutions digitally.
Tutoring is classified as peer tutoring if the role of the tutor is not represented
by the course instructor or a dedicated teaching assistant, but an individual
of the student body. This setup comes with several advantages as well as dis-
advantages. Advantages include better scaling and lower psychological barriers
to ask for help. A meta-study of Robins et al. further points out, that peer
learning shows its benefits especially when dealing with practical tasks [130].
On the negative side, peer tutoring needs increased organizational setup, and
the quality of tutoring cannot be guaranteed without monitoring [164].

E↵ects of tutoring are a well researched field since the early eighties, with results
being presented and collectively supported in various meta-studies [5, 26, 27, 41,
59, 164]. All of the meta-studies agree that school tutoring programs increased
academic performance for students being tutored. These students outperformed
control groups on examinations, furthermore, they showed a more positive atti-
tude towards the topic being dealt with. Additionally, students acting as tutors
also showed positive e↵ects towards performance as well as attitude.

For example, Cohen et al.’s meta-study of 65 independent comparative stud-
ies of tutoring shows that 87% of the studies measuring learning e↵ects via
scores report positive e↵ects towards the students being tutored. Considering
the tutors, even 90% of the studies report positive e↵ects on their scores [27].

Having a closer look onto the subjects being taught, most studies deal with
reading skills, elementary scientific topics, or understanding of mathematical
principles. In general, the subject matters of reading skills and mathematical
principles however clearly dominate the studies (>90%) [27].

Allen and Feldman conducted their study dealing with topics including reading,
math, as well as science. They found that tutoring improved the results of tutors,
even if they are deemed “low achievers” in the respective field [3]. In their study,
they let “low achieving” fifth-graders tutor third-graders over a timespan of
two weeks. They showed significantly better scores than a control group, which
studied alone and did not convey any tutoring. The results of the tutees were
a↵ected positively, but not significantly according to their study. Albeit their
low participant count of 7 fifth-graders, their research indicates that the process
of trying to uncover others’ misconceptions has a positive impact on one’s own
learning e↵orts, even if the current skill level of the tutor is low. Either by
being exposed to di↵erent challenges or by re-visiting prior content, learning is
reinforced.

Most existing studies and meta-studies on tutoring were enacted on elementary
and secondary school students, given a face-to-face setting. The transferability
of the results thus has to be ensured for the field of distance education. Further-
more, the applicability to a wider audience including adults currently working
in their career has to be revalidated.

2.1 Theoretical Background 21

When comparing the e↵ects of face-to-face tutoring to online tutoring, Price
et al. found that online tutoring is deemed as inferior compared to face-to-face
tutoring [119]. The type of tutoring analyzed in their study on students of the
Open University is mostly academic coaching. The gathered ratings are based
on CEQ (Course Experience Questionnaire) [122], RASI (Revised Approaches
to Studying Inventory) [43], and a distance education centric subset of the AEF
(Academic Engagement Form) [129] questionnaires. Price et al. conclude that
the inferior rating is likely caused by students’ inappropriate expectations to-
wards online tutoring. Further, they express that the limitations induced by the
online environment hinder the communication and interaction between tutors
and students, which arise from technical aspects as well as missing experience
for e↵ective online communication.

2.1.5 Personalized Learning

The general setting of a student mainly interacting with a computer while learn-
ing not only causes the aforementioned downsides of reduced human interaction
but also o↵ers positive potential, in the MOOC case technically increased fea-
sibility for personalized learning. With the aim of optimal learning outcomes
in terms of understanding, student motivation, and knowledge retention, it is
therefore helpful to counter the potentially decreased motivation of students
caused by the lack of individual feedback and peer interaction with better-suited
material.

Achieving a good instructional design thus not only includes a mindful design of
the learning content concerning its structure, accessibility, and appropriateness
for the audience, but also means that the available content should be tailored
towards the individual learner.

Personalized learning as a term has not reached an agreed-upon definition in the
scientific community yet, however, the common understanding and agreement is
that it generally describes a setting that o↵ers each student an individual learn-
ing path. This personalization can, for example, be carried out by a teacher in
school classes. For larger settings that cannot be feasibly prepared and super-
vised by a teacher, technical systems can be employed to tailor the learning [17].

Adaptive learning is one approach to implement personalized learning in a dig-
ital environment. It is characterized by the fact that a system uses the data a
student produces while working on educational content in order to subsequently
adapt future content and exercises.

The research area of Intelligent Tutoring Systems (ITS), having evolved from the
field of so-called computer assisted learning (CAL) covers this in specific. The
general structure of ITS consists of four so-called models (or modules): the do-
main (or expert knowledge) model, the student model, the tutoring (or teaching)
module, and the user interface module [109, 111, 112]. For the sake of compre-
hensibility, we will just shortly describe the models to the extent necessary for
our concepts and refer to the existing literature for an in-depth coverage [112].
The domain model reflects concepts and steps to learn the desired skills, and
therefore serves as a kind of blueprint for the optimal progress. The student
model represents the state of the student with regard to the domain model.
Initially, the system has no information about a student’s prior knowledge and

22 2 Background

skills. As the student interacts with the domain content, the system traces the
progress, thereby gathers data and builds up the student model. Therefore, the
student model and the domain model are inherently interdependent, and the
student model can be regarded as an “overlay” over the domain model [48].
This overlay approach allows to represent a student’s knowledge as a subset of
the domain model to be aimed for. Students’ weaknesses then can be expressed
as deltas of the student model from the domain model. Based on information
from the domain model and the student model (i.e. how the optimal progress
should be and how the student progressed), the tutoring model decides for steps
to improve the learning outcome (e.g. suggests specific content). Lastly, the user
interface model holds data to interact with the student using the system. This
interaction can be direct, e.g., by alerting the student via popup windows con-
taining text or images, or indirect, e.g., by lowering or increasing di�culty or
deciding which additional content to be displayed next.

Recommender Systems

An often employed implementation of student interaction with an intelligent
tutoring system to convey personalized learning o↵ers di↵erent paths through
the same given material, therefore only changing the order of content blocks, or
allowing to skip known content. Another implementation variant is recommend-
ing content based on prior actions, for example a specific video which repeats a
topic a student has shown deficits in.

O↵ering such student-specific content also belongs to the field of “Recommender
Systems”. Nowadays, recommender systems are found in almost all places. A
prominent example, which is also suitable to exemplify the first of di↵erent types
of recommendation approaches, is online shopping.

Collaboration-based Recommendation, also called Collaborative Filtering (ColF),
is often used to recommend products. The system identifies users that are likely
to share interests and suggests target users a number of potentially interesting
items based on the data of similar users. The approach requires a large amount
of user data on the one hand, but is independent of product specifics on the other
hand. Collaborative Filtering can further be divided into two sub-approaches,
that di↵er in the way how similarities are found.

1. User-based Collaborative Filtering starts from given user characteristics (e.g.
age, current location) in order to find similarities among users to find po-
tentially matching users. This approach is problematic for new user profiles
which are lacking viable information.

2. Item-based Collaborative Filtering starts its calculations based on similar
items, in order to find matching users. So if a new user is interacting with
a product A, thereby expressing interest, the system determines users who
also liked product A and is then able to generate recommendations based
on the combined preferences of these users. This results in the often seen
“users who liked X, also liked Y” recommendations in web-shops.

2.2 Di↵erences Between In-Class and Distance Education 23

Content-based Recommendation, also known as Content-based Filtering (ConF),
directly relates users with content. Opposing to the Collaborative Filtering ap-
proach, the indirection via similar users is skipped. Consequently, Content-based
Recommendation relies on information the user has already expressed concern-
ing his or her interests. If we know a user likes cooking, but dislikes gardening,
we can recommend products that are directly or indirectly related with cooking,
but share little connection with gardening. In a learning environment, instead of
products, we usually recommend di↵erent examples or exercises, hopefully bet-
ter fitting students’ interests and hobbies, creating a better identification this
way. In order not to force users to explicitly express their interests, necessary
information can also be collected during the normal interaction of the student
with the system, e.g., via dwelling times on pages or clicks on respective website
areas.

Additional to their predominant applicability in e-commerce, recommender sys-
tems have received wide acceptance in the field of education in general and
technology-enhanced learning in specific [98]. In the context of education, the
same concepts as in e-commerce are used, with the sole di↵erence that products
are replaced with training exercises or additional learning content.

2.2 Di↵erences Between In-Class and Distance Education

All universities - respectively its sta↵ - have a working knowledge about “how to
teach”, that is not externalized as books or checklists, but as experienced knowl-
edge and know-how, carried by individuals [103]. Teaching sta↵ and lecturers
usually acquire basic didactic knowledge passively during their school educa-
tion, or their bachelors and masters studies [38]. On top of that, the excitement
as well as the curiosity of the lecturers or seminar teachers, sometimes being
responsible for their class on their own, keeps the teaching fresh and dedicated.
This implicit knowledge is usually passed on from generation to generation of
PhD students. The knowledge further feeds from the experience of the pro-
fessors and is further quality controlled by them [103]. However, this “folklore
how to teach”, comes to an abrupt end when the walls of the university are
left behind. Distance education is, albeit still present on some higher educa-
tional institutions, a much smaller field, despite the often much larger reach
and output. Another step further is distance education via electronic measures,
the so-called “e-learning”. E-learning is often used as a supportive measure to
complement presence studies with extensive material or more complex exercises.
Both distance education and e-learning require new skills and knowledge [103].

24 2 Background

2.2.1 Drawbacks for Learning Programming at a Distance

Whenever dealing with distance education, it is important to remember that
the core principles of education and teaching remain the same, but the sur-
rounding conditions di↵er and may do so to a great extent. The most striking
di↵erences when comparing MOOCs with in-class courses are the number of stu-
dents enrolled in MOOCs and the absence of direct personal communication.
Both di↵erences make it di�cult for instructors to support struggling students.
O↵ering individual feedback personally requires excessive time, not available
to course conductors. A reasonable alternative might be peer assessments, but
they usually require considerable e↵ort to set up as well as a large amount of the
students’ time and can therefore only be applied once within a typical course
runtime [86].

In-class education allows teachers to glance over the shoulder of their students to
notice potential struggle, assess the current situation and give direct feedback.
Within online courses, this glance over the shoulder is not possible on large scale.
Therefore an automated and scaling solution is required to detect struggling
students and supply them with helpful feedback and additional training options.

This research provides new insights and general learnings on various levels of
programming assignments as well as online distance education. The primary
drawback of MOOCs is the impaired student-teacher relationship between stu-
dents and course conductors. On the one hand, students may develop a sense of
familiarity with the teachers performing in the lecture videos. Probably caused
by constant exposure and role distribution, participants may even develop ad-
miration and kind of an imaginary friendship towards the lecturers, as often
observed with YouTube stars or other so-called influencers [87, 101]. On the
other hand, the lecturers only receive selective and mostly textual feedback,
thereby alienating the student-teacher relationship into that direction.

2.2.2 The Rise of Collaborative Work and Problem Solving

User requirements and expectations towards nowadays software are high and
diverse: software is expected to run stable, fast and e�cient on a multitude of
devices, o↵ering intuitive user interfaces. These requirements usually cannot be
met by a single developer. Therefore, di↵erent experts contribute to achieve the
desired results.

Knowledge-intensive professions also involve a high need for communication,
to onboard new team members to running projects or to inform team mem-
bers about changes in architecture or design decisions [39]. Given the abstract
nature of computer science, additional challenges arise: a common vocabulary
regarding the wording has to be established, common diagram styles to convey
structure and relationships, and on top of that shared behavioral patterns to or-
chestrate large numbers of individuals. When dealing with software, developers
have to know their tools of trade, including a solid understanding of the under-
lying hardware, and knowledge of multiple programming languages, as well as
common design patterns. This general, fundamental knowledge is universal and
can be taught at schools or universities beforehand.

2.2 Di↵erences Between In-Class and Distance Education 25

On top of that comes specific business and application knowledge, the so-called
“business logic”, and previously taken design decisions with regards to the mod-
eled process and software. Several types of artifacts, such as class diagrams
or sequence diagrams, created following the uniform modeling language, have
evolved in order to externalize project-specific knowledge. These challenges arise
in smaller scopes, given agile software development teams of usually less than
ten persons, as well as larger scopes when coordinating dozens of those teams to
work on standard-software. Having large companies trying to apply a so-called
“follow the sun” approach for globally distributed software engineering to re-
duce time to market, additional challenges with regards to cultural di↵erences
arise [165].

Looking towards the “non-professional” developments within knowledge inten-
sive areas, also semi-professional work, such as crowdsourcing, requires a com-
mon understanding of the task at hand, the methods used and the deliverables
as well as the quality expected. Within the strictly non-for-profit areas, even
more examples of collaborative work and problem solving have come up. Knowl-
edge databases such as Wikipedia o↵ering general information, Stackoverflow
focusing on computer-science specific information, or even everyday knowledge
collections such as the German platforms fragMutti7, or recipe databases like
chefkoch8 were built by vivid communities only able to achieve their shared
goals together. Many di↵erent incarnations of knowledge platforms with di↵er-
ing requirements, rules, and etiquettes contribute to modern everyday life and
underline Pea’s claim, that knowledge is commonly socially constructed [117].

Humankind in general seems to have found opportunities to contribute to a
common shared goal, mostly out of altruism and reciprocity, giving back as
gratitude for help prior received.

Another important incarnation of collaborative work in software development is
so-called “social coding”. Social coding is an approach of socio-technical devel-
opment that emphasizes collaboration [33]. It emphasizes that modern software
development is an activity performed in potentially large groups and that open
communication and information sharing within those groups is essential for the
success of the software. Therefore, aspects such as awareness about progress
and development artifacts, have been reevaluated given the changed conditions,
e.g., loosely-coupled teams of hundreds of individuals in open-source projects
as opposed to hierarchical development units in companies. It emerged that
visibility of artifacts did not overburden developers and users, but fostered in-
teraction and focused communication, especially when questions could not be
answered due to missing information or transparency [33]. With the increased
importance of relations between developers in mind, supportive tools were de-
veloped to visualize the social connections within projects, allowing to better
identify suitable collaborators, e.g., to pinpoint and fix a bug [135].

7 see https://www.frag-mutti.de

8 see https://www.chefkoch.de

https://www.frag-mutti.de
https://www.chefkoch.de

26 2 Background

The term “social coding” was mostly coined by GitHub9, and comprised the
opportunities to distribute, share and modify code as well as discuss it. Other
platforms such as Atlassian’s BitBucket10 and open source tools like GitLab11

and Phabricator12 share this understanding. Major software companies estab-
lished products in this area to support development further gain influence, but
the market has settled by now. GitHub emerged as the market leader and was
acquired by Microsoft in 2018. The o↵erings by Google and Microsoft were
archived in the years before, with Google Code being archived in 2016, and
Microsoft’s CodePlex in 2017.

Discussion on those platforms is centered around parts of the source code,
namely new commits and pull requests, instead of the entire codebase. The aim
of these approaches is to maintain a stable and reviewed codebase, maintained
by an active community of already skilled developers.

Our approaches share the aim to foster collaboration in the area of software
development with social coding platforms, but our approaches di↵er in the area
of application and thus surrounding conditions. Our main goal is to improve
learning. In contrast to platforms like GitHub, the resulting artifact, usually
source code, is of no importance for the success of the overall e↵ort. Also the
scope di↵ers with the small, self-contained exercises presented in MOOCs. Op-
posed to the focus on commits, which represent an incremental improvement to
a larger code base, the fundamental structure of the (usually short and simple)
program is the primary interest in education. Also, when discussing commits,
the underlying assumption in modern software development is that the supplied
code is tested and working, in contrast to the submissions made in program-
ming exercises. Thus the focus on social coding platforms is on discussing design
decisions and complicated issues between trained software engineers, while dis-
cussions on education platforms will evolve around fundamental misconceptions,
syntax errors, and grading issues.

When having a closer look into the establishment of online communities, it is
helpful to distinguish between di↵erent types of online platforms, depending on
the approach of presenting knowledge. Platforms revolving around foundational,
structured knowledge usually conveying smaller pieces of knowledge with the
aim to embed them into a greater picture usually follow some kind of a course
syllabus. These platforms resemble the school model and are suitable for example
when learning a new language. Other knowledge platforms, in contrast, o↵er
specific, unstructured knowledge. An example for this approach of knowledge
o↵ering is a database allowing to look up specific cooking recipes. Communities
mostly evolved around unstructured knowledge bases.

Reasons for this are twofold: First, unstructured collections o↵er more options
and freedom to participate, as changes and additions have fewer side e↵ects.
Second, a corpus of suggested and ordered material inherently requires some
instance of power to decide which parts are presented, in which length and
which order, carrying the seed for dispute.

9 see https://github.com

10 see https://bitbucket.org

11 see https://gitlab.com

12 see https://www.phacility.com/phabricator

https://github.com
https://bitbucket.org
https://gitlab.com
https://www.phacility.com/phabricator

2.2 Di↵erences Between In-Class and Distance Education 27

Therefore most MOOCs, requiring at least fundamental structure (e.g. a topic,
a start and end date, as well as technical administration), are led by a team of
instructors and thus face the aforementioned drawbacks with regards to com-
munity building at least partially.

Depending on the desired structure and model of learning within the course,
MOOCs have been classified into the “frontal” extension MOOCS (xMOOCs)
and the more community centered connectivist MOOCs (cMOOCs).

Connectivist MOOCs are built with certain principles in mind, favoring aggre-
gated material from the community over pre-selected material of a teaching
team. This leads to evolving material that is mostly remixed, remixable and
repurposable. The material, therefore, acts as building blocks for future stu-
dents, allowing for a so-called feed-forward. Depending on the implementation,
course instructors give out initial reading material, or just research directions
and potential tasks or learning goals. The MOOCs on so-called “rhizomatic
learning” by Dave Cormier are an extreme example of cMOOCs, in which even
the curriculum itself was set to debate under the topic “The community is the
curriculum” [28]. Challenges for these format are the coordination of students
with regards to tools, e↵ort, and means of communication. Additionally, most
students are not used to this way of learning, resulting in comparably lower
enrollment and finishing rates, if applicable at all.

xMOOCs, short for extended MOOCs, are originally recorded university courses,
that have been enriched with additional material such as multiple choice quizzes
and further reading material. They resemble the traditional “ex-cathedra” teach-
ing style with an instructor presenting content and students required to listen.
Despite common criticism of the approach, this style of MOOCs o↵ers benefits
for students and instructors alike. First, student and instructor roles are well
known from in-class education. Second, students can consume the o↵ered mate-
rial at their own pace. On top of this, students struggling with any material can
revisit it at any time, without interrupting the course flow or impeding others.
Furthermore, it allows switching in-class education to so-called “blended learn-
ing”, combining individual content consumption and collective in-depth discus-
sions [12]. Instructors are freed from the necessity to re-enact basic lessons over
and over again, leaving time to further improve the material or to give feedback.
Over the past years, the majority of xMOOCs has increased in accessibility and
quality with regards to di↵erent aspects: most often, the recordings are no longer
a byproduct of a regular on-campus lecture being recorded, but are an indepen-
dent project with multiple stakeholders involved, established best practices and
ongoing quality assurance [56, 58, 88, 144].

Summarizing, collaborative work is not only pervasive in computer science and
programming, but also has become an integral part of education, and in specific
MOOCs. The extent, to which students are on the one hand merely “consum-
ing”, or on the other hand actively contributing towards the course content, de-
pends on the general course format and di↵ers with each individual course. While
cMOOCs will have a generally much higher contribution ratio, also xMOOCs
can strongly benefit from collaborative e↵orts, for example in the form of peer
feedback and vivid forum discussions.

28 2 Background

2.2.3 Mismatch of Workload (Teaching Team, Students)

When conceptualizing and designing a MOOC, two core metrics have to be kept
in mind for all decisions: the required time for each individual student and the
available time of the teaching team. The enormous mismatch between the sizes
of the two groups, usually less than five instructors and teaching team members
on the one side, and thousands of students on the other side, makes intuitive
reasoning impossible. Carefully determining the weekly combined e↵ort for stu-
dents to follow all o↵ered activities, including videos, texts, self-tests, and exer-
cises is necessary in order to prevent time induced dropouts and possibly allow
some additional room for forum discussions. On the other hand, the teaching
team has to allocate time for forum administration, bugfixing and content im-
provement, mail support, technical support, general announcements, and many
more unforeseen activities. While some tasks require a fixed amount of time,
e.g., weekly mailings, other e↵orts such as forum administration, scaling with
the number of students enrolled, and maintenance e↵orts for technical stability,
scaling with the complexity of the employed system, are hard to estimate.

As the required e↵ort also depends on the experience of the teaching team
members, we cannot give reliable estimation guidelines here. The necessity of a
supportive audience being capable to help each other out on occurring questions
in the forum becomes evident with the numbers presented in Table 2.1.

Course #Students #Middle #Forum Posts #Solutions #Submissions
imdb2012 13,629 12,066 2,729 0 0
python2014 7,376 6,598 8,844 130,722 not recorded
python2015 17,401 7,840 6,395 119,047 2,373,204
java2015 11,581 10,607 11,101 254,972 2,881,780
java2017 10,402 8,781 7,673 237,724 3,580,143
java2018 21,693 18,873 6,222 229,124 3,397,509

Table 2.1: Course key metrics for selected programming MOOCs openHPI
and openSAP, retrieved in June 2019. imdb2012 (non-programming
MOOC) is included for comparison.

The number of students #Students reflects the absolute number of enrollments,
the metric #Middle reflects the number of students enrolled at the day when
half of the course’s runtime has passed. It therefore better represents the active
audience by excluding enrollments that happened after the course runtime (and,
e.g., increased the enrollment number of python2015 by almost ten thousand).
The number of forum posts easily reaches several thousands within each course.
This implies that the most important forum questions can still be answered by
the teaching team, but monitoring all questions asked and answering them in
the expected detail induced by the relatively polished course videos, becomes
almost impossible. When adding additional complexity, as with programming
exercises containing student-specific errors that have not been localized yet, the
possibly required time investment cannot be brought up, even not by a teaching
team that is willing to spend their leisure time and weekends.

2.2 Di↵erences Between In-Class and Distance Education 29

Technical approaches to scale the e↵ectiveness of instructor tutoring exist [46,
53], leveraging the number of students’ solutions an instructor can review at once
by synthesizing similar solutions and outlining relevant di↵erences, thus reducing
visual clutter such as duplications and highlighting potential error sources. This
approach is helpful in general, but still requires an extensive amount of time
from instructors. It potentially delays the point in time where instructors will
be overburdened, but cannot tackle the issue of scaling from the conceptional
perspective.

Suitable solutions for MOOCs optimally should scale the o↵ered learning sup-
port linearly with the respective audience. Peer-education and content-centric
collaboration within the audience thus become fundamental cornerstones for
MOOC grade scaling, given the high complexity caused by the multiplying fac-
tors of a large MOOC audience and the increased individual technical depth
caused by practical programming exercises.

2.2.4 Factors Impacting Learning Outcomes

Yousef et al. conducted a survey to find the most important factors impacting
the design quality of a MOOC [183]. Additionally to giving a good overview
about important criteria in MOOCs and further providing a convincing catego-
rization of these criteria, their paper outlines the categories “learning analytics”
and “assessment” as the most important ones. In general, it is reassuring to find
many of the most emphasized metrics being considered and well integrated into
the technical foundations of our MOOC platform (e.g. user interface, provided
features including download options, and slide- and teacher-view) as well as in-
dividual course design (e.g. video length or communication of learning goals).
The highlight on the two categories “learning analytics” as well as “assessment”
emphasizes once more that actual exposure to exercises and students’ possibil-
ity to reflect on them are deemed as crucial for learning. Further examining
these two categories, top mentioned metrics for learning analytics include “Pro-
vide recommendations and feedback for learners to improve their performance.”
and “Provide performance report to learners.”, while the category assessment
brings up “Each quiz should give feedback and/or show the correct answers.”,
“Provide integrated assessment within each task.” and “Each assignment should
have hints.” within its top criteria. These top-ranked criteria thus encourage in-
structors to mindfully design the optimal learning progress of their students not
just content-wise, but also from the perspective of a holistic learning experience.

He et al. additionally highlight that learner support is of high importance con-
cerning students’ motivation, retention, and success [61]. The availability and
guidance of instructors or teaching assistants largely influences learning out-
comes. Martin et al. further argue that timely feedback in online education is
especially crucial to lead students to “higher levels of learning” [100].

Feedback, thus seen as a central and integral part of learning, however, can-
not be incorporated conceptually into the video lectures, which are the most
prominent element of MOOCs. This is due to the fact that videos are con-
sumed passively by the students from the viewpoint of the platform. Students
have to actually do something in order to be able to receive feedback on their
progress. The most basic approach of pursuing that is adding short multiple-

30 2 Background

choice quizzes after content videos. Having students pick the correct answers
serves mainly two purposes: first, they are required to reflect on the presented
concepts, and second, they provide kind of a submission on which feedback can
be given on. In the case of MOOCs and the previously mentioned size of the
audience, this feedback is usually automated. The most basic version of feed-
back on a multiple-choice quiz is simply providing the information whether the
chosen option was correct or incorrect. This binary result is the most important
information from the technical viewpoint. But from a didactical point of view,
this minimal feedback on the students’ probably complex decision is insu�cient
and misses the majority of available potential for learning. A better alternative
is to also provide a short description, what the correct answer is, why it is the
correct one, and which reasons or line of thoughts lead to this answer. This al-
lows the students to follow the steps that bring them to the correct solution, and
comprehend the reasons for correctness. Questions designed that way therefore
can provide additional insights, recapitulate presented concepts, illustrate their
application, and o↵er students the possibility to reflect. Even better than only
to build on the correct answer, is to also provide feedback on the wrong options.
Explaining which misconceptions might lead to wrong options, and outlining
why they are wrong, gives students the possibility to find and understand the
point where they diverged from the correct reasoning. Additionally, explaining
incorrect options yields a benefit also for those students who solved the question
correctly: being presented with possible but incorrect options, further strength-
ens understanding, as often those options just are not chosen because one did
not think of it.

The design of a simple multiple-choice question therefore determines its use-
fulness in learning. As a consequence, the benefit of it ranges between being
perceived as a basic check whether a fact was remembered correctly to an op-
portunity to embed a presented concept into a scenario. Embedding a concept
in a scenario allows to reason on the correct applicability and thus helps in
pinpointing common pitfalls, preventing further struggle and subsequent mis-
understandings.

The given example on multiple-choice quizzes is most suited to explain the
general issues occurring when designing content with the main goal of providing
automated feedback to students. Quizzes with predetermined options represent
the most restricted and therefore controlled activities possible. These boundaries
limit the directions students can take and therefore also limit the explanations
to be provided.

Revisiting the criteria presented by Yousef et al. [183], well-crafted quizzes there-
fore provide performance feedback, integrated assessment, and also hints. O↵er-
ing those aspects also on other activities without such clear borders imposes a set
of challenges. Depending on the actual activity, for example an open-ended ques-
tion requiring a student to provide an answer within a free-text field, di↵erent
conceptional and technical measures are necessary. In the case of the open-ended
question, one might either approach the issue with three di↵erent approaches.
The first approach is through technical means by automatically searching for
certain keywords in the answer. The second approach employs organizational
means by applying some form of peer-assessment and peer-feedback. The third
option is to guide and assist the student to perform self-assessment. Combining

2.2 Di↵erences Between In-Class and Distance Education 31

technical and non-technical means usually yields the best results. However, it
becomes apparent that the potential approaches largely di↵er depending on the
activity being performed by the students.

In our case of learning programming, we introduce practical programming ex-
ercises on top of the proven foundation of multiple-choice quizzes. Similar to
open-ended questions, students are free to enter everything they want in their
source code editor. This however opens up an unlimited field of possibilities to
make mistakes and to encounter extended struggle.

Despite the possibilities for encountering troubles are endless in general, sev-
eral factors narrow the problem space in our scenario and thereby reduce the
necessary complexity to support students with helpful feedback. First, the do-
main of programming knows certain common errors or groups of errors that
occur more often than others. Second, each programming exercise comes with
an exercise description, intended to guide the student into the direction of the
solution, thereby marking the way together with the course video placed before
the exercise. Depending on the level of detail, the exercise description might
even give a step-by-step instruction on how to solve the exercise, thereby im-
posing some sort of soft-boundaries. Third, the exercises come with template
code, e↵ectively reducing foreseeable issues, e.g., confusion occurring on mixing
up syntax when students first work with classes and methods, without having
gained a thorough understanding of the concepts behind them. Fourth and last,
some errors are especially common for beginners, so that they are more or less
expectable at certain stages in the course and can be countered to some extent
with more extensive descriptions and comments in the respective exercises. The
consecutive nature of exercises being presented in a course introduces students
to a desired way of thinking in a step by step manner, thereby often limiting
specific errors and misunderstandings to specific exercises.

2.2.5 Applicability to K-12 Education

The average MOOC student on our platform openHPI is male, between 30 and
50 years old, holds a bachelor’s or diploma degree and has prior knowledge in
the tech sector. He takes the courses out of individual interest and motivation,
mostly in his spare time, which he is able to schedule freely [50, 51].

This drastically di↵ers from the situation of school children. They are externally
motivated to follow the content, do the learning mostly during their classes, and
are accompanied by their teacher. The given weekly format of MOOC content
does not account for time limits like 45-minute lessons in German schools and
does not necessarily group the videos and exercises into self-contained units.
Additional structuring is thus beneficial, enabling teachers to better motivate
concepts and allowing them to further add a repetition at the end of a lesson to
fortify acquired knowledge [63]. In general, MOOCs do work in school context
(and are frequently used as they o↵er a high-quality foundation for class discus-
sions), but they need to be stretched out over the course of a school year [152].
MOOCs o↵er material that teachers can work with, but do not allow the teach-
ers to further tap into the additional benefits the platform o↵ers, such as de-
tailed analytics. To check the progress of their students, teachers have to glance
over the shoulders of their students individually. This allows to spot individual

32 2 Background

errors, but is impeding aggregated insights such as common misconceptions.
Despite the di↵erences with regard to the general prerequisites in online-only
MOOCs and therefore the main target direction of this thesis, the scenario of
K-1213 education is included on purpose. Accustoming school children to ap-
proaches for life-long learning and modern education tools is actively requested
by teachers, desirable from the goal of a general and all-embracing solution, and
furthermore o↵ers additional insights concerning content consumption and real-
life issues [138]. Major di↵erences between the online scenario and the school
scenario are:

1. Student motivation (internal vs. external)

2. Content segmentation (course weeks vs. school lessons)

3. Grading (automatic vs. individual by teachers)

4. Feedback (unknown individual vs. classmates and teachers)

In order to keep explanations concise, if not stated otherwise, all descriptions
refer to the “normal” MOOC context.

2.2.6 Design of Programming Exercises

A central part of programming education are the practical exercises themselves,
as they o↵er the best opportunity to deepen and fortify understanding. Such
programming exercises, apart from potential technical challenges, come with a
series of questions to be addressed, for example: which fraction of the students’
time should they take (compared to video lectures and other course activities),
which di�culty should be aimed for, how much guidance should be o↵ered and
how much repetition should be incorporated? The perceived di�culty of a task
depends on previous knowledge, supplied hints, the required time for solving
and the number of failed attempts the student made. Furthermore, the detail
and accuracy of the problem description, the restrictiveness of the applied test
cases and the preparation provided specifically for a given exercise also influence
the perceived di�culty of a task.

In general, Massive Open Online Courses are, as massive and open implies, in-
tended for broad audiences. An optimal practical programming exercise should
therefore appeal to all students, challenge them but also be solvable with rea-
sonable e↵ort in a predefined timespan. The individual challenge thus relies on
prior knowledge, and the term massive in MOOCs naturally implies that the
students taking a course bring in a wide range of prior knowledge in many
areas, be it directly connected, adjacent or unrelated with the topics covered
in the course. While this spectrum of knowledge is a profitable foundation for
discussions in the forum, there are also occasions where this range is hindering
learning outcomes. In wide audience settings, like forum discussions, a consid-
erably large group of students is reading questions written by a much smaller
share of students expressing those questions. This automatically circumvents
harmful knowledge gaps, as those students that fit for the actual information
needs will interact, while all others act as silent bystanders and eventually also

13 Abbreviation for Kindergarten to 12th grade.

2.2 Di↵erences Between In-Class and Distance Education 33

learn by passively reading. Given more narrow settings, like discussions within
small groups or peer-assessments, the knowledge gap between the students will
not regulate itself. Such a skill gap can either be conducive, as an experienced
user explains concepts that have not been understood beforehand and is lead to
new thoughts by questions that have not come to mind before, or be cumber-
some, as the experienced user might be bored by elementary questions. Also,
two students being on an elementary level, are most likely not best suited to
find the solution to their problem without further external help.

2.2.7 Skill Assessment

Knowledge di↵erences can thus either be helpful or hindering, depending on
the actual setting. In order to steer potential outcomes and gain benefits of
the knowledge di↵erences, the prior knowledge of the participants has to be
assessed.

The assessment, in this case, is neither really formative, meaning that it is not
intended to build feedback upon or serves as a starting point for an intervention,
nor is it summative, as it is not used for grading. In order to coin our assessment,
we call it an informative assessment, as it is primarily used to improve potential
actions in the future. This is close to a formative assessment, however it lacks
the necessity of an intervention afterwards.

For the following approaches and descriptions, we want to state that whenever
we speak of an absolute skill expressed in numbers, we are aware that this
numerical value cannot reflect the true knowledge, experience, and mastery of a
topic. It is not intended to rank students in kind of a high score and to display
these individual values. On the opposite, the skill levels will be used internally
to optimize the learning outcomes of all students.

Assessing knowledge and skills is di�cult in general. Companies spend huge
amounts of money on elaborated approaches like headhunters and assessment
centers to find the right candidates for job o↵erings as wrong decisions come
at an even higher price. Commercial providers like AMCAT14 or others build
their entire business model around the assessment of skills in various areas.
In contrast, the assessment within MOOCs does not have to o↵er such fine
granularity and does not bear high financial risks if it is inaccurate, which makes
the problem less severe. In our context dealing with programming education, we
also focus on a rather technical area, which tends to have a better expressiveness
in numbers than for example communication skills. However, the given MOOC
setting also adds other di�culties. For example, participants cannot be bothered
with long quizzes or too excessive or too delicate questions. As they take part
in courses mostly based on intrinsic motivation and without direct career goals,
posing too cumbersome hurdles will only result in participants skipping the
questions or in the worst case quitting the entire course.

Having gained some insights on students’ prior knowledge, the actual program-
ming exercises come into focus. Programming exercises that were not chosen well
for the individual participant have several downsides that can result in a variety
of negative e↵ects. Exercises being too easy will not challenge students enough.

14 see https://www.myamcat.com

https://www.myamcat.com

34 2 Background

While easy success might increase motivation over the first few exercises, it will
increase the risk of frustration when facing exercises with a higher di�culty, as
one got used to passing without e↵ort. Especially students having a higher prior
knowledge than that being aimed for in the target audience will be bored by
exercises being too easy. Losing already high skilled students may seem bearable
in the context of classic distance learning, since having a homogeneous group of
beginners allows to optimize the course videos and additional course material to
their specific needs. In the context of MOOCs, losing experts however would be
a huge drawback due to the resulting absence of their know-how and possible
support.

Having advanced practitioners or even experts of a programming language
within the field of students potentially yields massive benefits. In past courses
we conducted, some motivated experts helped out on various occasions, ranging
from pinpointing ambiguities in videos, wording and slides over answering up-
coming questions to supplying suited links or even creating additional material.
Last but not least, advanced and expert users answered forum posts in quality,
length and speed simply impossible to the teaching team, as it was bound on
other tasks such as technical support and additional content creation.

2.3 Ethical Considerations and Data Privacy

MOOC research heavily relies on user-generated data. This brings up the issue
of data privacy from a legal viewpoint, as well as questions of ethical correctness
from the philosophical viewpoint.

Prinsloo and Slade give an overview over the development of the discussions
and aspects with regards to ethics in learning analytics [120]. While it is gener-
ally agreed that higher education institutions “have a right” to collect and use
student information in order to ensure e↵ective learning and support students,
questions of consent and potential downsides have to be discussed.

Concerning user generated data, the information we deal with falls into two dif-
ferent categories: data supplied directly by the user and data gathered through
user interaction with the system. So apart of the data that users enter on the
MOOC platform directly, such as for example their email address, name, gender,
birth date, highest degree, career status, and a�liation, the MOOC platform as
well as the programming exercise platform automatically create usage data, as
users interact with them. Intrinsically, also the majority of this data contains
sensitive information about users, such as their achieved scores, time spent on
exercises, and weaknesses in specific knowledge areas.

Upon registration, all users agree to our privacy policy as well as our code of
conduct. The privacy policy15 clearly states that the MOOC platform saves user
data and that these data are used for research in compliance with the german
law as well as the GDPR16. In the process of this research, we analyzed the
data only in an anonymized and aggregated form. Furthermore, we only drew
conclusions from aggregated data of reasonably large participant groups.

15 see https://open.hpi.de/pages/data-protection

16 Abbreviation for General Data Protection Regulation.

https://open.hpi.de/pages/data-protection

2.4 Status Quo in Online Programming Education 35

The field we are operating in is the area of educational experiments. In order to
fundamentally prevent the possibility of assessing or even penalizing students on
the basis of their demographics, all test group assignments were based on arti-
ficial, uniformly distributed variables. Randomly assigning users to experiment
groups still raises the question, whether it is justifiable to probably support
or hinder participants. We agree with Justin Reicht17, who argues that these
discussions should take place on all levels of education to preserve public trust
through proactive research ethics. Discussions we had on scientific conferences
brought up several times, that the experiments researchers are conducting in a
controlled setting, have lower estimated e↵ects than changes caused by chance
in ordinary in-class education. Assigning a new teacher to a school class, or
only sending in a supply teacher once, usually has stronger e↵ects on class per-
formance than enabling or disabling a certain feature in a MOOC. The actual
di↵erence is, that the e↵ects of ”changes by chance” are usually not measured
and thus cannot be quantified.

Apart of that, we rolled out the experiments in several stages, aiming to only
improve the support and therefore learning experience as well as success for
parts of our audience. In order to measure the e↵ects, we thus conducted A/B
tests to quantify the potential di↵erences in metrics caused by the experiments.

Specifically, the experiment which was considered the most controversial by us
was the last stage of a series of three experiments. Letting a group of users ask
for help and even encouraging them to do so, while at the same time preventing
the possibility that they receive feedback from fellow users, intuitively seems
wrong and potentially might even cause negative outcomes such as increased
frustration and consequently lower scores. Therefore, we decided to conduct
this experiment in 2018 only after we learned that we could not infer a negative
impact of that behavior from former experiments in 2017.

Summing up, only experiments with a desired, potentially positive outcome were
conducted.

2.4 Status Quo in Online Programming Education

The area of programming education is diverse, both in terms of normative didac-
tical approaches as well as diverse situations in di↵erent countries. The overview
presented here is kept intentionally short to outline the di↵erent approaches,
viewpoints, and stakeholders without losing itself in details.

The first approach to structure the current situation of programming education
is from the organizational viewpoint. Federal education guidelines di↵er signifi-
cantly between countries, and while politicians agree that IT is an important and
eligible discipline, progress in externalizing this in curricula is di↵ering to great
extent. Considering Germany, education is in the authority of the federal states,
resulting in a fragmented status quo with various curricula, and therefore also
resulting in a lack of performance norms and a comprehensive strategy for the

17 see the blog article “The Ethics of Educational Experiments” published in 2014
on http://blogs.edweek.org/edweek/edtechresearcher/2014/07/the_ethics_

of_educational_experiments.html.

http://blogs.edweek.org/edweek/edtechresearcher/2014/07/the_ethics_of_educational_experiments.html
http://blogs.edweek.org/edweek/edtechresearcher/2014/07/the_ethics_of_educational_experiments.html

36 2 Background

future. Recently, German governance announced the “DigitalPakt Schule”18, to
support the digital transformation of schools.For historical reasons, the money
will be invested to improve the infrastructure in schools. The federal govern-
ment is not allowed to directly fund skilled practitioners or improve educational
content itself. This shortage of content and know-how, therefore, leaves room
for other stakeholders, mainly organizations.

Organizations come with own agendas, di↵ering whether the organizations are
for-profit, or non-profit ones. Businesses (for-profit organizations), including
MOOC platforms, usually o↵er paid programming courses as part of their rev-
enue model. Not requiring large and expensive tooling such as in mechanical
engineering or medical preparations in medicine, opportunity costs are low,
whereas potential and expertise required for scaling are given in that field.
Therefore, evening classes, seminars, boot-camps, and private colleges, emerged
alongside state-funded o↵erings. Non-profit organizations mostly focus on deliv-
ering introductory knowledge to young people or specific underprivileged groups
in society. In between are for-profit organizations that sponsor smaller initiatives
for marketing and social responsibility reasons that are consequently o↵ered free
of charge.

The second approach of structuring the education landscape focuses on the
didactical methods. Di↵erences between didactical approaches become most ap-
parent when comparing the di↵erent prior knowledge that freshman students
bring to university. While some computer science classes in school mostly dealt
with application knowledge, using spreadsheets and text processing applica-
tions, others learned imperative and object-oriented programming. Foundational
knowledge, including knowledge about computer architectures, data structures,
and propositional calculus, may or may not be part of a specific course syllabus.
The wide variety of potential focus points cannot be covered exhaustively in
the time available for computer science classes in school. Therefore, the usual
result is some basic knowledge of programming, mixed with some slight intro-
duction into logic reasoning. Existing online o↵erings are avidly incorporated
into classes on individual teacher basis [97], as well crafted material is often too
time-consuming to be created individually. Practitioners favor that well-crafted
o↵erings cover and integrate multiple knowledge areas, such as programming,
data structures, and boolean logic at once [153].

When initially teaching programming skills, mainly one of three major options
can be followed:

1. imperative first, aiming to explain program flow similar to a cooking recipe
carried out step by step

2. objects first, aiming to explain program states and structures with respon-
sibilities

3. block-based approaches, mainly following the imperative logic but further
abstracting from program code

18 see https://www.bmbf.de/de/bund-und-laender-ueber-digitalpakt-schule-
einig-8141.html

https://www.bmbf.de/de/bund-und-laender-ueber-digitalpakt-schule-einig-8141.html
https://www.bmbf.de/de/bund-und-laender-ueber-digitalpakt-schule-einig-8141.html

2.4 Status Quo in Online Programming Education 37

In this thesis, we will focus on languages based on plain text source code, and
put the imperative first as well as the objects first approach into practice. Our
research was carried out with students of the MOOC platforms openHPI and
openSAP, who used the code execution platform CodeOcean to practically learn
programming. In the following, we shortly describe specifics of the MOOC plat-
forms used for our research and classify the used code execution platform by
comparing it with other o↵erings.

2.4.1 Coding Platforms

Auto-grading suites and online coding platforms exist on the internet since some
decades. With the recent maturity of containerization solutions like Docker19,
their absolute number has increased tremendously. During the time of creating
this thesis, several platforms have come up, as well as several platforms have
ceased to exist or have been acquired by major education or tech companies.
Nevertheless, the categorization of platforms we will introduce in the following
paragraphs are expected to remain stable.

Former studies and surveys published before 2013 by Queir’os et al., Ihan-
tola et al., and Douce et al. focus on technical aspects and integration options
mostly [35, 67, 121]. With the upcoming of MOOCs happening just later, these
comparisons do neither cover the currently most significant o↵erings nor the
resulting new categories. Also, the most recently published review of automatic
assessment tools we found from Ullah et al. published in 2018 [166] does not
cover the aspect of massive open online courses. To our knowledge, recent com-
prehensive surveys in this particular direction thus have not been published
yet. Therefore, we will shortly outline the most relevant fields in the context of
this thesis, each accompanied by the most prominent implementations for the
respective field.

In general, the existing platforms will be categorized into five main categories.
The categories used here are Auto-Graders, Code Challenges and Riddles, Re-
cruiting Platforms, Bounty Hunt Marketplaces, Online IDEs and Course Plat-
forms. The separation between the categories, especially for the categories code
challenge platforms and interview platforms is often di�cult and was done de-
pending on the main use case of the platform, i.e., recruiting is the main revenue
source for interview platforms’ business models.

19 see https://www.docker.com

https://www.docker.com

38 2 Background

Auto-Graders
Auto-Graders are basically programs suites, that run students’ submitted
solutions against a collection of hidden and visible unit tests in order to
provide automatic grading. Most online programming platforms comprise an
auto-grader. Therefore, the solutions mentioned here are distinguished from
the others because they specifically focus on the very task of auto-grading
and do not provide additional content or an online Integrated Development
Environment (IDE) alongside them. Auto-graders are mostly found in the
academic field.

One of the first published auto-graders in the scientific domain is TRY, pub-
lished by Kenneth Reek [124] in 1989. Based on the UNIX shell, it allowed
students to submit their programs and enabled a secure execution of stu-
dents’ programs against supplied test files to support grading.

The next major step was provided with a graphical user interface and the
support of di↵erent test categories in the tool ASSYST, developed by Jackson
and Usher from the University of Liverpool in 1997 [68]. Despite being a very
early tool, it already separated and supported assessment categories such as
correctness (solution passes unit tests), e�ciency (CPU time spent, number
of statements executed), style (e.g. indentation, comment ratio), complexity
(McCabe’s cyclomatic complexity metric [102]), and test data adequacy (test
coverage). A recent version of ASSYST is not available as maintenance has
stopped.

Most similar is Web-CAT20, being developed at the Virginia Polytechnic
Institute and State University (Virginia Tech) since 2003 as an open-source
auto-grader primarily intended to teach students test-driven development
(TDD) [40]. It integrates via (LTI) and currently supports unit tests as
well as static code analysis. Development activity on GitHub shows a stable
software with some occasional bug-fixes during the last years, however, no
new substantial features have been added recently.

JACK is a system for computer-aided assessments and exercises being devel-
oped at the University of Duisburg Essen. It focuses on Java and C++ exer-
cises and provides capabilities for static and dynamic program checking [154].
Furthermore, it allows generating math exercises with parametrized content
for school usage [136].

DOMJudge and Mooshak are auto-graders primarily intended for program-
ming contests, focusing the presentation on leaderboards and ranking infor-
mation.

The presented auto-graders are designed to support in-class education re-
spectively coordinated contests. As they are “solely” auto-graders, they in-
herently lack capabilities to further support online-education, most notably
a suitable online IDE with advanced feedback mechanisms surpassing the
mere passing of error messages.

20 Hyperlinks to the several coding platforms are summarized in the appendix in
Table 9.7.

2.4 Status Quo in Online Programming Education 39

Code Challenges and Riddles
Code challenges, also called code riddles or programming puzzles, are mainly
used for three reasons: as a personal challenge mainly for fun, for hiring sit-
uations, and to solve open issues from other parties being reimbursed with
recognition or cash. The most notable platforms for fun challenges are project
Euler o↵ering mostly mathematical challenges, CodingBat o↵ering Java and
Python Challenges, CodeWars and Sphere Online Judge (SPOJ). Although
slightly di↵erent in their approach, the “daily programmer” subreddit post-
ing a challenge each day and the codegolf sub-exchange from Stack Exchange
are worth to be mentioned here, as they have large community impact.

Another di↵erent approach to learning programming via code challenges are
coding games, such as CodinGame, and CodeCombat. They embed algorith-
mic problems within game scenarios and are therefore often more appealing
to younger people.

Usually, challenges can be solved in almost all established programming lan-
guages (including OOP languages such as Java, C++, Python, and Clojure
as well as scripting languages such as Javascript or Lua). Free selection of
the used programming language is possible, because code challenges often
only test for correct output values, whereas the games require the students
to call specific methods of their supplied “protagonist” objects.

These exercise collections mostly address already experienced programmers,
as prior knowledge is required to interpret the abstract problem description
with no additional learning material provided.

Recruiting Platforms
Especially with regards to interview and recruiting platforms, the current
number of o↵ered solutions is so diverse, that only a small selection of well-
known tools is presented here. HackerRank, HackerEarth, Codility, Coder-
Byte, Qualified, and CodeSignal basically all o↵er the same product: an
online IDE with a shared editor for coding exercises in technical recruiting.
Several recruiting platforms come with challenges (such as HackerRank’s
Interview Preparation Kit, HackerEarth’s CodeMonk list, or the separate
platform CodeWars mentioned above which is based on Qualified). The plat-
forms encourage users to solve the challenges in order to test and improve
their programming knowledge. From the company side, this is intended to
do fingerprinting on their users, thereby generating valuable data to improve
their matching processes and promote hiring chances.

Bounty Hunt Marketplaces
TopCoder and Bountify each o↵er a marketplace for developers to solve open
issues against payment. These commercial crowdsourcing platforms separate
from other task or job matching agencies through their sole focus on software
development. Both platforms list code review and debugging tasks. With a
focus on data science, Kaggle o↵ers an additional marketplace revolving
around data analysis problems.

As a free alternative, exercism allows to download source code with open
issues to be solved. It focuses on code practice and mentoring for individual

40 2 Background

growth. Same as the commercial platforms, exercism primarily acts as a
“marketplace” and does not come with a code editor.

Feedback on programming code is therefore a valuable asset being traded or
gifted on public platforms.

Online IDEs
The mentioned online IDEs focus on technical aspects and feature support
to distinguish themselves. Educational content is not o↵ered in the projects
itself. In this overview, we focus on text-based IDEs, omitting block-based
IDEs like Scratch or its modifications BYOB, Chirp, or Snap! used on well-
known platforms such as code.org. The reason for this is the fundamental
di↵erent approach. Although we considered doing the initial introduction to
abstraction via variables and control structures with block-based languages,
we decided against this approach. This decision was mainly made due to the
possible hurdle that students face when required to use a text-based IDE
and the danger of scaring away both younger and older participants with a
programming environment that is deemed to look too playful and childish.

The most relevant internal di↵erence between di↵erent text-based online
IDEs is the fact whether they run user code server-side or client-side. Client-
side IDEs must execute all code locally in the browser, operating systems
containing potentially malicious code in a sandboxed environment. This
comes with two advantages: (1) it eliminates all security issues for potential
course instructors when running unknown code and (2) keeps CPU load local,
preventing peaks and overload situations on servers on imminent deadlines.
As browsers can only run JavaScript in their execution engines, the most
common approach is to compile student supplied code from other languages
to JavaScript.

JSFiddle and CodePen are well known minimal javascript and CSS render-
ing solutions without any direct integrations into MOOC grading available.
Such solutions are mainly used to showcase small solutions with regard to
web-development problems. However, by additionally supplying obfuscated
JavaScript that transforms students’ output to a keyword to be entered in
a MOOC quiz, these client-side solutions already o↵er some basic assess-
ment options [145]. Quite similar is the live-editor of the Khan academy.
It is used for introductory courses in the Khan academy and additionally
o↵ers a block-based editor frontend. Going further with regard to available
programming languages, Skulpt o↵ers a Python environment emulated via
JavaScript, whereas Opal o↵ers the same for Ruby and ClojureScript for
Clojure. Weblinux from Rémi Sharrock even emulates a Linux environment
in JavaScript, which is additionally able to compile C code [140].

Server-side IDEs o↵er a much higher variety of supported languages and tool-
ing, like a debugger for example. Given the improved functionality, server-
side IDEs often resemble the look of desktop IDEs to o↵er a coherent and
intuitive user interface. The greater flexibility comes at the price to carry
out CPU intensive workloads, such as compiling and running student-specific
code, centralized on a server. On the other side, this also allows the platform
operator to gather additional data to improve.

2.4 Status Quo in Online Programming Education 41

Gitpod, repl.it, and CodeAnywhere are commercial server-side code exe-
cution platforms. repl.it further o↵ers a paid extension called “classroom”
aimed at in-class usage providing functionality specific for teachers and their
students. Codio is a commercial platform focusing on computer science ed-
ucation in high schools and universities, o↵ering pre-built learning material
as well as authoring tools for instructors. Institutions have to buy yearly
licenses based on the number of students they wish to train.

Microsoft o↵ers Small Basic Online free of charge, an online environment
especially to help students transition from block-based coding to text-based
coding using a variant of the BASIC programming language.

Next to commercial o↵erings, there are also open-source solutions for server-
side online IDEs. Under the umbrella of the Eclipse foundation, there are
three projects that count as general online IDEs: Orion, CHE, and Theia.
Orion is the oldest of the three mentioned ones and basically consists of
two parts: a client representing the IDE frontend and a server used for com-
piling and running code. The client and server, despite being two di↵erent
modules, are however quite depending on each other, reducing flexibility to
adjust or replace program parts. CHE builds upon Orion and uses the same
code editor, but replaced parts of the server and shifted the focus towards
managing workspaces. Workspaces are kept inside docker containers, making
them easily shareable and transferable. Theia is the most recent project of
the three mentioned, building on CHE technology. It uses the CHE backend
server but replaces the frontend client. Older Java GWT based technology
was replaced with a more recent TypeScript application, furthermore re-
ducing the coupling between client and server with the aim to enable the
frontend being used on other backends as well.

codeboard.io, is an academic-based open source project very similar to
CodeOcean. It was started by Christian Estler at the ETH Zurich’s Chair of
Software Engineering and published to Github on December 2015. Its main
use cases are supporting programming MOOCs as well as on-campus educa-
tion. From the user interface, it closer resembles the look of a full-fledged IDE
such as Eclipse, and allows every user to create new exercises (or projects in
their terms). It was used in an accompanying MOOC by the ETH Zürich on
edX in 2015 and also by an Introductory Java MOOC by Universidad Car-
los III de Madrid in 2018. Development seems to have stopped in January
2016, leaving it feature-complete and “‘MOOC proven” but without ongoing
development.

PythonTutor has a di↵erent target direction: it allows to visualize pieces of
code, including the program flow and object structures. Despite the name,
it supports a variety of languages including Java, C++, and Ruby. Another
key feature is the option to help other students struggling with their code in
a synchronous session. Editor content and program output are synchronized,
while o↵ering the participants a chat session to communicate.

Summarizing, online IDEs are available in di↵erent variants, each with ad-
vantages and disadvantages. For our intended usage o↵ering free Java and
Python courses starting in 2015 and complying with German privacy poli-
cies, the requirements lead to the development of the program execution
platform CodeOcean, further described in Chapter 4.

42 2 Background

Programming Course Platforms
The largest course platforms solely focused on programming are Pluralsight’s
CodeSchool, Codecadamy, Treehouse, and CodeAvengers. All platforms re-
quire a subscription for productive usage (with monthly costs ranging be-
tween 20 and 40 USD). They each o↵er di↵erent trial models (Codecadamy
o↵ers small intro courses for free, while the other platforms o↵er trial periods
between 7 and 30 days).

Content and production quality is high on all three platforms: they o↵er
individually scripted, professionally edited videos and for some courses also
coherent storylines. Each of these three platforms uses a customized online
IDE, o↵ering all required functionality. Treehouse also o↵ers subscriptions
including personalized feedback on code, priced at 199 USD per month.

A mostly free alternative is SoloLearn, usable without a paid subscription.
Content presentation is mainly via text and quizzes, with occasionally em-
bedded programming exercises. Stepik, a course platform mostly featuring
Russian content, is another free alternative. Content is mostly delivered via
text, with pictures and videos embedded occasionally only. For code execu-
tion, Stepik uses repl.it.

Programming course platforms thus either require a subscription fee to access
high-quality material or only o↵er basic content without coherent course
videos.

Definition: Programming MOOC

In the following, when we speak of a programming MOOC, we refer to a pro-
gramming course satisfying all MOOC criteria. This means that the course is
massive (in our case more than 5,000 students), open (available for everyone,
usually free of charge) and delivered online. On top of that, a programming
MOOC has to o↵er an opportunity to practically try out the conveyed con-
cepts, thus it has to provide an online code execution platform (or a client-side
browser alternative) with embedded exercises. Last, we demand the exercises to
be an integral part of the grading mechanism, thereby requiring the execution
platform to feature an online judge component.

2.4 Status Quo in Online Programming Education 43

2.4.2 Course Platforms: openHPI and openSAP

openHPI is a German MOOC platform developed by the Hasso Plattner In-
stitute (HPI) and hosted at the institute itself. Established in 2012, it focuses
on IT related topics and o↵ers courses in German as well as English. At the
time of writing this thesis, it has over 200,000 registered users with over 600,000
course-enrollments in total. The typical user interface for a student is shown in
Figure 2.4.

Figure 2.4: Typical impression of an openHPI course from the students’
perspective.

Students follow a course schedule usually divided into weeks and progress
through videos, self-test quizzes, graded assignments, peer-reviewed team-tasks,
and additional learning material, such as custom reading material, book chap-
ters, or even practical exercises and games. Over the course runtime, students
gather points by completing graded assignments. If they access at least 50% of
the o↵ered learning material, they receive a “Confirmation of Participation” at
the course end, and if they managed to score more than 50% of the maximum
possible score, they are additionally awarded a graded “Record of Achievement”.
The course forum is the central place for interaction between students, with ad-
ditional sub-forums available reflecting the weekly course structures.

Additional MOOC platforms, such as openSAP, openWHO, and mooc.house are
also running on the same software, adding further huge amounts of users served
by the system (e.g. for openSAP over 800,000 students with over 3.4 million
course enrollments).

44 2 Background

Starting from a heavily customized Canvas system21, the software was replaced
by a custom-built microservice architecture mostly written in Ruby, to allow
for a better customization towards the needs of a MOOC platform. The distin-
guished situation to provide content on the one hand, and control the backend
of the platform on the other hand, provides the HPI with the opportunity to
adapt both vital parts of MOOCs to support comprehensive research fueled by
full access to anonymized data.

This content and data integration further allowed to easily connect other soft-
ware prototypes to enhance learning success.

One of these additions, which evolved into a stable platform itself, is CodeOcean,
our code execution and grading platform, further described in more technical
detail in Section 4.1. As can be seen in Figure 2.5, students are presented with
a working environment composed of an exercise description at the top and core
parts of an IDE below. Most importantly, students can run and score exercises
with numerous files, with the option to receive automated feedback instantly.
Additionally, they can also download their current progress or reset it, in case
they went into wrong directions and want to start anew. In case they require
help, they further can request help from their fellow students. The concepts
behind these collaborative measures will be explained in the next chapter.

Figure 2.5: Students’ view of CodeOcean on a typical Java exercise.

21 Open source LMS available at https://github.com/instructure/canvas-lms.

https://github.com/instructure/canvas-lms

3

Approaches to Foster Collaboration in MOOCs

Within this chapter, we motivate and explain the specific concepts we imple-
mented to bridge the gap between students and instructors as well as to foster
collaboration in MOOCs. Section 3.1 describes the general approach in order to
improve learning outcomes. In Subsection 3.1 we classify our implemented mea-
sures and also shortly describe approaches that lie outside the main focus of this
thesis. The following sections present the developed approaches to improve learn-
ing results by fostering collaboration in MOOCs and improving content quality.
Based on the structure introduced with Figure 1.1, approaches to better under-
stand struggle (Section 3.2), to intervene on struggling students (Section 3.3),
and to adapt weak course material (Section 3.4) are described in detail. The re-
spective subsections explain the concepts of video tutoring, automatic anomaly
detection of content, just-in-time interventions, code commenting, and tailored
bonus exercises in greater detail. Especially the three concepts mentioned last
will receive increased attention, as they will provide the majority of the data
used in our evaluation. Parts of Subchapter 3.2.1 have been published in [159],
respectively of Subchapters 3.2.4, 3.3.3, and 3.3.4 in [160], and Subchapter 3.3.1
in [163].

3.1 Overall Concept

Improving learning outcomes and bridging the social gap between students and
instructors in MOOCs requires a broad and holistic understanding of the domain
of e-learning. Even though individual proposed changes and interventions are
often situational and specific in terms of their applicability, each measure has
to be carefully embedded into its surroundings in order to yield the desired
results. Clearly outlining all factors that influence the processes to be improved
and describing the steps taken within our approaches in this chapter ensures
confirmability and credibility of the e↵ects measured later on. Therefore, we
will recapitulate the main learnings so far and then connect this information
with approaches to improve the status quo.

To shortly summarize our motivation and background, we are aiming to teach
programming to a large and diverse audience. Hands-on programming exercises
help to improve the quality of ICT education, as they are well suited to convey
practical experience and deepen understanding. However, programming exer-

46 3 Approaches to Foster Collaboration in MOOCs

cises also bear potential for numerous misunderstandings, extended struggle,
and demotivation.

Extended struggle is a threat to learning, therefore we present potential options
to limit those risks. Non-constructive struggle occurs usually when overbur-
dening students by giving them tasks of much too high di�culty. The issue
of assessing prior skill levels and choosing optimal exercises must therefore be
addressed. Necessary information to track students’ progress and measure the
e↵ects of our interventions is subsequently outlined. The proposed and imple-
mented interventions interfere with students’ learning experience and potentially
a↵ect their course results. Upcoming ethical questions were therefore carefully
considered and addressed on the basis of learnings from pre-studies.

The remainder of this chapter presents the ideas and conceptual designs of
our implemented approaches in detail. Video tutoring connects two or more
individuals directly to provide instructors a virtual “glance over the shoulder”
of students and granting the students an experience that is closest to traditional
in-class tutoring.

Given our MOOC setting, it is nonetheless obvious that individual tutoring by
instructors is not feasible with the large number of students in the courses.
We therefore also propose an asynchronous mechanism to provide struggling
students with individual feedback based on crowd-sourcing, which allows to scale
organically with the audience. This measure called “Request for Commentss”
requires students to actively take action and ask for help, which is known to
be a hindrance to acceptance. Humans, consciously or unconsciously, hesitate
to admit a lack of knowledge and approach strangers even when remaining
anonymously if desired. To counter this issue, we also introduce the concept
of just-in-time interventions, which encourage students to take action in the
moment we assume them to be struggling.

A concept facing students that does not require any additional student interac-
tion is the concept of so-called “tailored bonus exercises”. This concept includes
a mechanism that grants students the option to receive additional training ex-
ercises specific to their weaknesses. The tailored exercises are selected based on
information which we extract from a knowledge model build on their previous
progress.

Lastly, we describe our concept of automatic anomaly detection to pinpoint
weak material. This approach grants instructors the option to quickly improve
weak material still within the course runtime. It thus reduces unnecessary demo-
tivation of students who have not yet encountered the previously weak content.

3.1 Overall Concept 47

Overview of Approaches

Considering the background of online education, we outlined in Section 2.1.2
that Kizilcec and Halawa found mainly four areas inducing student dropout [77].
We argued that the two areas “course di�culty” and “format and content” o↵er
potential for improvement, while the other two areas “time issues” and “goals
and expectations” are mostly out of the reach of instructors’ influence.

Reason for Dropout

Ta
ke

n
Ap

pr
oa

ch
Te

ch
ni

ca
l

Ap
pr

oa
ch

es
D

id
ac

tic
al

Ap
pr

oa
ch

es

Difficulty Format & Content

Automatic
Anomaly
Detection

Request
for

Comments

Just-in-Time
Interventions

Tailored Bonus
Exercises

Improved Error
Messages

Video
Conferencing

Peer
Assessments

Cheat Sheets

Deep Dives

Office
Hours

Story
Telling

Playground
Exercises

Community
Building

Figure 3.1: Classification of implemented approaches. Approaches showing
a blue background are explained in greater detail in subsequent chapters.

In Figure 3.1, we classify our approaches and measures based on the reason
for the dropout. We therefore depict the two areas inducing dropouts that are
within our reach, “di�culty” as well as “format and content”, and place each
of our approaches with regard to the reason for dropout we want to counter.

Additionally, we also explained that the social gap found within online edu-
cation has di↵erent dimensions. Albeit being a distance between humans and
therefore already implying to opt for a solution on the social dimension, we
outlined that the gap is essentially induced by current technical shortcomings.

48 3 Approaches to Foster Collaboration in MOOCs

The solutions space therefore spans over the two areas of technical, as well as
didactical approaches.

A clear distinction between those dimensions is not always possible (nor is it fa-
vorable), as the borders are blurry and most approaches have a technical as well
as didactical share, potentially a↵ecting course di�culty as well as the course
format. Nonetheless, the matrix provides a high-level overview and classifies the
implemented measures on the basis of their predominant aspects concerning the
taken approach as well as the tackled dropout reasons.

Within the o↵ered MOOCs, all of the depicted approaches were applied. In the
following, we will first explain the approaches that we will not cover in further
detail in this thesis, and then give an overview of the approaches that build the
foundation for the detailed experiments discussed in this thesis.

In the lower-left quadrant of Figure 3.1, deep dives and cheat sheets can be
found. O↵ering concise summaries of the presented course material potentially
lowers the di�culty, especially for students without prior knowledge. Within
the field of programming, such a cheat sheet can prevent struggles caused by
unknown syntax and misspelled keywords. Further providing additional video
lectures, that cover di�cult topics in greater detail and aim to convey addi-
tional background knowledge, is likely to lower the di�culty for more advanced
students. The supplemental background information as well as additional ex-
amples prevent misconceptions and help in distinguishing the connections and
links between the presented concepts. Deep dives, as well as cheat sheets, did not
require any additional functionality to be implemented in the MOOC platform,
they were simply delivered just as normal course content videos, or download-
able documents respectively. We placed the cheat sheets closer to the technical
approaches area than the deep dives, because they were focused on technical
syntax details regarding their content and the delivery as downloadable doc-
uments separated them further from the normal course workflow centered on
videos. Deep dives, on the other hand, slightly di↵ered from the normal content
presentation style that was followed in the course videos. Facts were presented
in a more direct way, and the examples usually covered more conceptual depth,
instead of explanatory width. With so-called o�ce hours, frequent questions and
often occurring problems were addressed during the course runtime. The video
recordings di↵ered in so far, as they were captured with an ordinary webcam,
instead of employing the recording studio, resulting in a more relaxed and ap-
proachable impression. The playground exercises are in the same area. Coming
without any achievable points and unit tests, they invite students to try out con-
cepts for themselves. Given template code and suggestions for implementation
presented as source code comments thus set a di↵erent stage compared to the
graded exercises in the main course corpus. Additional didactical approaches
mainly di↵ering on the format and content side were the introduction of a story
within the courses and additional community building in the forum. The story
was mainly told via optional videos embedded in the main course flow, and ad-
ditional hints to be found in programming exercises as well as forum threads.
Students were further given the opportunity to influence the progress of the story
to a limited extent, which was implemented via weekly polls. One of the main as-
pects of introducing a story was to add another motivating factor to stay in the
course in order to follow the small story arc revolving around a detective solving

3.1 Overall Concept 49

cases. The other main aspect was to give the students additional, non-technical
topics to discuss about in order to foster community building. Other followed
approaches to help establishing a community were introductory threads invit-
ing participants to introduce themselves and share some of their background,
showcasing of exceptional solutions and other contributed learning material, as
well as actively promoting well-written forum answers of students. By posing
controversial and tricky questions within ungraded self-tests, it was possible
to further spark discussions in the course forum. All these approaches did not
require changes on the MOOC platform, as they either completely reused the
available options (community building, playground exercises), or just required
slight alterations (storytelling decisions via polls implemented as self-tests, or
o�ce hour videos created within a di↵erent production pipeline) of existing
processes.

Approaches that required technical changes are for example improved error mes-
sages that are displayed within the programming exercises. Additional parsing
and translation steps of occurring errors had to be introduced in order to make
them technically possible. Because enhanced error messages do not a↵ect any
student-workflows in learning, and primarily aim to lower the di�culty by im-
proving the understandability of the feedback, we still placed it on the border be-
tween technical and didactical approach on the di�culty side of the figure. Peer
assessments, although heavily influencing students’ workflows, were also placed
on the border between the technical approaches and the didactical approaches.
They require many technical capabilities to be applicable, including an initial
assignment of work to be carried out, formation of groups for so-called group-
peer assessments, or numerous paths for exception handling to cope with all
sorts of anomalies that occur within a group of thousands of students. However,
peer assessments also heavily influence the didactical dimension. Submissions
are no longer graded by an automatic test, but are judged by fellow students on
the basis of pre-defined rubrics and open-ended feedback. Aspects such as docu-
mentation and understandability of supplied solutions massively rise in impact
compared to the previous, unrelenting focus on correct syntax due to technical
reasons. Therefore, given both the high technical requirements and impact, as
well as the great didactical change, peer assessment was still placed between
the two vertical areas. Concerning the horizontal distinction on the basis of the
potential dropout reason ranging between content di�culty on the one hand
and format and content on the other hand, peer assessments are clearly lo-
cated on the format and content side. Through peer assessment, di�culty is not
lowered at all. Creating, assessing and grading submissions as part of the peer
assessments is of higher di�culty than most other exercises and requires initial
training. With regard to the format of the exercise, peer assessments come with
plenty of other quality criteria, thereby training important aspects otherwise
neglected due to technical shortcomings. More details concerning the complex
of peer assessments can be found in the work of Staubitz et al. [147, 148, 149].

The remaining four approaches, video conferencing, just-in-time interventions,
Request for Commentss, and tailored bonus exercises will be covered in larger
detail throughout this thesis, as they contribute to a large part of our experi-
ments. While explaining the conceptual thoughts behind the approaches, their
implementation and also the caused e↵ects later, we will still classify their usage
and the resulting placement in the matrix for reasons of completeness here.

50 3 Approaches to Foster Collaboration in MOOCs

Video Conferencing is placed exactly in the middle. Tutoring done via video con-
ferencing a↵ects exercise di�culties as reasoned in compliance with Vygotsky’s
theory [169]. Having a live video session also o↵ers a completely di↵erent format
with fully individual content. The tutoring session is furthermore a didactical
approach, which however can only be carried out relying on numerous techni-
cal services ensuring a lag-less connection and synchrony of content between
participants.

Request for Commentss are a technical approach, aiming to o↵er individual help
for struggling students. The concept builds on top of the existing exercises, but
o↵ers help in a di↵erent format, which leads to the decision to place it in the top-
right quadrant. Whether or not the di�culty is lowered or adapted depends on
the answers a student receives, therefore the placement still covers the di�culty
area, while the aspect representing the di↵erent format conceptually prevails.

Just-in-time interventions are a technical approach introduced to further moti-
vate students to reach out for help or interrupt them if they are stuck. Aiming to
especially a↵ect struggling students, this approach mostly tackles the di�culty
area.

Last but not least, tailored bonus exercises are placed as a highly technical
approach focusing on o↵ering additional content. This additional training option
does not lower the di�culty of existing content or come with any additional
explanation. It is intended to pinpoint students’ specific weaknesses by using
gathered progress data and retrieves suitable exercises based on a technical
recommendation algorithm.

Having classified all approaches, we will next explain how we aim to detect strug-
gle and provide additional detail on factors influencing content di�culty, before
describing the design decisions of the technically implemented approaches. The
structure of the subsequent sections follows the actions already visualized within
Figure 1.1, resembling the order of the iterative process we took to develop and
evolve our approaches.

3.2 Understanding Struggle 51

3.2 Understanding Struggle

In order to purposeful intervene on students, instructors or an autonomous
system first needs to detect or infer that a student is currently struggling with
the problem at hand. The most prominent cause for extended struggle is a lack
of knowledge, which may either show as the absence of prior knowledge or the
manifestation of misconceptions impeding students’ progress. In the following
subsections, we outline approaches to understand and detect struggle within
programming MOOCs.

3.2.1 Assessing Prior Knowledge

In general, exercises being considered suitable for the advancement of a student
should either teach a new concept or deepen the understanding of a previously
covered one. As already shortly motivated, the suitability of an exercise for a
student therefore depends on the specific (sub-)topics dealt with and on the
individual perceived di�culty, composed of the:

• Di�culty of the actual steps to solve the exercise
• Prior knowledge of the student
• Expressiveness of the exercise description
• O↵ered templates and hints
• Impact of additionally o↵ered help

The perceived di�culty is most tightly correlated with the students’ knowledge.
In order to propose suitable exercises, it is therefore of vital interest to assess
prior knowledge of students. In the following, we present three di↵erent ap-
proaches to assess the prior knowledge, with a focus on knowledge in the field
of programming and testing.

On the most abstract level, we follow three approaches to approximate the actual
skill:

1. Ask the students directly how they would classify their prior knowledge.

2. Ask (multiple-choice) questions of di↵ering di�culty to determine their
knowledge on an abstract level.

3. Incorporate metrics of the ongoing course. As we focus on programming
exercises, we can analyze events specific to programming, such as unit tests
solved or the number of errors produced.

The first approach, simply asking, is the most trivial and might seem superficial
at first. However, pedagogical and psychological research has shown, that it is
reliable at least in in-class settings [13, 133].

The accuracy of the second approach highly depends on the questions asked.
The result should allow to distinguish between students that have no knowledge
and basic knowledge as well as advanced or even expert knowledge. Finding a
minimal set of such questions is non-trivial itself, as course instructors need to
guess the actual di�culty of their survey questions with regards to the expected

52 3 Approaches to Foster Collaboration in MOOCs

audience. Albeit testing these questions within a dry-run with a group of col-
leagues, friends, and students in di↵erent stages, anticipating the distribution
of students enrolling into a course is hard.

The third approach requires more e↵ort in data acquisition and interpretation.
Furthermore, the metrics need to be based on a su�cient number of exercises
solved before being treated as reliable, as outliers are especially probable during
first tries and would strongly distort conclusions due to the sparse data founda-
tion. This postpones the availability of such evaluations on metric data to later
course stages.

In general, all three approaches should lead to similar results or even support
each other. The accuracy of the approaches however di↵ers and is threatened
by di↵erent factors. For example, students most likely do not voice that the
content was too di�cult when following the first approach - they will just leave
the course. However, the resulting dropouts or stopouts22 will be reflected in
the metrics of the third approach.

With regard to the reliability of the approaches, we assume that approaches one
and two will be rather similar and have to be treated with caution. Not because
they do not work in general, but because the self-assessment might be skewed
much stronger than in a normal class setting due to a lack of fellows to compare
oneself with, and because the self-test questions might have been too easy or
too hard for the audience. As approach three reflects part of the actual progress,
it should be regarded as most reliable and in doubt be trusted in favor of the
other approaches.

In order to judge the suitability of exercises already conducted in retrospective,
we consider the following data to be of most interest: First, the unique accesses
of students to an exercise will reflect whether a particular exercise being much
too di�cult caused students to leave the course. Second, the reached scores will
show whether an exercise was too hard to be completed in general. Third, the
required timespan to solve the exercise will give further detail on the di�culty of
an exercise even if the majority of students successfully completed the exercise.

22 Stopouts are temporary dropouts with students coming back after some time.

3.2 Understanding Struggle 53

3.2.2 Tracking Progress

In general, MOOCs can have any structure, from almost no structure at all,
to fully structured (x)MOOCs that are relatively closely resembling traditional
frontal classes. The grade of structure often also depends on the topics dealt
with. Areas that are suited for so-called “Rhizomatic Learning” as coined by
Dave Cormier, an approach aiming at maximal individual flexibility and letting
the audience decide the content orientation [28], often lie in the sociological or
languages field, whereas technical courses tend to have more structure in general.
As courses on openHPI deal with IT related topics, the platform is mostly
designed for sequential progress through learning units being released weekly.
For general computer science courses, like “In-Memory Data Management”,
“Internet Security” or “Semantic Web”, learning progress is usually checked
with optional self-tests that are intertwined with the video lectures. This leads
students to alternate between consuming videos to rather passively acquire new
content, and actively repeating or scrutinizing the presented facts via multiple-
choice quizzes. For teaching teams and platform operators, this also allows to
track learning progress and detect potential weaknesses in students’ knowledge.

Programming courses with practical exercises o↵er additional metrics. Given
the technical nature of the exercises and the necessity to evaluate students’
products, textual source code, against a central grading tool, thus o↵ers further
proxies specific to programming, such as errors or comment ratios.

The essence of learning, a gain in understanding, the ability to put it into prac-
tice, and building on top of acquired knowledge can not be measured directly.
Therefore, it has to be proxied with metrics such as scores or other numeric
values derived from students’ progress and learning products.

3.2.3 Measuring E↵ects

When conducting experiments and applying interventions, the way of measuring
the outcomes of the induced changes has a high impact towards the evaluation.
Findings gathered from qualitative user studies and interviews might bring up
di↵erent aspects than the results of a user survey, which in turn can bring up
di↵erent impressions compared to those learnings drawn from learning analytics
data. The ultimate goal for any research is to uncover correlations and achieve
findings that are reproducible and prove to be robust concerning the underlying
experiment setup, i.e., in our case the participant group resembling from our
audience of MOOC students. Such generalizable results are likely to achieve a
larger impact and provoke further experiments of fellow researchers. They are
thus capable of providing a lasting positive e↵ect to the field, in addition to
advancing the status quo in the respective research area. For the experiments
carried out in the context of this thesis, feedback and results were gathered
through all three aforementioned approaches. Interviews on the basis of low-
fidelity prototypes granted first insights into the respective research area and
provided feedback with regard to the general applicability of the taken approach.
This initial knowledge was then broadened and validated via qualitative user
studies in controlled environments and subsequent tests in smaller courses via
surveys. Given positive outcomes and the prospect of a generalizable learning,
the experiment was repeated under more restrictive settings, following a rigid ex-

54 3 Approaches to Foster Collaboration in MOOCs

periment design aiming to answer previously postulated hypotheses. The results
presented in this thesis were mostly taken from this third phase of experimenta-
tion, additional information on previous tests can be found in our publications
belonging to the respective approaches.

Interview feedback and even survey results are a↵ected by a positive bias of the
participants. Users of a prototype often show a tendency to actively find and
mention positive aspects of the prototype, fueled by the urge to appreciate the
e↵ort and to help the creator positively finishing the research. This tendency
will be further outlined in the evaluation chapter. Another bias which influences
the data collection within MOOCs is the fact that surveys are usually conducted
at the end of the course runtime. With weaker students having dropped out in
earlier stages, stronger students have more impact on the results of course-end
surveys, leading to potentially skewed data. For this reason, the highest reliabil-
ity and quality is given for the factual data that is continuously collected by the
underlying system. This factual data lies outside of students’ direct influence.
Therefore it is una↵ected of their conscious as well as subconscious desire to
help or comply and describes the actual e↵ects in the most objective way. The
only residing bias is that the share of data coming from students who perform
above average will be overrepresented for systemic reasons. Students’ that quit
the course do no longer take exercises and consequently also do no longer con-
tribute data. Having that issue in mind however allows to partly mitigate this
problem, e.g., by restricting certain evaluations to exercises presented early in
a course if necessary.

Measured Metrics

Reducing non-constructive struggle requires detecting struggle at first. Di↵erent
metrics can be employed to gain information about the progress students are
making and potential hardships they might endure. In general, metrics can be
divided into two main categories: those that represent finite results, and those
that contain additional information that further describes the process of lead-
ing to these results. Into the first category fall metrics such as course scores,
results of unit tests, the program length and its comment ratio. This data are
particularly useful to reconstruct the situation a student was in. While impor-
tant information such as external factors a↵ecting the situation and mood of a
student (e.g. time limits due to an upcoming appointment, potentially adding
stress) cannot be gathered, the present factors are nonetheless an incomplete,
but representative collection of facts that frame the setting of the students’ work
on the exercises. The metrics of the second category are observations and mea-
surements that allow for deeper insights into the students’ progress. Information
about how long a student needed in total, how many sessions were necessary,
and what additional information was copied in from other websites helps to un-
derstand and retrace the journey a student took in order to achieve the results
subsumed by the metrics of the first category.

The gathered metrics are presented in the following overview, along with addi-
tional details what information can be derived from them.

3.2 Understanding Struggle 55

Course Scores
Achieved scores are the most obvious metric to measure and reflect learning
success. Individual exercise scores indicate mastery of the respective topics
dealt with, the overall course score (represented as the relative percentage
of the maximum score reachable if suitable) allows to draw conclusions of
overall content mastery. Overall scores also mirror students’ diligence to
some extent, as full score is only reachable if consistent attendance until
course end is combined with the willingness to overcome individual hurdles
and misunderstandings.

Unit Tests
Successfully passing individual unit tests shows whether the respective issue
was solved, e.g., a variable was initialized and used in the correct program
context. As the unit tests are manually designed and implemented by the
instructors, the results from these unit tests therefore allow to gather fine-
grained insights about individual students’ problems with regard to the
course topics.

Working Time (including Time of Day)
The amount of time a student spent working on a specific exercise reflects
and comprises three other metrics, which cannot be measured directly: the
diligence of students, encountered problems and struggles, as well as prior
knowledge and overall mastery of a topic. If students already have prior
knowledge about a topic, they will finish the exercise faster than the overall
mean. Students encountering issues will need significantly longer. If students
need longer but succeed with full score in the end, this reflects their diligence.
Students quitting the exercise without full score usually gave up on this
exercise, only a fraction of them was interrupted by real-life duties and
just forgot to commence with the exercise later on. The localized time of
day when students are studying allows to infer on the learning habits the
students developed.

Sessions Lengths
Average session lengths allow to draw conclusions on students’ learning
styles, whether they prefer multiple shorter sessions (e.g. studying of a unit
each day in their lunch break) or less frequent, but longer sessions (e.g. the
entire weekly content on one day during the weekend).

Program Runs and Detection of “Bursts” (until high score is reached)
Specific to programming exercises, the absolute number of program runs re-
flects the number of tries necessary to reach a working solution. Within first
runs, syntax issues may occur, whereas later runs usually are used to fine-
tune the program output towards the expected results, both with regard to
formatting as well as semantic correctness. Frequent requests of program
runs within a short time frame (bursts), perhaps even without any changes
on the source code, serve as an indicator for frustration, because this be-
havior usually results from students’ disbelieve that the encountered error
is rooted in their contribution.

56 3 Approaches to Foster Collaboration in MOOCs

Errors (until high score is reached)
The number of occurred errors, both runtime errors as well as compile-time
errors, is another indicator for potential frustration. Compile-time errors
usually stem from wrong syntax and are comparably easy to fix for advanced
programmers. Considering the potentially cryptic compiler output, this how-
ever is still challenging for beginners. Runtime errors are often harder to fix,
e.g., null pointer exceptions or array index out of bounds exceptions in Java
require more steps in order to pinpoint the origin of the error. In general,
all errors hinder students’ progress and usually mark a larger threat than
just an increase in program runs to, e.g., format the program output.

Gaps
Extended gaps in the development process show that a student was not
able to complete an exercise in one go. Urgent tasks or distractions like
an incoming telephone call may of course also cause gaps not related to
the exercise at hand, however, these e↵ects are normally distributed and
therefore do not impair the suitability of the metric for indicating struggles
of individual students or issues within specific exercises.

Copy and Paste Events
Copying identifiers or code fragments is a common behavior, also for expe-
rienced programmers. Copy and paste occurrences however also can arise
from a lack of information, for example, if complete structures like a loop
header, or a sequence of statements, e.g., to swap variable contents or find
the smallest element of an array, are copied. Within an exercise, having
students pasting content that was not copied from the exercise page itself,
therefore indicates missing information and might hint towards experienced
struggle.

Characters per Time
The typing speed of students can yield information about their skill level.
Higher speeds, especially for sequences typically used in programming such
as keywords or loop headers, express higher familiarity or even usage of the
so-called muscle memory23.

Program Metrics: Program Runtime, Length, and Comment Ratio
The program runtime reflects the e�ciency of created programs. Despite
being of interest in general, given the introductory programming exercises
we deal with, this measure only adds limited value for our research. The
length of a program can hint towards more experience if a student submits
a working solution that is shorter than others. However, programs being too
short often lack expressivity, leaving this metric to be treated with caution.
The comment ratio, excluding given comments from the supplied template
usually either reflects a better structure or particularly hard program parts.
In general, a higher comment ratio indicates a better designed and docu-
mented program, resulting in better program quality.

23 E↵ect that repeated movements form procedural memory, allowing, e.g., sequences
to be typed at greater speed with reduced conscious e↵ort.

3.2 Understanding Struggle 57

Derived Metrics: Understandability, Error Proneness
A measure for understandability can be constructed as a combination of
the program length being within an expected range (neither too short, hint-
ing at di�cult code, nor too long, hinting at spaghetti code) and a decent
comment ratio for the amount of code. Error proneness can, for example,
be approximated by averaging the errors per successful run, potentially im-
proving the metric by excluding consecutive correct runs showing only minor
source code changes. Derived metrics have the downside that a change in
one of the influencing factors might cause an extreme e↵ect on the resulting
value and that the added layer when combining factors increases complexity,
thus potentially lowering comprehensibility and expressiveness.

External Metrics: Quiz Scores, Forum Usage
Further metrics originating from the course platform, such as course progress,
quiz scores, the forum usage, or video speed settings can be employed to gain
further insight about students’ success and behavior. However, the larger the
conceptual distance of the metric to the task we want to focus on, the less
expressive the metrics are and the more side e↵ects might distort the num-
bers. Of the many metrics potentially available on the platform side, we
argue that the most suitable ones for struggle detection are the initial quiz
scores of self-tests and the forum usage. Eventually, we abstained from using
these data, as the correlation of the self-test scores and experienced struggle
was lower than expected, and the mapping of forum posts asking for help
to the respective exercises was too error-prone.

3.2.4 Identifying Struggling Students

To help struggling students we first need a method for identifying them. The
most obvious metrics for that are the number of program executions and the av-
erage working times. As the working times correlate strongly (Pearson coe�cient
of 0.9) with the amount of code executions and probably better reflect frustra-
tion levels, we decided on using working times. We defined the 75th percentile of
students to be regarded as considerable slower than their peers, therefore being
potentially struggling or stuck and issued interventions on them. This decision
was backed by an analysis of the working times of already existing exercises
from the Java course o↵ered in 2015 on openHPI.

58 3 Approaches to Foster Collaboration in MOOCs

In Figure 3.2, we see students’ working times for an exercise of average di�culty
from the Java course run in 2018 with outliers removed. The distribution is
skewed to the left, meaning that most students finish the exercises quicker than
the average duration (dotted vertical line), most likely without encountering any
problems. The 75th percentile (solid vertical line) of working time was chosen as
a cuto↵ to keep a relatively large treatment group in order to gather data, with
the accepted risk of an increased ratio of false positives, interrupting students
who are not yet struggling. Other potential cuto↵ metrics which we considered
but discarded were fixed times, averages, and lower percentiles (like the median).
Fixed times do not qualify as a suitable cuto↵ metric, as the exercises are of
di↵erent di�culty and complexity, thus the time needed to solve them varies
and can hardly be predicted beforehand. Taking the average as a metric would
classify too many students as struggling students and further has the problem
that outliers have a too strong impact and need to be removed. The median
(50th percentile) is not suited, because we only want to indicate students who
are significantly slower in solving the exercises. Other metrics, such as taking
a closer look on the code structure or detecting patterns on submissions, for
example bursts on trying to run erroneous code as an indicator for frustration,
propose worthwhile future work. This limited approach, though probably not
yet reaching the full potential, however, allowed us to practically address a series
of problems described in the next sections.

��������	�
������
��

�
�

�
�
��
�
��
�
��
�
�
�
��

� �� �� ��
�

���

���

���

��� �
�
�
�
��
�
��
�

�
�!
�"
�
�
�
��#�

��
�
��
�

Figure 3.2: Working time distributions of students for a typical exercise.

3.3 Intervening on Students

In the following subsections, our concepts of video tutoring, code commenting,
situationally intervening on students with popup windows, providing tailored
bonus exercises, and automatically detecting weak material will be described.
All approaches have been tested and evaluated within several MOOCs. They
are presented here in similar detail, though the experiments on the concepts of
tailored bonus exercises and code commenting, combined with situational inter-
ventions, will contribute the largest share of research outcomes and therefore
dominate the evaluation section later on.

3.3 Intervening on Students 59

3.3.1 Video Tutoring

Motivation

In Section 1 we already brought up the issue of social distance between students
and course instructors. This distance can be bridged by di↵erent means: course
announcements for information from the instructors, surveys as a return chan-
nel for student feedback, and forum communication for bidirectional exchange.
These means, however, have several shortcomings: they are textual and they
are asynchronous. Textual feedback only covers the visual sense by reading and
makes it di�cult to express conceptual misunderstandings or provide intuitive
explanations. The asynchronous nature furthermore makes it more di�cult to
engage in a vivid conversation, as further inquiry and back and forth discussions
are often stretched over a large timespan. While studies indicate that having
only textual learning material does not lower learning outcomes significantly
compared to mixed material (including images, audio, or video) [106], student
engagement is a↵ected by the presentation medium and style [56]. Production
value has only little impact on video watching and learning engagement. In con-
trast, the actual content and the appropriate means of delivery are decisive [56].

O↵ering other approaches for delivery of content and to establish additional
connections between students therefore might yield yet untapped benefits.

Given the significant role collaboration plays in practical computer science ed-
ucation on campus, it becomes evident that nowadays online course platforms
mostly lack the necessary collaborative capabilities. In the following, we propose
and conceptualize a solution to support collaborative programming through
video conferencing for practical exercises employed in MOOC contexts. Sub-
stantial parts of the motivation for this prototype as well as our results and
learnings from the experiments can also be found in our publication “Video
Conferencing as a Peephole to MOOC Participants” [163].

Upon designing an actual implementation, we evaluated the potential of such
a solution, as well as doubts and objections students voiced. With a survey
placed within a MOOC in 2014, we learned that the survey participants valued
the possibilities that video conferencing can provide. Existing and remaining
concerns were mostly centered around privacy issues. Based on these learnings,
we designed an initial prototype and set the surrounding conditions as well as
boundaries for the first tests.

Surrounding Conditions for Collaborative Work in MOOCs

Running a MOOC is an intensive and busy time for the involved, often rather
small teaching team. Supervising and nurturing discussions, fixing glitches in
the course material, and keeping all technical dependencies running is enough
to fill each workday during the runtime of a course. Particularly courses with ex-
perimental or interactive parts require additional e↵orts to fix and enhance the
tooling used. Therefore, the majority of content is produced before the course
runtime. During the course runtime, course conductors mostly moderate the
forums, record additional “o�ce hours” videos and supervise the help desk to
interact with the students. The comparison of campus centered teaching activi-
ties and distance education shows several di↵erences concerning the engagement
and communication behavior.

60 3 Approaches to Foster Collaboration in MOOCs

While the core principles of teaching remain the same, the surrounding con-
ditions in a MOOC are di↵erent. Pea describes that collaborative e↵orts and
the sharing of di↵erent perspectives are required to acquire knowledge [117].
This has been missing until the recent trend to integrate collaborative concepts
into MOOCs [85, 150, 151]. Group-based experiences are supposed to improve
“satisfaction, persistence and intellectual and social development” [23]. They
are therefore relevant not only to on-campus courses, but to students taking
part in online courses as well. Chen et al. measured in 2008 that, compared to
on-campus students, remote participants taking the classes online were at least
as engaged when it came to asking questions or contributing to the class dis-
cussion. Yet they were significantly less involved in working with other students
to prepare class assignments or projects [23]. Since then, multiple approaches
to improve collaboration among MOOC students, such as openHPI’s Collab
Spaces [150] or Stanford’s Talkabout [85], have emerged.

To improve engagement, it is beneficial to focus o↵ered support on actually
occurred problems and recent issues. When using specific issues, engagement
will be high for individual students who faced that issue, but given the range
of possible problems, the number of reached students remains comparably low.
With Talkabout or Collab Spaces, general technical means o↵ering possibilities
to discuss with interested subgroups are given. However, following this direction
shifts the e↵ort of instructors from lecturing into the direction of so-called ap-
prenticeship, having one higher skilled “master” of a topic guiding a small group
of lower-skilled “apprentices”. Even though such apprenticeship approaches are
beneficial to the students’ learning outcome, it is not feasible for instructors to
mentor and support the thousands of students who participate in online courses
individually [107, 167, 169]. An option to further scale the impact might be
moving the discussion back to general, public support forums. Experiments in
former courses showed, that even if dedicated support forums exist, those are
often too impersonal to cause an e↵ect. First, forum usage su↵ers from the
aforementioned drawbacks, and second, given the specific use case of sponta-
neous help-seeking while programming, the act of asking a question sharply
interrupts the students’ workflow. After one has left the program editor to post
on the forum, one has to check regularly whether an answer was posted, thus
further disrupting the learning e↵orts. In summary, forum-based solutions and
solutions that require instructors to interact with many groups individually, will
not provide an impact due to missing acceptance or scalability.

Still, the benefits of collaboratively working on actual problems in pairs or small
teams should be employed for learning. Especially when working on practical
tasks requiring creative or otherwise mental demanding solutions, teamwork has
proven to be beneficial. In our case of programming, writing code collaboratively
has been promoted in the form of pair programming to help programmers share
learnings and improve their code’s quality [105, 175].

For this reason, we further pursue the approach of video conferencing with an
implementation specifically designed for our use case. A deep integration into
students’ workflow is aimed to mitigate acceptance and usability issues. Further
options to match student pairs on open questions, will help to mitigate the
scalability issues when given a widespread acceptance of the feature.

3.3 Intervening on Students 61

Design Decisions for Video Tutoring in Programming MOOCs

We propose a video conferencing solution integrated into our web-based exe-
cution environment to specifically support remote tutoring sessions. Leveraging
students’ knowledge by enabling them to mentor their peers and by encouraging
them to share their recorded discussions also fosters the scalability of MOOCs.

With regard to the conditions given in programming MOOCs, our system should
meet the following requirements:

1. Pair programming support: Lag-less synchronization of the source code
and program output is crucial to enable a natural development flow.

2. Apprentice becomes master: By encouraging students to help each
other, we o↵er advanced students additional options to grow their knowl-
edge. This further reduces the workload on the teaching team and tutors.

3. Reproducibility and rehearsability: The ability to re-watch tutoring
videos and use them as additional content will foster the e↵ectiveness of
tutoring for wider audiences.

4. No additional plugins, no additional accounts: Installing software
or registering for 3rd party services will discourage usage and thus hinder
adoption.

5. Pairing of Participants: Students asking for help and tutors should be
automatically matched for the best potential outcome.

Pair programming allows us to put the student who is writing code, called
the driver, to be set up in the previously introduced “zone of proximal devel-
opment” [169]. In pair programming, the driver and the observer, the person
tasked with guiding, reflecting and commenting on the code, usually switch roles
after a certain amount of time. For our main use case tutoring, we will work
with fixed roles: the tutor being the observer and the student being the driver.
Having a tutor guiding and helping on problems, allows students to progress
from “tasks they can do alone” to “tasks they can solve with external help”.
There will remain tasks that are still too hard, but usually exercises that are
demanding and require the participant to leave his comfort zone yield the best
learning results [15, 91]. Also the eXtreme Apprenticeship (XA) model suggests
using sca↵olding and mentors to help students. In the context of children’s ed-
ucation, sca↵olding has been described as “the way the adult guides the child’s
learning via focused questions and positive interactions” [8]. For this reason, we
decided to limit the code synchronization to one site, forcing the tutor to ex-
plain all necessary source code changes instead of directly implementing them.
Another benefit of this “guided programming”, where students are lead by the
tutor but need to solve all tasks themselves, is that it e↵ectively circumvents stu-
dents falling into pitfalls that would leave beginners stuck. Especially debugging
sometimes feels cumbersome and demotivates students [175]. Experienced tu-
tors can explain rather cryptic compiler errors and stack traces and help during
debugging, allowing students to focus on their program design and algorithms.
By limiting our approach to pairs of one participant and one tutor, we implic-
itly prevent the “free ride” problem mentioned by McKinsey [105], describing
situations in MOOCs where students just copy existing solutions instead of
developing a solution individually.

62 3 Approaches to Foster Collaboration in MOOCs

The second requirement, apprentices becoming masters, provides for the spe-
cific MOOC setting. While tutoring from teaching assistant to student works
on university course scale, the proportions in MOOCs require a much larger
group of tutors, preferably available over all time zones. Recruiting motivated
and skilled students to take over the role of tutors is therefore necessary. In ad-
dition, students might feel more comfortable with receiving help from a fellow
student, instead of the teaching sta↵ [47]. Naumann et al. found that students
are willing to contribute to forums and often solve issues without the inter-
vention of teaching sta↵, e.g., by sharing pre-existing knowledge or providing
links to external information [110]. The findings of Staubitz et al. [151] also sup-
port this conclusion. The fact that the ability to teach fellow students can be
built up is further demonstrated by Coursera’s24 usage of Community Teaching
Assistants – successful participants of former courses who volunteer to teach
future classes [116]. In order to gain scalability, we propose to build up a po-
tential pool of tutors through the tutoring itself. The main reason not to give
everyone the option to answer open requests is that a synchronous audio and
video connection implies potential threats with regards to privacy. As the tool
supplier, we therefore want to ensure control over at least one side of the tutor-
ing sessions. However, given the workload on the teaching team, we also admit
that additional persons are required, as well. Starting from the group of course
conductors and platform owners, we aim to unlock the tutoring backend for
participants that we had a positive session with and who seem to be qualified
with regards to knowledge as well as attitude. We are further confident that
tutors do not need to be on expert level content-wise, since oftentimes it is al-
ready enough to just give a subtle hint, if necessary at all. Next to sorting out
potential legal issues and carefully selecting potential participants that act as
additional teaching assistants, the implementation has to o↵er an environment
in which students feel confident in asking as well as answering questions. Good
reproducibility and rehearsability allows also students to profit whose skill levels
are above the average and thus simply do not encounter further issues, as well
as students who lack the technical requirements or the extroversion to ask ques-
tions publicly. Synchronizing a recording of the video conference with the editor
content of the student allows other students to track applied code changes and
the discussion that led to these changes. Also adding a further channel to con-
vey information improves the media richness. Apart from the primary use case
within programming assignments, the software can additionally o↵er general
availability of video conferencing to be used within arbitrary group tasks.

24 see https://www.coursera.org

https://www.coursera.org

3.3 Intervening on Students 63

3.3.2 Code Commenting: Request for Comments

Motivation and Surrounding Conditions

We already reasoned that the strict syntax and structure of program code bears
an increased potential for demotivation, especially a↵ecting beginners. In the
first programming MOOCs on openHPI, students were encouraged to paste their
source code into the course forum in order to receive help from instructors and
fellow students. The advice was accepted by some participants, while realistically
the large majority of the audience was not reached due to several reasons:

1. Limited forum usage in general

2. Psychological barrier to post wrong code / admit lack of knowledge

3. Manual labor to transfer the content between platforms

4. Formatting issues

5. Loss of context

A substantial fraction of the audience does not use the forum at all. Just re-
garding the group of students interacting with the forum, the share of students
actually posting content is only about one-third of the persons who are reading
in the forum. Posting incorrect code additionally requires to overcome the psy-
chological hurdle to admit the own lack of knowledge and also share the current
state of work in its broken form. Given that most participants are in the age
between 30 and 50, they already have a position in company hierarchies and
might abstain from posting or at least hesitate to do it, as the post will stay
available potentially forever. Additionally, other hindrances such as the manual
task of copying and pasting the source code between the exercise platform and
the course platform, formatting it in the forum, and adding a suitable intro-
duction to the problem and an appropriate closing text to their post, further
reduce the acceptance of the forum for this use case. On top of all that, exercise
submissions consisting of two or more classes will lose their context if only one
class (or only the potentially faulty function or statements) is copied over. Also
the exercise description, results of unit tests, or program output, was almost
never supplied alongside the pasted source code, leading to additional inquiries.

When other students replied with their advice or potential solutions, even more
shortcomings became visible. Referencing a certain line number is only possible
through manual counting, inserting code between two statements or within a
certain line requires to copy the entire line, and discussions concerning di↵erent
parts of the code will be intertwined in the forum depending on the posting
order.

In summary, the naive, quick and dirty solution of using the forum turned out to
be tedious for students as well as instructors and achieved only limited e↵ects.

64 3 Approaches to Foster Collaboration in MOOCs

Design Decisions for Request for Comments

In order to improve on that situation, we decided to conceptually integrate this
functionality directly into the code execution platform. This allows to tightly
integrate all necessary and available information without further redundancy,
preserving the context, and lowering the mentioned psychological barriers.

The following design decisions were made:

Commenting on Line Basis
Students can comment on each line separately, thereby implicitly preserving
context on the surrounding constructs and forming suitable threads with
respect to the issues dealt with.

Preservation of Context
Each Request for Comment is linked to its respective exercise, allowing
to show the exercise description and also all contributing files, that might
carry helpful information, such as read-only files, templates, or interfaces to
be programmed against.

Enhancement with Program Output and Test Results
Upon requesting comments, the platform will issue a normal program run
producing the standard output, as well as a scoring run resulting in the
test results of the unit tests. This additional information gives advanced
programmers helpful information to pinpoint existing issues and better sup-
port the student asking for help.

The approach was named Requests for Comments (RFCs) and implemented in
our program execution platform CodeOcean.

Initial tests were promising and showed the potential of a well-crafted solution.
Despite the limited technical complexity to implement the necessary program
logic, user permissions and frontend views, feedback from students’ was over-
whelmingly positive and encouraging. Usage showed that the challenges of this
approach did not lie in the technical realization, but in the appropriate and
seamless integration of the feature into the respective workflows. The first pro-
totype allowed students to ask for help by pressing a button above the source
code editor. Before composing the request, the system additionally asked the
students to optionally provide a specific question they have. Acceptance was
given, resulting in a continuous influx of requests, initially not met with enough
students answering to the raised questions.

The process to comment on others’ requests initially required help o↵ering stu-
dents to go to an overview page of all open questions and pick the ones they
preferred. The ordering of presented questions was based on the order of sub-
mission, placing the most recent questions first. The quality of asked questions
di↵ered, with the most prominent issues being “empty” requests without any
question and no changes compared to the exercise template, potentially hop-
ing for a solution. Another issue was that some students spammed requests to
improve the likelihood of receiving an answer. Two quick fixes for these most
common issues of misusing the basic prototype thus were introduced. The first
one was setting a minimum time limit before allowing requests to encourage

3.3 Intervening on Students 65

students to try on their own before longing for help. The second one was the
introduction of a total limit of three open requests per student.

Whenever someone answers to an open request, the student who created the
request and asked the question receives an email with the supplied comment as
well as a link to the respective exercise allowing to commence working on it.

Being an improvement over the previous status quo, the prototype simplified,
encouraged, and structured the help-seeking behavior of students, but only
marginally improved the situation for those writing answers. Instructors and
some very motivated individuals answered all reasonable requests on a daily
basis. Only sustainable for the runtime of the course, and additionally binding
time of instructors on a regular basis, it became clear that given the founda-
tional acceptance of the feature, we needed to provide a better integration of
students who want to potentially help their fellow peers. Liyanagunawardena
et al. showed that a community is able to mentor itself, therefore it was the
obvious next step to better use this potential [96].

In order to achieve a solution that provides organic scaling with the community,
Request for Comments were thus integrated into the main workflow of students
commencing through programming courses. Whenever students finish an exer-
cise with full score, we know that they have passed all unit tests. While this
does not necessarily mean that they fully understood all potential pitfalls, it
ensures that they should, in general, know how to solve the respective exercise.
Therefore, they should also be able to help a struggling fellow having a specific
question concerning this exercise. So in order to let our approach scale, we for-
ward a share of the students who have solved an exercise to an open question
that belongs to the very same exercise they just solved. They are presented with
a message that their score was successfully transmitted and congratulates them
once more on their progress. Afterwards, the message politely asks them to help
out a fellow student that is struggling with the very same exercise they just
solved and that their input is appreciated.

In order to keep the motivation of answering students high, when selecting the
request to forward to, requests with a student supplied question are preferred
over those without a question. To further achieve a certain fairness amongst open
requests and better load balancing in general, we also pick open requests not yet
having received any or only a few comments over those which already received
three or more comments. We decided against presenting students a choice of
open questions to pick from. This was done in order to reduce unnecessary
cognitive load on the one hand and to potentially have more fine-grained control
where to send students on the other hand. Of course, answering a student’s
request remains fully optional for any one of the involved students. However,
we abstained from expressing this too o↵ensively in order to achieve a higher
commenting ratio. The number of times a request for comment is featured,
meaning it is being displayed to another student, is counted in order to be able
to balance out the visibility of requests.

With the aim of enabling a content-centric discussion, all commenting students
can see all other comments being written. Furthermore, they can indicate that
they wish to receive a notification if the author of the request asks a follow-up
question on their comment.

66 3 Approaches to Foster Collaboration in MOOCs

If all issues are solved and all misconceptions have been corrected, hopefully, the
help requesting student finally solves the exercise with full score. In this case,
the system removes the request from the pool of open questions with the goal
to focus available capacities on other submissions. Additionally, after successful
completion, the students are forwarded to their own requests, encouraging them
to manually mark them as solved and allowing them to send a thank you note to
the peers that contributed to the request. The manual marking of the request as
solved yields information that the comments indeed helped in solving the issue.
The option to say thank you was added only later on and demanded by students.
From our perspective, with a working solution, the issue was solved. Much to
our delight, our students however highlighted that learning, especially in this
case, indeed is a social and collaborative e↵ort and thus wanted to express their
gratitude. Feedback especially on this tiny addition on the feature was very
positive and led to several happy students voicing their joy over the friendly
community in the forum.

Now having improved on the advise “giving” side, we noticed that the requesting
side still showed a tendency to be caused by a rather small user base, indicating
that students in need either have not noticed the functionality or were faced with
remaining doubts to use the feature. In order to tackle this issue, we introduced
so-called just-in-time interventions.

3.3.3 Just-in-Time Interventions

Motivation for Situational Interventions

With just-in-time interventions we aim to improve learning success, improve
satisfaction and lower overstrain induced dropout of students of online program-
ming courses. Just-in-time interventions in problem-solving motivates students
to ask for help and feedback when they face an extended struggling period with
an exercise.

To prevent dropouts and increase student satisfaction, we want to help strug-
gling students while they are working on their exercises. As shown in previous
research [159], students often struggled before they dropped out. From forum
comments and other feedback we know that spending too much time is a cause
for students’ dissatisfaction with a course. Therefore, helping students at the
moment when they are stuck is beneficial, allowing to solve their problems be-
fore they lose interest and drop out.

We issue just-in-time interventions to students when we think that they are
struggling or even stuck with an exercise. The purpose of these interventions is
to interrupt the students and motivate them to rethink their approach, review
video lectures, ask for help or do other exercises first.

Design Decisions for Intervening on Struggling Students

Interruptions can cause eye-opening moments by inducing a metaphorical step
back, helping to overcome mental barriers caused by focusing too much on a
certain detail. At the same time, interrupting students in their workflow, even
when enacted with positive intentions, bears the risk of impairing the learning
experience. They can also cause annoyance when interrupting a productive line

3.3 Intervening on Students 67

of thought, or even lead to anger if they are too coercing. The actually caused
e↵ect does not just depend on the timing, but also on the tone, vehemence, and
the frequency of the interruptions. Accordingly, when designing an e�cient and
helpful intervention mechanism, the following problems should be addressed:

1. False Positives: If exercises are short, we might bother students even
though they are not struggling.

2. Cold Start Problem: If only few students have worked on the exercise,
data is still unreliable to determine intervention timings.

3. Di↵erent Focus: If students review lecture videos while they work on an
exercise, they should not receive interventions.

4. Commencing an Exercise: If a student closes the exercise and comes
back at a later point in time, when do we issue the intervention?

5. Annoyance: How to keep the annoyance of interventions low and still cause
an e↵ect and gather data?

To solve problems 1 and 2, we set a minimum time limit of 10 minutes. If the 75th

percentile lies below 10 minutes, we trigger the intervention at the 10-minute
mark, granting students enough time to solve their problems on their own first.

With regards to problem 3, we just consider and count working time while
students are actively working on the exercise to prevent unnecessary or away
from keyboard interventions. We stop the timer if the exercise view in the web
browser lost focus and continue if the student comes back to the exercise.

When students close the exercise and come back later, they need some time
to understand the task and their previous code again. For returning students,
we therefore set the intervention interval to be the maximum of the remaining
timespan to the 75th percentile and 10 minutes.

As we are aware that the interventions can annoy students, especially if they are
not stuck or just like to fiddle with their code (problem 5), we set a daily limit
of interventions to three interventions per day and an additional limit of two
interventions per exercise for each student. This ensures that we intervene often
enough to gather insightful data on the one hand, and do not annoy the students
too much on the other hand. Whether or not a student was actually struggling
cannot be detected or derived automatically and thus has to be examined within
a survey.

Aiming to analyze the e↵ects of the issued interventions later on, we further
decided to create two di↵erent types of just-in-time interventions. Both types
will be presented via popups and follow the same guidelines concerning the
frequency and point in time of being issued. The essential di↵erence between
the interventions is the students’ reaction we are aiming to induce. In the course
of our research, we employed Request for Comment Interventions and Break
Interventions, shortly explained in the following paragraphs.

68 3 Approaches to Foster Collaboration in MOOCs

Request for Comment Interventions

Requests for Comments (RFCs) are a useful feature for students to get help
from other students who already solved the exercises.

Unfortunately, we have seen little use of this feature in our initial experiments
when introduced in previous courses25. Although the feature was deemed helpful
by the students using it, they seemed to need a little push to actually reach out
for help, reinforcing the findings of Aleven and Koedinger [2]. We achieve this
additional nudge by directly showing them the integrated Request for Comments
dialog (see Figure 3.3).

Figure 3.3: Screenshot of the Request for Comment intervention dialog.

Instead of just motivating students to press the button to issue a Request for
Comment, we decided to directly integrate the request dialog into the popup
in order to cut down on unnecessary clicks. While being encouraged by us,
writing an RFC stays optional: the dialog is closable and might be reopened
later, allowing students to complete the present thought first.

25 Feature was available in the courses javaeinstieg2015 and javawork2016.

3.3 Intervening on Students 69

Break Interventions

Break interventions encourage students to take a break and come back to the
exercise with new ideas. The break interventions are also issued when we assume
that the student is struggling with the exercise. Similarly, we show them a clos-
able dialog, but in this case only presenting a text to remind them to do a break
(see Figure 3.4). Doing a break and giving the brain some rest can be beneficial
to overcome side e↵ects of concentrated working: fatigue and distraction, which
results in errors and eventual frustration. Neuroscience researchers recommend
taking a short break after periods of concentrated work [6]. Besides taking a
break, we assume that struggling students also regard the break intervention as
a motivation to review the course material.

Figure 3.4: Screenshot of the break intervention dialog.

Our interventions furthermore a↵ect the state of being stuck, which is another
threat to learning. Being stuck is actively disrupting potential flow and caus-
ing frustration. The so-called “flow” state, as defined in psychology and coined
initially by Csikszentmihalyi [29], describes a state in which someone is fully
immersed in an activity, receiving positive feedback and emotions from the
process of pursuing this activity. Flow correlates with one’s performance in
learning [31], while it is still debated whether so-called “overlearning”, meaning
reaching knowledge after initial mastery, is necessary to achieve a flow state [30].
Nakamura and Csikszentmihalyi further state that “the optimal level of chal-
lenge stretches existing skills” and thus helps to maintain the flow state [142],
which is also in compliance with Vygotsky’s aforementioned zone theory [169].

Both just-in-time interventions have the positive potential to disrupt unpro-
ductive struggle when being stuck. The break interventions directly aim at this
e↵ect, while the RFC interventions potentially cause this e↵ect as a byproduct.
We consider the probability to cause a negative outcome by disrupting a flow
state to be low. If a student is learning successfully or even exceptionally well,
as likely if having reached a flow state, we expect a comparably fast comple-
tion of the presented exercises and thus will not issue any intervention. From
the conceptional design, our approach of just-in-time interventions should thus
support positive outcomes without deteriorating learners’ experience.

70 3 Approaches to Foster Collaboration in MOOCs

3.3.4 Tailored Bonus Exercises

Motivation and Surrounding Conditions

As a second type of interventions, we propose tailored bonus exercises. They
o↵er each student additional training exercises which are suited to tackle the
individual weaknesses of the student.

From previous courses we learned that many students want additional exercises
for practicing. As some of our students told us that they had to leave the course
because of time constraints, we cannot simply increase the amount of exercises
for all students. Therefore we decided to add optional exercises to the course.
Since we know how well a student performs in the course, we are able to recom-
mend bonus exercises tailored to the strengths and weaknesses of the individual
student accessing them.

Adding bonus exercises as optional material has the benefit that students who
want to solve more exercises get more training and those who already spend
enough time with the course are not penalized in terms of grading.

Learning material and exercises in MOOCs are often incrementally designed,
which means that materials of ongoing weeks assume that students understood
everything from the previous weeks. For a given exercise, the core problem
however also might not be the underlying concept itself, but the specific exercise
description causing issues. Thus, a di↵erently designed exercise or repetition of
the content might help them to understand the concept better.

Design Decisions for Tailored Bonus Exercises

Based on the aforementioned conditions, we posed a set of requirements for our
bonus exercises, of which the most important are presented in the following.
The bonus exercises should be:

optional, meaning that students are not obligated to solve them and do not
miss any graded points if they skip them.

solvable for the student, meaning they should only cover topics already en-
countered.

tailored, meaning they should deal with the concept the student had the
greatest problem with.

focused on the current course progress, so each course week will get its own
pool of bonus exercises.

non-repetitive, meaning that contrary to Michĺık et al. [108], we do not want
to present an exercise to a student that was already encountered another
time, as we believe that the learning e↵ect is low because students would
either skip the exercise or copy the solution from the previous attempt.

uncapped, meaning that a student can request as many exercises as desired.

Typically, recommender systems present a list of most relevant items, i.e., exer-
cises in our case. We provide bonus exercises on a weekly basis. This means that
each week has its own pool of potential bonus exercises in order to not confuse
students with older material of previous weeks and to target specific deficits
of the current week. To find the most relevant bonus exercise, a content-based

3.3 Intervening on Students 71

recommender system is used in favor of a collaboration based approach (see Sec-
tion 2.1.5). Furthermore, our approach follows the Item Response Theory [90],
as we base our recommendations on individual student-topic gradings instead
of their achieved total test scores.

As a prerequisite, we need to identify how well a student understood a topic.
For this, we manually annotated all exercises with the topics they cover and
a di�culty level. Having information about the student and the individual ex-
ercise submissions, we create a vector-based student knowledge profile, which
builds the basis of the employed content-based filtering. In the following, we will
shortly outline the domain model comprising all additional information neces-
sary for our recommendations. On the basis of this model, we then explain
the student model representing individual students’ knowledge as well as the
employed recommendation algorithm in greater detail.

Domain Model

As a first step for our content-based approach, a domain model has to be defined.
It is important to note, that domain-models have to be created for each course
independently. For example, Java’s class hierarchy is di↵erent from the one used
in Python. To create the domain model, course instructors have to provide the
topics students will learn in the course and annotate them to the exercises with
which these topics are practiced. In Figure 3.5 we see that each exercise has
one or more topics associated. We recommend not to use too many topics per
exercise, i.e., less than three and to focus on the most important topics. Weights
are used to describe the importance of the topic in the exercise. Exercises are
also annotated with their di�culty level. Furthermore, we suggest to keep the
topics as broad as possible and on the same abstraction level. Michĺık et al. [108]
recommend to connect topics among themselves with directed relationships. To
keep the additional e↵ort for the teaching team small and not to integrate too
many variables into our first experiment, we purposely chose to leave this task
for future research.

Exercise
Difficulty: 2

Exercise
Difficulty: 5

Exercise
Difficulty: 1

C
ou

rs
e

M
at

er
ia

l

T1 T2

T3

Bonus
Exercise

Difficulty: 3

Bonus
Exercise

Difficulty: 5

Bonus
Exercise

Difficulty: 2

Bo
nu

s
M

at
er

ia
l

T4

1 0.2 0.8 0.3 0.4 0.3 1 0.70.3 1

Weighted association expressing
the ratio a topic contributes to
an exercise

0.5 Exercise
Difficulty: 2

Exercises with
teacher annotated
difficulty

T1
Topics
taught in
the course

Figure 3.5: Example of our domain model for programming exercises.

72 3 Approaches to Foster Collaboration in MOOCs

Student Knowledge Model

As a basis for recommendations, we create a profile in the form of a vector-
space model for each student that reflects how well a student understood the
topics taught in the course with a value between 0 (not understood) to 1 (fully
understood).

Similar to the model used in ALEF (Adaptive LEarning Framework) [108, 168],
we are dealing with programming exercises. However, we do not rely on self-
evaluation, but base our data on automated grading and testing. We assume
that understanding of a concept and being able to apply it in exercises are
correlated. Therefore the understanding is directly correlated to the students’
exercise performance.

Concerning the classification described in Section 2.1.5, our approach is deemed
as a content-based approach, as we recommend exercises based on information
about previous exercises and students’ achieved performance, opposed to the
students’ likeliness with other students.

Our knowledge model should reflect the following criteria:

1. Students who required more time to solve exercises than their peers did not
understand the concepts behind the exercise as well as their peers.

2. Not reaching full points means that a student had problems with an exercise.
However, students who got full points but needed a very long time to solve
the exercise were able to show their ability to use the concept in the end.
Therefore, the knowledge level of topics solved 100% correctly should always
be higher compared to fast but incompletely solved topics.

3. Di�cult exercises need a deeper understanding of the topics. Consequently,
di�cult exercises have a higher potential learning e↵ect and should be
weighted stronger in the model.

4. The resulting exercise proposals should be comprehensible.

We developed a knowledge score function (see Equation 3.1 and Table 3.1) re-
flecting those criteria. We calculate the knowledge score ⇥(s, t) for each student
s and each topic t of the course.

⇥(s, t) =

P
e2Es

�(s, e) · �(e) · ⇢(t, e) · '(e, Es)P
e2Es

�(e) · ⇢(t, e) · '(e, Es)
(3.1)

S Number of students Es ✓ E User accessed exercise e 2 Es

T Number of topics ◆(e, Es) Returns position of e in Es

E Number of exercises ⇢(t, e) Ratio of topic t in exercise e
s 2 S Student s in S = {1, . . . , S} �(s, e) Scoring of e for student s
t 2 T Topic t in T = {1, . . . , T} �(e) Di�culty level of exercise e
e 2 E Exercise e in E = {1, . . . , E} '(e, Es) Diminishing function
⇥(s, t) Knowledge score function

Table 3.1: Overview of variables in our knowledge model.

3.3 Intervening on Students 73

The formula consists of the following parts:

Scoring Function
The scoring function �(s, e) (see Table 3.2) calculates how well we think the
student s solved the exercise e 2 Es, based on the score and the working time
of the student. We take the test score the student reached in the exercise
(row) and compare the student’s working time to the working time of his
peers (column). The achieved test scores and working times are rounded
down to the next specified value. For example, if a student reaches 95%
of the possible points, we round down to 80%. If a student reaches full test
score (100% of points), the resulting score will never be below 0.7, regardless
of the required working time. We give a lower score (0.6 or less) if a student
did not finish the exercise with 100% score to strongly separate the scores
of solved exercises from unfinished ones.

Working Time Percentile
< 40% < 60% < 80% � 80%

S
co
re

< 40% 0 0 0 0
� 40% 0.2 0.2 0.2 0.1
� 60% 0.5 0.4 0.4 0.3
� 80% 0.6 0.5 0.5 0.4
100% 1 0.9 0.8 0.7

Table 3.2: Definition of the values of the scoring function �(s, e) 2 [0, 1].
The achieved exercise score in exercise e between (0% and 100%) together
with the working time percentile of student s within exercise e determine
the resulting value of the scoring function as shown in the table.

Weights
We rank the scores �(s, e) based on the share of the topic t on the exercise
e with ⇢(t, e) and based on the instructor supplied di�culty of the exercise
�(e).

Diminishing Function
Recent exercises better reflect the actual knowledge status of a student.
Initial misunderstandings might have been clarified in the progress of the
course exercises. In order to accommodate for this, we add the diminishing
function (3.2):

'(e, Es) = 1

1+e
�3

0.5·|Es| ·(◆(e,Es)�0.5·|Es|)
(3.2)

'(e, Es) is an adapted sigmoid function that ranks exercises based on the or-
der ◆(e, Es) in which they have been solved. Since we have di↵erent amounts
of exercises for di↵erent topics, we adapt to the number of exercises |Es|.

Averaging and Normalizing
To compute the final score, we calculate the average of all factors and nor-
malize it between 0 and 1.

74 3 Approaches to Foster Collaboration in MOOCs

Recommendation Algorithm

Our recommendation algorithm first ensures that students are capable of solving
the presented bonus exercise so they will not be overburdened right away. From
the pool of potential bonus exercises, we remove all exercises that are either
too di�cult for the student (di�culty appropriateness) or contain topics the
student has not used yet (concept appropriateness). The potential benefit for
each bonus exercise is assessed by re-calculating all a↵ected topic scores under
the assumption that the student fully solves the bonus exercise in optimal time.
The sum of the resulting deltas of the topic scores is the potential benefit that
we use to rank the bonus exercises and recommend them to the students.

For recommendation, we serve only the highest-ranked exercise to the students
instead of providing them the ranked list. Many students want to solve all o↵ered
exercises with 100% score. Providing them with a long list of exercises thus may
have negative e↵ects. Giving students a list of exercises may also counteract our
intention to improve their biggest weakness, as they may choose the exercises
they estimate to be the easiest for them. If the list of ranked exercises remains
empty, which happens if the student did not attempt any exercise yet or all
potential exercises are too di�cult at this point, we return the easiest exercise
of the pool. Since the knowledge model is updated for each exercise a student
attempts, the system can be asked to recommend more exercises if required.

3.4 Adapting Course Material

Educational material within MOOCs mostly consists of videos and self-test
quizzes. Occasionally, additional reading material in the form of links to book
chapters, external blog posts, or downloadable documents is provided. In order
to expose weak learning material, course instructors require feedback from the
students interacting with it. This is in general possible for videos and self-test
quizzes, as the interaction of the students with the material happens directly
on the platform and thus can be recorded. For the self-tests, the chosen an-
swers and the required time provide meaningful insights into possible issues.
For the videos, pause and resume events, as well as rewind actions and the cho-
sen playback speeds, yield helpful evidence for ambiguous content. The quality
of supplied reading material or additional resources (e.g. cheat cheats) can only
be proxied via self-tests, as these documents lie outside of the MOOC-platform
and thus do not o↵er a direct feedback-channel.

Given this general assessment of the suitability for automated feedback of ma-
terial, it becomes apparent that the surrounding conditions for the field of pro-
gramming education in MOOCs are nearly optimal. Students interact with the
exercises extensively and perform all required steps to solve the exercises online
within the supplied execution environment. In our research, we thus focused
on the automatic detection of anomalies in the interaction of students with the
programming exercises.

3.4 Adapting Course Material 75

Automatic Anomaly Detection for Exercises

Programming exercises in MOOCs may serve many di↵erent needs. Their pri-
mary focus may be exploration, repetition, application, or a deep dive. There-
fore, it is nearly impossible to set specific circumstances or metrics to be given
or to be optimal for all cases. However, in a typical course context, the average
exercise should not be out of the norm with regards to di�culty, pitfalls and
required working time. As an increased overall di�culty or undesired pitfalls
result in extended working times, all of the e↵ects can be identified by a dis-
proportionally high working time. Work on well-reasoned exercises thus stays
within a given timeframe and requires a certain amount of execution runs. Trial
and error is a given pattern in novice development and often necessary to es-
tablish a solid understanding of concepts. Thus, the required working time for
training exercises is estimated to be higher than the working time needed by
an advanced programmer to solve it. Nonetheless, good exercises should still be
conceptualized to be completed in one session by beginners. Based on anomaly
detection, we can thus outline unsuited or especially frustrating exercises. For
a given course with rather homogeneous exercises, we expect the upper limit
of desired working times to be within twice the average of all exercises of that
course. With this course based approach, we prevent the exercises of courses
aiming for advanced students, like our course on unit testing, from all being
flagged as too hard on the one hand. On the other hand, we also prevent the
more complex exercises of this course from erroneously increasing the overall
mean working time of exercises intended for beginners. Founding analyses on
course level, therefore, ensures a balanced base di�culty and thus improves the
overall detection quality.

Analog to the reasoning with regards to our intervention concept (see Sec-
tion 3.3.3), we want to prevent issues caused by a shallow data pool (cold start
problem) or extreme data points, e.g., extremely low e↵ort exercises within a
course lowering the average working time to an unserviceable low value. We
therefore set a lower bound for the automatic triggers to be at least 10 minutes.

If the average working time of an individual exercise thus lies over 10 minutes
as well as over twice the average working times over all exercises, we take ac-
tion: the author of the exercise receives an email that the exercise showed an
anomaly in its results and is thus informed that students’ learning experience
possibly was not as intended. At the same time, the system sends emails to
representative student populations asking them to share possible explanations
and improvement suggestions. In order to receive a balanced feedback, we email
three students who finished the exercise but struggled particularly hard with
it, three students who solved the exercise on average, and three students who
aced the exercise. Additionally, it is helpful to also incorporate the feedback of
students who have not (yet) fully solved the exercise. We register the fact that
the exercise showed an anomaly, as well as who got emails from the system in
order to even out the e↵ort of improving the content over all participants.

Contrary to our initial idea of simply asking the students for feedback directly
via email and setting the “reply to” address to the exercise author, we opted to
supply a feedback form on the platform, in order to keep the feedback centralized
and augment it with the progress data of the specific student on the exercise
being optimized.

4

Implementation

In this chapter, we describe the main workflows and data models of the devel-
oped software we use for our experimentation. To the largest part, this concerns
the code execution environment CodeOcean and its extensions for experimen-
tation. Additionally, we briefly explain the main workflow of the video con-
ferencing solution CodePilot, which is used to enable our approach of remote
tutoring. Parts of Subchapter 4.1.3 have been published in [160], respectively of
Subchapter 4.2 in [163].

4.1 CodeOcean

openHPI and its related platforms openSAP and mooc.house o↵er courses that
teach programming skills. For these programming courses to be e↵ective, we
o↵er practical coding exercises that let students run individual source code on
our machines.

The employed system has been initially developed as part of a master’s thesis by
Hauke Klement in 2014. A general overview of the fundamental design decisions
and their motivations can be found in his thesis [60] and a publication based
on it [146]. Since CodeOcean’s initial release, several substantial changes have
been made to improve scalability, elasticity, functionality and user acceptance.
For this reason, this section summarizes the current general architecture as well
as specifics of important subsystems of CodeOcean that formed the basis for
the experiments and research presented in this thesis.

78 4 Implementation

4.1.1 Main Workflow for Student Interaction via Learning Tools
Interoperability (LTI)

Students do not register or login on CodeOcean themselves but are forwarded
to it from their learning platform. This saves the user from creating and main-
taining an additional account, including remembering an additional username
as well as password. This however also implies, that CodeOcean and the re-
spective learning platforms must interact to share potentially sensitive data. In
order to o↵er general compatibility with a wide range of learning tools on the
one hand, and a proven as well as reliable communication infrastructure on the
other hand, CodeOcean complies with the LTI standard26 from IMS Global.
Data is transferred via an OAuth encrypted connection that is build up be-
tween the LTI service provider (CodeOcean) and the and service consumer (the
respective learning platform, e.g., openHPI) via a so-called OAuth key and an
OAuth secret. The core data transferred consists of the following attributes:

• exercise id
• external id
• display name (optional)
• email address (optional)

The only required information is, therefore, the desired exercise and an artificial
external id. Along with the information which LTI consumer registered the user,
it is possible to uniquely identify each user via this external id. The display
name is used to name students in collaborative tasks (e.g. requesting or writing
comments), the email address is used to inform students on new comments on
their requests or to ask them for additional feedback if necessary. For technical
simplicity, CodeOcean additionally assigns a unique internal id.

The minimal requirement of a technical external id allows CodeOcean to be
integrated into privacy-sensitive platforms such as K-12 education systems (e.g.
the HPI Schul-Cloud) without ever knowing students names, therefore providing
full pseudonymity.

26 see https://www.imsglobal.org/activity/learning-tools-interoperability

https://www.imsglobal.org/activity/learning-tools-interoperability

4.1 CodeOcean 79

4.1.2 System Architecture

The overall architecture of CodeOcean, depicted in Figure 4.1, has two main
building blocks: The CodeOcean web application, and a docker instance pro-
viding containers as execution environments. The web application itself consists
of a Javascript client responsible for the user frontend, a Ruby on Rails server
backend, and a Postgres database providing persistency.

Container Container

Images

Container

DockerWeb Application

Asynchronous
Communication

Synchronous
Websocket

Communication

Client Side
Java Script

ORM
Active Record

Server Side
Ruby on Rails

Database
PostgreSQL

Synchronous
Websocket

Communication

Figure 4.1: General architecture of CodeOcean: A three-tier client server
web application interacting with pools of Docker containers encapsulating
the di↵erent runtime environments for program execution.

The user client communicates with the server backend either via an asyn-
chronous POST request to issue a scoring attempt or via a synchronous Web-
Socket connection to start an interactive execution run. The synchronous Web-
Socket connection allows for an exchange of input and output data during code
execution, thus enabling small interactive games such as hangman, playback of
drawing commands, or transmission of pictures as program results. The asyn-
chronous scoring prevents any additional user interaction during program as-
sessment and thus circumvents additional threats for cheating. Either way, the
connection between the server backend is realized via a synchronous WebSocket
connection, enabling both involved parts, the server process as well as the pro-
gram execution process within the container, to exchange control commands
during program execution, e.g., to terminate the program run earlier or on
timeout. The WebSocket connection into the individual containers acting as
execution environments is established via the HTTP Remote API of Docker,
enabling a complete separation of execution environments and web application
in case of a necessary scale-out.

80 4 Implementation

4.1.3 Data Model

To further understand the internal structure of CodeOcean, a solid understand-
ing of the data model is necessary. It currently consists of more than 25 tables,
the overall presentation and explanation is therefore split into meaningful par-
titions of the complete data model. Analog to the research areas of this thesis,
we distinguish between the following parts of the CodeOcean data model:

• the core data model, containing data to support the core functionality
• the interventions data model, reflecting data used for student interventions
• the feedback data model, holding interaction events and survey feedback
• the error data model, storing traces and errors encountered by students

during their learning sessions

For the sake of clarity, technical values present in every entity (i.e. id, created at,
and updated at timestamps) as well as indexes or additional join-tables are
omitted in the overviews.

The core data model comprises central entities such as users on the platform,
the exercises they work on and the submissions they create:

name: String
docker_image: String
pool_size: Integer
testing_framework: String
run_command: String
test_command: String

ExecutionEnvironment

title: String
description: String
expected_difficulty: Integer
token: String

Exercise

cause: String
score: Float

Submission

name: String
path: String
read_only: Boolean
Hidden: Boolean
role: String
weight: Float
feedback_message: String

File
*

1

external_id: String
name: String
email: String
role: String

User

cause: String
passed: Boolean
output: String

Testrun

name: String
file_extension: String
executable: Boolean
renderable: Boolean
binary: Boolean
editor_mode: String
indent_size: Integer

FileType

*

1

*1

*1

*1 * *name: String
ouath_key: String
oauth_secret: String

Consumer
*1

*

1

external_id: Integer
name: Integer

StudyGroup

*
**

1

Figure 4.2: CodeOcean core data model.

The consumer table identifies LTI consumers, such as openHPI, openSAP or the
Schul-Cloud. Data kept is minimal, we just store the name of the platform and
its credentials. The main task of these consumers is to identify their users. Users
can’t exist without a consumer that “authenticates” them. Additionally to the
necessary external id which has to be unique for the consumer, we optionally
store a name to be displayed and an email address to be used for notifications
and feedback. Users can be grouped together as a study group, which allows to

4.1 CodeOcean 81

represent for example school classes in CodeOcean and thus give the assigned
teachers access to group-specific data. Apart from the users, the exercises are
another central element of CodeOcean. Basically, the exercises consist of a ti-
tle, a description that holds instructions on how to solve them, optionally an
expected di�culty rating set by the exercise’s creator, and a generated token
to embed and reference the exercise in LTI consumers. Each exercise belongs to
one execution environment. As an example, an exercise that deals with foreach
loops belongs to an execution environment called “java8”. Execution environ-
ments reflect a complete environment suitable to execute the exercises belonging
to them. To serve this purpose, additional to their name, they reference a docker
image that usually comes with all necessary software build in, a pool size that
tells CodeOcean how many of these environments should be kept available, the
specification of a testing framework (e.g. JUnit for Java), and distinct run and
test commands. The run and test commands are simply command calls which
will be issued on the bash shell of the docker container for that execution envi-
ronment. They are used to invoke program runs or respectively program tests
for the associated exercises. These commands can include some variables to be
supplied by CodeOcean on the moment of issuing the call, e.g., for testing Java
programs, we call a make file with specific parameters supplying the class- as well
as file-name: make test CLASS NAME="%class name" FILENAME="%filename".
Submissions are the central element, representing most user interaction with
CodeOcean. Whenever a user runs or tests his written code, CodeOcean creates
a submission. A submission is also created if the current progress is auto-saved,
the user asks for help or transmits the score of the final solution back to the
learning platform. Submissions save the cause for them being created as well as
the achieved score if the cause was a test. Furthermore, they contain references
to the user that created the submission, the exercise in which’s context the
submission was created and all necessary files for the execution. The referenced
files can be mainly of three di↵erent kinds: files that users edited, files that are
static and supplied by CodeOcean to enable execution, and files necessary to
run tests. Files that are editable by users are created individually for each sub-
mission and reflect the current status of users’ progress. Static files necessary
for execution, e.g., make files or additional libraries, are not created on every
submission but simply referenced. Also, static test files are referenced this way,
additionally they are referenced in testruns. Testruns simply save the generated
output when running a specific test file, whether or not the file could be run
without errors and the cause for the test run (e.g. scoring or request for help).
All files generally have a name, a (relative) path in the working folder, a role
(e.g. whether they are the main file, a test file, a sample solution), binary op-
tions (whether they are read-only or hidden). Files used for tests optionally also
have weight defining the relative influence they have on the overall score and a
feedback message that is shown if the test fails. Each file also references a file
type, which abstracts the file extension and several settings belonging to it, such
as binary information whether the file is executable, renderable or binary. Also,
we store technical information with regards to presentation in the editor here,
the indentation size for tabs as well as the editor mode which defines syntax
coloring in the frontend.

82 4 Implementation

With this core data model, all basic operations can be carried out. As this thesis
deals with approaches to improve users’ learning experience, corresponding data
also has to be processed. The entities in the following excerpt of the data model
deals with interventions (see Figure 4.3). We kept the background color white
for all entities belonging to the core data model and applied a color coding for
new entities to make them better distinguishable. Entities dealing with just-in-
time interventions are colored blue, entities supporting our approach via bonus
exercises are depicted in yellow.

name: String
docker_image: String
pool_size: Integer
testing_framework: String
run_command: String
test_command: String

ExecutionEnvironment

title: String
description: Text
expected_difficulty: Integer
token: String

Exercise

cause: String
score: float

Submission

name: String
path: String
read_only: Boolean
hidden: Boolean
role: String
Weight: Float
feedback_message: String

File
*

1

external_id: String
name: String
email: String
role: String

User question: String
solved: Boolean
full_score_reached: Boolean
thank_you_note: String
times_featured: Integer

RequestForComment

row: Integer
text: String

Comment

*

1

*1

*
1

*1*1

name: String
Tag

factor: Integer
ExerciseTag

subscription_type: String
deleted: Boolean

Subscription
*
1

title: String
description: String
token: String

ProxyExercise

reason: String
UserProxyExerciseExercise

reason: String
accumulated_worktime_s: Integer

UserExerciseIntervention
name: String
markup: String

Intervention

* 1

*1

*
1

*

1

* 1**

*

1

*

1

Figure 4.3: CodeOcean data model for interventions. Entities for just-in-
time interventions are tinted blue, entities for tailored bonus exercises are
tinted yellow.

The central element that purposely disrupt students’ work-phases are the in-
terventions. The system shows an intervention to a user if data suggest that
the user is likely to be struggling. The intervention itself consists of a name, for
example “break intervention” or “rfc intervention”, and a markup string that
will be rendered into the popup shown to users. To persist each intervention the
system has made, we store an entry in UserExerciseIntervention. It connects
all necessary entities, namely the user being a↵ected, the exercise the user was
working on, and the type of intervention, and adds a reason for the intervention
(currently always “longWorktime”), as well as the accumulated working time
the user spent on the exercise prior to the intervention. If the user acts on the
intervention, most likely a request for comment is created shortly after. Such an
entity stores the question the user typed into the popup, information whether
the request has been marked as solved by its creator and whether full score
was reached afterwards, as well as a potential thank you note the creator sent
to his commenters. For analytical reasons, we also measure how often we redi-
rected users to each specific request. The creator and all interested commenters

4.1 CodeOcean 83

can subscribe to a request for comment to be informed when new comments
are given. Comments itself are stored in a small entity just holding the actual
comment text, and the row of the source file it belongs to. Each comment is
directly linked to the respective file of a submission, for which a user requested
comments.

Our second type of interventions, the tailored bonus exercises, build upon the
exercises of the core data model. The central element for bonus exercises are the
proxy exercises. Attribute wise, proxy exercises only consist of a title, an internal
description, and a token. The most important information of proxy exercises is
kept via their connections to exercises. These reflect, which exercises the proxy
exercises can redirect to.

The calculation which specific exercise to choose from a given set of exercises
depends on the tags. Each exercise used in this context is annotated with a set of
named tags, for example “loops” and “arrays”. These annotations are weighted
and allow a calculation of the potential knowledge gain a user is expected to
gain in the best case when solving the respective exercise. After the algorithm
has chosen a specific exercise to redirect from a proxy exercise based on the
user’s prior scores and the tags, this decision is saved in the entity “UserProx-
yExerciseExercise”. The reason of the decision, for example the algorithm used
and the specific knowledge values leading to the decision, can be saved alongside
the connection.

Figure 4.4 shows the data model of processes we use to store explicit and implicit
user feedback with regards to the exercises. We currently redirect 10% of random
users that solved an exercise to a feedback form and encourage them to share
their opinion as well as their perceived di�culty and working time. From the
system side, we also store the actual calculated working time of the user.

Exercises can further be grouped into internal collections. If the collection is un-
der anomaly detection, CodeOcean monitors the exercises within the collection
for their average working times. If an exercise violates the dynamic boundaries
of the collection, the system sends out emails asking for additional feedback,
which is stored as explained above. Apart from that, CodeOcean stores events
that students might emit, for example, copy and paste events originating from
the source code editor. These copy and paste events that usually hint at missing
information in course videos or the exercise description.

Implementation of Interventions

As described before, we issue interventions after a calculated amount of time at
which we assume that students struggle. In order to keep the user interface as
responsive as possible, we retrieve the needed information, the 75th percentile
and working time of the student on the requested exercises, asynchronically
in the frontend using Javascript. Once the necessary data is collected by the
frontend, a timer is started. If the timer reaches zero, an intervention is shown.
As we do not want interventions to show up when the student is not really
working on the exercise. Therefore, the timer is automatically stopped if the
browser focus of our coding platform is lost, e.g., if the student is distracted to
check emails or to perform other actions. No interventions are shown after the
student solved the exercise completely.

84 4 Implementation

title: String
description: Text
expected_difficulty: Integer
token: String

Exercise

external_id: String
name: String
email: String
role: String

User

name: String
use_anomaly_ detection: Boolean

ExerciseCollection

feedback_text: String
user_estimated_worktime: Integer
difficulty: Integer
working_time_seconds: Integer

UserExerciseFeedback
*
1

*1

*

1

category: String
data: String

Event

*

1

* 1

Figure 4.4: CodeOcean data model for user feedback. Entities for user
feedback are tinted green.

The backbone of the automated learner feedback is the data that are collected
from programming errors that students make. The sub-model for this data is
visualized in Figure 4.5. Whenever a programming error or exception occurs,
we save it as a structured error, that belongs to a specific submission. These
structured errors comprise a number of attributes, that comply to predefined at-
tribute templates. An example of such an error template attribute is a template
that extracts the line number of a Java exception. The error template attribute
uses a regular expression for that. Furthermore, CodeOcean uses so-called error
templates to outline more specific comprehensive errors, such as “division by
zero” exception. These comprehensive error templates then allow the system
to show a descriptive, human-readable hint to the user, and further supply the
details from the connected structured error attributes. Error templates are spe-
cific to execution environments, as the regular expressions are dependent on the
used programming language and the employed testing framework.

name: String
docker_image: String
pool_size: Integer
testing_framework: String
run_command: String
test_command: String

ExecutionEnvironment

title: String
description: Text
expected_difficulty: Integer
token: String

Exercise

cause: String
score: Float

Submission
*

1

* 1

name: String
signature: String
description: String
hint: String

ErrorTemplate
regex: String
key: String
important: Boolean
description: Text

ErrorTemplateAttributes

match: Boolean
value: String

StructuredErrorAttribute
StructuredError

*

1

*1

*
1

* *

*

1

Figure 4.5: CodeOcean error data model (error entities tinted red).

4.1 CodeOcean 85

4.1.4 Code Execution Workflow

When a user presses the run button in the browser, numerous steps on at least
three systems have to be executed in order to present the expected program
result. In this general overview, we deliberately abstract from specific imple-
mentation details, e.g., details on file copying and subsequent cleanup, in order
to establish a comprehensible but solid understanding of the main code execu-
tion workflow between the client browser on the user’s system, the CodeOcean
rails backend on our server and the docker containers, currently running on the
same as the backend, shown in Figure 4.6.

Code Execution
requested

Client Server Docker

Submission is created

Files are copied to
shared folder

Container is assigned

Command is executed

Output is interpreted
and forwarded Output is forwarded

Output is persisted Program terminatesScores are displayed,
errors are highlighted

Output is displayed

Ru
nt

im
e

Se
tu

p
Ev

al
ua

tio
n

Run / Test command
is issued

Figure 4.6: CodeOcean workflow to execute students’ submissions.

Users express their intent to run or test the current status of their source code
by pressing the respective run or score button. If the user wants to run the
code, we establish a WebSocket connection between the client browser and the
CodeOcean server as the first step to enable synchronous bidirectional commu-
nication. If the user instead wants to score the submission, we skip creating
a WebSocket between the browser and the server, as there is no need for syn-
chronous communication. CodeOcean then creates a submission to have a stable
data set also usable for subsequent analysis annotation. Afterwards, a container
is retrieved from the pool of available containers for the execution environment
associated with the exercise that the user is working on. CodeOcean tests the
availability of the container and copies all necessary files for program execution
to a shared folder between the host file system and the container afterwards.
As a next step, either the run or test command needs to be executed within the
container. For this, CodeOcean establishes a WebSocket between itself and the
docker container. The WebSocket is attached to the shell of the container and
thus gives CodeOcean full control over the container within the limits of this
shell. This step is performed regardless of whether the execution is a normal
or a scoring run. Upon having established an acknowledged socket connection,

86 4 Implementation

CodeOcean sends the respective run or test command with the appropriate
parameters set over the socket, followed by a return. This e↵ectively causes
the container to run the desired command and will return all program out-
put to CodeOcean unfiltered and synchronously. In case special treatment of
the program output is necessary, such as the transformation of turtle-drawing
commands for our python courses, the rendering of a base64 encoded picture
or terminating the program run, the program output is scanned on CodeO-
cean for control statements encoded as JSON. After potential transformations,
the result is either bu↵ered or directly forwarded to the client, depending on
the requirements (scoring, or respectively just running a submission). Once the
program terminates (either by successfully exiting or by exceeding the allowed
program runtime), the beginning of the program output, as well as potential test
results, are persisted for reference. In the case of a scoring run, the resulting
scores are extracted and sent to the client browser together with the program
output. In the case of a normal program run, this step is omitted. Lastly, the
output is scanned for program errors to be extracted and highlighted in the
users’ browser. If the program run exited successfully, the used docker container
is cleaned and returned to the pool of available containers. If the program run
crashed or exceeded the time limits, the container is destroyed and CodeOcean
issues a new container to be booted into the pool.

Despite the shift from Server-Sent Events (SSE) to WebSockets and some con-
fined internal changes, this overall workflow remained stable over multiple years
and is expected to endure over the timeframe of this thesis.

4.1.5 Feature Configuration

In order to support di↵erent scenarios and use cases, the o↵ered feature set and
the visual presentation of CodeOcean can be externally configured. This allows
for example to enforce a read-online mode, to embed programs that can just be
run, but not edited, in interactive worksheets for school usage. Similarly, also
interventions or request for comments can be disabled if desired for didactical
reasons. The desired options are sent as custom parameters during the LTI
launch when starting an exercise. The full set of boolean options is presented in
Table 4.1.

Custom Parameter E↵ect

disable run Prevents running the program, e.g., for exam situations

disable score Prevents automated assessment, e.g., for exam situations

disable interventions Disables just-in-time interventions

disable rfc Disables RFC functionality, e.g., to focus discussions in class

disable hints Hides additional hints, e.g., for exam situations

disable download Removes download capabilities

hide exercise description Hides the exercise description, e.g., to allow teachers to provide a di↵erent one

hide navbar Hides the title bar, including any navigation to support seamless integration

hide sidebar Hides the navigation sidebar, e.g., to prevent file switching

hide test results Hides tests results, e.g., for exam situations

read only Removes editing capabilities, e.g., for demonstration purposes

Table 4.1: Supported custom LTI parameters to configure CodeOcean.

4.2 CodePilot 87

4.2 CodePilot

The prototype of our proposed tutoring solution is implemented as a separate
Ruby on Rails application that integrates into CodeOcean via an iFrame. For
the actual video conferencing part, we rely on the open-source project Jitsi
Meet. With respect to the workflow, our prototype supports the actions shown
in Figure 4.7. In order to realize the flows, we modeled the required data as
shown in Figure 4.8.

Figure 4.7: Main workflow for tutoring sessions in BPMN [163].

The core element within this data model is the question, which usually has
attached two participations of students via their user IDs. Technically, to also
support other use cases like public demonstration sessions or group discussions,
CodePilot allows an unlimited number participations.

title: String
conference_id: String
room_id: String
author_id: Integer
exercise_id: Integer

Question
allow_public_access: Boolean
endpoint_id: String
user_id: Integer

Participation

data: String
executed_at: Timestamp
index: Integer

ExecutionResult

directory: String
is_recording: Boolean

Recording

Delta
filename: String
data: String
typed_at: Timestamp

Survey

SurveyAnswer

SurveyQuestion

*

1

* 1

0..1

1

*

1

*
1

*
1

Figure 4.8: Data model of CodePilot.

88 4 Implementation

Whenever a student starts a program run during an ongoing tutoring session,
we save the execution result to allow for subsequent playback. All changes to
the source code are saved as deltas, to support a seamless playback and syn-
chronization with the tutor. If a session ends, a recording entry is stored and
all participants are surveyed for their opinions (rating of the helpfulness of the
tutor, information whether the problem was solved, the allowance to use the
recordings, and additional free text).

Figure 4.9: User interface of CodePilot.

For students, the user interface of our prototype presents itself as shown in
Figure 4.9. On the left side (1), students see the usual controls of our execution
platform. The only di↵erence is that changes made in the editor during an active
conference session are recorded and transferred to the tutor via a synchronous
webRTC connection. We currently restrict the synchronization direction to be
unidirectional towards the tutor. In order to potentially enable full bidirectional
synchronization for full pair programming, additional methods, like operational
transform (OT), are required [42].

On the right side (2), the main compartment of our prototype is embedded.
We show open questions and existing recordings here. If the student clicks “Ask
question”, an input box to phrase the question opens up. Afterwards, the stu-
dent is forwarded to an empty meeting room that opens up in the iFrame (2).
The coding environment (1) stays as it is; the progress on the exercise is not
interrupted in any way. If an existing recording is chosen, which is available
under “Featured Questions” the current progress is persisted and the recording
is played back in fullscreen, to make room for the recorded code to be presented.
With regard to usability, we kept the controls and new elements as minimal as
possible.

5

Evaluation

MOOC research has undergone a natural shift from technical proof-of-concept
demonstrations, over first insights about learners’ motivation and verdicts, to
comparisons of general course metrics employed to reflect content e↵ectiveness
and learning success [126]. However, as Justin Reich argues, many of these initial
findings do not have the setup to further advance the field of learning research.
Boiled down to the statement “It does not require trillions of event logs to
demonstrate that e↵ort is correlated with achievement.” [126], it becomes evi-
dent that research aimed to advance the current status quo has to be based on
mindfully proposed hypotheses and carefully crafted experiments.

Therefore, in this chapter, we will first formulate our hypotheses, and then de-
scribe the general setup of our research, as well as the specific details for the
individual experiments, before further explaining the employed methods. Follow-
ing on that, we present the gathered results, as well as the respective discussions
of the likely conclusions of the results towards the hypotheses. Several smaller
experiments have been run alongside our main research areas. They brought up
additional insights but did not directly contribute to the main argumentation.
Subsequently, they are presented with slightly less detail.

Lastly, we show several interesting findings that surfaced from our data that
are of general interest but come without a further connection to the hypotheses
we followed. We refrain from giving a detailed discussion for these findings,
as the proper and qualified evaluation of the results would require additional
experiments, surpassing the scope of this thesis.

90 5 Evaluation

5.1 Research Hypotheses

Advancing from the universal truth in MOOCs, that e↵ort correlates with
achievement, in this case reflected as higher course scores, we will further spec-
ify influences that improve learning success. We analyze the following high-level
hypotheses by answering several sub-hypotheses. The sub-hypotheses further
specify, for example, which metrics are suitable to reflect learning success, or
which further criteria are helpful to distinguish subgroups in our audience in
order to pinpoint our results and answer further detail questions.

1. Request for Comments improve students’ learning success
The possibility to ask for help increases overall scores. Receiving help reduces
the required time to successfully finish an exercise.

2. Just-in-time interventions have an e↵ect on students’ behavior
The shown popup windows increase the number of requests for help, re-
spectively the breaks taken. They furthermore cause students to reflect,
improving their performance.

3. Tailored exercises help students to overcome their weaknesses
Students require more time to solve an exercise which targets their specific
weaknesses than students who were assigned to the exercise at random.
Students further agree on the recommended topic as their weakness.

Before we present the results, we first describe our experiment setup, the re-
spective audience, the employed methods as well as the used metrics.

5.2 Setup

The experiments resulting in the main findings presented in this thesis often
required a large number of participants, allowing to detect possibly small e↵ects
only on some individuals of a group. Running an experiment in a MOOC re-
quires careful preparation of the study, as errors or lapses cannot be fixed while
the experiment is ongoing and require an additional, time-consuming iteration
or even the preparation of an entirely new MOOC. Therefore, the complete
progress of our main experiments measuring the e↵ects of just-in-time inter-
vention and request for comments spans over several courses, with the first
courses acting as a proving ground to validate the assumptions to fuel a full-
fledged analysis in a controlled randomized study later on. In the following, for
each experiment, we will focus on the course and the findings contributing the
most important results concerning the underlying research questions. Therefore,
most results will be drawn from our latest course Java 2018, which represents
our most elaborated setup and resulted in the most comprehensive dataset. For
this reason, the following descriptions, for example of the instructional design
of our courses, will be exemplified with the Java 2018 course, while the same
principles and approaches have also been applied during the conceptualization
of all other courses. If a particularly interesting finding was replicated from a
former experiment or revalidated in another dataset, we will mention this in the
respective description of the results.

5.2 Setup 91

5.2.1 Courses

The majority of experimenting was done on the data of the German course
“Objektorientierte Programmierung in Java” run over six weeks on openHPI
in 2017, and its redesigned English counterpart “Object-Oriented Programming
in Java” run on openSAP in 2018. Some side experiments were conducted on
the two-week-long workshop courses, “Java Workshop: Einführung in eine Java-
Programmierumgebung (IDE)” (2017) and “Java Workshop - Einführung in
die Testgetriebene Entwicklung mit JUnit”(2016) run on openHPI in German
language.

Java 2017 Java 2018

Start Date March 27th (2017) June 13th (2018)

Duration in Weeks 6 6

Course Platform openHPI openSAP

Course Language German English

Enrolled Students 8,781 18,856

Attendees 6,610 9,504

Active Students 6,008 5,581

Granted Certificates 2,124 (35.4%) 2,317 (41.5%)

Granted CoPs 3,638 (60.6%) 3,377 (60.5%)

Forum Posts 7,673 6,222

Request for Comments 5,381 3,109

Table 5.1: Key metrics for analyzed Java courses.

Table 5.1 visualizes the most important key metrics for the main courses ana-
lyzed in this thesis. The organizational course details can be found at the top
of the table, while the resulting performance indicators are to be found in the
lower part.

The two courses are relatively similar, both o↵ering six weeks of content over
a comparable course runtime. They were conducted in two consecutive years,
by similar-sized teaching teams. The major di↵erences are the course language,
having switched from German in the 2017 version to English in the 2018 version.
In order to ensure an audience that was una↵ected by the previous iteration,
also the course platform was changed from openHPI to openSAP.

Within the key metrics, two major di↵erences are directly visible: the number of
enrolled students and the number of Request for Comments di↵ers immensely for
2017 and 2018. Considering the number of enrolled students, if one regards the
number of attendees measured after three weeks, which only reflects students
that logged in on the course since the beginning, the previous gap closes to
a large part. “Active students” describes students who accessed at least one
exercise on CodeOcean and scored at least one point. Using this metric as a
basis for further comparison, it becomes apparent that both courses finished
with similar results, resulting in about 35-40% of active students reaching the
Record of Achievement, a certificate that is granted if a student scored at least
50% of the possible graded points. About 60% of each course’s active student

92 5 Evaluation

audience also got a Confirmation of Participation (CoP), which is issued if at
least 50% of the o↵ered learning material was accessed. The number of forum
posts was about 20% higher in the German course, which can still be regarded
as normal variation.

Thus the only remaining significant di↵erence is the number of Request for
Comments issued. Within the German course, 5,381 requests were issued, while
in the English course only 3,109 were made. This results in a di↵erence of
73% percent more Request for Comments in the German course compared to
the English one. To set this discrepancy into context, it is important to know
that in the Java 2017 course, all students were actively encouraged to use this
functionality via a course video in the first week. In the Java 2018 course, some
students were not able to use the feature at all, and for the reason to not
endanger the A/B test conducted in the course, the course team also did not
actively promote the Request for Comments in any way.

5.2.2 Course Setup

In the following, we will explain the content used as the foundation of the courses
in more detail.

The di�culty of the courses was on the same level, also the covered topics have
been the same with regard to the tested and graded content. Some di↵ering,
optional topics were o↵ered at course end, however, they neither directly nor
indirectly influenced course results, as the introduced areas there were indepen-
dent of the graded content (e.g. usage of the distributed versioning system git).
Of course, with a completely re-created course in another language, di↵erences
concerning the understandability of certain units will occur, however, we are
confident that the average understandability stayed on the same, high level. For
the subsequent explanations, we will focus on the English version of the course,
while the same principles and argumentations also apply for the german version.

Instructional Design: Course Content

The content and skills conveyed in the programming courses, as well as the ac-
tivities to be performed by the students, were carefully considered and sketched
out, given the restrictions on time as well as didactical measures available.
Within each course, the content was structured on a weekly basis, being mostly
self-contained and aimed to be balanced in terms of required time as well as
complexity of the presented concepts.

As being described in Subsection 2.1.1, Krathwohl’s Taxonomy is well suited
to classify and evaluate learning content. An example of such a classification is
given in Figure 5.1 with the first three units of the first week of the Java course
run in 2018, dealing with variables.

Upon the creation of the course, the instructors agreed on learning objectives
and sketched out content areas. The course design was an iterative process
based on multiple models and theories, fitting in content into weeks and defining
learning goals to be achieved within the six course-weeks. The influences and
processes for the decisions will not be explained in detail here, however, we will
shortly exemplify the use of blooms revised taxonomy.

5.2 Setup 93

New content and concepts are first introduced via videos in our online course.
For our example, we focus on the introduction of the concept of variables first.
The explanation in the video (1) covers a short introduction into the topic, an
outline of potential benefits and also several examples for using them, thereby
also showcasing the syntax. Overall, the information presented is mostly fac-
tual, establishing a basic understanding to build upon later on. Subsequently,
the initial understanding is checked within an ungraded multiple-choice quiz (2),
which we call a self-test. The aim here is to fortify the knowledge creation by
encouraging the student to remember presented facts. To further follow this goal
of solid fortification, students then have to solve practical programming exer-
cises (3) in the execution platform CodeOcean, thereby applying the presented
knowledge on their own. The sequence of “video, followed by a quiz, followed by
several practical exercises” is applied for each presented concept or subconcept
within the programming courses.

Remember Understand Apply EvaluateAnalyze Create

Factual

Conceptual

Procedural

Metacognitive

Variables1
Quiz

Variables2
Quiz

Modeling
Techniques Quiz

Variables1
Video

Variables1
Exercises

Variables2
Video

Variables2
Exercises

Modeling
Techniques Video

Peer
Assessment

Peer
Assessment

Peer
Assessment

Workshop
Course

2 1 3

5 4 6

Data Types, Concatenation
Which concatenation results are valid?

Rate other solutions

What are valid data types? Intro, Basics, Syntax

Model a complex scenario

Figure 5.1: Learning items classified into Krathwohl’s taxonomy.

Variables, being a fundamental as well as an important part of programming, are
a concept that requires students’ to grasp the concept of abstraction. In order to
facilitate comprehension, the concept is split into several of the aforementioned
“video, quiz, exercises” sequences, each focusing on consecutive subconcepts
building on top of each other. These di↵erent focus points or subconcepts, usu-
ally resemble and belong to the knowledge dimensions of Krathwohl’s Taxonomy.
The second video on variables (4) introduces data types and the concept of con-
catenating di↵erent variables. Apparently, the video conveys factual as well as
conceptual knowledge. This serves as an example that an exact classification is
often not possible, as the actual learning content may cover di↵erent areas in
the knowledge as well as in the cognitive process domain. Krathwohl’s taxon-
omy aims to uncover shortcomings of available material and outline focus areas,
to allow for discussion and content optimization. Whenever facing unclear or
ambiguous classification decisions, one can either place the content in all af-
fected areas or just place it in the most important area, which usually is the
position representing the instructors’ goals. For the aim to exemplify the model

94 5 Evaluation

and focus areas of our programming course, we decided on the latter. The aim
of the video is to build upon the factual knowledge presented in the variables1
video and present concepts to gain flexibility in programming. As new content
on the factual level, data types are introduced out of the necessity to represent
di↵erent types of data in our programs. Similar to the first sequence, a self-test
quiz (5) and some exercises (6) were placed after the video, this time covering
mainly conceptual knowledge instead of factual knowledge.

When classifying the majority of learning items in the matrix, it becomes ap-
parent that the course mainly addresses the areas factual and conceptual on
the knowledge dimension, and the areas remember, understand and apply on
the cognitive process dimension. The state on the knowledge dimension ap-
pears valid, because an introduction course is likely to focus on the fundamen-
tal areas. The procedural area within the cognitive process dimension, dealing
with the“knowledge of criteria for determining when to use appropriate proce-
dures” [84] amongst others, is reached within the fourth course-week. In this
week, the course introduces modeling techniques to map real-life scenarios to
object-oriented scenarios and further reason about the representation of rela-
tionships. This increased abstraction on the one hand, and the existing body
of factual and conceptual knowledge on the other hand, allows to cover the
procedural area. The metacognitive area, covering strategic “[...] knowledge of
cognition in general as well as awareness [...]” [84] is not aimed for in the course.
Subsequent weeks focus on technical details and give an overview of related ar-
eas within computer science, thereby o↵ering additional conceptual and factual
knowledge.

With regard to the cognitive process, the levels that are easily reachable di↵er
between face-to-face education and online education. Despite Krathwohl stat-
ing “[...] objectives from Understand through Create are usually considered the
most important outcomes of education, [...]” [84], MOOCs should also em-
phasize on the remember category, as fortification of knowledge is especially
important when exposing the material towards students the first time. Reach-
ing the “higher” levels (on the right side), is hard within MOOCs, as they
usually require far more time from students to be spent on the one side, and
very flexible and task-specific feedback on the other side. While the majority of
content within traditional MOOCs thus is found in the cognitive process areas
of understand and remember, the regarded programming courses add additional
value by covering the apply area. With additional o↵erings, such as peer assess-
ments and the Request for Comments explained later, the respective courses
further cover the additional areas of analyze and evaluate. Within an indepen-
dent workshop o↵ered optionally after the course, the instructors rounded up
their educational approach and gave participants the opportunity to develop an
“original product” of their own and thus also covered the create area.

5.2 Setup 95

5.2.3 Used Data Sources

We combined datasets from the course platforms openSAP, respectively openHPI,
with datasets from our programing platform CodeOcean, in order to, e.g., cor-
relate survey answers with experiment groups. Datasets used from the course
platforms are a general course export, as well as the course start and course
end survey. The general course export contains information reflecting aggre-
gated course progress and achieved scores, as well as demographic data that
was optionally supplied. The surveys supplied further information present prior
to the course (for example, details about prior knowledge and students’ expec-
tations) and opinions after the course (e.g. subsequent appraisal collected in
the course end survey). From the program execution platform, we extracted
detailed information regarding our interventions as well as surrounding details
and scoring metrics. The main scoring metrics used are required working times
as well as achieved scores. Concerning our interventions, we gathered amount
and timestamps of issued request for comments, resulting comments, and issued
just-in-time interventions. Each of these data points was captured in the context
of its creation, i.e., the exercise it belongs to and the associated student. On the
basis of the combined data, ratios of future interest, such as “RFCs per Student”
or “Comments per RFC” were deviated. All analysis of data was conducted in
compliance with the data privacy statements of openHPI/openSAP.

5.2.4 Audience of Java 2018

During the course runtime, 7,186 students accessed at least one exercise on
CodeOcean, of which 5,581 are considered active for reaching at least one point.
The gender distribution of our audience is visualized in Figure 5.2. 56% of all
students did not share their information, 37% identified as male, 7% as female.
The shares between the students who accessed at least one exercise on CodeO-
cean and only those who reached at least one point are similar. Regarding only
those students who shared the gender information, we thus have a ratio of 16.6%
females to 83.4% males. This ratio can be generalized under the assumption that
the ratio of males and females not stating their gender is relatively equal.

�����������	
��
���
�	��
��	
��

��������

����������

����������

	��
�	��
�

����������

��
��� ���� ������

�������
�����������	

�	��	
�����������	

� �� �� �� �� ���

Figure 5.2: Overall gender distribution of active students. About 44% of
our students shared information about their gender, the distribution within
this known population is approximately 83 males to 17 females.

96 5 Evaluation

The age distribution of our active participants is as shown in Figure 5.3a. 61% of
the active students did not share their age information with us. Apart from this,
the resulting numbers resemble a normal distribution with the highest shares
between 20 and 50.

Age Group

N
u
m

b
e
r

o
f

S
tu

d
e
n
ts

5151

580580

799799

496496

224224

2828

0+ 20+ 30+ 40+ 50+ 60+
0

100

200

300

400

500

600

700

800

900

(a) Age distribution

Prior Knowledge

N
u
m

b
e
r

o
f

S
tu

d
e
n
ts

343343

18441844

16211621

856856

399399

None Basic Good Very good Excellent
0

250

500

750

1000

1250

1500

1750

2000

(b) Skill distribution

Figure 5.3: General metrics for active students.

For future analyses, the prior knowledge of students will play an important
role. The self-assessed prior knowledge categories “none”, “basic”, “good”, “very
good”, and “excellent” are mapped to interval skill levels between zero and five
when calculating averages. 4,191 of 5,581 active students shared their prior
skill levels (75%). The prior skill distribution of our audience can be found in
Figure 5.3b.

Finishing up the demographic overview of our audience, Figure 5.4 visualizes
the distribution of our learners over the world. The three most prominently
represented countries are Germany, the United States of America, and India.
Apart from the high share of students from these three countries, learners all
over the world were reached.

Figure 5.4: Number of students per country (on logarithmic scale).
WorldMap: Highcharts.com c�Natural Earth

5.3 Methods and Procedures 97

5.3 Methods and Procedures

In general, we analyze data gathered via surveys, acquired from the course plat-
form, and acquired from the code execution platform to gain insights concerning
our experiments and answer our research hypotheses. To assess prior knowledge,
we collected self-stated skill levels and conducted a short, ungraded multiple-
choice test about OOP and programming concepts. In Subsection 3.2.3 we pre-
sented the metrics potentially suitable to describe and explain e↵ects of our
experiments. Of those metrics, especially the course scores and working times
showed the highest relevance. Other metrics are reflected in the aforementioned
metrics, thus allowing us to simplify analysis by substituting them in most cases.
If we encountered significant deviations within one of these general metrics, we
further analyzed the additional, more detailed metrics. Considering the substi-
tutions, results from unit tests as well as quiz scores are reflected in the overall
course scores, as this is the sum of all unit test and graded quiz scores. Working
times further correlate with runs, program assessments as well as the number of
gaps, thus allowing us to substitute in this dimension. The impact of the prior
skill level towards other key metrics is going to be described in Subsection 5.4.1.

After the course runtime, we surveyed our students on their perception of our
course and the experiments, including their valuation of Request for Comments,
the just-in-time interventions, and the tailored bonus exercises.

The created Request for Comments were manually labeled after the course,
in order to structure and analyze their content and intent, e.g., their style,
friendliness, and expressiveness.

Further details of the used methods slightly di↵er for the experiments that
have been carried out, e.g., the composition of the experiment groups. We will,
therefore, describe them separately per experiment in the following. All in all,
two major experiments have been conducted, which partly covered multiple
hypotheses and research areas. The first experiment covered Request for Com-
ments as well as just-in-time interventions, as the interventions aim to increase
the amount of RFCs issued. Within the second experiment, we analyzed the
e↵ects of the supplied tailored bonus exercises.

98 5 Evaluation

5.3.1 First Experiment: A/B Testing of Just-in-Time Interventions
and Request for Comments

In order to determine the e↵ects separately, we built seven A/B-testing groups
in total. The assignment of students to the experiment groups was done based
on the user id on CodeOcean, which is an independent and artificial value. This
ensures a randomized distribution. The individual setup of the testing groups
is reflected in Table 5.2.

Group Interventions Request for Comments Student Share Abbr.

1 none disabled 10% ND

2 none hidden 10% NH

3 break hidden 10% BH

4 RFC hidden 10% RH

5 none shown 10% NS

6 break shown 10% BS

7 RFC shown 40% RS

Table 5.2: Experiment groups for just-in-time interventions and Request
for Comments.

Group 1 (abbreviated as ND for none-disabled) serves as our control group.
Students within this group did not have the possibility to request comments
at all. Likewise, they did not receive any interventions. This was technically
implemented by disabling the commenting feature system-wide, removing the
respective button from the user interface and removing all intervention trig-
gers for them. Students being assigned to groups two to four were able to re-
quest comments, however, they never received any feedback from peers. Their
requests were excluded from the selection process when forwarding a suitable
student to open requests. This “hiding” of requests allows us to determine the
e↵ects of actually receiving comments. Groups two to four di↵er with regard to
the just-in-time interventions being performed on them. While students within
group two received no interventions, students of group three received break
interventions suggesting to take a break, and students of group four received
interventions suggesting to ask for help. Experiment groups five to seven were
able to use request for comments without any impediments. Their requests were
included in the selection process and thus they received feedback. Again, the
groups di↵er concerning the interventions being issued, with group five receiving
no interventions, group six getting break interventions and group seven being
served RFC interventions. The experiment groups one to six each make up 10%
of our MOOC’s student population, while the remaining 40% of students are
placed within group seven. This allocation was done in order to aim for an
optimal treatment group (receiving RFC interventions and having full access
to the RFC feature) to be sized as large as possible while retaining all other
groups representing the possible combinations of conditions to be individually
represented in su�cient numbers.

Regarding this setup from the di↵erent viewpoints of analysis, we end up with
60% of our audience being able to request help and receive comments, 30% solely
being able to request help (but without receiving any answers) and 10% missing

5.3 Methods and Procedures 99

the feature completely. Concerning interventions, 30% of the students did not
receive interventions at all, 20% of the students received break interventions,
and 50% received RFC interventions. These resulting sums can also be found in
Table 5.3.

Interventions

none break RFC Sum

R
F
C
s disabled ND (10%) 10%

hidden NH (10%) BH (10%) RH (10%) 30%

shown NS (10%) BS (10%) RS (40%) 60%

Sum 30% 20% 50%

Table 5.3: Combination of experiment groups and resulting shares of stu-
dents.

5.3.2 Second Experiment: A/B Testing of Tailored Bonus Exercises

Similar to our first experiment, we split the students into control and treatment
groups based on an independent, artificial value. In this case, we used the mi-
croseconds of the timestamp of their initial registration on CodeOcean, taking
place implicitly when they start their first exercise from any course platform.
This random value is furthermore independent of the grouping value used for
the A/B test of our interventions and request for comments (the user id), al-
lowing to conduct both experiments in parallel without resulting in potentially
skewed experiment groups. Despite the threat that the experiments could po-
tentially interfere with each other, in such a way that solving tailored bonus
exercises massively improves course scores (albeit we assume that the overall ef-
fect is too small to be registered), the grouping based on independent variables
ensures that e↵ects from one experiment would a↵ect all groups of the other
experiments evenly, given the large number of students present in our courses.

For the experiment on tailored bonus exercises, we assigned just three groups.
The specifics of these groups can be found in Table 5.4.

Group Bonus Exercises Student Share

1 dummy 20%

2 random 20%

3 tailored 60%

Table 5.4: Experiment groups for tailored bonus exercises.

The first group, once more acting as our control group, always received dummy
exercises. These exercises were intentionally simple with the aim to inhibit spe-
cific learning e↵ects while o↵ering at least some repetition in order not to waste
the respective student’s time. The second group randomly received one of the
crafted bonus exercises. The random assignment allows us to measure the e↵ects
of the actual “tailoring” being performed with our algorithm and thus serves
as another kind of control group. The third group receives a crafted bonus
exercise based on the recorded weaknesses resulting from the student’s prior
performance. The test groups comprised 20% (group 1), 20% (group 2) and
60% (group 3) of our audience respectively.

100 5 Evaluation

5.4 Results

The basis for all of the following examinations will be the Java 2018 course
unless otherwise stated. We refer to previously published material if necessary
when comparing the recent results with previous ones. Also unless otherwise
stated, we always use the group of active students as our foundation. Students
who never showed up or never achieved at least one point were not a↵ected
by our treatments. Removing those inactive students from the data set thus
improves overall data quality for the given hypotheses.

The first metric to evaluate the outcomes of a MOOC usually is the achieved
course score per student. The overall distribution of course scores of all 5,581
active participants is depicted in Figure 5.5.

0.00

0.02

0.04

0.06

0 25 50 75 100
Relative Achieved Score in Percent

S
ha

re
 o

f S
tu

de
nt

s

Figure 5.5: Score distribution of all active students.

We see a typical U-shaped distribution, with a large fraction of students residing
in the lower score areas up to 20% of the available score and another accumula-
tion of results at the 100% score mark. This distribution is typical for analyses
of graded work or exams, reflecting a share of students having given up on the
lower end, and determined top-scorers at the upper end. The sharp spike present
at the 100% mark in this graph is partly caused by the possibility to reach a
score of more than 100% through bonus activities such as the peer-assessment.
Scores above 100% were subsequently cut to 100%, causing the visible spike.

5.4.1 Request for Comments and Just-in-Time Interventions

The results on the e↵ects of request for comments and the impact of just-in-
time interventions make up the largest part of the evaluation. To ease getting
an overview of the numerous details presented, the following subsections will
each be headed by the most relevant finding as the headline.

5.4 Results 101

Request for Comments Increase Course Scores

When aggregating data per intervention group, the key metrics shown in Ta-
ble 5.5 emerge for the active students.

Group CoP RoA Avg. Score Avg. Score Finisher

ND 47.53% 36.20% 38.84% 82.83%

NH 51.82% 41.24% 43.33% 83.85%

BH 49.28% 39.75% 42.41% 84.47%

RH 50.54% 42.32% 43.35% 84.95%

NS 52.71% 41.86% 44.09% 85.73%

BS 52.32% 43.75% 44.72% 85.01%

RS 53.33% 42.52% 44.17% 84.05%

Table 5.5: Key metrics for experiment groups. Enabling RFCs and issuing
interventions improves all key metrics.

Our control group ND shows the weakest performance with regards to all pre-
sented key metrics. Despite the absolute changes being relatively small, the
trends are coherent. The share of students having reached the Confirmation of
Participation (CoP) by accessing at least half of the o↵ered course content is
47.53%. The Record of Achievement (RoA) was granted to 36.2% of our control
group, on average they achieved 38.84% of the maximum possible score. Students
of the ND group who finished the course (meaning that they received an RoA)
scored 82.83% of all possible points on average. The table further shows common
behavior for the three intervention groups sharing the “hidden”, respectively
“shown” property for the RFCs. The share of students having achieved the CoP
ranges around 49% to 52% for the “hidden” groups, while the “shown” groups
reached 52% to 53%. For the share of students having earned a RoA, “hidden”
groups range between 40% and 42%, while the “shown” groups range between
42% and 44%. Similar tendencies are also visible for the average achieved scores
(between 42% and 43% for “hidden” vs. around 44% for “shown”), as well as
the average scores of finishers (84% to 85% vs. 84% to 86%).

Group CoP RoA Overall Score Score RoA

ND 0% 0% 0% 0%

NH 9.03% 13.93% 11.56% 1.23%

BH 3.68% 9.81% 9.20% 1.98%

RH 6.32% 16.91% 11.64% 2.56%

NS 10.90% 15.63% 13.52% 3.49%

BS 10.08% 20.86% 15.15% 2.63%

RS 12.19% 17.46% 13.73% 2.01%

Table 5.6: Relative di↵erences in key metrics for experiment groups.

102 5 Evaluation

Compared to the results of the group with no interventions and a disabled RFC
feature (group ND), the following relative changes displayed in Table 5.6 can
be observed for all students. Taking the group ND as a baseline, for example,
9.03% more students achieved the Confirmation of Participation in group NH.

Aiming to improve the learning success of our students, reflected by their
achieved scores, it is worthwhile to compare the score distributions separated by
the experiment groups. Histograms of the respective distributions, here depicted
with a bin size each comprising 5% of the total achievable score, are shown in
Figure 5.6.

0.00

0.05

0.10

0.15

0 25 50 75 100
All

0.00

0.05

0.10

0.15

0 25 50 75 100
ND

0.00

0.05

0.10

0.15

0 25 50 75 100
NH

0.00

0.05

0.10

0.15

0 25 50 75 100
BH

0.00

0.05

0.10

0.15

0 25 50 75 100
RH

0.00

0.05

0.10

0.15

0 25 50 75 100
NS

0.00

0.05

0.10

0.15

0 25 50 75 100
BS

0.00

0.05

0.10

0.15

0 25 50 75 100
RS

Relative Achieved Score in Percent

S
ha

re
 o

f S
tu

de
nt

s

Figure 5.6: Score distribution per experiment group.

Drawing insights from these histograms was not easily possible, as they do not
share a clear trend.

In order to unveil further insights, we alternated the visualization to a combi-
nation of density plots and boxplots, thus giving an overall impression of the
distributions, while at the same time clearly showing the respective quantiles.

The density plots and boxplots shown in Figure 5.7 better reflect what was
already indicated by the aggregated results shown in Figure 5.5. Group ND
performs worst in general, with the median as well as the 75th quantile mark
being located at lower scores than all other groups. The di↵erences between
the “hidden” and “shown” groups are only partly visible in the graphs, with
the medians of the “shown” groups placed slightly higher than the ones of
the “hidden” groups. The 75th quantile marks di↵er only marginally, thus not
providing any insight. We additionally visualized the average achieved score per
experiment group as a dotted vertical line.

5.4 Results 103

N
D

N
H

B
H

R
H

N
S

B
S

R
S

0.00 0.25 0.50 0.75 1.00
Relative Score

Figure 5.7: Combined density- and box-plots of the scores achieved by
students of our experiment groups. Means, depicted by dotted lines, increase
significantly between ND and the other groups.

The di↵erences between the average achieved scores are statistically significant,
as indicated by statistical hypothesis tests. We ran Student’s t-test as well as
a Welch test. On the comparison between the groups NH and RS, the tests
statistics are p = 0.053 for the t-test with Bonferroni correction and p = 0.001
for the Welch test.

The reason for running both tests is that the valid application of Student’s
t-test might be questioned on the basis of the assumptions for the test. Usu-
ally, three assumptions have to be satisfied in order for Student’s t-test to be
applicable. First, the test groups have to be independently sampled. Second,
the means of the dependent variable have to follow a normal distribution. And
third, the populations being compared have to have equal variances. In our case,
the requirements are only partially met. While our groups were independently
sampled, the scores are clearly not normal distributed (see Figure 5.7). Further-
more, the variances between the groups di↵er (as indicated by Levene’s test,
p = 0.001 on groups NH and RS, p = 0.016 for all groups).

According to the central limit theorem [64], means samples being large enough
are usually well-approximated by a normal distribution, even if the data are not
normally distributed. Further adding that Slutsky’s theorem implies that the
distribution of the sample variance only has little e↵ect on the distribution of
the test statistic for large sample sizes, allows us to apply Student’s t-test for
large groups even in the absence of a normal distribution and equal variances.
For our case, all groups have sample sizes >500 and can therefore safely be
considered as “large”, with the lower bound for “large” often being set between
30 and 100. For these reasons, we conducted Student’s t-tests.

104 5 Evaluation

We additionally conducted pairwise Welch tests, because Student’s t-test is
prone to outliers. Welch’s test further does not assume equal variances and
has higher statistical power in this case [123].

Following this argumentation, we consider the di↵erence in means between
groups NH and RS to be significant on the basis of the Welch test with p < 0.05.

When focusing on particularly hard exercises, e.g., the three exercises requiring
most working time, the distribution depicted in Figure 5.8 shows up.

N
D

N
H

B
H

R
H

N
S

B
S

R
S

0.00 0.25 0.50 0.75 1.00
Relative Score

Figure 5.8: Combined density- and box-plots of the scores achieved by
our experiment groups in the three exercises requiring most working time.
The first quartile (first vertical bar) is a↵ected by interventions.

For the most di�cult exercises, which also cause significantly more RFCs to be
issued than simpler ones, also an e↵ect on the weaker students becomes visible.
The di↵erence in means between groups ND and RH is significant (Welch test,
p = 0.001). An additional visualization of another exercise subset can be found
in the appendix.

5.4 Results 105

Confounding Factor: Prior Skill Level

On the basis of the age and skill distributions presented in Subsection 5.2.4,
we measured the underlying correlation between age and prior skill level. The
resulting distribution is depicted in Figure 5.9a.

Age Group

A
v
e
ra

g
e
 S

k
il
l
L
e
v
e
l

1.551.55

1.751.75

1.991.99

2.132.13
2.222.22 2.212.21

0+ 20+ 30+ 40+ 50+ 60+
0

0.5

1

1.5

2

2.5

(a) Metrics: age and skill level.

Prior Knowledge

A
v
e
ra

g
e
 S

c
o
re

 [
in

 %
]

28.1828.18

42.2142.21

50.2450.24

53.5653.56 54.1454.14

None Basic Good Very good Excellent
0

10

20

30

40

50

60

(b) Metrics: skill level and achieved score.

Figure 5.9: Correlations between core metrics: age, skill level, and score.

The means of skill levels and the age groups show a strong Pearson correlation
of ⇢ = 0.95. On an individual level per student, the age groups show only a very
weak correlation with the skill levels (⇢ = 0.16).

As can be seen in Figure 5.9b, also the prior skill level and the mean achieved
course score show a high correlation (⇢ = 0.92). Once more, the correlation on
individual student level is very weak (⇢ = 0.16).

We recorded student’s prior skill levels via voluntary surveys as motivated in
Section 3.2.1. The correlation of key metrics with these prior skill levels can be
taken from Table 5.7.

Skill

Level

Average Score

All Users

Average Score

RFC Creators

Average Score

Exam

Average Score

RFC Creators Exam

1 28.18 30.89 74.41 80.71

2 42.21 50.07 80.64 83.16

3 50.24 64.33 84.05 87.13

4 53.56 69.01 87.06 88.70

5 54.14 61.92 84.49 87.75

Total Avg. 46.99 56.23 83.23 83.58

Table 5.7: Achieved scores per skill level.

We see a constant trend of rising average scores per skill level up to skill level 4
(very good prior knowledge). Skill level 5 (expert) shows similar to slightly lower
averages than level 5. These overall observations hold for all subgroups exam-
ined, including just students who requested help at least once (RFC Creators),

106 5 Evaluation

just students who took the final exam (Exam), and students who requested help
at least once and took the exam (RFC Creators Exam). The largest di↵erences
in average scores are visible between skill levels 1 and 2 in all subgroups. On
average, RFC Creators reach higher scores than all other active users. Natu-
rally, the scores of students who have taken the exam are considerably higher in
general. But once more, also under this condition, the scores of students asking
for help (RFC Creators Exam) turned out to be slightly higher than to the
respective comparison group (Exam).

To consider and rule out potential biases caused by di↵erent skill levels in our
experiment groups, we analyzed the skill distributions per experiment groups.
The respective shares can be found in Table 5.8.

Skill

Level
ND NH BH RH NS BS RS

1 6.60% 5.88% 5.26% 6.40% 5.91% 5.75% 5.56%

2 33.76% 34.56% 40.43% 36.26% 35.93% 33.75% 35.92%

3 33.76% 33.82% 30.38% 34.60% 29.79% 32.25% 32.16%

4 18.78% 18.14% 15.55% 16.82% 18.44% 20.50% 17.79%

5 7.11% 7.60% 8.37% 5.92% 9.93% 7.75% 8.57%

Avg. 2.86 2.87 2.81 2.80 2.91 2.91 2.88

Table 5.8: Average skill level and distribution of skill levels per experiment
group. All experiment groups show a similar distribution, with nearly equal
averages.

The distributions are nearly similar across all groups, also the average skills
level per group do only vary at most ±2% around the overall average of 2.867.
The results of our experiments thus were not systematically skewed or distorted
by di↵ering skill levels.

Request for Comments Accumulate on Hard Exercises

Figure 5.10 shows the distribution of Request for Comments on exercises cov-
ering di↵erent topics and learning targets. High request rates are visible for
the topics “Concatenation”, “Classes, Methods, Attributes”, “Loops”, “Access
Control” and “Collections”. The general decline of students over the runtime of
the course is not reflected in the rates of requested RFCs. Additionally to the
expected issues on loops, especially exercises combining several concepts caused
a high rate of requests.

Commenting is Widely Distributed Among the Audience

Figure 5.11 shows the density function of comments per student. This visualizes
the distribution of comments written over the individual students in the audi-
ence. The plot is separated into four di↵erently colored areas, each representing
a quantile of the students. This allows to infer that 75% of all commenting
students created less than 5 comments per person for example.

5.4 Results 107

A
tt

e
m

p
ti

n
g

 S
tu

d
e
n
ts N

u
m

b
e
r o

f R
F
C

s

Attempting Students Number of RFCs

In
tr
o

In
st
an

tia
tio

n

Att
ri
bu

te
s

C
on

ca
te

na
tio

n

C
la
ss

es
, M

et
ho

ds
, A

tt
ri
bu

te
s

Lo
op

s

C
on

st
ru

ct
or

s

Ex
ce

pt
io

ns

Acc
es

s
C
on

tr
ol

In
he

ri
ta

nc
e

Po
ly
m

or
ph

is
m

Abs
tr
ac

t C
la
ss

es

O
bj

ec
t D

at
a
Typ

es

C
ol

le
ct
io

ns
0

3k

6k

1.5k

4.5k

0

150

50

100

200

Figure 5.10: Distribution of Request for Comments on exercises of specific
learning topics. The amount of RFCs on a topic does not correlate with the
number of attempting students.

Figure 5.11: Density plot of created comments per student. Each colored
section represents 25% of students. The majority of students writes less
than five comments.

108 5 Evaluation

Hiding Request for Comments Reduces Future Outreach Attempts

We technically prevented to forward students to the Request for Comments of all
“hidden” experiment groups. This e↵ectively cuts the respective students from
external feedback and a↵ects their subsequent behavior. Table 5.9 shows the
key metric which is a↵ected by this measure, the average request for comments
per requesting student. To support easier understanding of this metric, we also
present the originating factors. We further added the resulting relative deltas
compared to the corresponding baseline group, i.e., between groups NS and NH,
between groups BS and BH, and between groups RS and RH.

Group #RFCs
Total

Students

Requesting

Students

Share Req.

Students

Avg. RFCs

per Student

Relative

Delta

Avg. RFCs per

Req. Student

Relative

Delta

NH 129 548 84 15.33% 0.235 -39,59% 1.54 -37.05%

BH 157 556 95 17.09% 0.282 -27,51% 1.62 -24.95%

RH 309 560 154 27.50% 0.552 -38,67% 2.00 -38.19%

NS 222 571 91 15.94% 0.389 - 2.39 -

BS 218 560 99 17.68% 0.389 - 2.15 -

RS 2016 2239 621 27.74% 0.900 - 3.18 -

Table 5.9: E↵ects of hiding RFCs. The average number of RFCs per stu-
dent decreases by up to 40%. The share of requesting students is only
a↵ected by the issued interventions, with the RFC intervention groups re-
sulting about 10 percentage points higher than the no intervention groups.

The share of students requesting help at least once (referred to as “requesting
students” in the following) is between 15% and 18% for the groups NS, NH,
BH, and BS. The two groups being targeted with RFC interventions show a
share of requesting students around 27.5%. The condition whether the requests
were hidden or not thus did not a↵ect the share of requesting students. This
is perfectly plausible since the e↵ect of this limitation comes to play only after
reaching out for help.

When comparing the average RFCs issued per student in the “shown” groups
with their belonging “hidden” counterparts, it can be seen that the e↵ect of
hiding RFCs causes a decrease in average RFCs issued between 28% and 40%.
The overall average is a decrease of 36%. Doing the same analysis on RFCs
per requesting student, shows decreases between 25% and 38%, with an overall
average of 35%.

These results are relatively stable, when doing the same analyses just on students
who completed the course with a record of achievement (not shown in the table
for the sake of simplicity). In this case, the overall average of decrease is 40% per
student, respectively 43% per requesting student. These slightly higher numbers
are reasonable, as the students reaching the record of achievement were longer
in the course and thus the “shown” comparison groups had more opportunities
to issue additional RFCs.

5.4 Results 109

Just-in-Time Interventions Increase RFC Rates

When comparing the Request for Comments issued per student (see Table 5.9),
the average within the “RFC intervention” groups results to 0.831 RFCs per
student (weighted average from 0.552 for RH and 0.9 for RS), while the average
in the “no intervention” groups is 0.314 RFCs per student (weighted average
from 0.235 for NH and 0.389 for NS). This translates to an increase by 165% from
no intervention to RFC intervention. Expressed otherwise, the increase factor
is 2.65. This number is relatively stable, as becomes evident when comparing
the ratios of just the groups for which the RFCs are shown to their peers, (i.e.
NS and RS) instead of averaging over the “hidden” and “shown” groups (NH
and NS, respectively RH and RS). The result when comparing just the “shown”
groups is also an increase of 132%, comparing RS to NS.

The break interventions did not cause a major increase in Request for Com-
ments, the measured increases compared to the “no intervention groups” are
7.12% for all active students (and 0% for just the respective show groups).

This finding collides with the learnings made in 2017 from the course Java 2017.
Data originating from the 2017 course showed that break interventions caused
an increase of RFCs from 0.6 RFCs per student without interventions to 0.8
RFCs per student receiving break interventions, which translates to an increase
of 33% (Anomaly 1). Potential reasons for this di↵erence and also the di↵erent
base levels will be further reflected upon in the discussion section.

110 5 Evaluation

Receiving Answers Increases Full Score Ratio

Figure 5.12 shows the two major e↵ects that are caused by receiving help. The
average number of received comments per RFC is 3.2 for the experiment groups
that did not have their requests hidden. Of all students who received comments,
approximately 76% solved the exercise at hand within one hour. Within the
group of students who did not receive answers, only 58% reached full score within
one hour. This di↵erence of ⇡18 percentage points, caused by the comments
received, represents an increase of 26% of students having solved their exercise
with full score. Concerning the required working times to solve an exercise, only
a small di↵erence becomes visible in this graph.

Working Time After RFC Submission [in min]

S
h
a
re

 o
f

S
tu

d
e
n
ts

 R
e
a
c
h
in

g
 F

u
ll
 S

c
o
re

 [
in

 %
]

Students with RFC Replies Students without RFC Replies

0 10 20 30 40 50 60
0

20

40

60

80

100

Figure 5.12: E↵ects of receiving help on required working times and suc-
cess rates of students. The required working time is measured starting at
the moment of issuing a Request for Comment.

Receiving Answers Reduces Required Time

A closer analysis of changes in the time students required to solve the exercises
yields two additional results, visible in Figures 5.13a and 5.13b. A calculation of
the first five 10% quantiles (10% fastest students, 20% fastest, ...), considering
just students who fully solved the respective exercise, shows that students who
did not receive any help were often faster (Figure 5.13a). This calculation is

5.4 Results 111

based on sets of data. The first data set solely contains the working times of the
⇡60% of students who did not receive help and succeeded, while the compared
second data set contains working times of the ⇡80% of students who received
help and finished their exercises. The quantiles of the respective groups thus
represent a di↵erent absolute number of students having reached full scores.
Therefore, a higher required working time until half of each group finished with
full score is plausible for the group which includes several weaker students who
only succeeded with external help and likely needed longer.

This obvious but naive approach is not able to reflect the e↵ects towards students
who improved their performance due to external help, but most likely would have
also succeeded without help, just requiring more working time. In order to show
this e↵ect, we refrain from excluding students who gave up on their exercise, but
keep them within their respective groups. To enable a coherent analysis without
leading to skewed results, all students who did not solve their exercise are placed
at the end of their group concerning the required time, with an assumed time of
three hours. The assumed time does not a↵ect the quantiles, as long as we just
regard student populations faster than the assumed time. From Figure 5.12 we
infer that we can safely analyze our student populations up to the 50% mark.
Their required time is, in any case, lower than 60 minutes and therefore also
lower than our assumed time of three hours.

Thus widening the scope of our analysis to all students that requested help,
regardless of whether they fully solved the exercise at hand, the perspective
changes. Students who received help were able to solve their issues faster, with
an increasing delta for increasing quantiles. 50% of the students who received
help were able to solve their exercise within an additional working time of 12
minutes after their request. In comparison, within the group of students who
did not receive any help, nearly 20 minutes of subsequent working time were
required until 50% of the group solved their exercise. This means that the group
of students receiving help reached the 50% quantile more than 40% faster.

Quantile

W
o
rk

in
g
 T

im
e
 [

in
 m

in
]

Students Without Replies (FS) Students With Replies (FS)

10% 20% 30% 40% 50%
0

5

10

15

20

(a) Only students who achieved full score

Quantile

W
o
rk

in
g
 T

im
e
 [

in
 m

in
]

Students Without Replies (All) Students With Replies (All)

10% 20% 30% 40% 50%
0

5

10

15

20

(b) All students

Figure 5.13: Detailed analysis of students’ required working time after
requesting help. Quantiles are compared in 10% steps up to 50% for students
who received help and those who did not receive any help.

112 5 Evaluation

RFC Interventions Partially Countervail the E↵ects of Hiding RFCs

The combined e↵ects of hiding RFCs and just-in-time interventions can be ob-
served if one takes the group NS as a baseline. This group, having its RFCs
shown to users and not being nudged by any just-in-time interventions, rep-
resents the default case. The average numbers of RFCs per student and per
requesting student presented in Table 5.10 show how the positive and negative
influences interact.

Group
Avg. RFCs

per Student
Relative Delta

Avg. RFCs per

Req. Student
Relative Delta

NS 0.389 Baseline 2.39 Baseline

NH 0.235 -39.45% 1.54 -37.05%

BH 0.282 -27.37% 1.62 -32.26%

RH 0.552 +41.92% 2.00 -17.75%

BS 0.389 +0.13% 2.15 -9.74%

RS 0.900 +131.59% 3.18 +33.07%

Table 5.10: Combined e↵ects of hiding RFCs and just-in-time interven-
tions. RFC interventions partially countervail the e↵ects of hiding, visible
for group RH.

Regarding the average number of RFCs issued per student, NH and BH show
a negative impact between approximately 30% and 40%. The combination of
RFC interventions and hiding the requests resulted in an increase of around
42% RFCs. Group BS behaves similar to group NS. Lastly, group RS shows a
tremendous increase of approximately 132% over the baseline group NS.

Concerning RFCs per requesting student, the “hidden” groups show an 18% to
37% lower amount of RFCs compared to NS. Within the “shown” groups, the
deltas range between -10% and +33%.

5.4 Results 113

Request for Comments are Particularly Popular With Beginners

When analyzing the shares of students creating RFCs or commenting on other’s
questions per skill level, we encounter the metrics shown in Table 5.11.

Skill

Level
RFC Creating Commenting Avg. RFCs Avg. Comments

1 33.18% 21.20% 0.79 0.52

2 28.90% 37.30% 1.01 1.46

3 21.38% 41.77% 0.46 1.89

4 21.13% 43.13% 0.45 1.91

5 17.31% 44.55% 0.32 1.86

Table 5.11: RFC and commenting metrics per skill level. Beginners issue
more RFCs, experts write more comments.

We see a consistent trend of declining chances for a student to create at least
one RFC with increasing self-stated skill level. On the opposite side, increasing
skill levels increase the probability that the student will comment on at least
one request for comment issued by a fellow student. Correspondingly, the mean
number of issued Request for Comments declines with increasing skill level, while
the number of contributed comments increases with increasing skill level. The
minor deviations from these trends for skill levels 1 and 5 most likely derive from
the comparably low student populations within the respective groups, resulting
in a higher variance of values and thus presumably not as accurate means.

To also analyze the e↵ects of just-in-time interventions and RFC hiding sepa-
rately by skill level, we aggregated the average number of RFCs issued by skill
level as well as experiment group. Results are shown in Table 5.12.

Skill

Level
ND NH BH RH NS BS RS

1 0.00 0.29 0.32 0.50 0.40 0.57 0.81

2 0.00 0.38 0.31 0.68 0.29 0.31 0.68

3 0.00 0.22 0.23 0.37 0.39 0.27 0.50

4 0.00 0.18 0.35 0.37 0.29 0.39 0.41

5 0.00 0.03 0.23 0.28 0.26 0.42 0.32

Avg. 0.00 0.25 0.28 0.48 0.33 0.34 0.55

Table 5.12: Average Request for Comments per student, grouped by skill
level and experiment group. Outliers �10 RFCs per student have been
removed. Interventions especially a↵ect lower skill levels one and two.

114 5 Evaluation

The average number of RFCs is a↵ected by the issued interventions, especially
for the lower skill levels. This result becomes clearly visible when combining the
“shown” and “hidden” groups to reduce complexity and then plotting the results
per intervention type (see Figure 5.14). Combining the groups does not skew the
results significantly, as the e↵ect caused by hiding RFCs is nearly independent of
the issued interventions as shown in Subsection 5.4.1. To improve expressivity,
we removed students issuing �10 RFCs as outliers, the unaltered distribution
can be found in the appendix.

Prior Knowledge

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

R
F
C

s

0.350.35
0.330.33

0.300.30

0.240.24

0.160.16

0.440.44

0.310.31

0.250.25

0.370.37

0.320.32

0.740.74

0.680.68

0.470.47

0.400.40

0.310.31

No Intervention Break Intervention RFC Intervention

None Basic Good Very good Excellent
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5.14: Average amount of RFCs per combined experiment group
and skill level per student. Outliers with �10 RFCs per student removed.

Going into greater detail, we have a look at the share of students requesting
help at least once and break down the numbers by experiment groups as well
as students’ skill levels.

Group

Skill Level ND NH BH RH NS BS RS Avg.

1 0 25.00 22.73 29.63 20.00 43.48 39.58 33.18

2 0 21.99 18.93 40.52 17.11 16.30 35.97 28.90

3 0 14.49 15.75 17.81 22.22 13.95 26.85 21.38

4 0 13.51 20.00 23.94 17.95 20.73 23.78 21.13

5 0 03.22 20.00 20.00 14.29 22.58 18.92 17.31

Table 5.13: Share of students requesting help per skill level and experiment
group (values in percent). Beginners are more likely to request help than
experts.

5.4 Results 115

Table 5.13 shows that there is a partly consistent trend towards fewer students
issuing RFCs on higher skill levels. The positive and negative deviations showing
a discrepancy to the general trend (e.g. for group NS) indicate that the analyzed
subpopulations are too small to draw reliable conclusions on individual group
levels. For skill levels one and five, the number of students ranges between 1 and
10 for all experiment groups except the larger sized RS group.

Group

Skill Level ND NH BH RH NS BS RS Avg.

1 0 1.17 1.40 3.00 2.00 3.30 2.37 2.38

2 0 1.71 1.63 2.16 3.31 2.36 4.49 3.48

3 0 1.50 1.45 2.08 2.71 1.94 2.29 2.16

4 0 1.30 1.77 1.53 1.64 1.88 2.63 2.15

5 0 1.00 1.14 1.40 1.83 1.86 2.11 1.83

Table 5.14: RFCs per RFC requesting student, grouped by skill level and
experiment group. Hiding RFCs reduces the amount of RFCs issued.

Within Table 5.14 we provide the amounts of issued RFCs per requesting stu-
dent. When regarding the group NS as a baseline, it becomes apparent that all
“hidden” groups su↵er from reduced numbers, along all skill levels. The issued
RFC interventions in group RH dampen the e↵ect, but cannot fully mitigate
it. The positive e↵ect of RFC interventions also shows in group RS. We cannot
outline an e↵ect of our interventions on specific skill levels. Once again, the
partly strong positive and negative e↵ects showing a discrepancy to the general
trends (in this case, e.g., for group BS in skill levels one to three) are caused by
small subpopulations.

Group

Skill Level ND NH BH RH NS BS RS Avg.

1 26.92 25.00 13.63 14.81 20.00 21.74 23.96 21.20

2 33.83 39.00 37.28 34.64 38.16 42.22 36.29 37.30

3 35.33 43.47 41.73 39.04 50.00 45.74 39.28 41.77

4 29.72 41.89 49.23 45.07 46.15 36.58 42.67 43.13

5 21.43 38.71 48.57 44.00 52.38 45.16 42.57 44.55

Table 5.15: Share of commenting students per skill level and experiment
group (values in percent).

Table 5.15 shows that the experiment group had no visible e↵ect on the com-
menting behavior in general, with one exception. Students in the group ND,
especially the ones with higher prior skill levels, wrote less comments than the
other groups.

We additionally evaluated the results just for students who submitted the exam,
without any further interesting findings.

116 5 Evaluation

Written Questions Increase Likelihood to Receive Help

When being asked for help, the care the asking person has put into the question
might have an influence on the willingness to answer. Also, expressing one’s
thoughts can start new lines of thoughts which might lead to higher success
rates. For these reasons, we further analyzed the potential e↵ects a written
question has towards the commenters as well as the requester. The results are
shown in Table 5.16.

Visibility Expressivity #RFCs Commented
Commented

by Others
Solved Full Score

hide
without question 115 3.48% 0% 18.26% 47.83%

53.03%
with question 496 6.05% 0% 29.03% 54.23%

show
without question 590 75.42% 74.58% 31.02% 61.02%

66.25%
with question 1908 83.18% 81.87% 45.55% 67.87%

Table 5.16: E↵ects of written questions on commenting behavior and ex-
ercise completion.

A written question improves the likelihood of receiving an answer, reaching full
score and (of course) marking it as correct. Further looking into the details, a
written question leads to a higher share of students reaching full score, within
both visibility categories, with an average improvement of approximately 12%
(6.5 percentage points).

Abstracting from the written question, RFCs shown to other students lead to
students reaching full score by 66.25% , while hidden RFCs only lead to success
in 53.03% of all cases. The e↵ect of showing or hiding RFCs causes a delta of
13.22 percentage points and is thus larger than the e↵ect of a written question.

RFC Interventions Increase Share of RFCs Without Questions

Another interesting aspect is the e↵ect of the just-in-time interventions towards
the expressivity of the questions and the care struggling students put into them.

Interventions Without Question

none 11.75%

break 14.62%

RFC 25.68%

Table 5.17: Share of Request for Comments without a written question
per intervention group. Especially RFC interventions increase this share.

Table 5.17 shows that interventions cause more RFCs without a question. This
is true especially for RFC interventions. Concerning the expressivity of the ques-
tions, if a written question was supplied, we did not notice any di↵erences based
on the issued interventions.

5.4 Results 117

Students Value Request for Comments Feature

Student valuation of the request for comments feature was assessed via a survey
at the course’s end. The answer rate is thus significantly lower, leading to larger
deviations. An overview of the questions and the associated answers can be
found in the appendix.

The following tables show the answers of our students on the question “The
possibility to request comments directly in CodeOcean when solving the prac-
tical programming exercises...”, which could only be answered with one of the
o↵ered options. Students were grouped by their skill level (Table 5.18), respec-
tively their experiment group (Table 5.19).

Skill

Level
Students

Not

Necessary

Lacked

Visibility

Not

Helpful
Mediocre Helpful

0 28 60.71 10.71 0.00 3.57 25.00

1 268 48.88 9.33 4.85 2.24 34.70

2 252 62.30 6.35 3.57 1.98 25.79

3 188 68.09 6.91 4.26 0.53 20.21

4 74 72.97 2.70 1.35 0.00 22.97

Table 5.18: Students’ valuation of RFCs per skill level, distribution in
percent. Valuation is higher for low skill levels.

For skill level 0 only a very low number of students answered, therefore we
abstain from drawing conclusions for this group. Valuation expressed via the
option “helpful” is highest for skill level 1, with generally decreasing value for
increasing skill levels. Overall, most students (50% to 70%) regarded the feature
as not necessary for them, with increasing values for higher skill levels. Only
a few students regarded the feature as not helpful or mediocre, independent of
their skill level.

RFC Interventions Amplify Perceived Helpfulness

Concerning the question of visibility, a separation by experiment group, ex-
pressed in Table 5.19 yields further insights.

Group Students
Not

Necessary

Lacked

Visibility

Not

Helpful
Mediocre Helpful

ND 73 54.79 17.81 2.74 1.37 23.29

NH 92 61.96 6.52 6.52 1.09 23.91

BH 87 51.72 14.94 6.90 2.30 24.14

RH 95 66.32 9.47 10.53 0.00 13.68

NS 93 62.37 7.53 2.15 0.00 27.96

BS 81 59.26 4.94 2.47 2.47 30.86

RS 376 58.78 3.99 2.13 2.13 32.98

Table 5.19: Valuation of RFCs per experiment group, distribution in per-
cent. Compared to ND, helpfulness is higher for RS and lower for RH.

118 5 Evaluation

While RFC interventions could have decreased the “lack of visibility” for group
RS compared to group NS, this conclusion cannot be drawn for the comparison
between RH and NH. Also, BH shows a high value for the lack of visibility,
which cannot be explained by the experiment conditions and thus hints towards
reliability issues caused by the lower answer rates. A coherent di↵erence can,
however, be seen when focusing on the “helpful” column. In general, the hide
groups report lower helpfulness than the show groups. When further analyzing
the RFC intervention groups, the results indicate that the interventions de-
creased the perceived helpfulness when no answers were received (group RH)
and increased the perceived helpfulness when answers were received (group RS).

Commenting Improves Knowledge

When asked about their opinion on commenting on other students’ questions
and code, participants’ answered with the options summarized in Table 5.20.

Skill

Level

Enjoyed

Helping

Learned

Something

Felt

Disturbed

Never

Encountered

Not Able

to Help

Want

More

1 39.13 47.83 26.09 17.39 30.43 21.74

2 24.37 45.80 27.73 27.31 35.71 15.55

3 32.69 42.79 23.08 27.40 29.33 13.46

4 30.32 41.29 26.45 27.74 30.97 14.84

5 39.39 39.39 24.24 16.67 27.27 13.64

Avg. 29.80 44.05 26.01 26.14 31.37 14.25

Table 5.20: Students’ valuation of the commenting feature, distribution
in percent. Predominant answers are that students learned something and
enjoyed helping.

Of all students who have answered the question, ⇡30% enjoyed helping oth-
ers. More than 40% stated that they learned something when commenting on
the code of a fellow learner. The share of students stating this decreases with
increasing skill levels. About 25% felt disturbed by the requests, another 25%
stated they never encountered the commenting page. About one third further
stated that they were not able to help the asking student, as the question at
hand was too di�cult. Again, this option shows a slightly decreasing trend with
increasing skill level. About 15% further expressed they would have answered
more questions of fellow students if that option was o↵ered.

Actionable Interventions are Preferred

The experiences students made with the just-in-time interventions are summa-
rized in Table 5.21. Again, students were able to chose one of the o↵ered options
to end the statement “The interventions that encouraged me to ask for help or
take a break...” to best represent their opinion. Either they stated that they
were not influenced at all, that they never witnessed any interventions, that
they felt bugged, or that they had the impression that the popups actually
helped. Percentages add up to 100% per row.

5.4 Results 119

Group No Influence Never Occurred Bugged Helped

ND 15.71 67.14 1.43 15.71

NH 24.44 45.56 1.11 28.89

BH 49.43 11.49 26.44 12.64

RH 48.91 16.30 19.57 15.22

NS 22.58 52.69 2.15 22.58

BS 34.57 11.11 39.51 14.81

RS 42.70 12.95 17.91 26.45

Table 5.21: Students’ experience of just-in-time interventions, distribution
in percent.

For our analysis, the main focus lies on the column “helped”. As can be seen for
groups BH and RH, respectively BS and RS, request for comment interventions
were perceived as more helpful than break interventions. Break interventions,
on the other hand, bugged students significantly more than RFC interventions.
The relatively high numbers for groups ND, NH, and NS once again show that
survey data has to be interpreted with caution. These groups did not receive
any interventions, as is also indicated by the high shares of students stating that
the popups never appeared. These results are in line with the results we made
with our Java course in 2017 [160].

Basic Struggle Detection is Practical

With regard to the timings, students’ responses can be found in Table 5.22.

Group Never Too Early On Time Too Late

ND 73.53 0.00 10.29 16.18

NH 60.23 0.00 18.18 21.59

BH 14.29 48.81 30.95 5.95

RH 23.33 45.56 24.44 6.67

NS 62.37 1.08 17.20 19.35

BS 7.41 58.02 24.69 9.88

RS 15.15 38.57 34.99 11.29

Table 5.22: Perceived timing of just-in-time interventions, distribution in
percent. Interventions appeared too early (⇡45%) or on time (⇡30%).

Just considering students who actually received just-in-time intervention, ⇡45%
stated that the popups appeared too early, ⇡30% had the impression the popups
occurred right on time, and ⇡10% stated they appeared either too late or never.
There are no consistent di↵erences between RFC and break interventions visible,
which reflects the actual situation with no di↵erences in the struggle detection
approach.

120 5 Evaluation

5.4.2 Bonus Exercises

Results show five key findings with regards to bonus exercises.

First, students attempted the ungraded bonus exercises at a lower rate than
the last graded exercises of the same week (week 1 shows a decrease by 23%,
week 2 by 16%, and the outro-week by 54% resp. 60%). The di↵erences are
statistically significant (Welch Two Sample t-test t = 3.1, p = 0.043) . Also the
completion rate was reduced (t = 2.3, p = 0.025) . The average working times
were not a↵ected (t = 0.30, p = 0.76). The presence of statistically significant
di↵erences for attempts and completion rates collides with our findings from the
data collected in 2017, where no di↵erences were detected (Anomaly 2).

Second, when analyzing the di↵erences in weaknesses specific to skill groups,
certain topics seem to be harder than others for students stating low skill lev-
els. With increasing skill levels, the distribution of weaknesses becomes more
balanced (Figure 5.15 shows that exemplary for course week 1).

Prior Knowledge

S
h
a
re

 o
f

S
tu

d
e
n
ts

0.100.10

0.160.16

0.250.25

0.310.31
0.290.29

0.860.86

0.760.76

0.660.66
0.630.63

0.540.54

0.030.03
0.050.05

0.030.03

0.110.11

0.040.04 0.040.04 0.040.04 0.030.03
0.070.07

Calculation Classes and Objects Variables Methods

None Basic Good Very good Excellent
0

0.2

0.4

0.6

0.8

1

Figure 5.15: Students’ weakest topics of week 1 by prior knowledge. Par-
ticularly beginners struggle with classes and objects. With increasing prior
knowledge, the share of the topic calculation rises and the distribution be-
comes more balanced in general.

5.4 Results 121

Third, students who were assigned to an exercise by our algorithm solved the
respective exercise 10% faster in average than students who were assigned to
the same exercise at random. This is in line with our findings from the Java
2017 course, but again without statistical significance (t = 0.62, p = 0.53).

Fourth, student perceptions, as shown in Table 5.23 (N = 992), did not vary
significantly based on whether the bonus exercises were recommended, picked
at random, or dummy ones (all p > 0.30).

Fifth, the bonus exercises were mostly received as helpful and fitting the specific
weaknesses (54%). About 28% perceived the bonus exercises as good but not
specifically helpful, 6% as too di�cult, and 11% as superfluous in general. The
absence of varying perceptions between dummy exercises and the other exercises
conflicts with our results collected in the Java 2017 course (Anomaly 3, see
appendix for results from the Java 2017 course).

Group Exercise Too Di�cult Superfluous OK Helpful

1 dummy 4.97% 11.05% 25.97% 58.01%

2 random 3.93% 11.24% 30.90% 53.93%

3 recommended 7.98% 10.38% 27.94% 53.69%

Table 5.23: Students’ perception of bonus exercises per experiment group.
Perceptions did not vary between experiment groups.

5.4.3 Video Tutoring

Video tutoring turned out to be not applicable on large scale, as also outlined
in a previous publication [163]. The survey from our students in the 2018 course
(N = 992) showed a similar answer distributions as encountered in previous
courses. The main aspects are that about one-third of our audience state that
they will decline the o↵ering due to privacy concerns. Technical shortcomings
exclude ⇡15% of the participants from such an o↵ering. Regarding the potential
benefits, feedback from tutors or course instructors is the most popular option,
with ⇡45% of students expressing this as a desired use case. Substantial dif-
ferences based on prior skill levels do not appear. A complete overview of the
respective survey results can be found in the appendix.

122 5 Evaluation

5.4.4 Automated Anomaly Detection

The automated anomaly detection was continuously running on the exercise set
of the Java 2018 course. The visualization of the mean required working times
to finish each exercise presented in Figure 5.16 shows that four exercises ex-
ceeded the anomaly threshold of twice the group mean. The order of the bars
reflects the order of the exercises in the course. Exercises exceeding the thresh-
old of ⇡1020 seconds are two exercises in the middle of the second course week
(dealing with loops and conditional) and two exercises at course end (giving
an outlook on advanced data structures like ArrayLists and HashMaps). Over
the course runtime, the algorithm detected five anomalies: the four exercises just
mentioned, and an exercise dealing with “Classes, Methods and Attributes Com-
bined”, showing a mean working time of 1006 seconds in the graph. Mails were
sent for all five anomalies, resulting in meaningful feedback in all cases. The four
exercises clearly exceeding the threshold were deemed as appropriate in their
current form. The issues students were encountering originated on coping with
the concepts introduced and were therefore regarded as inevitable or tolerable
by the course instructors. The exercise on “Classes, Methods and Attributes
Combined” however su↵ered from an obstacle originating from the structure of
the exercise. The course instructors thus subsequently added an additional hint,
helping to prevent students from struggling with undesired instantiation issues.
As a result, the average required working time slightly dropped and stabilized
at the 1006 seconds mark shortly below the threshold.

Figure 5.16: Screenshot of the anomaly detection for all Java 2018 ex-
ercises. Four average working times of exercises are exceeding the upper
anomaly threshold. An exercise in the left third was improved and now lies
closely below the threshold.

5.5 Discussion 123

5.5 Discussion

The findings presented in the results section will be shortly summarized in the
following and evaluated in the context of the formulated hypotheses. Regard-
ing our first hypothesis, that request for comments improve students’ learning
success, data show di↵erent e↵ects and improvements. Request for comments
increase students’ average scores by up to 13%, the likelihood of achieving a
Confirmation of Participation by 12%, and the likelihood of achieving a Record
of Achievement by 17%. Concerning the distribution of issued RFCs over all
exercises, more di�cult exercises showed high request rates in particular. As
visible in the resulting box-plots of score distributions, especially in di�cult ex-
ercises, predestinated to cause more issues and misconceptions, weaker students
benefitted from expressing their problem and receiving help.

For our experiments on the e↵ects of hiding the requests, data show that actually
receiving an answer increases the share of students reaching full score on an
exercise by 26%. The required working time to reach full score decreases, the
mark of 50% of the students having solved their exercise is reached 40% faster
on average.

Further notably and plausible findings are that request for comments especially
lead to an improvement for students within lower skill levels (levels “no prior
knowledge” and “basic prior knowledge”), and that students within higher skill
levels showed a higher tendency to comment on open requests. Requests with a
written question were more likely to be commented on and also showed a 12%
higher chance to lead to a fully solved exercise later on. Further noteworthy is
that the improved chance caused by a RFC to result in a fully solved exercise is
independent of the fact whether the request received any comments. Our expla-
nation for this is the e↵ect of so-called “rubber duck debugging”[66], describing
the positive influence of externalizing one’s thought and thereby potentially
overcoming one’s hurdles on one’s own.

Summing up, the answer to our first hypothesis is a distinct “yes”. Request for
comments improve learning success, indicated by multiple metrics.

The subquestion, whether hiding request for comments restrains the positive
e↵ects, also has to be answered positively. Hiding requests lowered the total
amount of request for comments issued in the respective experiment group by
35%. The decline in total RFCs shows that student interaction and a positive
experience is necessary in order to establish a recurring help-seeking behavior
and thus to reach the best e↵ect. However, already expressing one’s thoughts in a
question improved students’ scores, thus being a positive intervention. Receiving
a helpful answer adds further benefit, but a large share of improvement was also
noticed for our experiment groups with “hidden” RFCs.

This explanation is further supported by the results concerning our second hy-
pothesis, the e↵ects caused by just-in-time interventions. Just-in-time interven-
tions increase the rate of students requesting help up to 165%. Thus, the gains
achieved via RFCs are further amplified by the RFC just-in-time interventions
suggesting to reach out for help.

124 5 Evaluation

Additionally to the aforementioned “rubber duck e↵ect”, in this case, also the
e↵ect of interruption comes into play. Albeit we do not force students to add a
description to their problem, the mere interruption and prompt to describe the
issue presumably has an impact on the students and is likely to trigger reflection
as an activity of self-regulation.

Similar to request for comments, the just-in-time interventions showed a stronger
e↵ect on students having a lower prior skill level than on already more advanced
students.

The discrepancy between the published results on the basis of our course “Java
2017” [160] and the data presented in this thesis, labeled “anomaly1”, can be
explained with a di↵erent framing. The seemingly counterintuitive results, that
just-in-time interventions that motivate students to take a break caused a signif-
icant increase in RFCs in 2017 and no increase in 2018, become comprehensible
when focusing on the experiment setup. In the 2017 course iteration, request
for comments were initially introduced. Aiming for as much usage and resulting
data, request for comments were actively recommended to all students within a
video lecture. The teaching team advocated all students, that whenever they are
stuck, they should reach out for help. Contrary, in 2018, the video introducing
the programming environment was recorded with the feature disabled and the
possibility not mentioned at all. This explains the di↵erent behavior of students
receiving break interventions. While 2017 students might have been reminded
of the advocated RFC feature, 2018 students might just have dismissed the
intervention.

Detailed analysis, including an examination of the combination of hiding re-
quests while exposing students to just-in-time interventions, showed that just-
in-time interventions motivating students to reach out for help can partially
countervail the e↵ects of hiding the request. While the individual student is
likely still disappointed about not receiving help, the interventions nudge more
students to try the functionality at least once. Also, the interventions motivated
some students not having received answers to try another time, resulting in an
overall higher RFC per student metric.

From the survey answers we further learned that just-in-time interventions dis-
turbed the students. This can be seen as a positive e↵ect to trigger reflection,
however, it also caused annoyance. The group receiving RFC interventions an-
swered to a lower share that they felt annoyed, therefore we conclude that
actionable interventions are preferred.

Summing up, the second hypothesis, whether just-in-time interventions have an
e↵ect on students’ behavior, is thus also answered with “yes”.

For the recommendation of bonus exercises, only some of the findings we made
in 2018 are in line with the results from the 2017 iteration. Our algorithm as-
signed relatively more beginners to the bonus exercise dealing with classes and
objects than experts. Based on the argumentation, that the exercises assigned
to experts should trend towards an equal distribution as experts have already
mastered all topics and thus show no weaknesses, the decline of the distribution
shares for the exercise on classes and objects reassures us of the applicability of
the concept. Considering the working times, we see that students who struggled
with a specific concept, on average solved the related bonus exercise faster than

5.6 Threats to Validity 125

students who were randomly assigned to this exercise. This indicates a learning
e↵ect, however, the findings are not significant. We encountered two di↵erences,
anomaly 2, which showed in di↵erent behavior regarding attempts and com-
pletion, and anomaly 3, which showed in a di↵erent perception of students.
Anomaly 2 can be explained with a change we made in scoring, granting no
points in 2018, while we granted some in 2017. This likely reduced the number
of attempting students, as well as their finishing rate. Anomaly 3, the di↵erence
in perception concerning the helpfulness and “fitting” of the exercises, cannot
be plausibly explained on the basis of the data we collected.

The third hypothesis, “tailored bonus exercises help students overcome their
weaknesses”, therefore cannot be answered confidently on the basis of our result.
Data are suggesting an e↵ect, however, its size is too small to serve as the
foundation for a reliable answer. Students’ value all o↵ered bonus exercises,
even the intentionally “unhelpful” dummy exercises.

Video tutoring turned out to be not applicable to our audience. While demand
for video tutoring was voiced over several years, privacy issues, as well as techni-
cal deficiency, prevail. Within ongoing attempts over several courses, the number
of successful tutoring sessions remained below ten. As described in a previous
publication [163], the focus was shifted from “intervening” on students towards
a focus on “understanding” students, granting instructors direct feedback and
the otherwise missing “look over one’s shoulder”.

Automatic anomaly detection has proven its usefulness within the Java 2018
course. Due to having no direct comparison with the unaltered version, we can-
not further conclude on the e�ciency.

5.6 Threats to Validity

The most prominent threat to the validity of our findings are skewed experiment
groups. The relatively strong increase in key metrics over our control group, also
for the group that just had the possibility to reach out for help, but without
any interventions or actually receiving help, was our main concern. For this
reason, we ruled out all obvious confounding factors, e.g., skill levels, academic
background, age, or place of residence, without finding any anomalies. The sizes
of our experiment groups, with the smallest group size being 547 active students,
should further rule out other e↵ects caused by individual outliers for general
observations. For experiments requiring additional filtering and aggregation (e.g.
by prior skill levels), we removed outliers as described.

The general setup includes seven experiment groups, each being comprised of
more than 500 active students. The tendencies found within the data are coher-
ent and plausible. We are therefore confident that the e↵ects we uncovered are
of causal nature. While the actual e↵ect sizes might be questioned, the existence
of the measured e↵ects is to be regarded as verified.

Data originating from course surveys are likely a↵ected by some form of response
bias. The positive tendency can be explained by a persistent response bias caused
by at least three di↵erent reasons. First, the audience remaining at course end
is most probably higher skilled than the base audience at course start. Second,
students answering the course-end survey completed the entire course, showing

126 5 Evaluation

endurance as well as skill. Consequently, most have developed some pride in
their achievements, leading to a positive attitude. Third, many students want
to support the researchers and instructors, possibly also as a kind of “thank
you” for o↵ering the MOOC free of charge. The impact of students’ motivation
to please the researcher was specifically outlined with the question design of the
question focusing on the helpfulness of the o↵ered bonus exercises and could
thus be mitigated.

5.7 Further Findings

Given the carefully prepared data set, several findings were made that are not
directly related to the previously formulated research questions. In the following,
we will present the findings, backed by the corresponding data, but will refrain
from drawing premature conclusions, as we can only make educated guesses
without further independent experiments. The number of available datasets is
comparably low for the subgroups of female students, impeding to further draw
reliable conclusions. In the following, to ensure transparency concerning reliabil-
ity, the data labels printed above the resulting bars show the number of datasets
included instead of the reached y-value.

5.7.1 Females Create Twice as Much RFCs Than Males

When comparing the average amount of RFCs created per student, data shows
a considerable di↵erence between males (0.337) and females (0.782), depicted
in Figure 5.17. On average, female students create 2.3 times as much RFCs as
males.

������

�
�
�
��
	
�

�
�

�

�
�
�
��
�

�
�
�

�
��
�
�
�
�

������

��������

������

�	
��	
��	 �������

�

���

���

���

���

���

���

���

���

���

Figure 5.17: Average number of Request for Comments issued per gender.

5.7 Further Findings 127

When further grouping the data by age, no coherent e↵ect of age becomes visible
(see Figure 5.18). The di↵erence in requested RFCs shows for all age groups for
which we have su�cient data.

��������	

�

�
��
�
�
��

�
�
��
�
�
��
�
�	
�
��
�
��
�
�
�
�

����

����

����

����

����

����

������ ������
������

������

����

������

������

	�	�

����

��
�� �
�� �������

�� ��� ��� ��� ���
�

���

���

���

���

�

���

Figure 5.18: Average number of Request for Comments issued per gender
and age. Di↵erences in the amount of issued RFCs show for all age groups
for which we have su�cient data.

For the age group below 20, the ratio of RFCs created by females relative to the
number of RFCs created by males is 2.86, for the age group between 20 and 30
(20+) it is 2.04, for the age group 30+ it is 2.30, for age group 40+ it is 2.88,
and for the age group 50+ the ratio is 1.28.

5.7.2 Average Skill Levels are 20% Lower for Females

With the di↵erence in RFC rates at hand, we also compared skill levels for
males and females. From our previous experiments (see Figure 5.14), we know
that the self-assessed skill level negatively correlates with the number of RFCs
created. Therefore, this analysis might be able to explain the di↵erence. Results
are shown in Figure 5.19.

What can be drawn from Figure 5.19 is that female students self-assess their
average individual skill between 14.2% to 31.7% lower than male students. The
averages are consistently lower among all age groups, with an overall average
di↵erence of 20%. This situation has also recently been presented in the Stack-
Overflow Community Survey 201927.

Based on the e↵ect sizes in our previous evaluation, the di↵erences in RFC
behavior cannot be explained by di↵erences in self-assessed skill levels.

27 see https://insights.stackoverflow.com/survey/2019

https://insights.stackoverflow.com/survey/2019

128 5 Evaluation

��������	

�

�
��
�
�
��

��
��
�
�

�
�

����

����
����

����

����

����
������

������

������

������

����

������

������
	�	� ����

��
�� �
�� �������

�� ��� ��� ��� ���
�

���

�

���

�

���

Figure 5.19: Average skill level per gender and age group. The average
self-assigned skill level is lower for the female group compared to the male
and unknown groups within all age ranges.

Figure 5.19 further confirms a previous finding: the average skill level correlates
with students’ age, independent of gender. Average skill levels increase by about
0.15 absolute points per 10 years.

Figures 5.20a and 5.20b additionally show that there is no di↵erence in achieved
scores between males and females. This holds for the overall average as well as
the subgroup of students who have finished the course.

����������	
��

�

��
�

��
�
�
�

��
�
��

��

�
�

���� ������
������

����

����

����

������

������

������ ������

������

��������

������

������ ������

	
��

 ��

 �������

���
 ����� ���� �
������� ���
		
��
�

��

��

��

��

 ��

(a) All students

����������	
��

�

��
�

��
�
�
�

��
�
��

��

�
�

����

����
����

����
��

����

������
�		�		

�		�		
������

�
�

�	
�	

�	��	� ��	��	

����

��
��� ���� �������

���
 ����� ���� �
������� ���
		
��
�

��

��

��

��

 ��

(b) Only finishing students

Figure 5.20: Average scores of students per gender and skill level. Average
scores increase with skill prior knowledge. No significant di↵erences are
visible between genders.

6

Future Work

Alongside the numerous insights that were gathered, rise plenty of subsequent
questions, research directions, and ideas for further improvement. Following the
structure of this thesis, we will present these future directions separated into
the topics “understanding”, “intervening”, and “adapting”.

To better understand students’ learning experience and potential causes of strug-
gle we propose two main approaches. First, supplementing students’ voluntary
self-assessment with means for comparatively inaccurate, but automatic esti-
mation of prior skills. As discussed in our publication on optimal programming
exercises [159], student performance classification is a tough research topic it-
self, because there are many variables to consider and assessments before the
course starts are impractical. We argue that we can use our knowledge model as
a first step towards this topic. Further incorporating typing patterns and writ-
ing speed of students into our knowledge model, allows to estimate a general
“coding readiness” level, independent of specific programming concepts to de-
termine their skill as discussed by Leinonen et al. [93]. While students solve the
introductory exercises, the programming platform could record additional in-
formation to supplement the self-assessment without requiring additional e↵ort
from students. Specific patterns such as curly brackets or particular common
expressions like “i++” and their typing speeds allow to deduce students’ general
programming skill levels to a certain degree. Second, we propose to improve
struggle detection, for example by automatically detecting bursts of errors, fre-
quent retries with little to no source code changes, or back-and-forth editing.

The field of interventions can further be improved by mitigating the influence of
instructor set variables. In our research, such instructor set variables include the
chosen percentile to intervene on, the topic weights used in the student knowl-
edge model, and exercise di�culty ratings. In order to mitigate the influence,
additional experiments are necessary to first assess the impact of the specific
variables. Subsequently, optimal values can be derived from the performance
of student groups within an A/B-testing setup. To ensure the required student
numbers to enable reasoning of statistical relevance, these experiments have to
be conducted in future course iterations.

130 6 Future Work

Further technical improvements, such as additional context-sensitive interven-
tions, are a promising approach to better support struggling students on indi-
vidual level. Specific hints, references to cheat sheets, and appropriately detailed
feedback could be provided based on encountered errors, students’ current pro-
gramming context within the exercise (e.g. if they are failing to implement a
loop header), and the assumed skill level. Thus o↵ering a personalized support
system could provide fine-grained step by step guidance for beginners, with-
out disturbing advanced students. Concerning Request for Comments, a deeper
analysis of the influence of gender is promising for future insights. A survey-
based approach is recommended in this regard, as it o↵ers more open feedback
and does not rely on gathering a large subgroup to uncover further details and
connections between previously unknown factors.

Another idea is to cluster Request for Comments in order to subsequently manu-
ally provide a foundation for problem-centric and meaningful forum discussions.
In this way, struggles encountered by some students can not only serve as teach-
ing material for the students directly involved by requesting or providing help,
but the opportunity to learn would be opened up to the general audience.

In order to further improve just-in-time interventions, we propose to develop
means to detect students’ progress. Our current approach depending on per-
centiles cannot separate actually struggling students from ones just taking it
slow. Distinguishing those groups based on the presence or absence of progress,
e.g., by detecting working program structures as a positive sign, or by singling
out back-and-forth editing as a negative one, will help to reduce the caused
annoyance of our interventions.

In the area of bonus exercises and exercise recommendation, the predominant
need is to supply a larger pool of exercises. Increasing potential choice, both
in terms of concepts conveyed as well as content di�culty, is likely to increase
students’ perceived benefit. Especially providing high performing students with
harder exercises deems to be promising. Challenging those students, providing
potential for further growth, and keeping them engaged ensures the availability
of advanced knowledge in the community as a vital component for peer feedback.

Our e↵orts in finding indicators for the need of adapting course content can be
enhanced by taking results from the improved struggle detection into account.
Especially the accumulation of certain error types can serve as a hint towards
issues on exercises. While ArrayIndexOutOfBoundsExeceptions have to be ex-
pected in the first exercises combining loops and arrays, high counts of these
exceptions in later exercises may indicate issues with the exercise description or
the supplied template. The general approach we take on programming exercises
further can be generalized for other content types. Such e↵orts exist with video
event analytics and quality check alerts on openHPI, however these alerts come
without automated gathering of additional feedback or proposed solutions.

General future research directions promising worthwhile results are the integra-
tion of professional tooling into online programming education, further expand-
ing collaboration options, and enhancing automated program assessment. First
prototypes were build to connect CodeOcean with the Eclipse IDE, in order
to enable more advanced workflows such as debugging and refactoring with-
out losing the online functionality for assessment and requesting help. While

6 Future Work 131

the CodeOcean assessment API and the Eclipse plugin are already functional,
appropriate experimentation and analyses are still pending.

Additionally, integrating means to support pair programming is likely to im-
prove suitability for blended-learning settings given in schools. Adding capabili-
ties for static code analysis further o↵ers to provide early feedback on code style
and program design. The idea to showcase di↵erent student’s solutions in order
to fuel discussions about expressivity and understandability of code points in a
similar direction.

Summing up, apart of the obvious directions to revalidate findings and improve
reliability by reiterating the experiments under di↵erent surrounding conditions,
the presented concepts have shown e↵ectiveness and provide plenty of options
for further research.

7

Related Work

This chapter gives an overview of related research and approaches concerning
the improvement of online programming education. In particular, we highlight
the field of large scale tutoring and the area of educational interventions. Where
applicable, we further demarcate our approaches from those followed by fellow
researchers. Parts of Subsection 7.1.1 have been published in [163], respectively
of Sections7.2 and 7.3 in [160].

7.1 Scaling Tutoring

Helping students to overcome their misconceptions and struggles is usually ad-
dressed by individual tutoring in traditional classes. Mainly two aspects qualify
tutoring as superior over other approaches such as automated answer crawl-
ing or improving expressivity of error messages: individual focus and human
flexibility.

Tutoring is a social activity between two or more individuals, thus requiring
an appropriate situation for collaboration. Such a situation usually involves
an issue to be solved, as well as an established relation between tutor and
the student requesting help. Given the absence of a shared physical location in
online education, also the virtual environment largely influences the possibilities
for collaboration and thus tutoring e↵ectiveness.

Altebarmakian and Alterman present three di↵erent usage scenarios of online
collaborative learning tools to improve cohesion and exemplify their proposed
design heuristics [4]. They use a synchronous chat, an asynchronous blog, and
a combination of both. Our approaches of video conferencing and asynchronous
commenting di↵er concerning the presented heuristics (e.g. organization of the
conversation and feeling of presence), but satisfy them in general. We thus see
our and their work aligning well and complementing each other.

134 7 Related Work

7.1.1 Remote and Video Tutoring

The research of Philip Guo is tightly related to our approaches. In the fol-
lowing, we will shortly describe di↵erent tools he created in order to improve
programming education and remote tutoring. Namely, these are Python Tutor,
Codeopticon, Codechella, Codemotion, and CodePilot.

As the underlying foundation for other approaches Guo implemented Python
Tutor, a tool to run python programs online and visualize the steps of program
execution [52]. Based on this foundation, Guo conducted research in di↵erent
directions to improve online programming education.

The direction to give individual feedback usually leads to di↵erent forms of
tutoring, with live remote tutoring being the most common one. Live remote
tutoring means that a tutor supports one or more students synchronously while
they are solving their exercise. The other direction, further enhancing and build-
ing on error messages as well as stack traces, usually leads to automated and
asynchronous solutions. This means that after a program run finished unsuccess-
fully, di↵erent processing steps are carried out to supply further information on
the basis of the occurred errors. With the processing steps usually requiring less
than three seconds to be performed, these approaches are perceived as “live” or
“synchronous” for the students, albeit they are technically asynchronous.

Guo followed the first direction and approached the scenario of live remote tutor-
ing with a software called “Codeopticon” [53]. The aim is to enable instructors
to monitor and support multiple students in live sessions at the same time.
Within the MOOC setting, the major issues concerning tutoring are the usually
missing opportunity “to look over the shoulder” and the mismatch of workload
and numbers of students in comparison to the number of tutors. Fundamentally,
Guo’s solution o↵ers tutors a live view onto the current state of active students’
code. Tutors can also interact with students potentially requiring help via chat.
Codeopticon, as a novel approach, further contributes a scaling mechanism on
top of that. It shows tutors a grid of multiple tiles, each containing a single
student’s solution, updated in real-time. This way, tutors monitor about 15 stu-
dents at once on one screen, allowing for multiple advantages: (1) downtime
is minimized for tutors, who no longer have to wait for students’ reactions on
their hints, but can attend to other students, (2) tutors can passively monitor
students potentially too shy to ask for help, and (3) they can proactively ap-
proach students they think are in need of help without intimidating them too
much. Given the virtual setting, it further allows tutors to (4) set their own
pace of work and (5) allows them to regulate overly demanding participants by
non-attendance. The ability to monitor 15 students at once of course still does
not su�ce to support everyone in the MOOC scenario, therefore Codeopticon
shu✏es students’ solutions in and out, depending on their activity. Instructors
may pin code of interest and additionally are further visually supported by auto-
matic highlighting of errors, execution positions during debugging, and ordinary
code edits such as character additions or deletions. Results show that tutors can
assist about three students at once, and that this kind of tutoring is accepted
by students. Shortcomings outlined by Guo incorporate the limitation towards
text based feedback not allowing for helpful diagrams when explaining general
concepts, the danger of favoring quantity of tutoring over quality, and flaws in
attention management by shortcomings in the shu✏ing algorithm. On top of

7.1 Scaling Tutoring 135

that resides the conceptual shortcoming that this solution still does not scale
automatically with the audience. Codeopticon thus serves as a helpful step to
gradually balance the mismatch between students and instructors. However, the
point in time when too few tutors will face too many students will still occur,
just delayed at a higher number of enrollments.

Codeopticon relates to our approach of video tutoring as well as to our idea of
Request for Comments promoted via just-in-time interventions. Video tutoring
conceptionally shares many advantages and disadvantages with Guo’s idea. On
the negative side, video tutoring does not scale at all, therefore being inferior
to Codeopticon in this regard. On the positive side, video tutoring establishes
a more personal and feature rich relation between the tutor and the student,
supporting better explanations by enabling to actually talk instead of having
to type words. Furthermore, our approach also allows drawing and sharing of
schematics, which was mentioned to be especially helpful when facing concep-
tional misunderstandings.

Guo et al. subsequently extended the o↵ered features to also allow for syn-
chronous tutoring with a shared view of the source code, mouse course positions,
as well as the program output. The resulting tool was named Codechella [57].
Based on Mozilla’s TogetherJS library28 it attempts to resemble an in-person
tutoring setting as close as possible. However, they decided for a chat-based
communication rather than a video conference due to the greater simplicity and
the observed easier communication behavior for coding-related content. This
approach scales with the audience, but opposed to our setting, it cannot ensure
the required knowledge to be available for the exercise at hand. While Python
Tutor has a relatively large user-base, the synchronous nature also limits the
available pool of tutors.

Widening the scope, Warner and Guo developed a prototypical IDE to allow
multiple programmers to coordinate in real time while coding, debugging, man-
aging issues, and versioning their files [171]. It shares the main motivation with
our video tutoring approach. The main di↵erence between them is that their
prototype aims at a broader setting including issue tracking and versioning. Co-
incidentally, they also called their implementation CodePilot. In contrast to our
approach, they did not introduce video conferencing, but widened their scope of
applicability to more tools (e.g. the issue tracker of GitHub) and more situations
(e.g. collaboration in productive settings). With a focus on the educational as-
pect, the conclusions they have drawn comply with ours, outlining that tutoring
eased the understanding of particularly hard topics (they focused on versioning
with Git).

Similar to Codeopticon by Guo et al., Glassman et al. developed Overcode [46]
to support tutors in scaling by grasping the details of di↵erent student solu-
tions through clustering of similar code. The approach aims at asynchronous
situations, e.g., giving students feedback on submissions to empower them to
commence later on. Building on di↵erent approaches, including canonicaliza-
tion, transformations based on the abstract syntax tree, and program synthesis,
OverCode builds so called “stacks” from similar solutions to programming exer-
cises. Each stack shows tutors a “cleaned” representation of the various solution
it represents. The stacks can then be scrolled, filtered or be further merged

28 see http://togetherjs.com

http://togetherjs.com

136 7 Related Work

by so called “rewrite rules”, e↵ectively giving users the option to improve the
automated clustering. Similar to our approaches, the overall aim is to uncover
shortcomings and misconceptions in students’ understanding, as well as to find
potentially valuable mistakes in order to pinpoint common pitfalls. The current
implementation works on Python code, however the authors state that their
pipeline can be generalized for other programming languages.

A limitation of this approach is that it only works on syntactically correct
solutions, which also “have already been marked correct by an autograder”. It
therefore focuses on the more advanced steps taken when learning programming,
i.e., judging solutions based on their style, expressivity and complexity. The
most common cases occurring within introductory programming courses, having
a program that is not compiling, or having a program that compiles but is
unable to satisfy the tests of the autograder, are not tackled. With their aim
on supporting tutors in their grading work, this constraint does not limit the
applicability, as solutions that are syntactically incomplete or are not satisfying
the required unit tests, are usually graded with zero points (or the share of the
passed unit tests).

For our use case, supporting struggling students, this constraint however mas-
sively reduces the potential benefits. Given the aforementioned scenario, that
most struggling students will provide submissions that are failing the unit tests
or are not compiling at all, we focus on approaches that are able to cope with
faulty or even broken code. The two main directions that satisfy these require-
ments, are giving individual human feedback on submissions (1), and building
on error messages resulting from broken code (2).

Concerning video tutoring, there also have been former attempts to utilize video
conferencing in xMOOCs, e.g., Collab Spaces in openHPI or Talkabout in Cours-
era [85, 150]. While these attempts highlight the importance of collaboration
and the positive e↵ects of connecting students, they currently have a num-
ber of drawbacks based on their proprietary foundation. Their dependence on
Google Hangouts and requires an additional account and prevents a deeper
integration into the course platform to enhance grouping quality or provide bet-
ter feedback. This also prevents recordability and might lead to legal issues,
as data sovereignty is also not given and content is shared with third parties.
openHPI’s Collab Spaces focus on creating purposeful groups. Three di↵erent
kinds of groups are usually distinguishable: study groups, that progress through
the course together and are connected by external factors (language, location,
age, employer), topic focused groups that evolve around a certain (often times
specific or especially demanding) topic, and teams. Teams are formed when a
certain task has to be solved in cooperation.

Joseph and McKinsey surveyed the adoption of remote pair programming in
2013, and came to the conclusion that organization is one of the major is-
sues [105]. Also, they encountered problems with participants just wanting a
“free ride”, joining remote programming sessions with the primary goal to copy
solutions for the exercises. For production usage a distinguished tool to form
groups and plan shared time slots is therefore recommended. In their experi-
ments with such a tool, Talkabout, Kulkarni et al. found that students collab-
orating in diverse discussions were significantly more likely to answer quizzes
and score higher on exams [85]. They also underline that a pedagogical concept

7.1 Scaling Tutoring 137

that accompanies the group discussions is important. Depending on the course
type and the expected learning results, certain strategies can increase sharing
of self-references or encourage students to re-evaluate their own opinion.

Omitting explanations of all agenda items encourages students to ask questions
about them. When testing a very rigid agenda, Kulkarni et al. found that the
discussions were less motivating and that students were less inclined to meet
the same group again. While Coursera, the platform that the respective courses
were conducted on, uses an open-source, web based development environment
for some of their programming classes, there is no deeper integration of this
into Talkabout. Talkabout also did not try the concept of video tutoring in a
programming related class. Additionally, it became apparent that just putting
people together does not lead to e↵ective progress. Staubitz et al. concluded
that an elaborated team composition increases learning success [150].

7.1.2 Coding Tutorials

In addition to the approaches directly dealing with tutoring, Chen and Guo also
developed Improv, a tool to better combine teaching e↵orts via live coding with
common teaching via slide presentations [22]. This improvement promises to be
especially fitting for online education e↵orts. By combining slide presentations
with live coding, the benefits of slide presentations, e.g., a better structure, can
be intertwined with the flexibility and authentic nature of live coding. Con-
text switches are minimized, while the dynamic setting enabled via runnable
code examples can be preserved. Furthermore, so called “code waypoints” en-
able instructors to create predetermined states they want to reach during their
presentations. In case the live programming goes o↵ track, e.g., due to mistakes,
code waypoints act as a safety net and allow to either glimpse at the correct
solution while typing or to jump to the desired next state directly.

Another approach to better utilize videos featuring live programming is Code-
motion by Khandwala and Guo [72]. Using a computer vision algorithm, they
extract presented source code from the videos in order to enable use cases sur-
passing the mere visual presentation. Based on the extracted code, also the
editing steps can be traced. This allows to annotate the underlying video parts
with the respective progress being made and the concepts being explained. It
further enables advanced usage scenarios such as inline code editing for embed-
ded exercises, an improved search, and video skimming. Since we have supplied
all source code presented in our MOOCs as accompanied downloads and o↵ering
dedicated exercises for training, the benefit for this approach is limited in our
case. Nonetheless, further annotation for improved navigation will still provide
additional benefits.

With Codecast, Sharrock et al. created a solution to ease the creation of interac-
tive coding tutorials [141]. Allowing individuals to record the steps taken during
program creation within an online IDE, while simultaneously recording audio
from the programmer, simplifies the overall e↵ort to create coding tutorials.

While not directly connected to the improvement of students struggling with
specific programming exercises, all described research projects in this subsection
are likely to reduce struggle caused by weak educational material. We thus see
all of the mentioned tools as complementary to our approaches.

138 7 Related Work

7.2 Interventions and Struggle Detection

Interventions

Davis et al. found that individualistic promotional intervention messages which
motivate users to post in the forum improved scores for highly educated stu-
dents [34]. They express the need for a system, that is also (or especially) suitable
to target students with a lower prior knowledge. Our approach, using just-in-
time interventions promoting Request for Comments delivers that.

The findings made by Carini et al. [19] and Yang et al. [180] support the claim
that course-related discussions of students can have a positive influence on stu-
dent learning results. As students cannot be approached individually and di-
rectly, Chaturvedi et al. [21] and Chandrasekaran et al. [20] propose to use a
machine learning approach to detect threads in forums which need to be ad-
dressed by the instructors. Agrawal et al. [1] also try to reduce the work for
instructors by identifying confusion in forum threads and automatically sug-
gesting a ranked list of potential one-minute-resolution videos. However, this
type of intervention also requires students to ask questions in the forums. Since
students often do not reach out for help, being it because they do not realize
that they need help [2] or because they are too shy, instructors cannot help them
directly in most cases.

Especially weaker students hesitate to reach out for help in forums according to
Onah et al. [114], who also mention that there is a lack of research on instructor-
less, personal interventions within MOOCs. Therefore, researchers try to auto-
matically detect students who are at risk of dropping out and intervene on them
in order to motivate them. Whitehill et al. [174] used their dropout predictions
to survey students for feedback about why these students left the course. They
noticed that the surveys motivated students to come back sooner than those
students who received no survey. Mailing specific subgroups of a course with
targeted content may also increase the e↵ect of an intervention [80, 128, 162].

The aforementioned studies show that small interventions, like sending emails
to students, can have positive impact on students’ behavior. Oftentimes, the
e↵ect of interventions might however also be non-existent, or at least not verifi-
able, as shown in a review by Kizilcec and Brooks [74]. This is especially likely
if the interventions are either not suitable or far too late to help students who
struggle with exercises and thus face demotivation. When a rather generic inter-
vention reaches the students days later and thus can no longer help them with
the actual problem they were facing, it is unlikely that they will come back.
Pre-emptive interventions, such as plan making interventions [182], a�rmation
interventions [76] and self-regulation interventions [75] are suited to prevent un-
desired behavior before negative consequences come to e↵ect. In line with our
findings, just-in-time interventions are therefore considered superior to actions
which are performed at a much later point in time.

7.2 Interventions and Struggle Detection 139

Struggle Detection

While learning, all students will likely experience struggle with one of their
exercises at some time. As previously outlined, this is not necessarily harmful,
as light struggle, often resulting in time-boxed trail and error, promotes learning
and improves retention of the knowledge. Given the setting of in-class education,
teachers may intervene on students struggling too hard, as they express their
struggles through raising their hand and questions, or negative emotions such
as anger or resignation.

Students struggling with content in MOOCs will show the same reactions, with
the di↵erence that instructors will never receive the direct, visual clues caused by
negative emotions. The online equivalent to raising a hand and asking a question
is opening up a thread in the course forum. However, research has already shown
that students are reluctant to use the forum, as only about 5% of all students use
the forum [65], albeit forum usage correlates with a better course performance,
which is visible in our own data as well as the literature [24, 71]. In order to
enable automated just-in-time interventions a capable struggle detection based
on students’ platform interaction is necessary.

In 2017, Drosos et al. proposed HappyFace, a survey application used on Python
Tutor [36]. It collects students’ experienced emotions via their clicks on one of
five di↵erent expression options of smileys. The smileys expressions range from
very happy, happy, over neutral to unhappy and very unhappy. Optional free-
text answers were possible in order to describe the reason for the experienced
feeling (e.g. “I finally understand the code” or “My output is wrong”). When-
ever a student submits a response, the current status of the accompanied code
submission is analyzed. Based on the abstract syntax tree (AST), features of
syntactical correctness, complexity and style are extracted and related to the
surveyed emotion. They found that even with a relatively low response rate of
2.36% (from 101,044 visitors), they could identify features of code that are re-
lated to frustration. Especially syntax errors and usage of niche features, such as
global variables or isinstance calls were found to likely induce high frustration.

Sharma et al. noticed di↵erent programming strategies leading students’ to suc-
cess in programming exercises and claim to be able to identify low performers
early [139]. Based on their metrics, including semantic-less measures (e.g. the
assessment frequency) and code-based measure (e.g. growth in program size)
they thus also perform struggle detection. Their study was based on four exer-
cises solved by ⇡600 computer science-students. While performed on a smaller
scale with more homogeneous participants, their results comply with ours and
a�rm further potential for increasing intervention precision based on additional
metrics as suggested within the future work chapter.

Several recent studies further examined the influence of a higher age [54], English
as a non-native language in programming [55], and the dedication and usage in-
tention of programming skills of students [170]. These factors all apply to our
programming MOOCs to di↵ering extent. The majority of our students are non-
native English speakers and we also found in our data that the average age of
MOOC students is higher than the average age of university students. With our
introductory courses, we further attracted a high number of so-called “conver-
sational programmers”, who will be involved in programming related activities,
but will not be actively coding themselves. Their main motivation to learn pro-

140 7 Related Work

gramming is to improve their understanding of the field and communication
with their coworkers. All three studies outline the importance of interaction
with tutors and peers to support learning success, especially for those students
facing a higher risk of quitting the course. The learnings from these studies may
also further outline potential metrics improving struggle detection, however we
purposely abstained from integrating demographic data into our algorithms.

7.3 Bonus Exercises and Recommender Systems

Recommender systems are often used to improve the learning experience of
students in MOOCs. Bauman et al. [9] identified knowledge gaps in student
knowledge and proposed an algorithm to recommend remedial learning material
they crawled from the Internet. To predict the topics for which students have
knowledge gaps they use the number of points a student received on a quiz and
derive a score for each topic associated with the quiz.

Our approach shares many concepts with the aforementioned. In order to de-
termine deficits in content understanding, we also rely on annotation of learn-
ing material and quizzes (in our case, programming exercises). In contrast to
quizzes, programming exercises in introductory MOOCs are often pursued until
a full score is achieved as they can be reattempted as many times as students
wish. Therefore we added the metric how long students needed to complete the
exercise compared to other students.

Recommender systems have also been used to recommend learning items such as
websites, articles, books or exercises in [108, 137]. Particular interesting for our
work is the research from Michĺık et al. [108], as they deal with recommending
exercises to students in an e-learning context. They annotated the learning
objects with concepts and created a vector-space model to map the knowledge of
the students. After students solve an exercise, they are asked to provide feedback
which is then used to calculate the knowledge model using computer adaptive
testing (CAT). From Michĺık et al. we adapted the idea of concept tagging and
creating a vector-space knowledge model. Since their feedback system relies on
user feedback and not on automated tests, we developed a new knowledge model
suited for our specific use case and the increased user base within a MOOC.

EduRank, developed by Segal et al. [137], uses collaborative filtering in order to
create a personalized di�culty ranking for exercises. However, their algorithm
works best if students have only partial overlap of accessed exercises. This is
not given in MOOCs because all students follow the same order of exercises,
making it di�cult to use in this domain.

8

Conclusion

MOOCs are an e↵ective means to convey knowledge to a broad audience, over-
coming social and territorial barriers. For the field of information technology in
general and programming in particular, practical application of presented con-
cepts via exercises is valued by students and crucial for a lasting learning e↵ect.
Extended struggle, often caused by high di�culty due to abstract concepts and
cryptic feedback, however, impedes learning success, especially for beginners.
Counteracting measures, such as tutoring, employed in in-place education, lack
applicability in the online domain. Additional social factors, passively promoting
learning and establishing a proven learning environment, cannot be transferred
to the field of e-learning. The lack of direct social recognition of progress, adap-
tion to problems, and individual feedback results in a social gap, resulting in
reduced impact and higher dropout rates.

We conducted research to narrow this social gap induced by current technical
shortcomings and developed suitable approaches as well as implementations.

Within this thesis, we presented a model encompassing actions for instructors to
understand issues within their MOOC, adapt course material accordingly, and
to automatically intervene on students. We focused on interventions, promising
the greatest leverage, being applied on an individual level based on situational
factors and driven by the student’s specific progress metrics.

The data gathered over the course of several MOOCs support that interventions
in online courses are suitable to bring struggling students into the zone of prox-
imal development and increase their learning success. Of the applied interven-
tions, especially the request for comments, in combination with just-in-time in-
terventions, have proven to be e↵ective and beneficial approaches. Course scores
improved by up to 13%, with certification rates having improved by up to 17%.
Detailed analysis showed that especially students with lower prior knowledge
profited from the interventions, thus further improving education permeability.

Tailored bonus exercises are valued by students. Despite the fact that signifi-
cant e↵ects of bonus exercises on learning success could not be verified, we were
able to demonstrate that the overall approach was applicable to the given sce-
nario and adopted by the students. Data further indicate learning improvements
promoted by limited struggle, thus o↵ering additional insights into learning pro-
cesses from the researchers’ perspective.

142 8 Conclusion

All main experiments have been revalidated, showing coherent tendencies on
large audiences, further assuring credibility and generalizability.

Video tutoring did not result in the desired outcome of broad adaption as a
means of intervention. Missing availability of technical requirements on the stu-
dent side, as well as privacy concerns, hindered the widespread usage of the
developed prototype. The concept was therefore refined to support instructors’
understanding by unveiling a student’s learning progress and residing issues.

The adaption approach to automatically outline and subsequently improve weak
course material through anomaly detection has proven to be e↵ective.

Our developed approaches, their resulting technical implementations, as well as
the gathered data provide a rich foundation for ongoing research. The program-
ming platform CodeOcean is available as open-source software and has proven to
support MOOC scale workloads. The courses developed in the progress of this
research attracted large audiences from Europe respectively the whole world.
The courses, including all complementary educational material, remain avail-
able for everyone in German as well as in English. Up to today, they receive
constant interest from motivated individuals but also from teachers and school
classes, adopting the content into their own teaching. Our goal to improve pro-
gramming education in MOOCs is therefore not only fully achieved but has even
extended into physical classrooms.

Beyond the scope of programming education, the concepts we developed are gen-
eralizable to other areas, e.g, exercises in social sciences, and provide a promising
opportunity for e-learning in general.

Revisiting Greek history, in which education was first formalized, brings us to
a quote of Epictetus. He noted: “Only the educated are free”. Despite being a
former slave, he did not refer to materialistic constraints and the question of
freedom as self-determination, but the boundaries of his mind and the option to
question current beliefs in order to, e.g., improve society and better understand
the processes of nature. Regardless of the times we live in, successful societies
depend on well-educated citizens, prepared to tackle the challenges facing them.
MOOCs are a modern answer to the challenges of modern times - with our
research and results, we are confident and proud to have contributed novel
knowledge to an essential achievement of humanity: open education.

9

Appendix

9.1 Permission for Reuse of Publications

REUSE (ACM) Authors can reuse any portion of their own work in a new
work of their own (and no fee is expected) as long as a citation and DOI pointer
to the Version of Record in the ACM Digital Library are included.
Contributing complete papers to any edited collection of reprints for which the
author is not the editor, requires permission and usually a republication fee.
Authors can include partial or complete papers of their own (and no fee is
expected) in a dissertation as long as citations and DOI pointers to the Versions
of Record in the ACM Digital Library are included. Authors can use any portion
of their own work in presentations and in the classroom (and no fee is expected).

REUSE (IEEE) In reference to IEEE copyrighted material which is used with
permission in this thesis, the IEEE does not endorse any of Hasso Plattner Insti-
tute’s products or services. Internal or personal use of this material is permitted.
If interested in reprinting/republishing IEEE copyrighted material for advertis-
ing or promotional purposes or for creating new collective works for resale or
redistribution, please go to http://www.ieee.org/publications_standards/

publications/rights/right_link.html to learn how to obtain a License from
RightsLink.

http://www.ieee.org/publications_standards/publications/rights/right_link.html
http://www.ieee.org/publications_standards/publications/rights/right_link.html

144 9 Appendix

9.2 List of Published Results

Results of this dissertation have been published in the following papers:

E↵ects of Automated Interventions in Programming Assignments:
Evidence from a Field Experiment. [160]
Ralf Teusner, Thomas Hille, Thomas Staubitz
ACM Learning@Scale (2018), DOI: 10.1145/3231644.3231650

What Stays in Mind? - Retention Rates in Programming MOOCs. [161]
Ralf Teusner, Christoph Matthies, Thomas Staubitz
IEEE Frontiers in Education (2018), DOI: 10.1109/FIE.2018.8658890

On the Impact of Programming Exercise Descriptions -
E↵ects of Programming Exercise Descriptions
to Scores and Working Times. [158]
Ralf Teusner, Thomas Hille
IEEE Learning With MOOCS (2018), DOI: 10.1109/LWMOOCS.2018.8534676

Video Conferencing as a Peephole to MOOC Participants. [163]
Ralf Teusner, Nicholas Wittstruck, Thomas Staubitz
IEEE TALE (2017)

Aspects on Finding the Optimal Practical Programming Exercise for
MOOCs. [159]
Ralf Teusner, Thomas Hille, Christiane Hagedorn
IEEE Frontiers in Education (2017), DOI: 10.1109/FIE.2017.8190587

Taking Informed Action on Student Activity in MOOCs. [162]
Ralf Teusner, Kai-Adrian Rollmann, Jan Renz
ACM Learning@Scale (2017), DOI: 10.1145/3051457.3053971

CodeOcean - A Versatile Platform for Practical Programming
Exercises in Online Environments. [146]
Thomas Staubitz, Hauke Klement, Ralf Teusner, Jan Renz,
Christoph Meinel
IEEE EDUCON (2016), DOI: 10.1109/EDUCON.2016.7474573

9.3 Additional Figures 145

9.3 Additional Figures

N
D

N
H

B
H

R
H

N
S

B
S

R
S

0.00 0.25 0.50 0.75 1.00
Relative Score

Figure 9.1: Combined density- and box-plots of the scores achieved in the
five exercises being successfully finished least often.

����������	
��

�

��

�

��

�
�

�

��
�
��
�
�
�
�

��������

��������

��������

��������

���	���	

��
���
�

��������

��������

��������
��������

��������

��������

���	���	 ���
���

���
���

�
�����������
� ����������������
� ��������������
�

���
 ����� ���� �
������� ���
		
�
!

"

!#$%

!#%

!#&%

"#$%

"#%

"#&%

Figure 9.2: Average amount of RFCs per experiment group and skill level
per student.

146 9 Appendix

9.4 Additional Tables

Group Exercise Too Di�cult Superfluous OK Helpful

1 dummy 3.46% 6.54% 51.15% 38.85%

2 random 5.20% 4.83% 32.34% 57.62%

3 recommended 4.21% 5.37% 31.06% 59.36%

Table 9.1: Students’ perception of bonus exercises per experiment group
in the course Java 2017. Perceptions did vary between experiment groups.

Skill

Level
Privacy Tutors Students Contribute

Team

Submission

Technical

Issues

1 39,13% 47,83% 26,09% 17,39% 30,43% 21,74%

2 24,37% 45,80% 27,73% 27,31% 35,71% 15,55%

3 32,69% 42,79% 23,08% 27,40% 29,33% 13,46%

4 30,32% 41,29% 26,45% 27,74% 30,97% 14,84%

5 39,39% 39,39% 24,24% 16,67% 27,27% 13,64%

Avg. 29,80% 44,05% 26,01% 26,14% 31,37% 14,25%

Table 9.2: Students’ answers on question to video tutoring.

Group CoP RoA Avg. Score Avg. Score Finisher

ND 59.57% 53.19% 51.02% 83.21%

NH 56.41% 48.72% 51.13% 86.16%

BH 58.06% 45.16% 47.23% 86.10%

RH 64.29% 54.76% 49.65% 80.78%

NS 57.50% 50.00% 50.33% 88.13%

BS 63.16% 63.16% 56.79% 83.39%

RS 55.29% 40.00% 43.75% 84.36%

Table 9.3: Key metrics for women per experiment group.

9.4 Additional Tables 147

Group CoP RoA Avg. Score Avg. Score Finisher

ND 51.37% 36.07% 40.07% 83.73%

NH 60.39% 49.76% 49.30% 83.43%

BH 51.90% 44.76% 46.08% 86.49%

RH 52.51% 46.12% 47.18% 86.73%

NS 61.39% 49.50% 50.00% 84.47%

BS 57.53% 49.32% 48.10% 84.79%

RS 59.46% 48.70% 49.46% 85.86%

Table 9.4: Key metrics for men per experiment group.

Group CoP RoA Avg. Score Avg. Score Finisher

ND 43.53% 33.75% 36.32% 82.19%

NH 45.36% 34.44% 38.22% 83.84%

BH 46.67% 35.87% 39.49% 82.59%

RH 47.16% 37.79% 39.68% 84.22%

NS 46.95% 36.28% 39.81% 86.38%

BS 47.19% 37.29% 40.76% 85.56%

RS 49.13% 38.89% 40.83% 83.43%

Table 9.5: Key metrics for students who have not shared gender informa-
tion per experiment group.

Group Women Men Unknown Sum
Share

Women

Share

Men

Share

Unknown

ND 47 183 317 547 8.59% 33.46% 57.95%

NH 39 207 302 548 7.12% 37.77% 55.11%

BH 31 210 315 556 5.58% 37.77% 56.65%

RH 42 219 299 560 7.50% 39.11% 53.39%

NS 40 202 328 570 7.02% 35.44% 57.54%

BS 38 219 303 560 6.79% 39.11% 54.11%

RS 170 809 1260 2239 7.59% 36.13% 56.28%

Sum 407 2049 3124 5580 7.29% 36.72% 55.99%

Table 9.6: Gender distribution within experiment groups. No significant
di↵erences are visible.

148 9 Appendix

Platform URL

Bountify.co https://bountify.co

clojureScript http://clojurescript.net

CodeAnywhere https://codeanywhere.com

CodeAvengers https://www.codeavengers.com

CodeBoard https://codeboard.io

Codecademy https://www.codecademy.com

CodeCombat https://codecombat.com

CodeGolf https://codegolf.stackexchange.com

CodePen https://codepen.io

Codeschool https://www.pluralsight.com

CodeSignal https://codesignal.com

CodeWars https://www.codewars.com

Codility https://www.codility.com

Coding Bat https://codingbat.com

CodinGame https://www.codingame.com

Codio https://codio.com

DOMjudge https://www.domjudge.org

Eclipse,Orion, CHE, Theia https://projects.eclipse.org/projects/ecd/

exercism.io https://exercism.io

GitPod https://www.gitpod.io

HackerEarth https://www.hackerearth.com

HackerRank https://www.hackerrank.com

JACK https://www.s3.uni-duisburg-essen.de/en/jack/

JSFiddle https://jsfiddle.net

Kaggle https://www.kaggle.com

Khan Live Editor https://github.com/Khan/live-editor

Mooshak https://mooshak.dcc.fc.up.pt

Opal https://opalrb.com

Project Euler https://projecteuler.net

PythonTutor http://pythontutor.com

Qualified.io https://www.qualified.io

repl.it https://repl.it

repl.it Classrooms https://repl.it/site/classrooms/

Scratch https://scratch.mit.edu

Skulpt http://www.skulpt.org

Small Basic Online http://smallbasic.com

Snap https://snap.berkeley.edu

SoloLearn https://www.sololearn.com

Sphere Online Judge https://spoj.com

Stepik https://welcome.stepik.org

TopCoder https://www.topcoder.com

Treehouse https://teamtreehouse.com

WebCat http://web-cat.org

WebLinux https://codecast.wp.imt.fr/weblinux-2/

Table 9.7: URLs to coding platforms presented in Chapter 2, sorted
alphabetically (all last accessed on 07.01.2020).

https://bountify.co
http://clojurescript.net
https://codeanywhere.com
https://www.codeavengers.com
https://codeboard.io
https://www.codecademy.com
https://codecombat.com
https://codegolf.stackexchange.com
https://codepen.io
https://www.pluralsight.com
https://codesignal.com
https://www.codewars.com
https://www.codility.com
https://codingbat.com
https://www.codingame.com
https://codio.com
https://www.domjudge.org
https://projects.eclipse.org/projects/ecd/%20
https://exercism.io
https://www.gitpod.io
https://www.hackerearth.com
https://www.hackerrank.com
https://www.s3.uni-duisburg-essen.de/en/jack/
https://jsfiddle.net
https://www.kaggle.com
https://github.com/Khan/live-editor
https://mooshak.dcc.fc.up.pt
https://opalrb.com
https://projecteuler.net
http://pythontutor.com
https://www.qualified.io
https://repl.it
https://repl.it/site/classrooms/
https://scratch.mit.edu
http://www.skulpt.org
http://smallbasic.com
https://snap.berkeley.edu
https://www.sololearn.com
https://spoj.com
https://welcome.stepik.org
https://www.topcoder.com
https://teamtreehouse.com
http://web-cat.org
https://codecast.wp.imt.fr/weblinux-2/

9.4 Additional Tables 149

Description URL

MOOC “Intro to Artificial Intelligence”
https://www.udacity.com/course/

intro-to-artificial-intelligence--cs271

MOOC “Machine Learning” https://www.coursera.org/learn/machine-learning

Dropout Data from MOOCs http://www.katyjordan.com/MOOCproject.html

Definition Tutoring https://www.collinsdictionary.com/dictionary/english/tutoring

German portal for household tips https://www.frag-mutti.de

German recipe portal https://www.chefkoch.de

GitHub https://github.com

BitBucket https://bitbucket.org

GitLab https://gitlab.com

Phabricator https://www.phacility.com/phabricator

AMCAT https://www.myamcat.com

openHPI privacy policy https://open.hpi.de/pages/data-protection

Blog article from Justin Reich
http://blogs.edweek.org/edweek/edtechresearcher/2014/07/

the_ethics_of_educational_experiments.html

Announcement of “DigitalPakt Schule”
https://www.bmbf.de/de/bund-und-laender-

ueber-digitalpakt-schule-einig-8141.html

Docker https://www.docker.com

Canvas (open source LMS) https://github.com/instructure/canvas-lms

Coursera https://www.coursera.org

LTI Standard https://www.imsglobal.org/activity/learning-tools-interoperability

StackOverflow Community Survey 2019 https://insights.stackoverflow.com/survey/2019

Table 9.8: List of URLs mentioned in the thesis, in order of appearance
(all last accessed on 07.01.2020).

https://www.udacity.com/course/
intro-to-artificial-intelligence--cs271
https://www.coursera.org/learn/machine-learning
http://www.katyjordan.com/MOOCproject.html
https://www.collinsdictionary.com/dictionary/english/tutoring
https://www.frag-mutti.de
https://www.chefkoch.de
https://github.com
https://bitbucket.org
https://gitlab.com
https://www.phacility.com/phabricator
https://www.myamcat.com
https://open.hpi.de/pages/data-protection
http://blogs.edweek.org/edweek/edtechresearcher/2014/07/
the_ethics_of_educational_experiments.html
https://www.bmbf.de/de/bund-und-laender-
ueber-digitalpakt-schule-einig-8141.html
https://www.docker.com
https://github.com/instructure/canvas-lms
https://www.coursera.org
https://www.imsglobal.org/activity/learning-tools-interoperability
https://insights.stackoverflow.com/survey/2019

150 9 Appendix

Analyzed Questions from the Course-End Survey of the Java 2018 Course (N = 927)

Q1:
The possibility to request comments directly in CodeOcean

when solving the practical programming exercises... (Multiple Choice)

A1 was not necessary for me, I went along without it.

A2 lacked visibility. I did not notice that it was there and therefore did not use it.

A3 was helpful. I received helpful feedback.

A4 was not helpful. I did not receive any feedback.

A5
was mediocre. Mostly, my question was not specifically answered.

I received only complete solutions that solved the exercise but did add to my understanding.

Q2:
After solving an exercise, some participants were redirected to answer programming questions

of other participants. Which of the following options reflect your opinion? (Multiple Answer)

A1 I enjoyed helping others.

A2 I learned something when answering the questions.

A3 I felt disturbed by the requests.

A4 I never encountered questions of other participants.

A5 Usually I was not able to answer the questions, as they were too di�cult.

A6 I would have answered more questions if there was an option for that.

Q3: The interventions that encouraged me to ask for help or take a break... (Multiple Choice)

A1 did not influence me.

A2 never occurred, I did not see them.

A3 helped me. Taking a break or describing my problem helped me when I was struggling.

A4 bugged me. They appeared too often, therefore I ignored them.

Q4: The interventions that encouraged me to ask for help or take a break... (Multiple Choice)

A1 appeared too early.

A2 appeared after I solved the exercise.

A3 never appeared.

A4 appeared when I was actually struggling.

Q5: The ungraded bonus exercises... (Multiple Choice)

A1 were too di�cult.

A2 were good in general. However, I was given exercises that did not further help my understanding.

A3 were superfluous, I did not work on them.

A4 were helpful and fitting my weaknesses.

Q6:
We plan to introduce video conferences in CodeOcean in the future.

Which of the following options reflect your opinion? (Multiple Answer)

A1 I would not use the feature, because I worry about my privacy.

A2 I would like to use video conferences to receive feedback from the teaching team or tutors.

A3 I would be willing to contribute for individual tutoring by the teaching team.

A4 I would like to use video conferences to collaborate with another user on a team submission.

A5
I do not have the technical requirements to take part in video conferences

(e.g. no webcam, microphone, low bandwidth).

Table 9.9: Questions from the course-end survey of the Java 2018 course.

9.4 Additional Tables 151

List of Figures

1.1 Overall concept of improving the learning process. 5

2.1 Examples of learning items classified into Krathwohl’s taxonomy. 13

2.2 Cyclical phase model of self-regulation. 17

2.3 Zone of Proximal Development. 19

2.4 Typical impression of an openHPI course from the students’
perspective. 43

2.5 Students’ view of CodeOcean on a typical Java exercise. 44

3.1 Classification of implemented approaches. 47

3.2 Working time distributions of students for a typical exercise. 58

3.3 Screenshot of the Request for Comment intervention dialog. 68

3.4 Screenshot of the break intervention dialog. 69

3.5 Example of our domain model for programming exercises. 71

4.1 General architecture of CodeOcean. 79

4.2 CodeOcean core data model. 80

4.3 CodeOcean data model for interventions. 82

4.4 CodeOcean data model for user feedback. Entities for user
feedback are tinted green. 84

4.5 CodeOcean error data model. 84

4.6 CodeOcean workflow to execute students’ submissions. 85

4.7 Main workflow for tutoring sessions BPMN. 87

4.8 Data model of CodePilot. 87

4.9 User interface of CodePilot. 88

5.1 Learning items classified into Krathwohl’s taxonomy. 93

5.2 Overall gender distribution of active students. 95

154 List of Figures

5.3 General metrics for active students. 96

5.4 Number of students per country (on logarithmic scale). 96

5.5 Score distribution of all active students. 100

5.6 Score distribution per experiment group. 102

5.7 Combined density- and box-plots of the scores achieved by
students of our experiment groups. 103

5.8 Combined density- and box-plots of the scores achieved by our
experiment groups in the three exercises requiring most working
time. 104

5.9 Correlations between core metrics: age, skill level, and score. 105

5.10 Distribution of Request for Comments on exercises of specific
learning topics. 107

5.11 Density plot of created comments per student. 107

5.12 E↵ects of receiving help on required working times and success
rates of students. 110

5.13 Detailed analysis of students’ required working time after
requesting help. 111

5.14 Average amount of RFCs per combined experiment group and
skill level per student. 114

5.15 Students’ weakest topics of week 1 by prior knowledge. 120

5.16 Screenshot of the anomaly detection for all Java 2018 exercises. . 122

5.18 Average number of Request for Comments issued per gender
and age. 127

5.19 Average skill level per gender and age group. 128

5.20 Average scores of students per gender and skill level. 128

9.1 Combined density- and box-plots of the scores achieved in the
five exercises being successfully finished least often. 145

9.2 Average amount of RFCs per experiment group and skill level
per student. 145

List of Tables

2.1 Course key metrics for selected programming MOOCs openHPI
and openSAP. 28

3.1 Overview of variables in our knowledge model. 72

3.2 Definition of the values of the scoring function for tailored bonus
exercises. 73

4.1 Supported custom LTI parameters to configure CodeOcean. 86

5.1 Key metrics for analyzed Java courses. 91

5.2 Experiment groups for just-in-time interventions and Request
for Comments. 98

5.3 Combination of experiment groups and resulting shares of
students. 99

5.4 Experiment groups for tailored bonus exercises. 99

5.5 Key metrics for experiment groups. 101

5.6 Relative di↵erences in key metrics for experiment groups. 101

5.7 Achieved scores per skill level. 105

5.8 Average skill level and distribution of skill levels per experiment
group. 106

5.9 E↵ects of hiding RFCs. 108

5.10 Combined e↵ects of hiding RFCs and just-in-time interventions. . 112

5.11 RFC and commenting metrics per skill level. 113

5.12 Average Request for Comments per skill level and experiment
group with outliers �10 removed. 113

5.13 Share of students requesting help per skill level and experiment
group (values in percent). 114

5.14 RFCs per RFC requesting student, grouped by skill level and
experiment group. 115

156 List of Tables

5.15 Share of commenting students per skill level and experiment
group (values in percent). 115

5.16 E↵ects of written questions on commenting behavior and
exercise completion. 116

5.17 Share of Request for Comments without a written question per
intervention group. 116

5.18 Students’ valuation of RFCs per skill level, distribution in percent.117

5.19 Students’ valuation of RFCs per experiment group. 117

5.20 Students’ valuation of the commenting feature, distribution in
percent. 118

5.21 Students’ experience of just-in-time interventions, distribution
in percent. 119

5.22 Perceived timing of just-in-time interventions. 119

5.23 Students’ perception of bonus exercises per experiment group. . . 121

9.1 Students’ perception of bonus exercises per experiment group in
the course Java 2017. 146

9.2 Students’ answers on question to video tutoring. 146

9.3 Key metrics for women per experiment group. 146

9.4 Key metrics for men per experiment group. 147

9.5 Key metrics for students who have not shared gender information
per experiment group. 147

9.6 Gender distribution within experiment groups. 147

9.7 URLs to coding platforms. 148

9.8 List of URLs. 149

9.9 Questions from the course-end survey of the Java 2018 course. . . 150

Glossary

A/B-testing

Method to test hypotheses. A group is split into two (or more) similar and
homogeneous subgroups. Then, treatments are applied to some subgroups
and the e↵ects can be compared to the behavior of an untreated control
group.

Active Student

A student in our MOOCs who achieved at least one graded point.

API

Abbreviation for Application Programming Interface.

Blended Learning

Combination of online and in-class education. Often, concepts are prepared
or reinforced with online material before and after in-person classes.

Bloom’s Taxonomy

In this work, Bloom’s taxonomy refers to a hierarchical model of cognitive
skills.

Bonferroni Correction

Statistical method to counteract the accumulation of alpha errors on mul-
tiple comparisons.

BPMN

Abbreviation for Business Process Model and Notation.

Break Interventions

Popups displayed in CodeOcean that suggest students to take a break.

cMOOCs

Abbreviation for connectivist Massive Open Online Courses, courses which
focus and rely on content creation of the audience.

CodeHarbor

Sharing platform for programming exercises.

158 Glossary

CodeOcean

Code execution and assessment platform used in the experiments of this
thesis. Integrates via LTI.

CodePilot

Video conferencing implementation used in CodeOcean for some experi-
ments of this thesis.

Collab Spaces

Functionality on openHPI / openSAP to support teamwork, o↵ering a dedi-
cated forum, file uploads, and other tools such as a synchronized text editor.

Collaboration-based Recommendation / Collaborative Filtering

Recommendation technique that uses knowledge about similar users to rec-
ommend potentially suitable items.

Computer Adaptive Testing

A computer-based test that adapts to the student’s test result by, e.g.,
increasing or decreasing the di�culty of questions.

Confirmation of Participation

Confirmation that a student took part in a course. It is issued if the student
accessed at least 50% of the course material.

Content-based Recommendation / Content-based Filtering

Recommendation technique that uses prior interaction data of the specific
user with the system to recommend potentially suitable items.

Correlation coe�cient

Metric between -1 and 1, expressing the strength of a linear correlation be-
tween two variables. 0 means no correlation, 1 a perfect positive correlation,
and -1 a perfect negative correlation. If not stated otherwise, the Pearson
correlation is used in this work.

Digital Literacy

Describes the skillset to assess and create content in digital environments,
usually the internet. Comprises knowledge concerning tools (e.g. a word pro-
cessor), architectures (e.g. principles of programming and the relationship
between websites and servers), and mechanisms in virtual communities (e.g.
awareness of privacy).

Docker

Containerization solution used in CodeOcean to enable isolated execution
of students’ submissions at large scale.

eXtreme Apprenticeship

Educational model focusing on personal instruction, coaching, and instruc-
tional sca↵olding.

Glossary 159

Flipped Classroom

Instructional strategy as part of blended learning that reverses the tradi-
tional approach of presenting content in-class and having subsequent home-
work tasks for training. New content is prepared via, e.g., online lectures
before in-class sessions, leaving more time to discuss specific problems and
engage in active collaboration in presence phases.

Flow State

Mental state of being fully immersed in an activity, being productive and
enjoying the activity.

GDPR

Abbreviation for General Data Protection Regulation, a EU regulation on
data protection and data privacy.

HDI

Abbreviaton for Human Development Index, a metric reflecting the grade
of development of a country.

HPI

Abbreviation for Hasso Plattner Institute.

HPI Schul-Cloud

A platform to technically support K-12 education in Germany.

HTTP

Abbreviation for Hypertext Transfer Protocol, foundation for most of the
data transfer in the world wide web.

Hypothesis Test

Statistical test in which two conflictive hypotheses are tested on a given
dataset for their probability of being correct.

ICT

Abbreviation for Information and Communication Technology.

IDE

Abbreviation for Integrated Development Environment.

iFrame

HTML element to embed another website into the current web page.

In-Memory Data Management

Data management approach keeping the primary data instance in main
memory, resulting in improved processing speed for, e.g., enterprise appli-
cations.

Instructional Design

Practice of systematically turning content into educational content, consid-
ering the necessary structure, consistency, and examples helpful to acquire
knowledge.

160 Glossary

Intelligent Tutoring Systems

Learning systems that aim to o↵er students individualized but automated
and immediate feedback.

Intervention

An external modification to the current situation to usually achieve a posi-
tive, desired e↵ect.

Item Response Theory

Theory analyzing how for example students assignment answers can be
mapped to underlying misunderstandings. Learnings can be used to de-
termine the suitability of subsequent questions, enabling improved learning
e↵ects.

Item-based collaborative filtering

Recommendation technique that uses knowledge about similar items to de-
termine similar users, whose combined data can subsequently be used to
find additional suitable items.

Ivy League

Group of eight private universities in the US, often being considered the
most prestigious universities in the world.

Java

An object oriented-programming language.

JSON

Abbreviation for JavaScript Object Notation, a compact, text-based data
interchange format.

JUnit

A popular unit testing framework for Java.

Just-in-Time Intervention

Interventions issued while a student is working on an exercise. In our case,
popups during the work on programming exercises.

K-12

Timespan from Kindergarten to 12th grade.

Krathwohl’s taxonomy

A revision of blooms taxonomy, adding a second “knowledge” dimension to
the existing “process” dimension, allowing to distinguish between di↵erent
categories of knowledge in the model.

LTI

Abbreviation for Learning Tools Interoperability, a standard to securely
connect e-learning tools, allowing to authenticate users, transfer exercise
specific information, and safely communicate students’ results.

Glossary 161

MOOC

Abbreviation for Massive Open Online Course.

Normal Distribution

A statistical distribution required for many statistical tests. Also called Gauß
distribution.

OAuth

Standardized protocol allowing a secure authentication for applications.

OOP

Abbreviation for Object Oriented Programming.

openHPI / openSAP

MOOC platforms of the HPI respectively SAP. These course platforms
served as the backbone of our research and interacted with CodeOcean to
provide the data for our evaluation.

Pair Programming

Development technique for two programmers who work together on one
piece of code. They alternate taking the roles of “driver” and “observer”,
writing respectively reviewing code.

Pearson Correlation

Metric defined as the covariance of two variables divided by the product of
their standard deviations.

Recommender System

A system predicting the suitability of items for a specific user. Usually, these
predictions are used to subsequently present the user with the most appro-
priate items to, e.g., improve sales in e-commerce or the learning success in
online courses.

Record of Achievement

Certificate that is issued on openHPI and openSAP if a student reaches at
least 50% of the total achievable score within a course.

Request for Comments

Request of a student reaching out for help. Contains the current status of
the exercise solution, its run output including stack traces, and the results
of the teacher supplied unit tests.

REST

Abbreviation for Representational State Transfer, a software architecture
defining the capabilities of web services.

Rhizomatic Learning

Approach to let a community build up learning resources or the curriculum
in general.

162 Glossary

Rubber Duck E↵ect

An e↵ect encountered in the process of debugging, referring to the phe-
nomenon that developers often succeed in solving their problem themselves
if they explain their code step by step to another person. The person can
often be substituted by a rubber duck without losing the benefits.

Ruby / Ruby on Rails

Ruby on Rails is a web-application framework based on the object-oriented
programming language Ruby. CodeOcean, CodePilot, and the MOOC plat-
forms of the HPI are using Ruby on Rails within their backend.

Self-Regulated Learning

Mode of learning that is guided by actions including self-monitoring, strate-
gic planning, and reflection.

Server-Sent Events

Standard to allow data transferred to a client after the client established an
initial connection. Does not bi-directional communication.

t-test

Statistical hypothesis test usable if the statistic follows Student’s t-distribution.
Usually, a null hypothesis is tested against an alternative hypothesis.

Tailored Bonus Exercise

Programming exercise that is selected from a pool of potential exercises
based on the weaknesses expressed within a student’s knowledge model.

Test-driven Development

Software development approach usually used in agile development, requiring
tests to be written before the actual implementation is done.

User-based Collaborative Filtering

Statistical hypothesis test usable if the statistic follows Student’s t-distribution.
Usually, a null hypothesis is tested against an alternative hypothesis.

webRTC

Abbreviation for web Real-Time Communication, a standard for enabling
real-time audio and video communication directly within the browser.

WebSocket

Network protocol to enable bi-directional communication between a client
and a server via an open connection.

Welch Test

Statistical two-sample t-test based on mean values that does not require
equal variances.

Glossary 163

xMOOC

Abbreviation for extended MOOC. xMOOCs, as opposed to cMOOCs, often
resemble a traditional university course structure and emphasize on the
distribution of existing educational content.

Zone of Proximal Development

Concept introduced by Lev Vygotsky, organizing tasks into three categories:
tasks that learners can do without help, tasks that learners can do with help
(zone of proximal development), and tasks that learners cannot do even with
external help.

References

[1] Agrawal, A., Venkatraman, J., Leonard, S., and Paepcke, A.
YouEDU: Addressing Confusion in MOOC Discussion Forums by Rec-
ommending Instructional Video Clips. In Proceedings of the 8th Inter-
national Conference on Educational Data Mining (Madrid, Spain, June
2015), vol. 8, International Educational Data Mining Society, pp. 297–
304.

[2] Aleven, V., and Koedinger, K. R. Limitations of Student Control: Do
Students Know when They Need Help? In Intelligent Tutoring Systems.
Springer, Berlin, Germany, June 2000, pp. 292–303.

[3] Allen, V. L., and Feldman, R. S. Learning through Tutoring: Low-
Achieving Children as Tutors. The Journal of Experimental Education 42,
1 (Sept. 1973), 1–5.

[4] Altebarmakian, M., and Alterman, R. Design Heuristics to Support
Cohesion within Online Collaborative Learning Groups. In Frontiers in
Education (Cincinnati, 2019), IEEE.

[5] Annis, L. F. The Processes and E↵ects of Peer Tutoring. Human Learn-
ing: Journal of Practical Research & Applications 2, 1 (1983), 39–47.

[6] Ariga, A., and Lleras, A. Brief and Rare Mental “Breaks” Keep you
Focused: Deactivation and Reactivation of Task Goals Preempt Vigilance
Decrements. Cognition 118, 3 (Mar. 2011), 439–443.

[7] Auletta, K. Get Rich U - There are no walls between Stanford and Sili-
con Valley. Should there be? The New Yorker, Annals of Higher Education
(Apr. 2012). Issue April 30th.

[8] Balaban, N. Seeing the Child, Knowing the Person. In To Become a
Teacher: Making a Di↵erence in Children’s Lives, W. Ayers, Ed. Teachers
College Press, New York, June 1996, pp. 49–57.

[9] Bauman, K., and Tuzhilin, A. Recommending Remedial Learning
Materials to Students by Filling Their Knowledge Gaps. Management
Information Systems Quarterly 42, 1 (Mar. 2018), 313–332.

[10] Bergin, S., and Reilly, R. The Influence of Motivation and Comfort-
Level on Learning to Program. In Proceedings of the 17th Workshop of
the Psychology of Programming Interest Group, PPIG 05. University of
Sussex, Brighton, UK, June 2005. Psychology of Programming Interest
Group, 2005, pp. 293–304.

166 References

[11] Bloom, B. S. Taxonomy of Educational Objectives, Handbook 1: Cog-
nitive Domain, 2nd ed. Addison-Wesley Longman Ltd, New York, USA,
June 1956.

[12] Bonk, C. J., and Graham, C. R. The Handbook of Blended Learning:
Global Perspectives, Local Designs. John Wiley & Sons, 2006.

[13] Boud, D. Enhancing Learning Through Self-Assessment. Routledge, Oct.
2013.

[14] Broadbent, J., and Poon, W. L. Self-Regulated Learning Strate-
gies & Academic Achievement in Online Higher Education Learning En-
vironments: A Systematic Review. The Internet and Higher Education 27
(2015), 1–13.

[15] Brown, M. Comfort Zone: Model or Metaphor? Journal of Outdoor and
Environmental Education 12, 1 (2008), 3–12.

[16] Bruff, D. O., Fisher, D. H., McEwen, K. E., and Smith, B. E.
Wrapping a MOOC: Student Perceptions of an Experiment in Blended
Learning. Journal of Online Learning and Teaching 9, 2 (June 2013),
187–199.

[17] Brusilovsky, P., and Peylo, C. Adaptive and Intelligent Web-Based
Educational Systems. In International Journal of Artificial Intelligence in
Education (Amsterdam, The Netherlands, Apr. 2003), vol. 13, IOS Press,
pp. 159–172.

[18] Buckingham, D. Defining Digital Literacy – What do Young People
Need to Know About Digital Media? Nordic Journal of Digital Literacy
1, 04 (Dec. 2006), 263–277.

[19] Carini, R. M., Kuh, G. D., and Klein, S. P. Student Engagement and
Student Learning: Testing the Linkages. Research in Higher Education 47,
1 (Feb. 2006), 1–32.

[20] Chandrasekaran, M. K., Kan, M.-Y., Tan, B. C. Y., and Ragu-
pathi, K. Learning Instructor Intervention from MOOC Forums: Early
Results and Issues. In Proceedings of the 8th International Conference
on Educational Data Mining (New York, New York, USA, 4 2015), ACM
Press, pp. 512–513.

[21] Chaturvedi, S., Daum, H., and Goldwasser, D. Predicting In-
structor’s Intervention in MOOC Forums. In Proceedings of the 52nd

Annual Meeting of the Association for Computational Linguistics (Balti-
more, Maryland, June 2014), Association for Computational Linguistics,
pp. 1501–1511.

[22] Chen, C. H., and Guo, P. J. Improv: Teaching Programming at Scale
via Live Coding. In Proceedings of the Sixth ACM Conference on Learning
at Scale (Chicago, IL, USA, June 2019), ACM.

[23] Chen, P.-S. D., Gonyea, R., and Kuh, G. Learning at a Distance:
Engaged or Not? Innovate: Journal of Online Education 4, 3 (2008).

[24] Cheng, C. K., Paré, D. E., Collimore, L.-M., and Joordens, S.
Assessing the E↵ectiveness of a Voluntary Online Discussion Forum on
Improving Students’ Course Performance. Computers & Education 56, 1
(Jan. 2011), 253–261.

[25] Christensen, G., Steinmetz, A., Alcorn, B., Bennett, A.,
Woods, D., and Emanuel, E. The MOOC Phenomenon: Who Takes
Massive Open Online Courses and Why? SSRN Electronic Journal (Nov.
2013).

References 167

[26] Cohen, P. A., and Kulik, J. A. Synthesis of Research on the E↵ects
of Tutoring. Educational Leadership 39, 3 (Dec. 1981), 227–229.

[27] Cohen, P. A., Kulik, J. A., and Kulik, C.-L. C. Educational Out-
comes of Tutoring: A Meta-Analysis of Findings. American Educational
Research Journal 19, 2 (Jan. 1982), 237–248.

[28] Cormier, D. Making the Community the Curriculum. Pressbooks, Mon-
treal, Canada, 2014.

[29] Csikszentmihalyi, M. Finding Flow: The Psychology of Engagement
with Everyday Life. Finding Flow: The Psychology of Engagement with
Everyday Life. Basic Books, New York, NY, US, 1997.

[30] Csikszentmihalyi, M. Flow: The Psychology of Optimal Experience.
Harper Perennial Modern Classics, New York, July 2008.

[31] Csikszentmihalyi, M., Rathunde, K., and Whalen, S. Talented
Teenagers: The Roots of Success and Failure. Cambridge University Press,
1997.

[32] Cuban, L. Whatever Happened to MOOCs?, Oct. 2017.
Available at https://larrycuban.wordpress.com/2017/10/28/

whatever-happened-to-moocs/, last accessed on December 10, 2019.
[33] Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. Social Coding in

GitHub: Transparency and Collaboration in an Open Software Repository.
In Proceedings of the ACM Conference on Computer Supported Coopera-
tive Work (New York, NY, USA, 2012), CSCW ’12, ACM, pp. 1277–1286.

[34] Davis, D., Jivet, I., Kizilcec, R. F., Chen, G., Hauff, C., and
Houben, G.-J. Follow the Successful Crowd: Raising MOOC Completion
Rates through Social Comparison at Scale. In Proceedings of the Seventh
International Learning Analytics & Knowledge Conference (Mar. 2017),
ACM, pp. 454–463.

[35] Douce, C., Livingstone, D., and Orwell, J. Automatic Test-Based
Assessment of Programming: A Review. In Journal on Educational Re-
sources in Computing (New York, USA, Sept. 2005), vol. 5, ACM.

[36] Drosos, I., Guo, P. J., and Parnin, C. HappyFace: Identifying and
Predicting Frustrating Obstacles for Learning Programming at Scale. In
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC) (Raleigh, NC, Oct. 2017), IEEE, pp. 171–179.

[37] D’Souza, D., Hamilton, M., Harland, J., Muir, P., Thevathayan,
C., and Walker, C. Transforming Learning of Programming: A Men-
toring Project. In Proceedings of the Tenth Conference on Australasian
Computing Education (Darlinghurst, Australia, 2008), vol. 78 of ACE ’08,
Australian Computer Society, Inc., pp. 75–84.

[38] Dunkin, M. J. Concepts of Teaching and Teaching Excellence in Higher
Education. Higher Education Research & Development 14, 1 (Jan. 1995),
21–33.

[39] Ebert, C., and Neve, P. D. Surviving Global Software Development.
IEEE Software 18, 2 (Mar. 2001), 62–69.

[40] Edwards, S. H. Rethinking Computer Science Education from a Test-
First Perspective. In Companion of the 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (New York, NY, USA, 2003), OOPSLA ’03, ACM, pp. 148–
155.

https://larrycuban.wordpress.com/2017/10/28/whatever-happened-to-moocs/
https://larrycuban.wordpress.com/2017/10/28/whatever-happened-to-moocs/

168 References

[41] Elbaum, B., Vaughn, S., Hughes, M. T., and Moody, S. W. How
E↵ective Are One-to-One Tutoring Programs in Reading for Elementary
Students at Risk for Reading Failure? A Meta-Analysis of the Intervention
Research. Journal of Educational Psychology 92, 4 (2000), 605–619.

[42] Ellis, C. A., and Gibbs, S. J. Concurrency Control in Groupware
Systems. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (1989), vol. 18, ACM, pp. 399–407.

[43] Entwistle, N., Tait, H., and McCune, V. Patterns of Response
to an Approaches to Studying Inventory across Contrasting Groups and
Contexts. European Journal of Psychology of Education 15, 1 (Mar. 2000),
33–48.

[44] Gašević, D., Dawson, S., and Siemens, G. Let’s Not Forget: Learning
Analytics Are about Learning. TechTrends 59, 1 (2015), 64–71.

[45] Glance, D. Universities Are Still Standing. The MOOC Revolution
That Never Happened. http://theconversation.com/universities-are-still-
standing-the-mooc-revolution-that-never-happened-29187, July 2014.

[46] Glassman, E. L., Scott, J., Singh, R., Guo, P. J., and Miller,
R. C. OverCode: Visualizing Variation in Student Solutions to Program-
ming Problems at Scale. ACM Transactions on Computer-Human Inter-
action 22, 2 (Mar. 2015), Article 7, 1–35.

[47] Goldschmid, B., and Goldschmid, M. L. Peer Teaching in Higher
Education: A Review. Higher Education 5, 1 (1976), 9–33.

[48] Goldstein, I. P. The Genetic Graph: A Representation for the Evolu-
tion of Procedural Knowledge. In International Journal of Man-Machine
Studies (1979), vol. 11, pp. 51–77.

[49] Gomes, A., and Mendes, A. J. Learning to Program-Di�culties and
Solutions. In International Conference on Engineering Education–ICEE
(2007).

[50] Grünewald, F., Mazandarani, E., Meinel, C., Teusner, R.,
Totschnig, M., and Willems, C. openHPI - A Case-Study on the
Emergence of Two Learning Communities. In IEEE Global Engineering
Education Conference (EDUCON) (Mar. 2013), IEEE, pp. 1323–1331.

[51] Grünewald, F., Meinel, C., Totschnig, M., and Willems, C. De-
signing MOOCs for the Support of Multiple Learning Styles. In Proceed-
ings of the 8th European Conference on Technology Enhanced Learning
(Heidelberg, Germany, Sept. 2013), D. H. Leo, T. Ley, R. Klamma, and
A. Harrer, Eds., vol. 8095 of Lecture Notes in Computer Science, Springer,
pp. 371–382.

[52] Guo, P. J. Online Python Tutor: Embeddable Web-Based Program Vi-
sualization for Cs Education. In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education (New York, NY, USA, 2013),
ACM, pp. 579–584.

[53] Guo, P. J. Codeopticon: Real-Time, One-To-Many Human Tutoring
for Computer Programming. In Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology (New York, NY,
USA, 2015), UIST ’15, ACM, pp. 599–608.

[54] Guo, P. J. Older Adults Learning Computer Programming: Motivations,
Frustrations, and Design Opportunities. In Proceedings of the CHI Con-
ference on Human Factors in Computing Systems (New York, NY, USA,
2017), CHI ’17, ACM, pp. 7070–7083.

References 169

[55] Guo, P. J. Non-Native English Speakers Learning Computer Program-
ming: Barriers, Desires, and Design Opportunities. In Proceedings of the
CHI Conference on Human Factors in Computing Systems (New York,
NY, USA, 2018), no. 396, ACM, pp. 1–14.

[56] Guo, P. J., Kim, J., and Rubin, R. How Video Production A↵ects
Student Engagement: An Empirical Study of MOOC Videos. In Proceed-
ings of the First ACM Conference on Learning at Scale (New York, NY,
USA, 2014), L@S ’14, ACM, pp. 41–50.

[57] Guo, P. J., White, J., and Zanelatto, R. Codechella: Multi-User
Program Visualizations for Real-Time Tutoring and Collaborative Learn-
ing. In IEEE Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC) (2015), IEEE, pp. 79–87.

[58] Haavind, S., and Sistek-Chandler, C. The Emergent Role of the
MOOC Instructor: A Qualitative Study of Trends Toward Improving Fu-
ture Practice. International Journal on E-Learning 14, 3 (July 2015),
331–350.

[59] Hartley, S. S. Meta-Analysis of the E↵ects of Individually Paced In-
struction in Mathematics. PhD thesis, University of Colorado at Boulder,
1977.

[60] Hauke, K. A Versatile Platform for Practical Programming Exercises in
Massive Open Online Courses. Master’s thesis, Hasso Plattner Institute,
Dec. 2014.

[61] He, H., Zheng, Q., Di, D., and Dong, B. How Learner Support
Services A↵ect Student Engagement in Online Learning Environments.
IEEE Access 7 (2019), 49961–49973.

[62] He, J., Bailey, J., Rubinstein, B., and Zhang, R. Identifying At-
Risk Students in Massive Open Online Courses. Proceedings of the 29th

AAAI Conference on Artificial Intelligence (2015), 1749–1755.
[63] Heininger, R., Seifert, V., Prifti, L., Utesch, M. C., and Krc-

mar, H. The Playful Learning Approach for Learning How to Program:
A Structured Lesson Plan. In Proceedings of the 30th Bled eConference
(June 2017), University of Maribor Press.

[64] Hoeffding, W., and Robbins, H. The Central Limit Theorem for De-
pendent Random Variables. In The Collected Works of Wassily Hoe↵ding,
N. I. Fisher and P. K. Sen, Eds. Springer New York, New York, NY, 1994,
pp. 205–213.

[65] Huang, J., Dasgupta, A., Ghosh, A., Manning, J., and Sanders,
M. Superposter Behavior in MOOC Forums. In Proceedings of the First
ACM Conference on Learning at Scale (New York, NY, USA, 2014), L@S
’14, ACM, pp. 117–126.

[66] Hunt, A., Thomas, D., and Cunningham, W. The Pragmatic Pro-
grammer. From Journeyman to Master, 1 ed. Addison Wesley, Reading,
Mass, Oct. 1999.

[67] Ihantola, P., Ahoniemi, T., Karavirta, V., and Seppälä, O. Re-
view of Recent Systems for Automatic Assessment of Programming As-
signments. In Proceedings of the 10th Koli Calling International Con-
ference on Computing Education Research (New York, NY, USA, 2010),
Koli Calling ’10, ACM, pp. 86–93.

[68] Jackson, D., and Usher, M. Grading Student Programs Using AS-
SYST. In Proceedings of the Twenty-Eighth SIGCSE Technical Symposium

170 References

on Computer Science Education (New York, NY, USA, 1997), SIGCSE
’97, ACM, pp. 335–339.

[69] Jiang, S., Williams, A. E., Schenke, K., Warschauer, M., and
Dowd, D. O. Predicting MOOC Performance with Week 1 Behavior.
Proceedings of the 7th International Conference on Educational Data Min-
ing (2014), 273–275.

[70] Johnson, H. Goodbye, Chalkboard — Hello, Chat Room.
Time Ideas (Mar. 2015). Available at http://time.com/3747816/

education-chalkboard-chatroom/, last accessed on December 10, 2019.
[71] Joksimović, S., Gašević, D., Kovanović, V., Riecke, B. E., and

Hatala, M. Social Presence in Online Discussions as a Process Predictor
of Academic Performance. Journal of Computer Assisted Learning 31, 6
(2015), 638–654.

[72] Khandwala, K., and Guo, P. J. Codemotion: Expanding the De-
sign Space of Learner Interactions with Computer Programming Tutorial
Videos. In Proceedings of the Fifth ACM Conference on Learning at Scale
(2018), vol. 57, pp. 1–10.

[73] Kim, P. Massive Open Online Courses: The MOOC Revolution. Rout-
ledge, New York, Nov. 2014.

[74] Kizilcec, R. F., and Brooks, C. Diverse Big Data and Randomized
Field Experiments in Massive Open Online Courses. In The Handbook
of Learning Analytics, 1 ed. Society for Learning Analytics Research (So-
LAR), Alberta, Canada, 2017, pp. 211–222.

[75] Kizilcec, R. F., and Cohen, G. L. Eight-Minute Self-Regulation Inter-
vention Raises Educational Attainment at Scale in Individualist but not
Collectivist Cultures. Proceedings of the National Academy of Sciences
114, 17 (2017), 4348–4353.

[76] Kizilcec, R. F., Davis, G. M., and Cohen, G. L. Towards Equal
Opportunities in MOOCs: A�rmation Reduces Gender & Social-Class
Achievement Gaps in China. In Proceedings of the Fourth ACM Confer-
ence on Learning at Scale (New York, NY, USA, 2017), ACM, pp. 121–130.

[77] Kizilcec, R. F., and Halawa, S. Attrition and Achievement Gaps
in Online Learning. In Proceedings of the Second ACM Conference on
Learning at Scale (New York, NY, USA, 2015), L@S ’15, ACM, pp. 57–
66.

[78] Kizilcec, R. F., Pérez-Sanagust́ın, M., and Maldonado, J. J.
Self-Regulated Learning Strategies Predict Learner Behavior and Goal
Attainment in Massive Open Online Courses. Computers & Education
104 (2017), 18–33.

[79] Kizilcec, R. F., and Schneider, E. Motivation As a Lens to Under-
stand Online Learners: Toward Data-Driven Design with the OLEI Scale.
ACM Transactions on Computer-Human Interaction 22, 2 (3 2015), 1–24.

[80] Kizilcec, R. F., Schneider, E., Cohen, G. L., and McFarland,
D. A. Encouraging Forum Participation in Online Courses with Collec-
tivist, Individualist and Neutral Motivational Framings. Proceedings of
the EMOOCS Conference 2014 (2014), 80–87.

[81] Kloft, M., Stiehler, F., Zheng, Z., and Pinkwart, N. Predicting
MOOC Dropout over Weeks Using Machine Learning Methods. In Pro-
ceedings of the EMNLP 2014 Workshop on Analysis of Large Scale Social
Interaction in MOOCs (2014), pp. 60–65.

http://time.com/3747816/education-chalkboard-chatroom/
http://time.com/3747816/education-chalkboard-chatroom/

References 171

[82] Kloos, C. D., Muñoz-Merino, P. J., Alario-Hoyos, C., Ayres,
I. E., and Fernández-Panadero, C. Mixing and Blending MOOC
Technologies with Face-to-Face Pedagogies. In IEEE Global Engineering
Education Conference (EDUCON) (2015), IEEE, pp. 967–971.

[83] Koedinger, K. R., Kim, J., Jia, J. Z., McLaughlin, E. A., and
Bier, N. L. Learning is Not a Spectator Sport: Doing is Better Than
Watching for Learning from a MOOC. In Proceedings of the Second ACM
Conference on Learning at Scale (New York, NY, USA, 2015), L@S ’15,
ACM, pp. 111–120.

[84] Krathwohl, D. R. A Revision of Bloom’s Taxonomy: An Overview.
Theory Into Practice 41, 4 (2002), 212–218.

[85] Kulkarni, C., Cambre, J., Kotturi, Y., Bernstein, M. S., and
Klemmer, S. R. Talkabout: Making Distance Matter with Small Groups
in Massive Classes. In Proceedings of the 18th ACM Conference on Com-
puter Supported Cooperative Work & Social Computing (2015), ACM,
pp. 1116–1128.

[86] Kulkarni, C. E., Bernstein, M. S., and Klemmer, S. R. PeerStudio:
Rapid Peer Feedback Emphasizes Revision and Improves Performance. In
Proceedings of the Second ACM Conference on Learning at Scale (New
York, NY, USA, 2015), ACM, pp. 75–84.

[87] Kurtin, K. S., O’Brien, N., Roy, D., and Dam, L. The Development
of Parasocial Interaction Relationships on YouTube. The Journal of Social
Media in Society 7, 1 (May 2018), 233–252.

[88] Lackner, E., Kopp, M., and Ebner, M. How to MOOC? –A Pedagog-
ical Guideline for Practitioners. In Proceedings of the 10th International
Scientific Conference” eLearning and Software for Education” (2014).

[89] Lajoie, S. P., and Azevedo, R. Teaching and Learning in Technology-
Rich Environments. Routledge Handbooks Online, May 2006.

[90] Lang, C., Siemens, G., Wise, A., and Gasevic, D. Handbook of
Learning Analytics. SOLAR, Society for Learning Analytics and Research,
2017.

[91] Leberman, S. I., and Martin, A. J. Does Pushing Comfort Zones Pro-
duce Peak Learning Experiences? Journal of Outdoor and Environmental
Education 7, 1 (2002), 10–19.

[92] Lee, D., Watson, S. L., and Watson, W. R. Systematic Literature
Review on Self-Regulated Learning in Massive Open Online Courses. Aus-
tralasian Journal of Educational Technology 35, 1 (2019), 28–41.

[93] Leinonen, J., Ihantola, P., and Hellas, A. Preventing Keystroke
Based Identification in Open Data Sets. In Proceedings of the Fourth ACM
Conference on Learning at Scale (2017), ACM, pp. 101–109.

[94] Lemov, D. Bloom’s Taxonomy —That Pyramid is a Problem,
Mar. 2017. Available at https://teachlikeachampion.com/blog/

blooms-taxonomy-pyramid-problem/, last accessed on December 10,
2019.

[95] Linden, A., and Fenn, J. Understanding Gartner’s Hype Cycles. Strate-
gic Analysis Report No R-20-1971. Gartner, Inc (2003).

[96] Liyanagunawardena, T. R., Lundqvist, K. O., Micallef, L., and
Williams, S. A. Teaching Programming to Beginners in a Massive Open
Online Course. In Proceedings of the OER14 Conference (Apr. 2014),
Association for Learning Technology, pp. 1–7.

https://teachlikeachampion.com/blog/blooms-taxonomy-pyramid-problem/
https://teachlikeachampion.com/blog/blooms-taxonomy-pyramid-problem/

172 References

[97] Löwis, M., Staubitz, T., Teusner, R., Renz, J., Meinel, C., and
Tannert, S. Scaling Youth Development Training in IT Using an
xMOOC Platform. In IEEE Frontiers in Education Conference (FIE)
(Oct. 2015), pp. 1–9.

[98] Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H., and
Koper, R. Recommender Systems in Technology Enhanced Learning.
In Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, and
P. B. Kantor, Eds. Springer US, Boston, MA, 2011, pp. 387–415.

[99] Margolis, H., and McCabe, P. P. Self-E�cacy: A Key to Improving
the Motivation of Struggling Learners. The Clearing House: A Journal of
Educational Strategies, Issues and Ideas 77, 6 (2004), 241–249.

[100] Martin, F., Wang, C., and Sadaf, A. Student Perception of Help-
fulness of Facilitation Strategies That Enhance Instructor Presence, Con-
nectedness, Engagement and Learning in Online Courses. The Internet
and Higher Education 37 (2018), 52–65.

[101] Marwick, A. E. You May Know Me from YouTube: (Micro-)Celebrity
in Social Media. In A Companion to Celebrity, S. R. P. David Marshall,
Ed. John Wiley & Sons, Inc, Oct. 2015, pp. 333–350.

[102] McCabe, T. J. A Complexity Measure. IEEE Transactions on Software
Engineering SE-2, 4 (Dec. 1976), 308–320.

[103] McKeachie, W. J. Critical Elements in Training University Teachers.
International Journal for Academic Development 2, 1 (May 1997), 67–74.

[104] McKenna, L. The Big Idea That Can Revolutionize Higher Education:
’MOOC’. https://www.theatlantic.com/business/archive/2012/05/the-
big-idea-that-can-revolutionize-higher-education-mooc/256926/, May
2012.

[105] McKinsey, J. Remote Pair Programming in a Visual Programming Lan-
guage. Technical Report No. UCB/EECS-2015-139 (2015).

[106] Means, B., Toyama, Y., Murphy, R., Bakia, M., and Jones, K.
Evaluation of Evidence-Based Practices in Online Learning: A Meta-
Analysis and Review of Online Learning Studies. US Department of Ed-
ucation, May 2009.

[107] Meinel, C., Willems, C., Renz, J., and Staubitz, T. Reflections on
Enrollment Numbers and Success Rates at the openHPI MOOC Platform.
Proceedings of the EMOOCS Conference 2014 (2014), 101–106.

[108] Michlik, P., and Bielikova, M. Exercises Recommending for Limited
Time Learning. In Proceedings of the 1st Workshop on Recommender Sys-
tems for Technology Enhanced Learning (2010), vol. 1, Elsevier, pp. 2821–
2828.

[109] Murray, T. Authoring Intelligent Tutoring Systems: An Analysis of
the State of the Art. International Journal of Artificial Intelligence in
Education, 10 (1999), 98–129.

[110] Naumann, F., Jenders, M., and Papenbrock, T. Ein Datenbankkurs
mit 6000 Teilnehmern. Informatik-Spektrum 37, 4 (Aug. 2014), 333–340.

[111] Nkambou, R., Bourdeau, J., and Psyché, V. Building Intelligent
Tutoring Systems: An Overview. In Advances in Intelligent Tutoring Sys-
tems, J. Kacprzyk, R. Nkambou, J. Bourdeau, and R. Mizoguchi, Eds.,
vol. 308. Springer Berlin Heidelberg, 2010, pp. 361–375.

[112] Nwana, H. S. Intelligent Tutoring Systems: An Overview. Artificial
Intelligence Review 4, 4 (Dec. 1990), 251–277.

References 173

[113] Ohta, A. S. Interlanguage Pragmatics in the Zone of Proximal Develop-
ment. System 33, 3 (Sept. 2005), 503–517.

[114] Onah, D. F., Sinclair, J., and Boyatt, R. Dropout Rates of Mas-
sive Open Online Courses: Behavioural Patterns. Proceedings of the 6th

International Conference on Education and New Learning Technologies 1
(2014), 5825–5834.

[115] Panadero, E. A Review of Self-regulated Learning: Six Models and Four
Directions for Research. Frontiers in Psychology 8 (Apr. 2017).

[116] Papadopoulos, K., Sritanyaratana, L., and Klemmer, S. R. Com-
munity TAs Scale High-Touch Learning, Provide Student-Sta↵ Brokering,
and Build Esprit de Corps. In Proceedings of the First ACM Conference
on Learning at Scale (2014), ACM, pp. 163–164.

[117] Pea, R. Practices of Distributed Intelligence and Designs for Educa-
tion. Distributed Cognitions Psychological and Educational Considerations
(1993), 47–87.

[118] Pintrich, P. R. Chapter 14 - The Role of Goal Orientation in Self-
Regulated Learning. In Handbook of Self-Regulation, M. Boekaerts, P. R.
Pintrich, and M. Zeidner, Eds. Academic Press, San Diego, Jan. 2000,
pp. 451–502.

[119] Price, L., Richardson, J. T. E., and Jelfs, A. Face-to-Face Ver-
sus Online Tutoring Support in Distance Education. Studies in Higher
Education 32, 1 (Feb. 2007), 1–20.

[120] Prinsloo, P., and Slade, S. Ethics and Learning Analytics: Charting
the (Un) Charted. In The Handbook of Learning Analytics. SOLAR, 2017,
pp. 49–57.

[121] Queirós, R., and Leal, J. P. Programming Exercises Evaluation Sys-
tems - An Interoperability Survey. In Proceedings of the 4th International
Conference on Computer Supported Education (2012).

[122] Ramsden, P. A Performance Indicator of Teaching Quality in Higher
Education: The Course Experience Questionnaire. Studies in Higher Ed-
ucation 16, 2 (Jan. 1991), 129–150.

[123] Rasch, D., Kubinger, K. D., and Moder, K. The Two-Sample t
Test: Pre-Testing Its Assumptions Does Not Pay O↵. Statistical Papers
52, 1 (Feb. 2011), 219–231.

[124] Reek, K. A. The TRY System -or- How to Avoid Testing Student Pro-
grams. In Proceedings of the Twentieth SIGCSE Technical Symposium on
Computer Science Education (New York, NY, USA, 1989), SIGCSE ’89,
ACM, pp. 112–116.

[125] Rees, J. Massive Online Courses are Terrible for Students and Profes-
sors. https://slate.com/technology/2013/07/moocs-could-be-disastrous-
for-students-and-professors.html, July 2013.

[126] Reich, J. Rebooting MOOC Research. In Science, vol. 347. American
Association for the Advancement of Science (AAAS), Washington, USA,
Jan. 2015, pp. 34–35.

[127] Reich, J., and Ruipérez-Valiente, J. A. The MOOC Pivot. In
Science, vol. 363. American Association for the Advancement of Science
(AAAS), Washington, USA, Jan. 2019, pp. 130–131.

[128] Renz, J., Hoffmann, D., Staubitz, T., and Meinel, C. Using A/B
Testing in MOOC Environments. In Proceedings of the Sixth International

174 References

Conference on Learning Analytics & Knowledge (New York, NY, USA,
2016), LAK ’16, ACM, pp. 304–313.

[129] Richardson, J. T. E., Long, G. L., and Foster, S. B. Academic En-
gagement in Students with a Hearing Loss in Distance Education. Journal
of Deaf Studies and Deaf Education 9, 1 (2004), 68–85.

[130] Robins, A., Rountree, J., and Rountree, N. Learning and Teaching
Programming: A Review and Discussion. Computer Science Education 13,
2 (June 2003), 137–172.

[131] Rohloff, T., Sauer, D., and Meinel, C. On the Acceptance and
Usefulness of Personalized Learning Objectives in MOOCs. In Proceedings
of the Sixth ACM Conference on Learning at Scale (New York, USA,
2019), no. 4, ACM, pp. 1–10.

[132] Roser, M., and Ortiz-Ospina, E. Literacy. Our World in Data (Aug.
2016). retrieved from https://ourworldindata.org/literacy.

[133] Ross, J. A. The Reliability, Validity, and Utility of Self-Assessment.
Practical Assessment Research & Evaluation (Oct. 2006), 1–13.

[134] Sandeen, C. Essay: Looking Back at Predictions about MOOCs— Inside
Higher Ed, June 2017. Available at https://www.insidehighered.com/
views/2017/06/22/essay-looking-back-predictions-about-moocs,
last accessed on December 10, 2019.

[135] Sarma, A., Maccherone, L., Wagstrom, P., and Herbsleb, J.
Tesseract: Interactive Visual Exploration of Socio-Technical Relationships
in Software Development. In IEEE 31st International Conference on Soft-
ware Engineering (May 2009), pp. 23–33.

[136] Schwinning, N., Striewe, M., Massing, T., Hanck, C., and
Goedicke, M. Towards Digitalisation of Summative and Formative As-
sessments in Academic Teaching of Statistics. Proceedings of the Fifth
International Conference on Learning and Teaching in Computing and
Engineering (Nov. 2017).

[137] Segal, A., Katzir, Z., Gal, K., Shani, G., and Shapira, B.
EduRank: A Collaborative Filtering Approach to Personalization in E-
learning. Proceedings of the 7th International Conference on Educational
Data Mining (2014), 68–75.

[138] Serth, S., Teusner, R., Renz, J., and Uflacker, M. Evaluating
Digital Worksheets with Interactive Programming Exercises for K-12 Ed-
ucation. In Proceedings of the49tth Frontiers in Education Conference
(2019), IEEE, pp. 1–9.

[139] Sharma, K., Mangaroska, K., Trætteberg, H., Lee-Cultura, S.,
and Giannakos, M. Evidence for Programming Strategies in Univer-
sity Coding Exercises. In Lifelong Technology-Enhanced Learning (2018),
V. Pammer-Schindler, M. Pérez-Sanagust́ın, H. Drachsler, R. Elferink,
and M. Sche↵el, Eds., Lecture Notes in Computer Science, Springer In-
ternational Publishing, pp. 326–339.

[140] Sharrock, R., Angrave, L., and Hamonic, E. WebLinux: A Scal-
able In-Browser and Client-Side Linux and IDE. In Proceedings of the
Fifth ACM Conference on Learning at Scale (New York, NY, USA, 2018),
no. 45, ACM, pp. 1–2.

[141] Sharrock, R., Hamonic, E., Hiron, M., and Carlier, S. CODE-
CAST: An Innovative Technology to Facilitate Teaching and Learning
Computer Programming in a C Language Online Course. In Proceedings

https://ourworldindata.org/literacy
https://www.insidehighered.com/views/2017/06/22/essay-looking-back-predictions-about-moocs
https://www.insidehighered.com/views/2017/06/22/essay-looking-back-predictions-about-moocs

References 175

of the Fourth ACM Conference on Learning at Scale (New York, NY,
USA, 2017), L@S ’17, ACM, pp. 147–148.

[142] Snyder, C. R., and Lopez, S. J., Eds. Handbook of Positive Psychology.
Oxford University Press, Dec. 2001.

[143] Soozandehfar, S. M. A., and Adeli, M. R. A Critical Appraisal of
Bloom’s Taxonomy. American Research Journal of English and Literature
2 (2016), 1–9.

[144] Spyropoulou, N., Pierrakeas, C., and Kameas, A. Creating MOOC
Guidelines Based on Best Practices. Proceedings of the 6th International
Conference on Education and New Learning Technologies (2014), 6981–
6990.

[145] Staubitz, T., Klement, H., Renz, J., Teusner, R., and Meinel, C.
Towards Practical Programming Exercises and Automated Assessment in
Massive Open Online Courses. In Proceedings of the Fourth IEEE Interna-
tional Conference on Teaching, Assessment, and Learning for Engineering
(TALE) (Dec. 2015), pp. 23–30.

[146] Staubitz, T., Klement, H., Teusner, R., Renz, J., and Meinel,
C. CodeOcean - A Versatile Platform for Practical Programming Ex-
cercises in Online Environments. In IEEE Global Engineering Education
Conference (EDUCON) (Apr. 2016), IEEE, pp. 314–323.

[147] Staubitz, T., and Meinel, C. Collaboration and Teamwork on a
MOOC Platform: A Toolset. In Proceedings of the Fourth ACM Confer-
ence on Learning at Scale (New York, NY, USA, 2017), L@S ’17, ACM,
pp. 165–168.

[148] Staubitz, T., and Meinel, C. Team Based Assignments in MOOCs:
Results and Observations. In Proceedings of the Fifth ACM Conference
on Learning at Scale (2018), no. 47, pp. 1–4.

[149] Staubitz, T., Petrick, D., Bauer, M., Renz, J., and Meinel, C.
Improving the Peer Assessment Experience on MOOC Platforms. In Pro-
ceedings of the Third ACM Conference on Learning at Scale (2016), ACM,
pp. 389–398.

[150] Staubitz, T., Pfeiffer, T., Renz, J., Willems, C., and Meinel,
C. Collaborative Learning in a MOOC Environment. In Proceedings of
the 8th International Conference of Education, Research and Innovation
(Seville, Spain, Nov. 2015), IATED, pp. 8237–8246.

[151] Staubitz, T., Renz, J., Willems, C., and Meinel, C. Supporting
Social Interaction and Collaboration on an xMOOC Platform. Proceed-
ings of the 6th International Conference on Education and New Learning
Technologies (2014), 6667–6677.

[152] Staubitz, T., Teusner, R., and Meinel, C. MOOCs in Secondary
Education - Experiments and Observations from German Classrooms. In
IEEE Global Engineering Education Conference (EDUCON) (Apr. 2019),
IEEE, pp. 173–182.

[153] Staubitz, T., Teusner, R., Meinel, C., and Prakash, N. Cellular
Automata as Basis for Programming Exercises in a MOOC on Test Driven
Development. In Proceedings of the Fifth IEEE International Conference
on Teaching, Assessment, and Learning for Engineering (TALE) (Dec.
2016), IEEE, pp. 374–380.

176 References

[154] Striewe, M. An Architecture for Modular Grading and Feedback Gen-
eration for Complex Exercises. Science of Computer Programming 129
(Nov. 2016), 35–47.

[155] Sun, J. C.-Y., and Rueda, R. Situational Interest, Computer Self-
E�cacy and Self-Regulation: Their Impact on Student Engagement in Dis-
tance Education. British Journal of Educational Technology 43, 2 (2012),
191–204.

[156] Taylor, C. Stopout Prediction in Massive Open Online Courses. Thesis,
Massachusetts Institute of Technology, 2014.

[157] Taylor, C., Veeramachaneni, K., and O’Reilly, U.-M. Likely to
Stop? Predicting Stopout in Massive Open Online Courses. Computing
Research Repository on arXiv (CoRR) (8 2014), 25.

[158] Teusner, R., and Hille, T. On the Impact of Programming Exercise
Descriptions. In Proceedings of the Fifth Conference on Learning With
MOOCS (Sept. 2018), pp. 51–54.

[159] Teusner, R., Hille, T., and Hagedorn, C. Aspects on Finding the
Optimal Practical Programming Exercise for MOOCs. In IEEE Frontiers
in Education Conference (FIE) (Oct. 2017), pp. 1–8.

[160] Teusner, R., Hille, T., and Staubitz, T. E↵ects of Automated In-
terventions in Programming Assignments: Evidence from a Field Experi-
ment. In Proceedings of the Fifth ACM Conference on Learning at Scale
(New York, NY, USA, 2018), no. 60 in L@S ’18, ACM, pp. 1–10.

[161] Teusner, R., Matthies, C., and Staubitz, T. What Stays in Mind?
- Retention Rates in Programming MOOCs. In IEEE Frontiers in Edu-
cation Conference (FIE) (2018), IEEE, pp. 1–9.

[162] Teusner, R., Rollmann, K.-A., and Renz, J. Taking Informed Ac-
tion on Student Activity in MOOCs. In Proceedings of the Fourth ACM
Conference on Learning at Scale (New York, NY, USA, 2017), L@S ’17,
ACM, pp. 149–152.

[163] Teusner, R., Wittstruck, N., and Staubitz, T. Video Conferencing
as a Peephole to MOOC Participants: Understanding Struggling Students
and Uncovering Content Defects. In IEEE 6th International Conference
on Teaching, Assessment, and Learning for Engineering (TALE) (2017),
IEEE, pp. 100–107.

[164] Topping, K. J. The E↵ectiveness of Peer Tutoring in Further and Higher
Education: A Typology and Review of the Literature. Higher Education
32, 3 (Oct. 1996), 321–345.

[165] Treinen, J. J., and Miller-Frost, S. L. Following the Sun: Case
Studies in Global Software Development. IBM Systems Journal 45, 4
(2006), 773–783.

[166] Ullah, Z., Lajis, A., Jamjoom, M., Altalhi, A., Al-Ghamdi, A.,
and Saleem, F. The E↵ect of Automatic Assessment on Novice Pro-
gramming: Strengths and Limitations of Existing Systems. Computer
Applications in Engineering Education 26, 6 (2018), 2328–2341.

[167] Vihavainen, A., Paksula, M., and Luukkainen, M. Extreme Ap-
prenticeship Method in Teaching Programming for Beginners. In Pro-
ceedings of the 42nd ACM Technical Symposium on Computer Science
Education (2011), ACM, pp. 93–98.

[168] Šimko, M., Barla, M., and Bieliková, M. ALEF: A Framework for
Adaptive Web-Based Learning 2.0. In Key Competencies in the Knowl-

References 177

edge Society (2010), IFIP Advances in Information and Communication
Technology, Springer, Berlin, Heidelberg, pp. 367–378.

[169] Vygotsky, L. S. Mind in Society: The Development of Higher Psycho-
logical Processes. Harvard University Press, Cambridge, Massachusetts,
USA, July 1978.

[170] Wang, A. Y., Mitts, R., Guo, P. J., and Chilana, P. K. Mis-
match of Expectations: How Modern Learning Resources Fail Conversa-
tional Programmers. In Proceedings of the CHI Conference on Human
Factors in Computing Systems (Apr. 2018), no. 511, ACM, pp. 1–13.

[171] Warner, J., and Guo, P. J. CodePilot: Sca↵olding End-to-End Col-
laborative Software Development for Novice Programmers. In Proceedings
of the CHI Conference on Human Factors in Computing Systems (2017),
ACM, pp. 1136–1141.

[172] Wen, M., Yang, D., and Rose, C. Sentiment Analysis in MOOC
Discussion Forums: What Does It Tell Us? In Proceedings of the 7th In-
ternational Conference on Educational Data Mining (2014), International
Educational Data Mining Society, pp. 130–137.

[173] Whitehill, J., Mohan, K., Seaton, D., Rosen, Y., and Tingley,
D. MOOC Dropout Prediction: How to Measure Accuracy? In Proceedings
of the Fourth ACM Conference on Learning at Scale (New York, NY, USA,
2017), L@S ’17, ACM, pp. 161–164.

[174] Whitehill, J., Williams, J., Lopez, G., Coleman, C., and Re-
ich, J. Beyond Prediction: First Steps Toward Automatic Intervention in
MOOC Student Stopout. Proceedings of the 8th International Conference
on Educational Data Mining (2015), 171–178.

[175] Williams, L., Kessler, R. R., Cunningham, W., and Jeffries,
R. Strengthening the Case for Pair Programming. IEEE Software 17, 4
(2000), 19–25.

[176] Wilson, T. D. Models in Information Behaviour Research. Journal of
Documentation 55, 3 (1999), 249–270.

[177] Wise, A. F., and Shaffer, D. W. Why Theory Matters More than
Ever in the Age of Big Data. Journal of Learning Analytics 2, 2 (2015),
5–13.

[178] Wong, J., Baars, M., de Koning, B. B., van der Zee, T., Davis,
D., Khalil, M., Houben, G.-J., and Paas, F. Educational Theories
and Learning Analytics: From Data to Knowledge. In Utilizing Learning
Analytics to Support Study Success. Springer, 2019, pp. 3–25.

[179] Worstall, T. What MOOCs Will Really Kill Is
The Research University, July 2013. Available at
https://www.forbes.com/sites/timworstall/2013/07/27/

what-moocs-will-really-kill-is-the-research-university/,
last accessed on December 10, 2019.

[180] Yang, D., Adamson, D., and Rosé, C. P. Question Recommendation
with Constraints for Massive Open Online Courses. In Proceedings of the
8th ACM Conference on Recommender Systems (New York, USA, 2014),
ACM, pp. 49–56.

[181] Yang, D., Sinha, T., and Adamson, D. Turn on, Tune in, Drop out:
Anticipating Student Dropouts in Massive Open Online Courses. In Pro-
ceedings of the NIPS 2013 Workshop on Data Driven Education (2013),
Stanford Lytics Lab, pp. 1–8.

https://www.forbes.com/sites/timworstall/2013/07/27/what-moocs-will-really-kill-is-the-research-university/
https://www.forbes.com/sites/timworstall/2013/07/27/what-moocs-will-really-kill-is-the-research-university/

178 References

[182] Yeomans, M., and Reich, J. Planning Prompts Increase and Forecast
Course Completion in Massive Open Online Courses. In Proceedings of the
Seventh International Learning Analytics & Knowledge Conference (New
York, NY, USA, 2017), ACM, pp. 464–473.

[183] Yousef, A. M. F., Chatti, M. A., Schroeder, U., and Wosnitza,
M. What Drives a Successful MOOC? An Empirical Examination of
Criteria to Assure Design Quality of MOOCs. In IEEE 14th International
Conference on Advanced Learning Technologies (2014), IEEE, pp. 44–48.

[184] Zeller, A. Why Programs Fail: A Guide to Systematic Debugging. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2009.

[185] Zheng, S., Rosson, M. B., Shih, P. C., and Carroll, J. M. Un-
derstanding Student Motivation, Behaviors and Perceptions in MOOCs.
In Proceedings of the 18th ACM Conference on Computer Supported Co-
operative Work & Social Computing (New York, NY, USA, 2015), ACM,
pp. 1882–1895.

[186] Zimmerman, B. J. Chapter 2 - Attaining Self-Regulation: A Social Cog-
nitive Perspective. In Handbook of Self-Regulation, M. Boekaerts, P. R.
Pintrich, and M. Zeidner, Eds. Academic Press, San Diego, Jan. 2000,
pp. 13–39.

[187] Zimmerman, B. J., and Moylan, A. R. Self-Regulation: Where
Metacognition and Motivation Intersect. In Handbook of Metacognition
in Education, The Educational Psychology Series. Routledge/Taylor &
Francis Group, New York, NY, US, 2009, pp. 299–315.

Eigenständigkeitserklärung
(Declaration of Authorship)

Hiermit versichere ich an Eides statt, dass die vorliegende Arbeit bisher an keiner
anderen Hochschule eingereicht worden ist sowie selbstständig und ausschließlich
mit den angegebenen Mitteln angefertigt wurde.

Potsdam, den 08. Januar 2020

Ralf Teusner

	Title
	Imprint

	Abstract
	Zusammenfassung
	Acknowledgement
	Contents
	Introduction
	MOOCs and Their Potential to Educate the Masses
	Pathways to Digital Literacy
	Improving the Learning Process
	Research Context

	Contributions
	Published Results
	Outline

	Background
	Theoretical Background
	Krathwohl's Taxonomy
	Influencing Factors of Online Education
	Zone of Proximal Development
	Effects of Tutoring
	Personalized Learning

	Differences Between In-Class and Distance Education
	Drawbacks for Learning Programming at a Distance
	The Rise of Collaborative Work and Problem Solving
	Mismatch of Workload (Teaching Team, Students)
	Factors Impacting Learning Outcomes
	Applicability to K-12 Education
	Design of Programming Exercises
	Skill Assessment

	Ethical Considerations and Data Privacy
	Status Quo in Online Programming Education
	Coding Platforms
	Course Platforms: openHPI and openSAP

	Approaches to Foster Collaboration in MOOCs
	Overall Concept
	Understanding Struggle
	Assessing Prior Knowledge
	Tracking Progress
	Measuring Effects
	Identifying Struggling Students

	Intervening on Students
	Video Tutoring
	Motivation
	Surrounding Conditions for Collaborative Work in MOOCs
	Design Decisions for Video Tutoring in Programming MOOCs

	Code Commenting: Request for Comments
	Motivation and Surrounding Conditions
	Design Decisions for Request for Comments

	Just-in-Time Interventions
	Motivation for Situational Interventions
	Design Decisions for Intervening on Struggling Students
	Request for Comment Interventions
	Break Interventions

	Tailored Bonus Exercises
	Motivation and Surrounding Conditions
	Design Decisions for Tailored Bonus Exercises
	Domain Model
	Student Knowledge Model
	Recommendation Algorithm

	Adapting Course Material

	Implementation
	CodeOcean
	Main Workflow for Student Interaction via Learning Tools Interoperability (LTI)
	System Architecture
	Data Model
	Code Execution Workflow
	Feature Configuration

	CodePilot

	Evaluation
	Research Hypotheses
	Setup
	Courses
	Course Setup
	Used Data Sources
	Audience of Java 2018

	Methods and Procedures
	First Experiment: A/B Testing of Just-in-Time Interventions and Request for Comments
	Second Experiment: A/B Testing of Tailored Bonus Exercises

	Results
	Request for Comments and Just-in-Time Interventions
	Request for Comments Increase Course Scores
	Confounding Factor: Prior Skill Level
	Request for Comments Accumulate on Hard Exercises
	Commenting is Widely Distributed Among the Audience
	Hiding Request for Comments Reduces Future Outreach Attempts
	Just-in-Time Interventions Increase RFC Rates
	Receiving Answers Increases Full Score Ratio
	Receiving Answers Reduces Required Time
	RFC Interventions Partially Countervail the Effects of Hiding RFCs
	Request for Comments are Particularly Popular With Beginners
	Written Questions Increase Likelihood to Receive Help
	RFC Interventions Increase Share of RFCs Without Questions
	Students Value Request for Comments Feature
	RFC Interventions Amplify Perceived Helpfulness
	Commenting Improves Knowledge
	Actionable Interventions are Preferred
	Basic Struggle Detection is Practical

	Bonus Exercises
	Video Tutoring
	Automated Anomaly Detection

	Discussion
	Threats to Validity
	Further Findings
	Females Create Twice as Much RFCs Than Males
	Average Skill Levels are 20% Lower for Females

	Future Work
	Related Work
	Scaling Tutoring
	Remote and Video Tutoring
	Coding Tutorials

	Interventions and Struggle Detection
	Bonus Exercises and Recommender Systems

	Conclusion
	Appendix
	Permission for Reuse of Publications
	List of Published Results
	Additional Figures
	Additional Tables

	List of Figures
	List of Tables
	Glossary
	References

