
Joint Index, Sorting, and Compression Optimization
for Memory-Efficient Spatio-Temporal Data

Management
Keven Richly

Hasso Plattner Institute
University of Potsdam, Germany

keven.richly@hpi.de

Rainer Schlosser
Hasso Plattner Institute

University of Potsdam, Germany
rainer.schlosser@hpi.de

Martin Boissier
Hasso Plattner Institute

University of Potsdam, Germany
martin.boissier@hpi.de

Abstract—The wide distribution of location-acquisition tech-
nologies has led to large volumes of spatio-temporal data, which
are the foundation for a broad spectrum of applications. Based
on these applications’ performance requirements, in-memory
databases are used to store and process the data. As DRAM
capacities are limited and expensive, modern database systems
apply various configuration optimizations (e.g., compression)
to reduce the memory footprint. The selection of cost and
performance balancing configurations is challenging due to the
vast amount of possible setups consisting of mutually depen-
dent individual decisions. In this paper, we present a linear
programming approach to determine fine-grained configuration
decisions for spatio-temporal workloads. By dividing the data into
partitions of fixed size, we can apply the compression, sorting,
and index selections on a fine-grained level to reflect spatio-
temporal access patterns. Our approach jointly optimizes these
configurations to maximize performance under a given memory
budget. We demonstrate on a real-world dataset that models
specifically optimized for spatio-temporal data characteristics
allow us to reduce the memory footprint (up to 60% by equal
performance) and increase the performance (up to 80% by equal
memory size) compared to established rule-based heuristics.

Index Terms—Database optimization, in-memory data man-
agement, linear programming, spatio-temporal data management

I. INTRODUCTION

Spatio-temporal data reflects the trajectories of moving ob-
jects and enables the analysis of movement patterns, which are
increasingly used in various applications. A moving object’s
trajectory is represented by a chronologically ordered sequence
of timestamped geographical coordinates accumulated by var-
ious positioning systems (e.g., GPS). To store and process
spatio-temporal data is not a trivial task due to the massive vol-
umes of continuously captured data and the need for interactive
response times. The increased performance requirements of
spatio-temporal data mining applications have shifted the data
management to in-memory architectures [1]. Especially for
main-memory optimized databases that keep the most data
in relatively limited and expensive DRAM, a more efficient
utilization of the available resources can significantly affect the
operating costs [2]. While removing auxiliary data structures
(e.g., indexes) or applying compression techniques with higher
compression rates reduce the memory footprint, they equally

affect the runtime performance. Modern database systems
support fine-grained decisions for these configurations [3]–
[7]. This approach enables applying different optimizations
such as compression, indexing, and ordering configurations
for various partitions of the data independently. All single
configuration decisions have an impact on the overall memory
consumption and runtime performance. Additionally, they mu-
tually influence each other, which makes the determination of
performance-optimized and memory-efficient configurations
difficult [8], [9]. There are several general approaches in
existing work that optimize specific aspects like the compres-
sion schema selection [2] or the selection of optimized index
structures [10], [11]. As the different configuration decisions
mutually influence each other, we seek to jointly optimize the
compression, index, and ordering configuration to determine
the best runtime performance for a given workload, data char-
acteristics, and memory budget. Note, each of those individual
tuning problems is, in general, already challenging. We are still
able to address a joint optimization of these dimensions, as we
exploit the specific characteristics of spatio-temporal data and
applications, i.e., a limited number of columns and few query
types. Further, to obtain a manageable problem complexity,
we focus on single-attribute indexes.

In this paper, we make the following contributions. First,
we introduce fine-grained table configurations to optimize data
management by reflecting spatio-temporal access patterns in
the storage layer. Second, we develop two linear programming
(LP) models to determine workload-aware fine-grained table
configurations for spatio-temporal applications, which jointly
optimizes data compression, ordering, and indexing. Third, we
evaluate our approaches on a real-world dataset to demonstrate
the applicability and effectiveness compared to established
rule-based heuristics.

II. FINE-GRAINED CONFIGURATION DECISIONS FOR
SPATIO-TEMPORAL DATA

This section introduces the architecture and the chunk
concept of the research database Hyrise [5]. We describe the
possibilities of fine-grained configuration decisions for spatio-
temporal data and summarize the optimization process.

Martin Boissier
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Table

…

C
hu

nk
 #

0
C

hu
nk

 #
1 Segment a

Compression B

Index 1

Index 2

… ……C
hu

nk
 #

n

…
mutable

Chunk
Ordering
Unsorted

Segment a
Unencoded

immutable

Chunk
Ordering

Column b

immutable

Chunk
Ordering

Column c

Segment a
Compression B

Index 2

Segment b
Unencoded

Segment b
Compression C

Segment b
Compression B

Segment c
Unencoded

Segment d
Unencoded

Segment c
Compression B

Index 2

Segment c
Unencoded

Segment d
Compression A

Segment d
Compression C

…

…

Column a
Object ID

Column b
Longitude

Column c
Latitude

Column d
Timestamp

Fig. 1. Depiction of the storage layout for an exemplary table with n chunks.

A. Chunk-Based and Segment-Based Configurations in Hyrise

Hyrise is a columnar main memory-optimized database.
Each table in Hyrise is divided into n horizontal partitions
with a predefined maximum size (see Figure 1). A partition,
called chunk, contains fragments of all columns of a table
whereby the section of a column stored in a chunk is referred
to as a segment. There are two types of chunks, mutable
and immutable chunks. Only the most recent chunk is mu-
table, and consequently, all insertions, as well as MVCC-
enabled updates, are appended to this unencoded chunk. When
this write-optimized chunk’s capacity is reached, it becomes
immutable, and a new mutable chunk is created. With this
approach, we increase the memory footprint by additionally
storing per-chunk metadata and redundant information (e.g.,
per-segment dictionaries for dictionary-encoded segments). In
exchange, the database system can benefit from pruning during
query execution, more efficient workload distributions, and
simplified tiering. For that reason, similar concepts are applied
by other databases [4], [6], [7]. Furthermore, the concept
enables fine-grained optimizations on immutable chunks. As
shown in Figure 1, it allows the selection of compression
schema on a segment basis [2]. This means that we can define
different encodings (e.g., dictionary-encoding, run-length en-
coding) for various segments of a column. We can also define
auxiliary data structures (e.g., indices) and sorting decisions
independently for each chunk. Like the compression schema
selection, the different segments of a column can be without an
index or indexed with varying approaches (e.g., binary tree).
All these fine-grained decisions have an impact on the overall
performance and data footprint.

B. Reflecting Access Patterns in the Data Management Layer

The most common data format to store spatio-temporal
data is the sample point format, in which the trajectory
of a moving object is stored as a sequence of observed
locations [12]. This format is well suited for the relational
schema of database systems as each sample point is repre-
sented by a tuple consisting of a moving object identifier,
the timestamped location, and additional attributes. In contrast
to standalone storage systems specialized for trajectory data,
database systems enable a simplified integration of further
data sources (e.g., business data). Consequently, modern data
management platforms are including specialized engines for
specific data types (e.g., spatial and spatio-temporal data) [13],

[14]. By integrating spatio-temporal data management into
relational database systems, the data querying benefits from the
ongoing development, the highly optimized data processing
capabilities, and the advanced compression techniques of
such systems [15]. Due to the high volumes of continuously
accumulated trajectory data and the cost-related limited main
memory resources, database optimizations that leverage the
characteristics of spatio-temporal applications are valuable.
One aspect of spatio-temporal data management is that the
specific data access patterns are often implemented in the
application layer, but are not reflected in the storage layer.
The access frequency and access characteristics of spatio-
temporal data points changes over time. Additionally, a limited
number of query types like spatio-temporal range queries and
trajectory-based queries dominate spatio-temporal workloads
in a plurality of applications [12]. As several applications
with different access patterns commonly work on the same
spatio-temporal data, complexity increases. For transportation
network companies (e.g., Uber), we could observe applications
with high selectivity queries on the most current data (e.g.,
request dispatching). These applications partially ignore data
after a specific timeframe, as the data do not reflect the current
situation (e.g., traffic situation) anymore. Additionally, there
are queries with a low selectivity for sophisticated analytical
applications (e.g., demand prediction). Another aspect is that
the spatio-temporal data characteristics can vary between
different timeframes strongly (e.g., seasons, day vs. night) [1].

C. Determining Configurations for Spatio-Temporal Data

Concerning spatio-temporal data volumes, the used DRAM
capacities are an important cost factor for in-memory
databases [2]. The systems’ operating costs can be reduced
by minimizing the data footprint or more efficient utilization
of the available resources. To address this problem, various
vendors apply threshold-based data tiering and compression
approaches. Based on a defined threshold (e.g., data volume,
timeframe), data partitions are transferred to lower-cost storage
mediums with higher latencies. Another method is to apply
stronger compression techniques or to reduce auxiliary data
structures. For both, the implications on the runtime perfor-
mance are difficult to estimate for a database administrator.
We introduce a workload-aware approach to determine opti-
mized table configurations based on a combination of tracked
database statistics and measured benchmark queries. During
runtime, modern database systems track various parameters to
optimize the performance autonomously. As input for the LP
models, we use query templates determined based on the in-
formation provided by the query plan cache and chunk access
statistics, which are tracked by the database or estimated via
min/max statistics for each chunk [3]. Additionally, we execute
isolated column scan operations as benchmark queries to get
information about the runtime performance and memory con-
sumption of different encoding types. Alternatively, estimated
costs could be used [2]. After the computation of an optimized
table configuration, each chunk’s determined configuration can
be applied asynchronously to reduce the overhead [5].

III. WORKLOAD-AWARE CONFIGURATIONS FOR
SPATIO-TEMPORAL DATA

In Part A, we describe the problem to determine memory-
efficient table configurations for spatio-temporal data. In
Part B, we present an LP model to solve the specified problem.
In Part C, we introduce a heuristic refraining from some tuning
dependencies. Part D includes database-specific restrictions.

A. Problem Description

We consider a table with N attributes and M chunks (cf.
Section II-A). The problem is to find a valid table configuration
for a given memory budget B and a given workload consisting
of Q query templates, such that the overall performance is
maximized by minimizing the workload’s total execution time.

A valid table configuration consists of (i) a sorting decision
for each chunk and (ii) a compression and index decision for
each segment. For each segment (m,n), a configuration has
to be selected from a number of available compression E and
index I options. Note, these sets also include a basic option,
i.e., when data is unsorted, unencoded, or not indexed.

As we are focusing on spatio-temporal range queries and
trajectory-based queries, each query template can be described
as a composition of various scan operations, where the set
D(q) returns all scan operations of a query template q ∈ Q. S
describes the set of all scan operations for a given workload:

S =
⋃

q∈Q
D(q). (1)

For the scan operations of a query exists an execution
order, which is defined by the query optimizer. Based on the
Hyrise query optimizer implementation, the order of the scan
operations is determined by the operations’ selectivity value,
starting with the lowest selectivity value. To consider that a
scan operation s of a query template (executed after a previous
scan operation of the same query template) operates only on a
subset of the data, we introduce a scan factor ws. This factor
ws is determined by the ordered sequence of (consecutively
executed) scan operations of a query template. To determine
ws, we consider the selectivity factor of the j-th operation of
a query template q denoted by w̃q,j . By default, the selectivity
factor of the first scan operation of a query template is defined
as w̃q,1 = 1. Accounting for the combined selectivities of
consecutive operations within a query template q, cf. (1), for its
scan operation s with operation order Js,D(q) ∈ {1, ..., |D(q)|}
we obtain the scan factor, s ∈ D(q),

ws =
∏

j=1,...,Js,D(q)

w̃q,j . (2)

Besides the selectivity, each scan operation s has the fol-
lowing attributes: (i) the scanned column ns, (ii) the frequency
fs, and (iii) the type of the scan operation (e.g., between scan,
less than equal scan, equal scan). The frequency fs is the same
for all scan operations of a query template q and defines the
frequency of occurrence of query template q compared to all
other query templates in Q.

The costs of scan operation s on segment ns of chunk m
are denoted by cm,s,e,o,i and determined by the segment’s

encoding e ∈ E and index decision i ∈ I as well as the
chunk’s ordering decision o ∈ O := {0} ∪ N , where O
includes all columns of the table plus the unsorted option (’0’).
For m ∈M, s ∈ S, e ∈ E, o ∈ O, i ∈ I , we define:

cm,s,e,o,i := ps,e,o,i · am,s · ωs · fs · us,e. (3)

The parameter ps,e,o,i defines the measured performance of
the scan operation s executed as isolated scan operation on
column ns if for the entire column encoding e ∈ E, index
decision i ∈ I , and for all chunks the ordering decision
o ∈ O are applied. Further, in (3) we use the successive
scan penalty us,e as we observed that consecutive scans are
slower than single scan operations, depending on the applied
compression technique e. To reflect this observation and to
adopt the measured isolated scan performance ps,e,o,i of the
benchmark queries (cf. Section II-C), we multiply ps,e,o,i of
all consecutive scan operations with the fixed parameter us,e
for each value e ∈ E. This penalty value u is database-specific
and can be measured with simple benchmark queries.

Finally, based on statistics and filters maintained by database
systems, entire chunks can be pruned during query execution
to increase the scan performance [5]. For that reason, we
introduce the parameter am,s, cf. (3), which describes the
proportional size of segment (m,ns) in relation to the amount
of data scanned within a complete column scan on column
ns. For pruned (not accessed) chunks we let am,s := 0. For
accessed chunks m, we define am,s by their relative share
of actually scanned chunks, i.e., by 1 divided by the number
of not pruned chunks. The memory consumption of a segment
(m,n) with configuration e, o, i is described by the parameters
bm,n,e,o,i. The total memory budget used must not exceed a
given budget B.

B. Optimal SSD Model: Segments with Sorting Dependencies

The SSD model allows to solve the problem described
in Part A. It allows to include intra-chunk dependencies
between segments with regard to the chunk-based ordering
decision. The sorting dependencies are determined by costs,
cf. (3), and budgets of the measured memory footprint and
scan performance. To solve the SSD model, we propose the
following LP formulation. The objective is to minimize the
cost (in this case, the runtime) for a given workload, cf. S,

min
∑

s∈S,m∈M,e∈E,o∈O,i∈I
xm,ns,e,o,i · cm,s,e,o,i (4)

where the binary variables xm,n,e,o,i describe whether a certain
tuning configuration, cf. e ∈ E, o ∈ O, i ∈ I , for segment n ∈
N of chunk m ∈M is used (’1’) or not (’0’). The overall cost
is calculated as the sum of the costs c of all selected segment
configurations, cf. (4). To ensure valid table configurations,
we define different sets of constraints. The constraints are
divided into model-specific and database-specific constraints.
The model-specific constraints define general requirements
for the table configurations. Database-specific constraints to
incorporate technical restrictions and limitations of different
database systems are discussed in Section III-D). For the SSD

model, we define three types of model-specific constraints. The
first one guarantees that the accumulated memory consumption
of all segments (m,n) with their selected configurations e, o, i
(cf. bm,n,e,o,i) does not exceed the budget B, i.e.,∑

m∈M,n∈N,e∈E,o∈O,i∈I
xm,n,e,o,i · bm,n,e,o,i ≤ B. (5)

To guarantee that for each chunk m a unique ordering
option is chosen, we use binary variables ym,o, which describe
whether ordering o is used for chunk m, i.e.,∑

o∈O
ym,o = 1 ∀m ∈M. (6)

Further, we use binary variables zm,n,e,i to ensure a unique
index-encoding combination for chunk m’s segment n,∑

e∈E,i∈I
zm,n,e,i = 1 ∀m ∈M,n ∈ N. (7)

The chunk variables y and segment variables z together
specify the configuration xm,n,e,o,i = ym,o · zm,n,e,i. To
express x linearly we use the following auxiliary coupling
constraints for all m ∈M , n ∈ N , e ∈ E, o ∈ O, i ∈ I ,

xm,n,e,o,i ≥ ym,o + zm,n,e,i − 1 (8)
xm,n,e,o,i ≤ ym,o and xm,n,e,o,i ≤ zm,n,e,i (9)

C. Heuristic Solution: Independent Segment Effects (ISE)

This heuristic approach to optimize tuning configurations
for the problem described in Part A is based on a relaxation
regarding the ordering dependencies of the cost effects be-
tween segments. In this simplified model, we only account for
whether a certain chunk’s segment is sorted (’1’) or not (’0’).
Hence, instead of the full set of ordering options O = {0}∪N
for each chunk, we use the simplified binary set O01 := {0, 1}
of available ordering options for each chunk’s segment. For
the unsorted option (’0’), the rows’ order is set by the insert
sequence and we use the costs cm,s,e,0,i, cf. (3). If a segment
(m,n) is sorted, we use cm,s,e,n,i. With this formulation, we
reduce the complexity by abstracting the sorting decision’s
intra-chunk effects. Thus, the model approximates the exact
implications on the memory footprint and scan performance
caused by sorting a chunk by column n.

Compared to the SSD model, in the relaxed ISE model
we use less variables and constraints. Specifically, we use a
smaller family of binary decision variables xm,n,e,o,i, where
the ordering option only reflects the binary set o ∈ O01 =
{0, 1}. The variables y and z, cf. (6) - (9), are not required.
The objective of the ISE model is, cp. (4),

min
∑

s∈S,m∈M,e∈E,o∈{0,1},i∈I

xm,ns,e,o,i · cm,s,e,o·ns,i (10)

where we use o ·ns ∈ O to include the costs defined in (3) via
cm,s,e,o·ns,i. Similar to (5), the budget constraint ensures that
the accumulated (approximated) memory consumption of all
segments (m,n) with their selected configurations e, o, i (cf.
bm,n,e,o·n,i, o ∈ O01, o · n ∈ O) does not exceed the budget∑
m∈M,n∈N,e∈E,o∈{0,1},i∈I

xm,n,e,o,i · bm,n,e,o·n,i ≤ B. (11)

Note, the relaxed use of c and b in (10)-(11) only approx-
imates the exact values. Further, we directly use x to ensure
that for each chunk m at most one column is sorted, cp. (6),∑

n∈N,e∈E,i∈I
xm,n,e,1,i ≤ 1 ∀m ∈M (12)

and that for each segment, a unique configuration of compres-
sion e, sorting o, and indexing decision i is chosen, i.e.,∑

e∈E,o∈{0,1},i∈I
xm,n,e,o,i = 1 ∀m ∈M,n ∈ N. (13)

D. Database-Specific Configuration Constraints

Adding database-specific constraints to the model-specific
constraints enables the models to reflect certain properties of
various database systems. These constraints define combina-
tions of indexing and encoding decisions that are incompatible
for a database. For Hyrise, secondary indexes require dictio-
nary encoded segments as they exploit the dictionary in order
to improve space efficiency [16]. Consequently, indexes on all
non-dictionary segments are forbidden. This is realized via

xm,n,e,s,i ≤ ve,i ∀m ∈M,n ∈ N, e ∈ E, s ∈ S, i ∈ I, (14)

where the binary parameters ve,i, e ∈ E, i ∈ I , describe
whether an index i is valid (=1) for encoding e or not (=0).

IV. EVALUATION

We evaluate our models on a real-world dataset introduced
in Part A. In Part B, we discuss the LP models’ accuracy and
compare them against rule-based heuristics in Part C.

A. Dataset and Benchmark Workload

We consider the dataset of a transportation network com-
pany that consists of ten million dispatch process-related
observed locations of drivers for three consecutive days in the
City of Dubai [17]. Besides the timestamp, latitude, longitude,
and the driver’s identifier, a status attribute is tracked for
each sample point (Section II-B). This status indicates the
driver’s status (free or occupied). Based on the insertion order,
a certain temporal ordering of the sample points exists, but we
cannot guarantee that the timestamp column is sorted due to
transmission problems and delayed transmissions. We define
a mixed workload Q that consists of six query templates. Q
is dominated by two query templates, which represent 80%
of all queries, that return the driver’s positions with the status
free in the last hour and all positions of free drivers in the last
hour in an approximate two by two km area. These kinds of
queries are often used in order dispatch processes [17]. The
four other query templates select all trips of sets of drivers in
(i) an 8-hour timeframe, (ii) a timeframe of two days, (iii) a
specific area, and (iv) all trips of free drivers in a specific area
and a timeframe of two hours.

B. Evaluation of the LP Model’s Accuracy

To evaluate the different models introduced in Section III,
we use the database Hyrise. We define the input parameters
based on the supported encoding and indexing properties of the
database. The set of available encodings consists of run-length,
dictionary, lz4, and frame-of-reference encoding. As secondary

Fig. 2. Comparison of performance (top) and memory consumption (bottom)
of our SSD and ISE model: synthetic vs. end-to-end results measured in Hyrise
for the given workload and different memory budgets B = 70, ..., 250 MB.

indexes, we use an approach of Faust et al. [16] that leverages
a segment’s dictionary to increase the space efficiency. Con-
sequently, we have to limit the number of valid configurations
by defining (via the database-specific constraint) that indexes
are only allowed on dictionary encoded segments. As we only
use this indexing method in the evaluation, the index decisions
I consist of the options indexed and not indexed. We partition
the data into ten chunks containing one million sample points
each. All measurements have been executed on a four-socket
server equipped with Intel Xeon E7-4880v2 CPUs (2.50GHz,
30 logical cores). We use the numactl command to bind the
thread and memory to one node to avoid NUMA effects. To
solve the LP models, we used a standard Gurobi Solver.

As displayed in Figure 2, the predicted runtime and memory
consumption of the LP models for different memory budgets
B are pretty accurate compared to the end-to-end measured
values for the corresponding table configurations in Hyrise.
Overall, we can observe that there are high optimization
potentials for fine-grained configuration decisions, especially
for lower memory budgets. After a specific memory budget
value, the performance only increases slightly or stagnates.
Compared to the SSD model, the ISE model is able to de-
termine competitive table configurations, especially for larger
memory budgets. The ISE model underestimates the memory
consumption, especially for lower memory budgets, and can-
not determine a solution for the lowest memory budget. Here,
the impact on other columns’ data characteristics (e.g., number
of identical values in succession) cannot be considered without
detailed information about intra-chunk effects. These charac-
teristics have an increased impact on the compression rate
of encodings like run-length encoding or frame-of-reference
encoding, which are used in particular for low memory bud-
gets. The relaxation on the ordering dependencies in the ISE
model enables the determination of table configurations in
milliseconds compared to several seconds needed by the SSD
model. Additionally, the solver runtime scales significantly
better for larger problem domains (e.g., number of encodings).

C. Evaluation Against Rule-Based Tuning Heuristics

To evaluate our models against a common approach, we
implemented a rule-based greedy heuristic. We calculate the

Fig. 3. Comparison of end-to-end measured performance (top) and memory
consumption (bottom) for the given workload of the LP models (SSD and
ISE) compared to the greedy heuristic approach with different α values (GH
(α)) and column-based optimizations (TSU, TCD).

benefit of a segment rm,n,e,o,i based on a weighted ratio
between memory consumption and runtime performance. For
each segment (m,n) and each tuning option e ∈ E, o ∈ O,
and i ∈ I , we define the benefit r as (α ≥ 0):

rm,n,e,o,i = 1/
(
bm,n,e,o,i · (

∑
s∈S

cm,s,e,o,i)
α
)
. (15)

To calculate the costs cm,s,e,o,i we use (3) and consider
intra-chunk dependencies. The α value is a factor to define the
proportional balancing of the memory consumption and run-
time performance [18]. To respect a unique sorting option per
chunk, we used a two-phase implementation. In the first phase,
we determine a valid base configuration by defining each
chunk’s sorting configuration based on the segment with the
highest benefit. Afterward, we select for each segment (m,n)
the tuning configuration with the lowest memory consumption
that fulfills the chunks sorting constraint. In the second phase,
we determine from all possible tuning options of all segments
the option with the highest benefit difference to the currently
selected tuning option and adapt the table configuration if the
tuning option fits into the remaining memory budget. This step
is repeated until no more changes are possible for the given
memory budget. In our comparison, we also seek to analyze
the impact of fine-grained configuration decisions on segment
level against optimizations on columns. By considering the
entire table with ten million entries as a single chunk, we
used our LP models to compute configurations with sorting
dependencies between columns (TSD) and without sorting
dependencies (TSU). As displayed in Figure 3, the LP models
outperform the greedy heuristics, cf. GH(α), and can leverage
the available memory budget more efficiently. The greedy
heuristics’ measurements show that the selection of the α
value has a significant impact on performance and memory
consumption. Based on the two-phase approach, the greedy
approaches select the sorting configuration for the entire table
in the first phase. Thus, with such given sorting decisions,
the computation of table configurations is not possible for
low memory budgets. Further, the measurements show the
expected stepwise memory and performance increase for the
two column-based optimization approaches (TSU, TCD). The

approach with column dependencies (TCD) performs better
than the TSU approach, especially for low memory budgets.
The runtime of TSU is over 5× slower than the TCD approach
for budgets less than 85 MB. Both approaches cannot reach
the fine-grained models’ performance as memory is used for
sections of the data that are not accessed, and some queries are
negatively affected by decisions made for the entire column.

V. RELATED WORK

In this section, we briefly discuss related work from the
adjacent research fields of workload-aware indexing and com-
pression optimization with a focus on spatio-temporal data
management. Zhang et al. [1] proposed a time-decay model for
changing workload patterns by monitoring data distributions
and adopting the indexing schema accordingly. Kimura et
al. [19] presented an index selection approach that selects vi-
able secondary indexes and considers compressed alternatives
for each index based on a given memory budget. Schlosser
et al. [20] introduced a selection approach that builds on a
recursive mechanism and accounts for index interaction.

All these approaches do not consider different compression
techniques to minimize the data footprint and create further
space for auxiliary data structures. Data compression can
reduce the storage requirements, allow more efficient pro-
cessing (e.g., SIMD instructions), and mitigating bandwidth
bottlenecks. Damme et al. [21] found that compression tech-
niques can have significant impacts on both performance and
compression ratios. The authors indicate that consideration of
multiple dimensions is necessary to determine which technique
is the best for a specific scenario. Based on similar observa-
tions and the fact that different decisions influence each other,
we propose a joint optimization. Abadi et al. [22] presented
a decision tree-based approach to determine compression
schemas in C-store, solely based on data properties. Boissier et
al. [2] introduced a workload-driven selection of compression
configurations with memory constraints. A greedy heuristic
determines configurations based on estimated runtime perfor-
mances and resulting sizes using regression models. To the
best of our knowledge, no spatio-temporal storage system
applies a joint optimization approach to determine workload-
driven storage configurations that consider given memory
budgets. Kossmann et al. [3] introduces an LP approach to
determine the order of multiple tuning features based on
the pairwise dependencies between different options. Zilo et
al. [9] also addressed this problem and described that mutually
dependent features should be optimized simultaneously as long
as the problem complexity allows a joint optimization.

VI. CONCLUSION

This paper demonstrates that fine-grained configuration de-
cisions are a practical approach to reflect spatio-temporal ac-
cess patterns in the database. We motivated that the identifica-
tion of an optimal table configuration for a given workload and
memory budget is not a trivial task as the various potential op-
timizations influence each other mutually. To jointly optimize
a table’s sorting, indexing, and compression configuration we

introduce two LP models (cf. SSD and ISE) addressing cost
dependencies at different levels of accuracy while allowing
for trading complexity. Based on an evaluation of a real-
world spatio-temporal dataset, we show that model-based fine-
grained configuration decisions are superior to column-based
optimization approaches. Compared to standard rule-based
heuristic approaches, our LP models achieve an up to 80%
increased performance for a given memory budget and gain
a comparable workload runtime with up to 60% less required
memory. Our results show that the SSD model reliably finds
optimized tuning configurations if sorting dependencies are
present. If sorting dependencies are not strong or shorter
runtimes are in focus, we find that the relaxed ISE model is
a suitable scalable alternative with near-optimal performance.

REFERENCES

[1] Z. Zhang et al., “Trajspark: A scalable and efficient in-memory man-
agement system for big trajectory data,” in APWeb-WAIM, 2017, pp.
11–26.

[2] M. Boissier and M. Jendruk, “Workload-driven and robust selection of
compression schemes for column stores,” in EDBT, 2019, pp. 674–677.

[3] J. Kossmann and R. Schlosser, “Self-driving database systems: a con-
ceptual approach,” Distributed and Parallel Databases, pp. 1–23, 2020.

[4] H. Lang et al., “Data blocks: Hybrid OLTP and OLAP on compressed
storage using both vectorization and compilation,” in Proc. SIGMOD,
2016, pp. 311–326.

[5] M. Dreseler et al., “Hyrise re-engineered: An extensible database system
for research in relational in-memory data management,” in Proc. EDBT,
2019, pp. 313–324.

[6] J. M. Patel et al., “Quickstep: A data platform based on the scaling-up
approach,” Proc. VLDB, vol. 11, no. 6, pp. 663–676, 2018.

[7] A. Pavlo et al., “Self-driving database management systems.” in CIDR,
2017.

[8] D. Van Aken et al., “Automatic database management system tuning
through large-scale machine learning,” in Proc. SIGMOD, 2017, pp.
1009–1024.

[9] D. C. Zilio et al., “DB2 design advisor: integrated automatic physical
database design,” in Proc. VLDB, 2004, pp. 1087–1097.

[10] J. Kossmann et al., “Magic mirror in my hand, which is the best in
the land? An experimental evaluation of index selection algorithms,”
PVLDB, vol. 13, no. 11, pp. 2382–2395, 2020.

[11] D. Dash et al., “CoPhy: a scalable, portable, and interactive index
advisor for large workloads,” PVLDB, vol. 4, no. 6, pp. 362–372, 2011.

[12] K. Richly, “A survey on trajectory data management for hybrid transac-
tional and analytical workloads,” in IEEE Big Data, 2018, pp. 562–569.

[13] V. Pandey et al., “High-performance geospatial analytics in hyperspace,”
in Proc. SIGMOD, 2016, pp. 2145–2148.

[14] H. Wang et al., “Storing and processing massive trajectory data on SAP
HANA,” in Proc. ADC, 2015, pp. 66–77.

[15] K. Richly, “Optimized spatio-temporal data structures for hybrid trans-
actional and analytical workloads on columnar in-memory databases.”
in Proc. VLDB, PhD Workshop, 2019.

[16] M. Faust et al., “Fast lookups for in-memory column stores: Group-key
indices, lookup and maintenance,” in ADMS, 2012, pp. 13–22.

[17] K. Richly, J. Brauer, and R. Schlosser, “Predicting location probabilities
of drivers to improve dispatch decisions of transportation network
companies based on trajectory data,” in ICORES, 2020, pp. 47–58.

[18] G. Valentin et al., “DB2 Advisor: An optimizer smart enough to
recommend its own indexes,” in Proc. ICDE, 2000, pp. 101–110.

[19] H. Kimura, V. R. Narasayya, and M. Syamala, “Compression aware
physical database design,” PVLDB, vol. 4, no. 10, pp. 657–668, 2011.

[20] R. Schlosser et al., “Efficient scalable multi-attribute index selection
using recursive strategies,” in Proc. ICDE, 2019, pp. 1238–1249.

[21] P. Damme et al., “From a comprehensive experimental survey to a cost-
based selection strategy for lightweight integer compression algorithms,”
ACM Trans. Database Syst., vol. 44, no. 3, pp. 9:1–9:46, 2019.

[22] D. J. Abadi et al., “Integrating compression and execution in column-
oriented database systems,” in Proc. SIGMOD, 2006, pp. 671–682.

