
Just can’t get enough - Synthesizing Big Data

Tilmann Rabl
Middleware Systems

Research Group
University of Toronto

Canada
tilmann.rabl@utoronto.ca

Manuel Danisch,
Michael Frank,

Sebastian Schindler
bankmark UG

Passau, Germany
{first.last}@bankmark.de

Hans-Arno Jacobsen
Middleware Systems

Research Group
University of Toronto

Canada
jacobsen@eecg.toronto.edu

ABSTRACT
With the rapidly decreasing prices for storage and storage systems
ever larger data sets become economical. While only few years ago
only successful transactions would be recorded in sales systems,
today every user interaction will be stored for ever deeper analysis
and richer user modeling. This has led to the development of big
data systems, which offer high scalability and novel forms of anal-
ysis. Due to the rapid development and ever increasing variety of
the big data landscape, there is a pressing need for tools for testing
and benchmarking.

Vendors have little options to showcase the performance of their
systems but to use trivial data sets like TeraSort or WordCount.
Since customers’ real data is typically subject to privacy regula-
tions and rarely can be utilized, simplistic proof-of-concepts have
to be used, leaving both, customers and vendors, unclear of the tar-
get use-case performance. As a solution, we present an automatic
approach to data synthetization from existing data sources. Our
system enables a fully automatic generation of large amounts of
complex, realistic, synthetic data.

1. INTRODUCTION
Data generation is a tedious part of the daily routine of researchers

testing new algorithms, database administrators testing new con-
figurations, and performance engineers testing new optimizations.
Typically, the data is generated using scripting solutions, which are
written and rewritten for each individual use case. While this is
manageable for simple and small data sets, databases are ever in-
creasing in size and complexity. Database testing typically is done
on simple scenarios, however, customers demand ever more real-
istic benchmarks that match their use cases [21]. Modern enter-
prise systems comprise hundreds to thousands of tables, which fre-
quently have more than fifty columns. System vendors that can
show the performance of their systems in a most realistic setup
have an advantage over vendors that present generic, simple bench-
marks.

To this end, multiple generic data generators have been devel-
oped, that enable a fast description of data models and correlations
[10, 9, 1, 4]. Although all of these systems feature more efficient

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2735378.

and more realistic generation of data none has reached wide adop-
tion in the industry. While building custom data generators for each
use case is highly inefficient, generic tools are either too limited in
their features or their learning curve is too steep to be accepted by
developers. This has led to a dilemma, where it is often infeasible
for customers to find the best solution for their use case since they
can only give metadata but not real data to vendors and vendors are
not able to cover the complex schemas and dependencies in their
proof of concept systems.

What is needed is a simple solution, that is able to automatically
generate realistic data based only on meta information of the orig-
inal data. Because of ever increasing data sizes and the prevalent
increase of cores, processors, and physical machines in deployed
systems, the solution has to be performant and scalable. The data
has to be rich in features even in single values, since big data sys-
tems do not stop processing at the value level. With these require-
ments in mind, we have developed DBSynth, a fully automatic data
generation solution that can reproduce realistic data sets based on
schema information and sampling. Unlike any other generic data
generator, it can extract features on the value level and generate
new relevant values.

DBSynth is an extension to the Parallel Data Generation Frame-
work (PDGF), a generic data generator suite [17]. PDGF is the ba-
sis for the data generator of the new industry standard ETL bench-
mark TPC-DI, which was released by the Transaction Processing
Performance Council (TPC) in January 2014 [16] and was also used
to implement the data generator for BigBench, the first end-to-end
proposal for a big data analytics [7].

Our main contributions are the following, we demonstrate DB-
Synth, which is the answer to one of the fundamental challenges
in the big data space today - finding the best system for a given
use case. DBSynth is the first tool, which can generate complete
data models from large complex databases on a variety of systems,
sample data sets and automatically create relevant dictionaries and
Markov models. Furthermore, we demonstrate PDGF, a highly ad-
vanced generic data generator, which can use models created by
DBSynth to create big, realistic, synthetic data. PDGF is faster
and more efficient than any other generic generator and can be run
with perfect speedup in multi-core and multi-node environments.
PDGF can write data in various formats (e.g., CSV, JSON, XML,
and SQL) to files, database systems, streaming systems, and mod-
ern big data storage systems (e.g., HDFS).

The remainder of this paper is structured as follows. We describe
PDGF briefly in Section 2 and then show the core functionality of
DBSynth in Section 3. After an evaluation in Section 4, we explain
our demonstration in Section 5. In Section 6, we give an overview
of related work, before concluding in Section 7.

2. PDGF
The Parallel Data Generation Framework (PDGF) is a versatile,

generic data generator [17]. PDGF has a novel computation-based
generation strategy that enables a completely parallel generation of
data. PDGF’s generation strategy is based on the exploitation of de-
terminism in pseudo random number generators (PRNG). Random
number sequences generated using PRNGs are repeatable, which
means that the exact same sequence can be generated over and over
again. PDGF uses xorshift random number generators, which be-
have like hash functions. Repeatable, parallel data generation is
possible using an elaborate seeding strategy (depicted in Figure 1).
In the example, starting with a project seed one seed per table is
generated. This seed is used to create one seed per column, which
again is used to generate one seed per abstract time unit and finally
per field. The field seed is used to generate the random number
sequence for the value generation. The values are generated using
field value generators. These can be simple generators, like number
generators, generators based on dictionaries, or reference genera-
tors, but also meta generators, which can concatenate results from
other generators or execute different generators based on certain
conditions [18]. The concept of meta generators enables a func-
tional definition of complex values and dependencies using simple
building blocks. Although the seeding hierarchy and meta genera-
tor stacking seems expensive, most of the seeds can be cached and
the cost for generating single values is very low. We will show an
analysis of the exact costs in Section 4.

Customer
Row # / CustKey Name Address …

Table RNG

1
2
3

seed t_id

Column RNGseed c_id

Update RNGseed u_id

Generator(rn)rn
4

ID (Row) RNGseed id

Figure 1: PDGF’s seeding strategy

PDGF’s architecture is shown in Figure 2. The user specifies
two XML configuration files, one for the data model and one for
the formatting instructions. These will be explained in more de-
tail in Section 3. Additionally, all previously specified properties
of a model and format (e.g., scale factors, table sizes, probabili-
ties) can be changed in the command line interface. The controller
then initializes the system. The meta scheduler manages multi-
node scheduling, while the scheduler assigns work packages to the
workers. A work package is a set of rows of a table that need to be
generated. The workers then initialize the correct generators using
the seeding system and the update black box. Whenever a work
package is generated, it is sent to the output system, where it can
be formatted and sorted.

PDGF

XML

XML M
et

a
Sc

he
du

le
r

Sc
he

du
le

r

W
orker

W
orker W

or
ke

r

U
pd

at
e

Bl
ac

k
Bo

x

Se
ed

in
g

Sy
st

em

W
orker

W
orker

Ge
ne

ra
to

r
O

ut
pu

t
Sy

st
em

CSV

DB

RNG

PCo
nt

ro
lle

r

UI
P

P

Data Flow

Control Flow

Plugin

Optional

Figure 2: PDGF’s architecture

PDGF has been successfully used to implement a variety of bench-
marks, e.g., TPC-H [17], the Star Schema Benchmark [19], TPC-
DI [6], and BigBench [7].

3. DBSYNTH
DBSynth is an extension to PDGF that automates the configu-

ration and enables the extraction of data model information from
an existing database. DBSynth’s abstract architecture and mode of
operation can be seen in Figure 3. In DBSynth, the user specifies
projects, which integrate workflows, such as data generation, data
extraction, etc. The figure shows the complete automatic workflow,
from model extraction to data generation. Not all steps are neces-
sary for a given project.

DBSynth connects to a source database via JDBC, using the
model creation tool, schema information and a configurable level of
additional information of the data model are extracted. Possible in-
formation includes min/max constraints, histograms, NULL prob-
abilities, as well as statistic information collected by the database
system such as histograms. DBSynth also features a rule based
system that searches for key words in the schema information and
adds predefined generation rules to the data model. For example,
numeric columns with name key or id will be generated with an ID
generator.

If sampling the database is permissible, the data extraction tool
builds histograms and dictionaries of text-valued data and stores the
according probabilities for values. Users can specify the amount of
data sampled and the sampling strategy. In future versions, we will
include a dynamic sampling, which adapts the sample size and sam-
pling strategy according to the base data. If the text data contains
multiple words, DBSynth uses a Markov chain generator, which an-
alyzes the word combination frequencies and probabilities. These
are stored and linked to the data model.

Using the generated data model, PDGF can generate the data.
The model is translated into a SQL schema, which is loaded into
the target database using JDBC. The data can be loaded into the
target database either using SQL statements generated by PDGF or
a bulk load option, if featured by the target database.

Listing 1 presents an excerpt of the automatically generated con-
figuration for a TPC-H data set [15]. The excerpt shows the gen-
eral structure of the PDGF schema configuration. It contains the
project’s seed, changing the seed will modify every value of the
generated data set, the random number generator, PdgfDefaultRa-
ndom is a custom built, very fast xorshift PRNG, property defini-
tions, which can also be changed from the command line, and the
schema information itself. A default property is the scaling factor
SF, which is used to determine the size of the data set. DBSynth
will generate a size property for each table and assign it the prod-
uct of the scale factor and the original table size. This way other
scaling dependencies can be easily specified in a centralized point
in the model. Furthermore, all boundaries for numerical values and
dates are stored in properties.

The schema model is specified in form of table entries. Each ta-
ble specifies its size, which DBSynth sets to be linear with the scale
factor as shown in the example. However, any formula can be used
to calculate the size. Then the columns of the table are specified in
form of field entries. The first field is "l_orderkey", the name and
size are extracted from the database’s schema information. The fact
that it is a key is deduced from the column name, this is the reason
why DBSynth chooses an ID generator for this column. The next
field is "l_partkey", which is a reference to the table "partsupp".
This is specified in the schema, which is why DBSynth chooses a
DefaultReferenceGenerator, which will generate consistent refer-
ences to this table. The final field that is shown is "l_comment",

Table Table

Meta Data

Source Database
DataSynth

Model
Creation

PD
GF

Data
Model

Markov
Chains

Dicts

Data
Extraction

JDBC JDBC

Table Table

Target Database

Meta Data

Schema
Translator

Figure 3: Abstract architecture and data flow in DBSynth

a text field containing free text. DBSynth chooses the Markov-
Generator for this field, thus it will sample the original database to
build the Markov model. For a TPC-H data set the comment field
model contains 1500 words and 95 starting states, which can eas-
ily be fit in memory. The choice of the generator type used for a
field is based first on referential integrity constraints, i.e., a refer-
ence will always be generated by a reference generator independent
of its type. Then the data type determines if a number generator,
e.g., Long, Integer, Double, or a date generator, or a text gener-
ator is used, DBSynth and PDGF support all SQL 92 datatypes.
If the database is not sampled, the column name is parsed to de-
termine whether a matching high level generator construct exists,
e.g., names, addresses, comment. In case nothing is found a ran-
dom string is generated. The Markov generator builds dictionaries
for single word text fields and Markov chains for free text, the pa-
rameters for the Markov model are adjusted based on the original
data. If the original data cannot be sampled or analyzed, DBSynth
falls back to random values based on the database statistics as well
as predefined generators for URLs, addresses, etc.

4. EVALUATION
We evaluated the performance of PDGF and DBSynth on a 24

node, dual socket, dual core cluster and on a single node with two
sockets and eight cores per socket. Where possible, generated data
was written to /dev/null to ensure the throughput was not I/O bound.
In the experiments, we used either the BigBench data set or our
custom implementation of the TPC-H data set.

In the first experiment, we evaluate the performance of PDGF by
generating a BigBench data set of scale factor 5000, which results
in a total data size of 4392 GB on the 24 node cluster. The results of
this experiment can be seen in Figure 4. As is shown in the figure,
PDGF has linear throughput scaling in the number of nodes.

In the second experiment, we benchmark the scale out perfor-
mance of PDGF by increasing the number of workers and thus
threads used for the data generation. This experiment is conducted
on the single node. The results can be seen in Figure 5. PDGF’s
throughput increases linearly with the number of cores (16) and fur-
ther increases with the number of hardware threads (32), but not as
significantly as for the number of cores. An interesting observation
is that scheduling exactly the same number of workers as the num-
ber of system cores or threads is not optimal due to the additional
internal scheduling and I/O threads.

In Figure 6, a comparison of the data generator DBGen and
PDGF is shown. As can be seen, both tools achieve a similar perfor-
mance. In parallel mode, it is not possible to write to /dev/null using
DBGen, which is why in this experiment the throughput of both,
DBGen and PDGF, was disk-bound. We also show PDGF’s CPU-

<?xml version="1.0" encoding="UTF-8"?>
<schema name="tpch">
<seed>12456789</seed>
<rng name="PdgfDefaultRandom"></rng>
<property name="SF" type="double">1</property>
<property name="lineitem_size" type="double">6000000 *

${SF}</property>

<table name="lineitem">
<size>${lineitem_size}</size>

<field name="l_orderkey" size="19" type="BIGINT"
primary="true">

<gen_IdGenerator>
</gen_IdGenerator>
</field>

<field name="l_partkey" size="19" type="BIGINT"
primary="false">

<gen_DefaultReferenceGenerator>
<reference table="partsupp"

field="ps_partkey"></reference>
</gen_DefaultReferenceGenerator>
</field>
[..]
<field name="l_comment" size="44" type="VARCHAR"

primary="false">
<gen_NullGenerator> probability=".0000d"
<gen_MarkovChainGenerator>
<min>1</min>
<max>10</max>
<file>markov\l_comment_markovSamples.bin</file>

</gen_MarkovChainGenerator>
</gen_NullGenerator>
</field>

</table>
[..]

Listing 1: Excerpt of the schema definition for TPC-H

bound performance, which is 33% higher than its disk-bound per-
formance. DBGen’s parallelization is non-transparent. This means
that for each parallel stream a new instance is started, which writes
its own files. As a result, DBGen’s parallel output will be split
in as many files as instances were started, whereas PDGF writes
sorted output into a single file. PDGF also supports the same par-
allel generation strategy as DBGen does, which is starting multiple
instances and generating a distinct range of the data set with each
instance. With this approach it is possible to scale out the gener-
ation to shared nothing systems with linear speedups [17]. When
comparing the single process performance, i.e., starting only a sin-
gle DBGen instance and running PDGF with a single worker, DB-
Gen achieves 48 MB/s and PDGF 30 MB/s. Thus, PDGF is has the

0
200
400
600
800

1000
1200
1400

0 4 8 12 16 20

Th
ro

ug
hp

ut
 M

B/
s

Nodes

0
100
200
300
400
500
600
700

-2 2 6 10 14 18 22

Du
ra

tio
n

m
in

Nodes

Figure 4: PDGF BigBench scale-out
performance

0

100

200

300

400

500

0 10 20 30 40 50

Th
ro

ug
hp

ut
 M

B/
s

Threads

Figure 5: PDGF TPC-H scale-up per-
formance

0

5

10

15

20

25

1 10 30 100 300

Du
ra

tio
n

s

Scale Factor

DBGen PDGF PDGF /dev/null

Figure 6: DBGen vs PDGF perfor-
mance

0
50

100
150
200
250

Static Value
(no Cache)

Null Generator
(100% NULL)

Null Generator
(0% NULL)

ns

Base Time Generator Base Time Sub Sub Generator

0

100

200

300

400

500

0 10 20 30 40 50

Th
ro

ug
hp

ut
 M

B/
s

Threads

Figure 7: Generation latency

0
50

100
150
200
250

Static Value
(no Cache)

Null Generator
(100% NULL)

Null Generator
(0% NULL)

ns

Base Time Generator Base Time Sub Sub Generator

0

100

200

300

400

500

600

DictList Long Double Date String

ns

Generator

0
200
400
600
800

1000
1200
1400
1600
1800
2000

DictList Null (100%) Null (0%) Date
(formatted)

Sequential
(2 double +

long)

Double
(4 places)

ns

Generator

Figure 8: Basic generator latency

0
50

100
150
200
250

Static Value
(no Cache)

Null Generator
(100% NULL)

Null Generator
(0% NULL)

ns

Base Time Generator Base Time Sub Sub Generator

0

100

200

300

400

500

600

DictList Long Double Date String

ns

Generator

0
200
400
600
800

1000
1200
1400
1600
1800
2000

DictList Null (100%) Null (0%) Date
(formatted)

Sequential
(2 double +

long)

Double
(4 places)

ns

Generator

Figure 9: Complex generator latency

same order of performance as DBGen, although being completely
generic and adaptable.

We conducted further experiments to determine the sources of la-
tencies for the individual value generation. The experiments were
done in a single threaded setup, to get the per value overhead. These
results show the pure computational requirements and do not dis-
cuss latencies added by the I/O subsystem. In Figure 7, the latency
of independent value generation is broken down into its subparts.
For a static value, i.e., a column contains only one unique value
that is never changed, the pure system overhead can be seen. It is
in the order of 50 Nanoseconds (ns). If a NULL value generator is
wrapped around a static value that is NULL with 100% probabil-
ity, the overhead of the NULL generator is added to the generation
of the (static) NULL value, this is again in the order of 50 ns. The
definition of the NULL value generator can be seen in Listing 1. Fi-
nally, if the NULL probability is 0% the inner static value generator
has to be executed in all cases, this adds the base time for the sub-
generator and the actual value generation, both of which are again
ca 50 ns. Thus the total duration for each value is in the order of 200
ns. In Figure 8, it can be seen that this is a good ballpark number
for simple values that are not formatted. Picking values from dictio-
naries, computing random numbers, and generating random strings
are all in the range of 100 ns - 500 ns. String formatting is the
most expensive operation in data generation in Java, this can seen
in Figure 9. Formatting a date value (e.g., "11/30/2014") increases
the generation cost to 1200 ns, which is similar to generating a
value that consists of a formula that references 2 double values and
concatenates it with a long. Although the formatting is expensive,
its cost is fixed since PDGF does lazy formatting, which means
even very complex values will only be formatted once. This anal-
ysis shows that using subgenerators incurs nearly negligible cost
(ca. 100 ns) and it also shows that computing values rather than
rereading them is much more efficient. While generating complex
values might cost up to 2000 ns, doing a single random read will
cost ca. 10 ms on disk, which means the computational approach
is 5000 times faster than an approach that reads previously gener-
ated data to solve dependencies. Furthermore, the computational
approach enables a completely parallel generation of data, which is

Figure 10: Standard screen of DBSynth

not possible using reading based approach without replicating data
or extensive network communication.

In our final experiment, we tested the performance of the DB-
Synth metadata extraction. Using a TPC-H database with scale
factor 1 loaded in a PostgreSQL DBMS, it takes 600 ms to get
the schema information, 1.3 s to get the table sizes, 600 ms to get
NULL probabilities, 10 seconds to get all min and max constraints,
and between 800 ms (0.001% samples) and 200 s (100% samples)
to retrieve data for the Markov chains. These results indicate an in-
teractive response time for data model generation. Using PDGF’s
preview generation, which shows samples of the generated data in-
stantaneously, data models can be built and improved very fast.

5. DEMONSTRATION
To show the ease of use of DBSynth, we will demonstrate typ-

ical work flows for data generation. We will start by generating
industry standard data sets such as TPC-H. The data will be gener-
ated using PDGF, but this configuration is compliant to the TPC-H
data set [15] and was developed in cooperation with the TPC-H
subcommittee. This is a default project in DBSynth. The accord-
ing selection screen can be seen in Figure 10. We will generate a
10 GB TPC-H data set. We will show how the data can be altered

Figure 11: Mission Control interface for PDGF

by changing the output format. To this end, the data will be writ-
ten in CVS and XML format. The generation progress and system
utilization will be monitored using Java Mission Control1. PDGF
uses the Java Management Extensions internally for inter process
communication and using these interfaces, the progress of single
tables and the complete data set as well as general performance
parameters can be visualized. This can be seen in Figure 11.

After the data generation, we will demonstrate the configura-
tion generation. To show a real use case, we will use the pub-
licly available parts of the IMDb database2. The data set is hosted
in a MySQL database, which was loaded using the imdbpy2sql.py
script, which is part of the IMDbPY package3. We will first use
a basic schema extraction, where only the schema information is
retrieved from the database and no tables are accessed. The gen-
erated XML file will be explained, which contains the model for
the data generation. Then we will do a second more elaborate
schema extraction, where min/max constraints, NULL values, and
data samples for Markov chains will be read from the database. We
will compare the newly extracted model with the first one and then
generate the data. The according screen can be seen in Figure 12.
We will show excerpts of the generated data in comparison to the
original data and verify the quality by running SQL queries on the
original data and the generated data and compare the results. To
this end, the generated data will be loaded to a database system.

Finally, we will explain how the model can be changed or adapted.
We will change the automatically generated configuration by adding
additional columns to the model and refining correlations that could
not automatically be detected. This will be done using an automat-
ically generated version of the TPC-H configuration. We will then
show the differences between the original TPC-H configuration and
the newly generated configuration and compare the generated data
sets.

6. RELATED WORK
There is a rich body of work on data generation for database

benchmarking and testing. In the following, we will first give an
overview of related work on data generation in general and then
show other approaches for synthesizing existing data sets.

Even though there are many generic data generation tools, most
data generators either produce very simple data or are non-reusable
hard coded programs or collections of scripts. Examples for simple
data generation are the data generator used by all variations of the
1http://www.oracle.com/technetwork/java/javaseproducts/mission-
control/java-mission-control-1998576.html
2http://www.imdb.com/interfaces
3https://github.com/alberanid/imdbpy

Figure 12: Data generation screen of DBSynth

sorting benchmark (e.g., TeraSort4) and the Yahoo Cloud Serving
Benchmark data generator [5]. Examples for hard coded generators
are all TPC data generators, with the notable exceptions of TPC-DS
[14] and TPC-DI [16]. While simple data is helpful for testing basic
functionality it does not represent real world use cases. However,
hard coded data generators cannot easily be adapted for changing
requirements and for different systems. In many cases real data can
be used, but due to the impossiblity of scaling, privacy constraints
and cost of storage and transportation it is not feasible for bench-
marking.

An important characteristic for benchmarking data is repeatablity.
Basis for repeatable parallel data generation is the work by Gray et
al. on synthetic data generation [8]. This work describes how to
generate non uniform data in parallel on shared nothing systems.
These techniques along with parallel pseudo random number gen-
erators for the basis of our Parallel Data Generation Framework.

Modern generic data generators can be divided into three sub-
sets according to their reference and correlation generation: (1)
no reference generation; (2) reference tracking; and (3) reference
computation. Many data generators do not generate references or
correlations explicitly, but rely on users providing correct statistic
distributions to generate correlating values. Generators that track
references either compute all references at the same time that the
original value is generated, or they track the original value when a
references is generated. The former approach is frequently done us-
ing graph models [10, 11] or declarative description [2, 24] which
can lead to realistic data, however, typically is very slow and hard
to parallelize. Tracking references is done by rereading the previ-
ously generated data. This approach was for example presented by
Bruno et al. [4], this approach is very flexible but also very slow
and does not scale well. A faster approach is generating all related
data at the same time. Generic suites that use this approach include
MUDD [22] and PSDG [9]. The fastest way of generating correct
references in most cases is recomputing them. This approach was
first implemented in PDGF. A very similar data generator, Myriad,
was built at the Technical University of Berlin [1]. It shares the
same generation strategy with PDGF, however, does does not in-
clude many of the features of PDGF, such as update generation and
text generation.

As part of the BigDataBench suite of test cases for big data
systems, an early version of PDGF is used to generate structured
data [13]. The suite comprises additional generators for graphs

4https://hadoop.apache.org/docs/current/
api/org/apache/hadoop/examples/terasort/
package-summary.html

and a similar text generator as the current version of PDGF fea-
tures. Unlike PDGF’s text generator, the different generators are
not connected and, therefore, cannot generate heterogeneous data
sets with references in between different data sets, e.g., references
from structured data into text.

Although synthetic data is usually better suited for benchmark-
ing purposes, synthetic data should reflect characteristics of real
data. Therefore, typically real data sets are analyzed for modeling
data sets for benchmarking. Although this step is typically manual,
it can be automated. Like DBSynth other tools use the metadata
stored in database systems to get information about the distribution
and structure of the data. RSGen reads metadata and schema in-
formation of existing data sets and generates similar data sets by
using histograms of the original data [20]. Although similar to DB-
Synth, the approach is limited to numerical data. Another tool that
is able to scale existing data sets is UpSizeR [23]. It builds a graph
of the original schema information and correlation information and
generates data accordingly. However, the individual, non-key val-
ues are deemed application specific and thus have to be specified
by the user. DBSynth uses sampling of the data set to generate
dictionaries and Markov chains for non-key, non-numerical values.
Furthermore, DBSynth uses its built in dictionaries to increase the
value domain in scale out scenarios. Myriad also comes with con-
figuration generation tool Oligos, which can analyze the schema
and statistical information of a DB2 database [1]. However, it can-
not not sample a database and also has no tools to analyze and
synthesize values.

A line of work that is orthogonal to our work is test data genera-
tion for queries. QAGen analyzes queries to generate data that pro-
duces desired results and intermediate results to cover all required
test cases [3]. A similar tool is MyBenchmark [12]. Analyzing
queries to ensure desired results is currently not a feature of our
tool, but will be included in future versions. Given the determinis-
tic approach of data generation, our tool will then also be able to
directly execute the query without ever generating the data, which
can be used to verify results for correctness.

Although many of the features of DBSynth are covered to some
extent by other projects, none of these does include synthetic value
generation. Values are always treated as atomic units. This is prob-
lematic for big data sets, where values frequently are texts that have
to be further analyzed using machine learning techniques. To gen-
erate data sets, which satisfy requirements of big data use cases,
DBSynth includes Markov chain generators and dictionaries that
can generate realistic, synthetic values based on sampled data.

7. CONCLUSION
We demonstrate DBSynth, an extension to the Parallel Data Gen-

eration Framework, which enables a fully automatic configuration
of the data generator based on existing databases. DBSynth can
build realistic data models from a deployed database extracting
schema information, sampling, and analyzing the database. It uses
heuristics for data type determination and builds dictionaries and
Markov models for data generation. The generated models and
configuration can be directly used by PDGF to generate data for
a target database. A simple, intuitive graphical user interface ties
all parts together and features wizards to guide users through every
step of the process. In our demonstration, we showcase the ease of
use, the high performance, and the flexibility of the system.

In future work, we will extend DBSynth to automate the com-
plete benchmarking process. To this end, we will generate the
queries consistently using PDGF and build additional driver and
analysis modules. Furthermore, we will include query analysis to

generate data sets with predefined (intermediate) results and gener-
ate verification results for queries for given data models.

8. REFERENCES
[1] A. Alexandrov, K. Tzoumas, and V. Markl. Myriad: Scalable

and Expressive Data Generation. In VLDB, 2012.
[2] A. Arasu, R. Kaushik, and J. Li. Data Generation Using

Declarative Constraints. In SIGMOD, 2011.
[3] C. Binnig, D. Kossmann, E. Lo, and M. T. Özsu. QAGen:

Generating Query-aware Test Databases. In SIGMOD, 2007.
[4] N. Bruno and S. Chaudhuri. Flexible Database Generators.

In VLDB, pages 1097–1107, 2005.
[5] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and

R. Sears. Benchmarking Cloud Serving Systems with YCSB.
In SoCC, pages 143–154, 2010.

[6] M. Frank, M. Poess, and T. Rabl. Efficient Update Data
Generation for DBMS Benchmark. In ICPE, 2012.

[7] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte,
and H.-A. Jacobsen. BigBench: Towards an industry
standard benchmark for big data analytics. In SIGMOD,
2013.

[8] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J.
Weinberger. Quickly Generating Billion-Record Synthetic
Databases. In SIGMOD, pages 243–252, 1994.

[9] J. E. Hoag and C. W. Thompson. A Parallel General-Purpose
Synthetic Data Generator. SIGMOD Record, 36(1):19–24,
2007.

[10] K. Houkjær, K. Torp, and R. Wind. Simple and Realistic
Data Generation. In VLDB, pages 1243–1246, 2006.

[11] P. J. Lin, B. Samadi, A. Cipolone, D. R. Jeske, S. Cox,
C. Rendón, D. Holt, and R. Xiao. Development of a
Synthetic Data Set Generator for Building and Testing
Information Discovery Systems. In ITNG, pages 707–712,
Washington, DC, USA, 2006. IEEE Computer Society.

[12] E. Lo, N. Cheng, and W.-K. Hon. Generating Databases for
Query Workloads. PVLDB, 3(1-2):848–859, 2010.

[13] Z. Ming, C. Luo, W. Gao, R. Han, Q. Yang, L. Wang, and
J. Zhan. BDGS: A Scalable Big Data Generator Suite in Big
Data Benchmarking. In WBDB, 2013.

[14] M. Poess and C. Floyd. New TPC Benchmarks for Decision
Support and Web Commerce. SIGMOD Record,
29(4):64–71, 2000.

[15] M. Poess, T. Rabl, M. Frank, and M. Danisch. A PDGF
Implementation for TPC-H. In TPCTC, 2011.

[16] M. Poess, T. Rabl, H.-A. Jacobsen, and B. Caufield. TPC-DI:
The First Industry Benchmark for Data Integration. PVLDB,
13(7):1367–1378, 2014.

[17] T. Rabl, M. Frank, H. M. Sergieh, and H. Kosch. A Data
Generator for Cloud-Scale Benchmarking. In TPCTC, pages
41–56, 2010.

[18] T. Rabl, M. Poess, M. Danisch, and H.-A. Jacobsen. Rapid
Development of Data Generators Using Meta Generators in
PDGF. In DBTest, 2013.

[19] T. Rabl, M. Poess, H.-A. Jacobsen, P. E. O’Neil, and
E. O’Neil. Variations of the Star Schema Benchmark to Test
Data Skew in Database Management Systems. In ICPE,
2013.

[20] E. Shen and L. Antova. Reversing Statistics for Scalable Test
Databases Generation. In DBTest, 2013.

[21] V. Sikka. Does the World Need a New Benchmark?
http://www.saphana.com/community/blogs/
blog/2013/09/16/
does-the-world-need-a-new-benchmark, 2013.

[22] J. M. Stephens and M. Poess. MUDD: a multi-dimensional
data generator. In WOSP, pages 104–109, 2004.

[23] Y. Tay, B. T. Dai, D. T. Wang, E. Y. Sun, Y. Lin, and Y. Lin.
UpSizeR: Synthetically Scaling an Empirical Relational
Database. Information Systems, 38(8):1168–1183, 2013.

[24] E. Torlak. Scalable Test Data Generation from
Multidimensional Models. In FSE, 2012.

