Prof. Dr. Tilmann Rabl


We try to keep an up to date list of all our publications. If you are interested in a PDF that we have not uploaded yet, feel free to send us an email to get a copy. All recent publications you will find below. For older, please click appropriate year.

Publications of the years 2020, 2019, 2018, 20172016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007

Efficient Update Data Generation for DBMS Benchmarks

Frank, Michael; Poess, Meikel; Rabl, Tilmann in Third Joint WOSP/SIPEW International Conference on Performance Engineering, ICPE'12, Boston, MA, USA - April 22 - 25, 2012 Seite 169-180 . 2012 .

It is without doubt that industry standard benchmarks have been proven to be crucial to the innovation and productivity of the computing industry. They are important to the fair and standardized assessment of performance across different vendors, different system versions from the same vendor and across different architectures. Good benchmarks are even meant to drive industry and technology forward. Since at some point, after all reasonable advances have been made using a particular benchmark even good benchmarks become obsolete over time. This is why standard consortia periodically overhaul their existing benchmarks or develop new benchmarks. An extremely time and resource consuming task in the creation of new benchmarks is the development of benchmark generators, especially because benchmarks tend to become more and more complex. The first version of the Parallel Data Generation Framework (PDGF), a generic data generator, was capable of generating data for the initial load of arbitrary relational schemas. It was, however, not able to generate data for the actual workload, i.e. input data for transactions (insert, delete and update), incremental load etc., mainly because it did not understand the notion of updates. Updates are data changes that occur over time, e.g. a customer changes address, switches job, gets married or has children. Many benchmarks, need to reflect these changes during their workloads. In this paper we present PDGF Version 2, which contains extensions enabling the generation of update data.
Weitere Informationen