Hasso-Plattner-Institut
Prof. Dr. Tilmann Rabl
  
 

Publications

We try to keep an up to date list of all our publications. If you are interested in a PDF that we have not uploaded yet, feel free to send us an email to get a copy. All recent publications you will find below. For older, please click appropriate year.

Publications of the years 2020, 2019, 2018, 20172016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007

Scotty: Efficient Window Aggregation for Out-of-Order Stream Processing

Traub, Jonas; Grulich, Philipp Marian; Cuellar, Alejandro Rodriguez; Breß, Sebastian; Katsifodimos, Asterios; Rabl, Tilmann; Markl, Volker in 34th IEEE International Conference on Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018 Seite 1300-1303 . 2018 .

Computing aggregates over windows is at the core of virtually every stream processing job. Typical stream processing applications involve overlapping windows and, therefore, cause redundant computations. Several techniques prevent this redundancy by sharing partial aggregates among windows. However, these techniques do not support out-of-order processing and session windows. Out-of-order processing is a key requirement to deal with delayed tuples in case of source failures such as temporary sensor outages. Session windows are widely used to separate different periods of user activity from each other. In this paper, we present Scotty, a high throughput operator for window discretization and aggregation. Scotty splits streams into non-overlapping slices and computes partial aggregates per slice. These partial aggregates are shared among all concurrent queries with arbitrary combinations of tumbling, sliding, and session windows. Scotty introduces the first slicing technique which (1) enables stream slicing for session windows in addition to tumbling and sliding windows and (2) processes out-of-order tuples efficiently. Our technique is generally applicable to a broad group of dataflow systems which use a unified batch and stream processing model. Our experiments show that we achieve a throughput an order of magnitude higher than alternative state-of-the-art solutions.
Weitere Informationen
Tagsicde  streamprocessing