
Lehrstuhl für Verteilte Informationssysteme
Fakultät für Informatik und Mathematik
Universität Passau

Doctoral Thesis

Efficiency in Cluster Database Systems
Dynamic and Workload-Aware Scaling and Allocation

Dipl. Inf. Tilmann Rabl

July 21, 2011

Advisor: Prof. Dr. Harald Kosch
Second Advisor: Prof. Lionel Brunie

For Michael Hendrik Rabl

Abstract

Database systems have been vital in all forms of data processing for a long time. In recent
years, the amount of processed data has been growing dramatically, even in small projects.
Nevertheless, database management systems tend to be static in terms of size and perfor-
mance which makes scaling a difficult and expensive task. Because of performance and
especially cost advantages more and more installed systems have a shared nothing cluster
architecture. Due to the massive parallelism of the hardware programming paradigms
from high performance computing are translated into data processing. Database research
struggles to keep up with this trend. A key feature of traditional database systems is
to provide transparent access to the stored data. This introduces data dependencies and
increases system complexity and inter process communication. Therefore, many develop-
ers are exchanging this feature for a better scalability. However, explicitly managing the
data distribution and data flow requires a deep understanding of the distributed system
and reduces the possibilities for automatic and autonomic optimization. In this thesis
we present an approach for database system scaling and allocation that features good
scalability although it keeps the data distribution transparent.

The first part of this thesis analyzes the challenges and opportunities for self-scaling
database management systems in cluster environments. Scalability is a major concern of
Internet based applications. Access peaks that overload the application are a financial risk.
Therefore, systems are usually configured to be able to process peaks at any given moment.
As a result, server systems often have a very low utilization. In distributed systems the
efficiency can be increased by adapting the number of nodes to the current workload. We
propose a processing model and an architecture that allows efficient self-scaling of cluster
database systems. In the second part we consider different allocation approaches. To
increase the efficiency we present a workload-aware, query-centric model. The approach
is formalized; optimal and heuristic algorithms are presented. The algorithms optimize
the data distribution for local query execution and balance the workload according to
the query history. We present different query classification schemes for different forms
of partitioning. The approach is evaluated for OLTP and OLAP style workloads. It is
shown that variants of the approach scale well for both fields of application. The third
part of the thesis considers benchmarks for large, adaptive systems. First, we present a
data generator for cloud-sized applications. Due to its architecture the data generator can
easily be extended and configured. A key feature is the high degree of parallelism that
makes linear speedup for arbitrary numbers of nodes possible. To simulate systems with
user interaction, we have analyzed a productive online e-learning management system.
Based on our findings, we present a model for workload generation that considers the
temporal dependency of user interaction.

v

Kurzzusammenfassung

Datenbanksysteme sind seit langem die Grundlage für alle Arten von Informationsver-
arbeitung. In den letzten Jahren ist das Datenaufkommen selbst in kleinen Projekten
dramatisch angestiegen. Dennoch sind viele Datenbanksysteme statisch in Bezug auf
ihre Kapazität und Verarbeitungsgeschwindigkeit was die Skalierung aufwendig und teuer
macht. Aufgrund der guten Geschwindigkeit und vor allem aus Kostengründen haben
immer mehr Systeme eine Shared-Nothing-Architektur, bestehen also aus unabhängigen,
lose gekoppelten Rechnerknoten. Da dieses Konstruktionsprinzip einen sehr hohen Grad
an Parallelität aufweist, werden zunehmend Programmierparadigmen aus dem klassischen
Hochleistungsrechen für die Informationsverarbeitung eingesetzt. Dieser Trend stellt die
Datenbankforschung vor große Herausforderungen. Eine der grundlegenden Eigenschaften
traditioneller Datenbanksysteme ist der transparente Zugriff zu den gespeicherten Daten,
der es dem Nutzer erlaubt unabhängig von der internen Organisation auf die Daten
zuzugreifen. Die resultierende Unabhängigkeit führt zu Abhängigkeiten in den Daten
und erhöht die Komplexität der Systeme und der Kommunikation zwischen einzelnen
Prozessen. Daher wird Transparenz von vielen Entwicklern für eine bessere Skalierbarkeit
geopfert. Diese Entscheidung führt dazu, dass der die Datenorganisation und der Daten-
fluss explizit behandelt werden muss, was die Möglichkeiten für eine automatische und
autonome Optimierung des Systems einschränkt. Der in dieser Arbeit vorgestellte Ansatz
zur Skalierung und Allokation erhält den transparenten Zugriff und zeichnet sich dabei
durch seine vollständige Automatisierbarkeit und sehr gute Skalierbarkeit aus.

Im ersten Teil dieser Dissertation werden die Herausforderungen und Chancen für
selbst-skalierende Datenbankmanagementsysteme behandelt, die in auf Computerclus-
tern betrieben werden. Gute Skalierbarkeit ist eine notwendige Eigenschaft für Anwen-
dungen, die über das Internet zugreifbar sind. Lastspitzen im Zugriff, die die Anwen-
dung überladen stellen ein finanzielles Risiko dar. Deshalb werden Systeme so konfiguri-
ert, dass sie eventuelle Lastspitzen zu jedem Zeitpunkt verarbeiten können. Das führt
meist zu einer im Schnitt sehr geringen Auslastung der unterliegenden Systeme. Eine
Möglichkeit dieser Ineffizienz entgegen zu steuern ist es die Anzahl der verwendeten Rech-
nerknoten an die vorliegende Last anzupassen. In dieser Dissertation werden ein Modell
und eine Architektur für die Anfrageverarbeitung vorgestellt, mit denen es möglich ist
Datenbanksysteme auf Clusterrechnern einfach und effizient zu skalieren. Im zweiten Teil
der Arbeit werden verschieden Möglichkeiten für die Datenverteilung behandelt. Um die
Effizienz zu steigern wird ein Modell verwendet, das die Lastverteilung im Anfragestrom
berücksichtigt. Der Ansatz ist formalisiert und optimale und heuristische Lösungen wer-
den präsentiert. Die vorgestellten Algorithmen optimieren die Datenverteilung für eine
lokale Ausführung aller Anfragen und balancieren die Last auf den Rechnerknoten. Es

vii

werden unterschiedliche Arten der Anfrageklassifizierung vorgestellt, die zu verschiedenen
Arten von Partitionierung führen. Der Ansatz wird für sowohl für Onlinetransaktionsver-
arbeitung, als auch Onlinedatenanalyse evaluiert. Die Evaluierung zeigt, dass der Ansatz
für beide Felder sehr gut skaliert. Im letzten Teil der Arbeit werden verschiedene Tech-
niken für die Leistungsmessung von großen, adaptiven Systemen präsentiert. Zunächst
wird ein Datengenerierungsansatz gezeigt, der es ermöglicht sehr große Datenmengen
völlig parallel zu erzeugen. Um die Benutzerinteraktion von Onlinesystemen zu simulieren
wurde ein produktives E-learningsystem analysiert. Anhand der Analyse wurde ein Mod-
ell für die Generierung von Arbeitslasten erstellt, das die zeitlichen Abhängigkeiten von
Benutzerinteraktion berücksichtigt.

Acknowledgements

This thesis would not have been possible without the encouragement and supervision of
Harald Kosch. I am grateful for his constant support and friendly advise. He allowed me
the room to work in my own way and kept me motivated throughout the thesis. Further-
more, he gave me the opportunity to work at his chair which was a great experience.

In the five years at the chair I had the pleasure to work with many friendly people,
who I count among my friends. I would like to thank, Günther Hölbling, who shared a
room with me and with whom I had plenty of fruitful discussions. Mario Döller always
impressed me and encouraged me with his effectiveness and efficiency. Florian Stegmaier
brightened my day and always lent me his ear. Stella Stars, Britta Meixner, and David
Coquil enriched my day with stimulating conversation. Thanks to all the members of the
doctoral college, Christian, Getnet, Hatem, Lyes, Natacha, Tobias, Vanessa, and Zeina. I
would especially like to thank Ingrid Winter, who was like a mother and always kept me
free of nasty paper work.

I had the chance to advise many students, who helped me with my projects and mo-
tivated me with their effort. I am thankful to all of them, it was a pleasure to work
with each one. I would like to thank Christoph Koch and Marc Pfeffer, who were my
first students and set the bar high for the following. Marc built a first prototype for my
thesis project. Bastian Hösch built a second prototype and helped me with the linear
program. Marco Sitzberger examined the periodic behavior of the Stud.IP logs. Andreas
Brandl helped me with the implementation of the final prototype. Christian Dellwo im-
plemented the Scalileo framework and Niklas Schmidtmer integrated it in my prototype.
Michael Frank implemented PDGF and Manuel Danisch currently adapts it for the TPC-
DI benchmark. Andreas Lang helped me with the analysis of the Stud.IP logs for the
workload generation. I had many more students, who did a great job on their theses.

I would also like to thank Lionel Brunie for being my supervisor. During the work on
this thesis I had the opportunity to work with many nice people. Bernhard Sick worked
with me on the workload generation and helped me with the mathematical background.
Meikel Pöss brought me in contact with the TPC and kept me motivated to work on the
benchmarking research.

Last but not least, I would like to thank my family. I am happy to live among so many
fine people. Jane Mortimer spent here valuable free time and ironed out my problems
with the English language. I am grateful for the constant support of my mother. Most
importantly, I wish to thank the love of my life Maria and my wonderful son Maximilian.
They encouraged me, supported me and gave me strength when times were rough.

I dedicate this thesis to my father. Without his support I could never have finished it.
I wish he had lived to see the end of it.

ix

Contents

I. Introduction 1

1. Introduction 3

1.1. Motivation . 4

1.2. Contributions . 5

1.3. Overview . 5

2. Preliminaries 7

2.1. Set . 7

2.2. Function . 7

2.3. Family of Sets . 7

2.4. Multiset . 8

2.5. Sequence . 8

2.6. Graph . 8

3. Database, Database System and Database Management System 9

3.1. Relational Model . 10

3.1.1. Relational Algebra . 12

3.1.2. SQL . 14

3.2. Architecture of a Database Management System 15

3.3. Distributed Database Systems . 18

3.4. CDBS Processing Model . 21

3.4.1. Limitations of the Model . 24

3.4.2. Transactions . 25

3.5. Scientific and Commercial CDBSs . 26

3.5.1. C-JDBC . 26

3.5.2. Ganymed . 28

3.5.3. MIDDLE-R . 28

3.5.4. MySQL Cluster . 29

3.5.5. NonStop SQL . 30

3.5.6. DB2 . 30

3.5.7. Discussion . 31

xi

II. Scaling 33

4. Scaling Distributed Database Systems 35
4.1. Automatic CDBS Scaling . 37

4.2. Efficiency of Distributed Systems . 39

4.3. Energy Efficiency of Scaling . 43

4.4. Autonomic Computing . 44

5. Scalileo 47
5.1. Scalileo’s Architecture . 47

5.1.1. Workers . 47

5.1.2. Master . 48

5.1.3. Parameterized Components . 51

5.1.4. Benchmarks . 52

5.1.5. Reduction . 54

5.1.6. Conditions . 54

5.1.7. Constraints . 55

5.1.8. Login Methods . 56

5.2. Web Server Application . 57

5.3. Other Scaling Frameworks . 61

5.4. Frameworks for Energy Efficiency . 61

5.5. Conclusion . 62

6. Autonomic Scaling for CDBSs 63
6.1. Sensors . 63

6.2. Knowledge . 64

6.3. Effectors . 66

6.4. Evaluation . 67

6.5. Research Projects in Autonomic Scaling 72

6.5.1. Ganymed . 72

6.5.2. KNN Prediction . 72

6.5.3. Sprint . 72

6.5.4. WattDB . 73

6.6. Discussion . 74

III. Allocation 75

7. Distributed Database Layout 77
7.1. Partitioning . 78

7.1.1. Vertical Partitioning . 79

7.1.2. Horizontal Partitioning . 80

7.1.3. Hybrid Partitioning . 84

7.2. Replication . 85
7.3. Allocation . 86

8. Related Work 87
8.1. Partitioning . 88
8.2. Allocation . 90
8.3. Integrated Allocation Strategies . 91
8.4. Discussion . 92

9. Automatic Allocation 93
9.1. Autonomic Allocation . 98
9.2. Discussion . 99

10.Query Classification 101
10.1. Formal Definition . 102
10.2. Relation Based Classification . 104
10.3. Attribute Based Classification . 104
10.4. Predicate Based Classification . 105
10.5. Hybrid Classification . 105
10.6. Discussion . 106

11.Allocation – Read Mostly 107
11.1. Formal Definition . 107
11.2. Optimal Allocation . 109
11.3. NP-Hardness of the Allocation . 112
11.4. Greedy Heuristic . 113
11.5. Meta Heuristics . 118

11.5.1. Evolutionary Algorithm . 119
11.5.2. Mutation . 120
11.5.3. Local Improvement . 120

11.6. Discussion . 122

12.Considering Updates 123
12.1. Formal Definition - Update Considering 123
12.2. Maximum Speedup . 125
12.3. Proof of NP-Hardness . 128
12.4. Optimal Allocation . 128
12.5. Greedy Heuristic . 133

12.5.1. Mutation . 139
12.5.2. Local Improvement . 140

12.6. Discussion . 142

13.K-Safety 143
13.1. Redundant Fragments . 143

13.2. Redundant Query Classes . 144

13.3. Discussion . 146

14.Physical Allocation 149
14.1. Implementing Scaling . 152

14.2. Discussion . 153

15.Evaluation 155
15.1. TPC-H . 157

15.2. TPC-App . 159

15.3. Discussion . 162

16.Summary 165

IV. Benchmarking 167

17.Benchmarks 169
17.1. TPC BenchmarkTMH . 170

17.2. TPC BenchmarkTMApp . 171

17.3. E-Learning Benchmark . 173

18.Benchmarking Large Dynamic Systems 179
18.1. Data Generation . 181

18.1.1. Parallel Random Number Generation 182

18.1.2. Deterministic Data Generation . 183

18.1.3. Implementation . 185

18.1.4. Performance . 189

18.2. Workload Generation . 191

18.2.1. Scaling Time . 194

18.3. Benchmarking Objectives . 195

18.3.1. Basic Performance . 195

18.3.2. Adaptability . 195

18.3.3. Robustness . 196

18.4. Discussion . 196

V. Conclusion 199

19.Conclusion 201

20.Ongoing and Future Work 203
20.1. Scaling . 203

20.2. Allocation . 203

20.3. Benchmarking . 204

List of Figures

3.1. Database System Overview . 9
3.2. ANSI/SPARC Reference Model . 10
3.3. Algebraic Operator Tree . 14
3.4. The 5 Layer DBMS Architecture Model 16
3.5. Logical Operator Tree . 17
3.6. Physical Operator Tree . 17
3.7. Client Server Architecture . 19
3.8. Cluster Database System Architecture . 21
3.9. Intra-Query Parallelism (left) vs. Inter-Query Parallelism (right) 22
3.10. Architecture of a C-JDBC Cluster with RAIDb Level 2 27
3.11. Overview of the Ganymed Architecture 28
3.12. MIDDLE-R Architecture . 29
3.13. Architecture of the MySQL Cluster . 30

4.1. Vertical (above) vs. Horizontal (below) Scaling 37
4.2. Requests per Second at the Wikimedia clusters in October 2009 in Europe

(green) and the USA (blue) (image source: http://en.wikipedia.org/

wiki/Most_viewed_article). 43
4.3. The MAPE Loop . 45

5.1. Overview of the Scalileo Architecture . 48
5.2. Scalileo’s Feedback Control Loop . 53
5.3. Scalileo Web Application Setup . 58
5.4. HTTP Workload Trace of Stud.IP at University of Passau for the First

Day of the Winter Term 2009 . 59
5.5. Energy Consumption Compared to Workload 60
5.6. Number of Active Servers Compared to Workload 60

6.1. Decision Tree for Scaling Up on High System Utilization 65
6.2. Scaling Procedure . 67
6.3. Architecture of the Autonomic Scaling CDBS 68
6.4. Trace of Dynamic HTTP Accesses of Stud.IP at University of Passau for

the Second Day of the Winter Term 2009 69
6.5. Energy Consumption Compared to Workload 70
6.6. Number of Active Servers Compared to Workload 70
6.7. Average Response Time Compared to Workload 71

xvii

http://en.wikipedia.org/wiki/Most_viewed_article
http://en.wikipedia.org/wiki/Most_viewed_article

6.8. Sprint Architecture . 73

7.1. Adaption of the ANSI/SPARC Reference Model for Distributed Systems . 77

7.2. Schematic of Vertical Partitioning . 79

7.3. Schematic of Horizontal Partitioning . 79

7.4. Partitioning and Allocation . 86

9.1. Allocation of Read-Only Query Classes on 1 to 4 Nodes 95

9.2. Allocation of Read and Update Query Classes on 1 to 4 Nodes 97

9.3. Allocation in the MAPE Model . 98

11.1. Allocation of Read-Only Query Classes on Heterogeneous Backends 109

11.2. Example for the 3-Partition Problem. 112

11.3. Cluster Allocation Solution to the 3-Partition Problem 113

11.4. Allocation of Different-Sized Tables on Heterogeneous Backends with (be-
low) and without (above) Consideration of the Size 115

11.5. Heuristic (above) vs. Optimal (below) Allocation 118

12.1. Optimal Update Aware Allocations on Homogeneous Backends (above) and
Heterogeneous Backends (below) . 126

12.2. Example of the Bin-Packing Problem . 128

12.3. Heuristic (above) vs Optimal (below) Allocation 139

14.1. Complete Bipartite Graph of the New Allocation (above) and the Existing
Configuration (below) . 150

14.2. Optimal Matching of the New Allocation (above) and the Existing Config-
uration (below) . 150

14.3. Optimal Matching for a New Allocation (above) and an Existing Configu-
ration (below) . 151

14.4. Complete Bipartite Graph for the Mapping between a Scaled Allocation
(above) and a New Hardware Configuration (below) 153

14.5. Optimal Mapping between a Scaled Allocation (above) and a New Hard-
ware Configuration (below) . 153

15.1. Architecture of the First Prototype . 156

15.2. Architecture of the Second Prototype . 157

15.3. TPC-H Throughput for Different Cluster Sizes 158

15.4. Deviation of the Throughput of the Column Based Allocation 158

15.5. Degree of Replication for Different Cluster Sizes 159

15.6. Duration of the Allocation for Different Cluster Sizes 160

15.7. TPC-APP Speedup for Different Cluster Sizes 161

15.8. TPC-App Throughput for Different Cluster Sizes 162

15.9. Deviation of the Column Based Allocation 162

17.1. Schema of the TPC BenchmarkTMH . 170
17.2. Schema of the TPC BenchmarkTMApp . 172
17.3. Excerpt of the E-Learning Benchmark Schema 174
17.4. The Reference Distribution in the Table Seminar User 175
17.5. Distribution of Seminars per User in Table Seminar User 176
17.6. Distribution of Users per Seminar in Table Seminar User 176
17.7. Most Accessed Websites in June 2008 per 6 Hours 176

18.1. Most Accessed Websites in June 2008, Average Day per 10 Minutes . . . 180
18.2. Hierarchical Seeding Strategy . 184
18.3. Hierarchical Seeding Strategy for References 184
18.4. Architecture of the Parallel Data Generation Framework 186
18.5. Scaleup Results for 1 to 16 Nodes for a 100 GB SetQuery Data Set 189
18.6. Generation Time and Speed for Different Scaling Factors of the SetQuery

Data Set . 190
18.7. Comparison of the Generation Speed of dbgen and PDGF 191
18.8. Generation Times of TPC-H Data Sets on Different Cluster Sizes 192
18.9. Distribution of Monomial and Orthogonal Coefficients for Degree 0 and 1 193
18.10.The Most Likely Approximating Polynomial for Mondays During the Lec-

ture Period . 194
18.11.Most Accessed Websites in Stud.IP Between October 24, 2008 and June

10, 2009 per Day . 196

Part I.

Introduction

1. Introduction

The amount of data produced by scientific research and business is growing rapidly. A
prominent example are social media sites; the amount of data Facebook collected grew
drastically from 15TByte in 2007 to 700TByte in 2010 [217]. With the power to store large
amounts of data, the interest for analysis is growing. For large amounts of data shared
nothing architectures have emerged as a de facto standard [121, 210]. The massive par-
allelism in the hardware has led to new programming paradigms in data processing that
originate from classical high performance computing such as the MapReduce approach
[84]. In general, these approaches exchange fundamental database system qualities for
better scalability. Furthermore, systems with good scalability frequently have a very
bad utilization of system resources [146, 30]. Core achievement and basis of the success
of relational database systems is the simple data model combined with a comprehensi-
ble, declarative access. This requires transparent access to the distributed data. The
distributed access introduces dependencies which have to be adhered automatically.

As the number of nodes in a cluster increases the configuration overhead is growing, in
data centers the administration costs dominate the overall expenses [10]. Therefore, more
and more tasks have to be automatized. Due to the ever increasing workloads the adding
and removal of nodes is such a task. However, the extension of a distributed database
system is usually a manual task, which involves complicated data migration processes.
Similarly, the data distribution is often a manual task and database administrators spend
a fair amount of their time identifying hot spots and resolving them. Although a lot of
research focuses on online schema tuning which improves throughput of a single database
node, efficiency of a distributed system benefits the most from global optimizations [192].
For a distributed database system the data allocation has a major impact on the overall
performance.

Even though there is a large body of research on allocation in distributed databases,
only little work has been done on automatic and especially autonomic allocation. A well
known description of the allocation problem was presented by Özsu and Valduriez [169].
In order to cover as much influences as possible the authors propose a very complex model.
This model includes the storage, processing and data transmission costs. The allocation is
formulated as a minimization problem, based on the knowledge of all request and update
costs. Other allocation problem definitions and algorithms follow similar approaches.
Obviously, this is interesting from a theoretical point of view, but far to complex for real
world applications. In order to allow realistic problem sizes and dynamic environments
simplified models are necessary.

3

4 1. Introduction

1.1. Motivation

This thesis aims at an automation of scaling and data layout in distributed database
systems on cluster hardware. We focus on small to middle sized appliances with a limited
number of nodes, but do not restrict ourselves to this setting. Today, database systems
are a core element of most data intensive systems. However, especially in smaller projects
and startups there is usually only a limited budget for the data management. This is
usually not an issue, as long as the database workload can be processed by a single server
database system. With modern hardware, single node database systems can be scaled
up to enormous processing powers, but at enormous prices. The current leading system
in the TPC BenchmarkTMC of the Transaction Processing Performance Council has a
total system cost of over 30 million dollars1. Obviously, this is not affordable for most
appliances, therefore, many projects use open source database management systems and
of the shelf hardware. In these systems, probably the hardest step is from a single database
server to a distributed system. In this thesis, we present our shared nothing approach
that enables an automatic scale out from a single backend to a distributed system with
good speedup.

In a shared nothing environment the overall system performance is strongly correlated
with locality. This is because communication is expensive and will eventually always
become the bottleneck [17]. Hence, calculations should be performed locally. In a dis-
tributed database system on a shared nothing environment it is therefore preferable to
process requests locally. The approach is related to classical high performance computing
techniques and is diametrical to the declustering approach in parallel database systems.
While declustering aims at an reduced execution time for single requests by employing
parallelism at operator level, data locality aims at an increased throughput while main-
taining single site execution speed.

Since queries are executed locally in this approach, the database backends can be seen
as black boxes. Due to this fact, the configuration of the system is much simpler than
the configuration of a parallel system. Therefore, different self-management strategies
such as autonomic scaling can be implemented relatively easy. Apart from reducing the
management costs for adapting the system to increased requirements, the autonomic up
and down scaling can also be used to increase the energy efficiency.

If the necessary data is present read requests can always be executed on a single system.
However, write requests have to be propagated on all replicas of the affected data set.
Therefore, we present a query-aware allocation strategy that distributes data based on
the access history. It aims on minimizing the overhead introduced by redundant updates,
while balancing the workload and, thus, maximizing the overall throughput.

1Top Ten TPC-C Results - http://www.tpc.org/tpcc/results/tpcc_perf_results.asp (last visited
2011-04-15)

http://www.tpc.org/tpcc/results/tpcc_perf_results.asp

1.2. Contributions 5

1.2. Contributions

In this thesis, we propose a model for database systems on cluster hardware. Based on
this model, an approach for autonomic scaling and allocation is developed. Furthermore,
new methodologies for cluster database system benchmarking are presented. The validity
of the approaches is proven based on prototypical implementations that are tested with
real life examples and standard benchmarks.

Our contributions are the following:

• A processing model for cluster database systems is proposed. It is the formal basis
of our prototypes. The model is reduced to an essential core, which considers the
most important factors of distributed database systems. Through the reduction of
influencing values all factors can be determined automatically.

• We show an approach for autonomic scaling of cluster database systems. Our
method is implemented in the Scalileo scaling framework that allows an easy in-
tegration of autonomic scaling in distributed systems. We discuss and prove by
example, how the efficiency in general and energy efficiency in particular can be
improved by autonomic scaling.

• We formalize the allocation problem for our cluster database processing model for
read-only and read-write scenarios. We sketch the NP-hardness of both cases and
present an optimal computation and heuristic algorithm for each. The algorithms
feature an integrated approach for partitioning, replication and allocation. The
prototypical implementations show a considerably improved performance compared
to full replication. For highly dynamic environments a periodic allocation strategy
is shown that exploits reoccurring changes in the workload.

• We propose new methodologies for database benchmarking. A new data genera-
tion paradigm is presented. It allows parallel generation of relational data with
linear speedups. We explain how different data dependencies can be generated by
exploiting the determinism in pseudo random number generation. Furthermore, a
new generator for adaptive workloads is presented. The underlying model allows a
representation of workload variances by polynomials.

1.3. Overview

This thesis is organized in five parts. The first part gives an introduction to the subject.
In the next chapter we will give an overview on the formalisms used throughout the thesis.
Chapter 3 explains fundamental concepts in relational theory and introduces the cluster
database system architecture.

Part II deals with the autonomic scaling of cluster database systems. Chapter 4 explains
the mechanisms and prerequisites of autonomic and efficient scaling of distributed systems.
In chapter 5 the Scalileo framework – a generic scaling framework – is presented. Chapter

6 1. Introduction

6 explains how the Scalileo framework can be used to build an autonomic self-scaling
cluster database system and shows an evaluation of the resulting system.

In part III, different allocation strategies for cluster database systems are explored.
In chapter 7 the foundations of distributed data layouts are presented. In chapter 8
related work on allocation strategies is presented. Chapter 9 gives an introduction on the
procedures of automatic workload aware allocation. In chapter 10 different approaches for
the classification of database requests are presented. Chapter 11 presents an allocation
strategy for cluster database systems with read only workloads and chapter 12 extends
this definitions for workloads with read and write requests. In chapter 13 both algorithms
are extended to ensure high availability. Chapter 14 explains how the allocation can be
implemented into a existing configuration with minimum costs. This part concludes with
an evaluation of the allocation algorithms in capter 15 and a summary in chapter 16.

Part IV discusses benchmarking of cluster database systems and large, dynamic database
systems. Chapter 17 presents standard benchmarks, which were used in this thesis and
presents a new benchmark that was defined as part of the thesis. In chapter 18 new
methodologies for data generation and workload generation for benchmarking large scale,
dynamic systems are presented.

The thesis concludes in part V with an outlook on ongoing and future work.

2. Preliminaries

In this chapter we will introduce definitions and formalisms used throughout the thesis.
To simplify the understanding of the formulas we use a consistent notation.

2.1. Set

We use the term set for a collection of not set-valued, distinguishable objects. Sets are
always represented by a single capital letter, e.g. S. The elements of a set are represented
by a single lowercase letter. We usually use a the according lowercase letter of a sets
name to express an arbitrary element of a set, e.g. s ∈ S. To distinguish the elements
we use indices, so if S has n elements we write s1, s2, . . . , sn ∈ S. The cardinality of S
is expressed by |S| = n. If we want to define a set we do so either by enumerating the
elements, e.g. S = {s1, s2, . . . , sn}, or by a property of its elements over an other set, e.g.
S = {s|property of s}.

Special sets used are the natural numbers N, integers Z, and the real numbers R. The
the positive real numbers are represented by R+. Intervals are defined as subsets of R.
We use the following short form, S =]a, b] is the set S = {x ∈ R|a < x ≤ b}. Integer
intervals are defined by their endpoints like the enumeration of sets, e.g. I = {3, . . . , 5}.

2.2. Function

We usually define a function f by first giving its domain and codomain, for example
f : A→ B indicates that f assigns elements of its domain A to elements of its codomain
B. A single assignment is written f(a) = b, this means that f assigns a ∈ A to b ∈ B.
The definition of the function is then given textual, in a set notation or by constraints.

In order to reduce the number of definitions, we often overload function definitions. For
example, the function f from above might also be used for set-valued objects: f(A′) = B′,
with A′ ⊆ A and B′ ⊆ B. The implicit definition of this function would be f(A′) = {b ∈
B|∃a ∈ A′ : f(a) = b} = B′.

2.3. Family of Sets

A family of sets is a set of subsets of a given set. We represent a family of sets of a set S
with a calligraphic capital letter, e.g. S. A special family of sets is the power set, i.e. the
set of all subsets of a set. The power set of S, is represented by a capital calligraphic letter
P(S). Any family of sets S of a set S is always subset of the power set of S, S ⊆ P(S).

7

8 2. Preliminaries

A family of sets S of set S can also be defined as function S : S → P(S). Thus we call S
the domain of S.

In general set-valued objects are represented by capital letters. If the elements are also
set-valued, we use calligraphic letters or in cases of ambiguity Gothic type.

2.4. Multiset

A multiset is a collection of objects and their occurrences. It can be defined over a set S
as a pair 〈S, f〉, where f : S → N is a function that assigns each element in S the number
of its occurrences in the multiset (we adopt the multiset formulation of Syropoulos [214]).
We call f the characteristic function and S the domain of a multiset. We denote a multiset
with a calligraphic capital letter, e.g. M. The support of a multiset M = 〈S, f〉 is a
subset B of S, with B = {s ∈ S|f(s) > 0}. The cardinality of a multiset M = 〈S, f〉 is
|M| =

∑
s∈S f(s). The set of all multisets with support B is denoted as PB.

2.5. Sequence

A sequence is a finite or infinite list of objects with an ordering. We write sequences as
a single capital letter, e.g. S. A sequence can be defined directly, e.g. S = (1, 4, 5, 6, 7)
or as a function S : N→ C, where the codomain C is the set of all elements occurring in
the sequence. Finite sequences with n elements are also called n-tuples.

2.6. Graph

A graph G is a tuple of vertices and edges, G = (V,E). Each edge e ∈ E connects two
vertices u, v ∈ V , therefore E ⊆ V × V . A graph is directed, if e = (u, v) 6= e′ = (v, u).
The edges of a graph can be weighted, then there has to be a weighting function with the
following definition:

weight : E → R (2.1)

A graph is said to be complete, if every node is connected with every other node. In a
directed graph this requires a two edges to every node, one leading in the vertex and one
leading out of the vertex. A special form of graphs are bipartite graphs. In bipartite graphs
the set of vertices can be separated in two disjunct sets, V1∪V2 = V and V1∩V2 = ∅, with
the property, that there is no edge between two vertices within the same set. A bipartite
graph is said to be complete, if each vertex in V1 is connected to every vertex in V2.

3. Database, Database System and
Database Management System

In the following chapter, we will give a short introduction to relational database systems.
This will also be used to introduce the terminology used in the rest of the thesis. Often
the terms database (DB), database system (DBS) and database management system
(DBMS) are used interchangeably. However, originally they stand for different entities.
A database is an organized collection of data, which is typically stored in a database
system. To manage and process the data a set of computer programs is used; this piece of
software is called the database management system. So the database system is a computer
system which stores one or more databases and runs a database management system to
give access to the database. This relation is shown in figure 3.1.

Database System

Database

Database
Management

System

Figure 3.1.: Database System Overview

Following the ANSI/SPARC reference design there are three views of data in a database
(see figure 3.2) [218]. The internal view for the database management system, the logical
view, containing data model and the external view which gives access to the users and
applications. For each of these a schema is defined. The internal schema defines the
physical representation of the data, this is how and where relations are stored and which
indexes are defined. The logical schema contains an integrated model of all relations of the
database and their interconnections. The external views define how data can be accessed
by the user.

The internal data representation is the duty of the DBMS. It specifies how the data is

9

10 3. Database, Database System and Database Management System

External View External View External View

Internal View

Conceptual
View

Figure 3.2.: ANSI/SPARC Reference Model

stored and the data structures used to manage and access the data. We will give some
details of the internal representation in the next section.

The external views define which data may be accessed by the users. In general the
user will not have access to all data stored in the database. Furthermore, it is unusual
that all users have access to the same data in the database, e.g. most database systems
have an internal catalog of meta data which is not accessible for regular users. This user
management is either carried out by the database management system or the application
logic on top of the database system.

The logical view is an integrated representation of the data in the database. The repre-
sentation conforms to a certain specification or schema. This schema is usually defined in
an application independent data model. There are several structured data models, such as
the object-oriented model, the deductive model, and the entity-relationship-model. The
most common model is the relational model and its derivatives. As this model is used in
the rest of this thesis, we will give an introduction in the following section. After that,
we will give a short overview of the architecture of a DBMS, as far as it is relevant to this
thesis. Finally, we will introduce distributed and cluster database systems.

3.1. Relational Model

The relational model was introduced by Edgar F. Codd in 1970 [69]. In contrast to the
models that were used before, such as the network model or the hierarchical model, it is
set-oriented. This means that data within the model is organized and processed in sets.
This gives the model a very simple structure, compared to the earlier record oriented
models.

In the relational model the data is organized in relations. Formally defined, a relation
R is a subset of the Cartesian product of the domains Di of its fields.

3.1. Relational Model 11

R ⊆ D1 ×D2 × · · · ×Dn (3.1)

Common domains in a database include integers, character arrays and floating point
numbers. A single entry of a relation is called tuple. A tuple t ∈ R corresponding to the
definition above consists of n values or attributes from the domains D1, D2, . . . , Dn. A
typical example of a relation is the following relation ORDERS

ORDERS

ID ITEM CUSTOMER DATE

1 Screws Mike 2010-10-11

2 Nails Andy 2010-11-22

3 Hammer Chris 2010-11-22

4 Nuts Mike 2010-12-05

.

An example of a tuple is (2,’Nails’,’Andy’,’2010-11-22’). Since a relation is similar to a
table, this term can be used as an alternative. In this context, a tuple is called row and
an attribute column. In the example above the relation has the domain integer × string
× string × date1. This is usually specified in the following manner:

ORDERS : {[ID : integer, ITEM : string, CUSTOMER : string, DATE : date]} (3.2)

The structure of the relation is also called the schema. This representation has the
advantage that the parts of the relation are named and can be referenced. We will use
the following notion for the ID of ORDERS, ORDERS.ID, if the attribute name is
unambiguous, we will omit the name of the relation. In most of the examples in the rest
of this thesis the domains or data types are not important and will therefore be omitted.
It should be noted that the term relation is used in the context of an instance as well
as the schema. So a relation is a set of tuples and also a set of attributes. We will not
formally distinguish these meanings, since they are clear in the context.

In the original relational model all entries in a relation had to be unique, so there were
no duplicates allowed. In modern systems this is not always enforced, and if uniqueness
is necessary it is often realized by an artificial identifier, such as a row number. A set of
attributes that enables a tuple to be identified is called a key. Often, there are multiple
different keys for a relation; in this case one key is chosen to be the primary key. In the
example this could be the ID. Keys are used to define interrelations between relations.
Consider the following relations CUSTOMERS, which further describes the customers
referenced in the table ORDERS:

1We use the ISO 8601 international standard date form in the following.

12 3. Database, Database System and Database Management System

CUSTOMERS

NICK FNAME LNAME CITY

Chris Christian Summers Los Angeles

Mike Michael Smith San Francisco

Andy Andrew Michell Santa Barbara

.

The attributeNICK is underlined to indicate, that it is the primary key for the relation.
To establish the interrelation between orders and customers in the example, the primary
key of CUSTOMERS is an attribute in ORDERS. This is called a foreign key. To
find all data about a customer of a selected ORDERS tuple the tuple in CUSTOMERS
has to be found where ORDERS.CUSTOMER = CUSTOMERS.NICK. There are
several ways to describe this form of data retrieval for the relational model, most common
are the relational algebra and relational calculus. The difference between the two is that
the relational algebra describes a procedural way to retrieve the data, while the relational
calculus is a declarative description of the data. For safe queries, i.e. queries that are
domain independent, both models have equal expressiveness. In the following we will
describe the operators of relational algebra and give a definition in the tuple relational
calculus. The tuple relational calculus is a set based description of a relational query. We
use square brackets to modify tuples in the relational tuple calculus.

3.1.1. Relational Algebra

Above, we have described how to define and represent data in the relational model. In
this section, we will describe how to query relational data using relational algebra, as far
as it is used in this thesis.

To extract tuples that follow a certain form from a relation selection is used. It is an
unary operator, which has a relation as input and returns a relation. All tuples in the
input are tested against a given predicate. An example with the tuple calculus formulation
is:

σCUSTOMER=′Mike′(ORDERS) = {t|t ∈ ORDERS ∧ t.CUSTOMER =′ Mike′} (3.3)

The result of this selection is again a relation:

σCUSTOMER=′Mike′(ORDERS)

ID ITEM CUSTOMER DATE

1 Screws Mike 2010-10-11

4 Nuts Mike 2010-12-05

In general, the predicate can be a logical formula. The selection reduces a relation
to the required tuples. To reduce a relation to the required attributes, the projection

3.1. Relational Model 13

is defined. It is again a unary operator that has a relation as input and output. The
projection reduces the set of attributes to the set specified:

πITEM,CUSTOMER(ORDERS) = {[t.ITEM, t.CUSTOMER]|t ∈ ORDERS} (3.4)

[t.ITEM, t.CUSTOMER] defines a tuple with the two attributes ORDERS.ITEM
and ORDERS.CUSTOMER. The result of the projection above is:

πITEM,CUSTOMER(ORDERS)

ITEM CUSTOMER

Screws Mike

Nails Andy

Hammer Chris

Nuts Mike

There are several binary operators that enable relations to be combined. If two relations
with identical attributes are combined, set operators such as union, intersection and
difference can be used. More important are the Cartesian product and the join. The
Cartesian product in relational algebra calculates all possible combinations of the tuples
of two relations:

ORDERS × CUSTOMERS =

{[s.ID, s.ITEM, s.CUSTOMER, s.DATE, (3.5)

t.NICK, t.FNAME, t.LNAME, t.CITY]|
s ∈ ORDERS ∧ t ∈ CUSTOMERS}

An excerpt of the solution for the relations above is:

ORDERS × CUSTOMERS

ID ITEM CUSTOMER DATE NICK FNAME LNAME CITY
1 Screws Mike 2010-10-11 Chris Christian Summers Los Angeles
1 Screws Mike 2010-10-11 Mike Michael Smith San Francisco
1 Screws Mike 2010-10-11 Andy Andrew Michell Santa Barbara
2 Nails Andy 2010-11-22 Chris Christian Summers Los Angeles
2 Nails Andy 2010-11-22 Mike Michael Smith San Francisco
2 Nails Andy 2010-11-22 Andy Andrew Michell Santa Barbara

. .

The join enables pairs of tuples which satisfy a certain predicate to be selected. In the
following example an equijoin, i.e. a join that tests for equality, is shown:

14 3. Database, Database System and Database Management System

ORDERS onCUSTOMER=NICK CUSTOMERS =

{[s.ID, s.ITEM, s.CUSTOMER, s.DATE, (3.6)

t.NICK, t.FNAME, t.LNAME, t.CITY]|
s ∈ ORDERS ∧ t ∈ CUSTOMERS ∧ s.CUSTOMER = t.NICK}

The result for the relations above:

ORDERS onCUSTOMER=NICK CUSTOMERS

ID ITEM CUSTOMER DATE NICK FNAME LNAME CITY
1 Screws Mike 2010-10-11 Mike Michael Smith San Francisco
2 Nails Andy 2010-11-22 Andy Andrew Michell Santa Barbara
3 Hammer Chris 2010-11-22 Chris Christian Summers Los Angeles
4 Nuts Mike 2010-12-05 Mike Michael Smith San Francisco

Using combinations of the operators, more complex queries can be built. For example:
Find all customers who ordered in November 2010 and give their first and last name:

πFNAME,LNAME(CUSTOMERS onNICK=CUSTOMER

(σDATE≥2010−11−01∧DATE≤2010−11−30(ORDERS))) (3.7)

In order to increase the readability of such queries, they are often presented as an
operator tree as in figure 3.3. A tree like structure is also used by several database
management systems for query processing.

πFNAME,LNAME

onNICK=CUSTOMER

CUSTOMER σDATE≥2010−11−01∧DATE≤2010−11−30

ORDERS

Figure 3.3.: Algebraic Operator Tree

As can be seen in this example, expressions in relational algebra can get cumbersome
easily. Therefore other languages were designed which allow simpler query specifications.
The most common language today is SQL.

3.1.2. SQL

SQL, sometimes also referred to as structured query language, is a declarative data def-
inition, data manipulation and data query language. It is supported by most database

3.2. Architecture of a Database Management System 15

management systems. In this section, we will only discuss basic query elements of the
SQL 92 standard [1]. We will limit the discussion to simple SQL queries. These have
the general form called select-project-join. The query in equation 3.7, can be expressed
in SQL as follows:

Listing 3.1: Select-Project-Join SQL Query

select FNAME, LNAME
from ORDERS, CUSTOMERS

where CUSTOMER = NICK
and DATE >= date (’ 2010−11−01 ’)
and DATE <= date (’ 2010−11−30 ’)

SQL queries start with the select-clause, which specifies the attributes in the output
relation. This is similar to a projection in relational algebra, although the select clause
is more powerful than a simple selection. In the second row the from-clause can be seen;
here all input relations are specified. Finally, in the where-clause, constraints that the
result tuples have to satisfy are specified. In the example, these correspond to predicates
of a selection in relational algebra. In the last two rows, a date function can be seen, it
converts a given string to a date. Joins are usually specified only indirectly, by specifying
multiple relations in the from-clause and according join predicates in the where-clause.
In the example this can be seen for ORDERS and CUSTOMERS and their attributes
CUSTOMER and NICK.

Even though SQL is the most common way to access a database, most users of a
database system will never encounter an actual SQL query. Usually, this is hidden by a
form or application. As can be seen in the example above, the SQL queries are declarative
and do not give any instructions on how to process the data. Therefore, the DBMS has
to translate them into database operations. In the following section, we will explain the
DBMS architecture and query processing.

3.2. Architecture of a Database Management System

Database management systems are highly complex software systems. Therefore, a layered
architecture was proposed early by several authors [116, 113, 201]. We review the 5-layered
model by Härder and Reuter [132]. Each of the layers equals a step in the transformation
from the abstract query language to the physical file access (see figure 3.4). Even though
it is a model for the architecture of a database management system, most current database
management systems implement the most of the transformations in such a way. In the
following we will explain the different layers and transformation steps.

Data system: nonprocedural or algebraic access As mentioned above, most database
systems feature the relational model and SQL access. This is called the set-oriented
interface, it allows a declarative description of the data and the queries. The data
system layer has to transform the declarative access to the navigational access.

16 3. Database, Database System and Database Management System

Data System

Set-Oriented DB Interface

Access System

Encoding System

Cache Manager

Operating System

Physical Storage

Applications

Record-Oriented DB Interface

Internal Record Interface

Cache Interface

File Interface

Hardware Interface

Figure 3.4.: The 5 Layer DBMS Architecture Model

Internally, it features a data model that is similar to the relational algebra, it has
logical operators that are abstracted from the actual implementation. On this layer,
the queries are optimized and translated to the record-oriented interface of the access
system. A record is the internal representation of a tuple.

Access system: record-oriented, navigational access The record-oriented interface en-
ables internal representations of the relations to be addressed; this can be various
access paths such as indexes or scans. The access is typed. On this layer, operations
such as sorting and joining are also implemented. The access system translates the
logical access to concrete access of typeless records on the internal record interface,
provided by the encoding level.

Encoding system: record and access path management The encoding system provides
a virtual linear address space on all records. It implements operations on the physi-
cal access paths, such as B-tree operations. Internally, the data is managed in fixed
sized pages, which store records. A page is a continuous data block with a linear
address space. The page access is controlled by the cache management.

Cache manager: propagation control The cache manager features a page oriented in-
terface. The pages are mapped to the block oriented interface of a file. In order to
minimize disk reads and writes a cache manages the pages currently in the memory.

3.2. Architecture of a Database Management System 17

Operating system: file management The lowest layer is concerned with the file man-
agement. In early database management systems this functionality was also imple-
mented by the DBMS. Today, this is usually done by the operating system’s file
management.

To illustrate the query processing, we will review the transformations on the query in
listing 3.1. This is to be understood as a generic example, specific systems will differ in
the intermediate results and data structures. When the SQL query is sent to the DBMS
the data system translates it to a logical operator tree. As mentioned above, this is similar
to relational algebra. The initial tree is a direct translation without any optimizations
(see figure 3.5).

πFNAME,LNAME

σDATE≥2010−11−01∧DATE≤2010−11−30∧NICK=CUSTOMER

×

CUSTOMER ORDERS

Figure 3.5.: Logical Operator Tree

The next step is the logical optimization of the operator tree. Typical examples are
the replacing of Cartesian products by joins and pushing down selections. A possible
result of this can be seen in figure 3.3. In the next step, the logical operators will be
replaced by physical operators and access paths. Usually there are multiple possible
physical operator trees. In the example the choice of the access paths and join order can
lead to very different operator trees. A possible result can be seen in figure 3.6

INDEX NESTED LOOPS JOIN

FULL SCAN (CUSTOMER) INDEX (CUSTOMERS (NICK))

Figure 3.6.: Physical Operator Tree

The physical operator tree is sent to the access system. The access system executes the
operators and will generate record accesses, index accesses, etc. Often the operators are
implemented according to the iterator pattern. Each operator has the methods open,next
and close:

open Initializes the operator. For example, the access to the relation is opened or auxil-
iary data structures are initialized.

18 3. Database, Database System and Database Management System

next Generates the next tuple. This can be a single access to the relation, or finding a
joining tuple.

close Closes the operator. Auxiliary data structures are released, access streams are
closed.

In the example in figure 3.6, three operators are shown. When the query processing
is started, the JOIN operator is opened, it will then open the SCAN and the INDEX
operators. When the next method of the JOIN operator is invoked, it will repeatedly
invoke the next methods of the SCAN and INDEX operators, until it finds the first
matching pair of tuples. When the close method is called on the JOIN operator, it will
also close its successors.

The accesses generated are sent to the encoding system. The encoding system translates
the virtual addresses to physical page addresses and requests the relevant pages from the
cache manager. The records stored in the pages are then given to the access system.

The cache manager stores frequently used pages in the memory to reduce the number
of disk reads and writes. As in the example above, most database queries access small
continuous parts in the database. A common caching strategy is the least recently used
algorithm (LRU). In the LRU algorithm, the page in the cache that has not been used
for the longest amount of time will be stored to disk and replaced by a newly required
page. The page size is usually aligned with the block size of the disk, so that a page size
is an integer multiple of the disk block size.

Finally, the cache manager will send read and write commands to the file system. It is
possible to optimize the read and write sequences according to physical characteristics of
the disk. For example, on traditional hardware it is much faster to read bulk sequences
than to randomly search single blocks.

3.3. Distributed Database Systems

In the section above, we discussed the architecture of a single DBMS. However, since data
sizes and access workloads often exceed the capabilities of a single system, distributed
systems are used. In this section, we will discuss several distributed architectures and
give reasons for the use of the cluster database system architecture.

There are several motivations to use distributed systems. Increasing utilization and
therefore efficiency was probably the earliest reason. Interestingly enough this was also the
reason that led to the development of the ARPAnet, which ultimately was the foundation
of the Internet. To increase the utilization of expensive, powerful mainframe computers,
interactive, remote terminals were developed. This approach is called a client server model
(see figure 3.7). The server provides a service or resource that is requested by the client.
For the communication between client and server a network is used. A typical example
of a client server system is the combination of web server and web browser. Today, most
database systems are server systems and the application programs access the database as
a client. This enables the use of dedicated hardware exclusively for the database system.

3.3. Distributed Database Systems 19

This in turn enables the system to process a higher workload than a system running
multiple services.

Client

Client

Client

Client

ServerNetwork

Figure 3.7.: Client Server Architecture

However, in many cases a single system has not enough capacity to match the demand
required. Therefore, the database system has to be run on distributed hardware. Several
forms of distributed database systems exist. One possibility of classification is their degree
of integration:

Multi database system Multi database systems are very loosely coupled, autonomous
database systems. Usually, they hold different, local databases, which do not share
a common schema. Such systems often result from the combination of different
applications and are therefore very heterogeneous. Typical examples are information
systems for hotel booking.

Federated database system Federated database systems are more tightly coupled than
multi database systems. They may also have different schemata and local data, but
they share a global database. This reduces the autonomy of the single systems: the
schema of the globally visible data cannot be changed without coordination with
the other participating systems. Federated database systems are again the result of
an integration of several systems.

Integrated distributed database system Usually, integrated distributed database sys-
tems are implemented by a distributed DBMS. The system appears as a single
DBS. The global schema is a union of the local schemata. These systems are ini-
tially designed to be distributed, with the focus on high performance, fault tolerance
and decentralization. They often have a very homogeneous architecture.

The three classes of systems offer very different challenges. However, if the performance
of a single database system has to be optimized, obviously especially integrated distributed
DBMSs are interesting. Performance gains are achieved by parallel processing of queries.
Two forms of parallel query processing can be distinguished, inter-query parallelism and

20 3. Database, Database System and Database Management System

intra-query parallelism. On a system with inter-query parallelism multiple queries can
be processed in parallel. If a system features intra-query parallelism, single queries are
processed in parallel. While inter-query parallelism increases the throughput, i.e. the
number of queries per time unit, intra-query parallelism decreases the answer time, i.e.
the amount of time until a query is processed (see also section 3.4). Usually, these systems
are implemented on a high performance computer system. Traditionally, the following
architectures are differentiated:

Shared-everything All processors in the system share the same main memory and disks.
Basically, the DBMS on a shared-everything architecture works very similarly to a
single system DBMS.

Shared-disk Every processor has its own main memory, but all share the same disks.
This architecture allows all processors to access all stored data. This eases the
administrative overhead for the data distribution, but increases the difficulties of
locking management.

Shared-nothing In a shared-nothing system, all processors have separate RAM and disk.
Typically, this is a set of independent machines that are connected over a high speed
interconnect.

All three architectures are used in professional database systems today. However,
shared-everything architectures are very expensive and do not scale limitlessly. Shared-
disk systems were especially popularized by Oracle RAC; they scale well with little admin-
istrative cost. But in very large scale systems, the more complex locking procedures can
become a bottleneck [121]. Shared-nothing systems are frequently made up from clusters
of off-the-shelf hardware [29, 37], are cheap and have been shown to scale to very large
numbers of nodes. For example, Google used a 4000 nodes cluster to sort 1 petabyte of
data2. Typically, each node runs an independent DBMS that manages only a share of the
database. The complete database is partitioned across the nodes [208]. Apart from the
superior scalability, these system can easily be made failsafe using replication of data. In
large scale systems disk and server failures frequently happen, therefore shared-nothing
systems have to be able to tolerate loss of single disks or complete servers. Since current
processors usually have multiple cores, the independent DBMSs in a shared-nothing sys-
tem are run on shared-everything architectures. Database systems that are implemented
on shared nothing clusters are called cluster database systems (CDBS). In contrast to
shared-everything and shared-disk systems, shared-nothing systems rely on sophisticated
data partitioning. This is usually the work of highly qualified database administrators,
whose wages often dominate the maintenance of a database system.

The architecture of a cluster database system can be seen in figure 3.8. It is usually
three-tiered and consists of the presentation tier (client), the logic tier (controller) and
the data tier (backend). This design is a variant of the client server model, in which

2The official Google Blog - http://googleblog.blogspot.com/2008/11/

sorting-1pb-with-mapreduce.html (last visited 2011-04-15)

http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html

3.4. CDBS Processing Model 21

Node2Node1

DBS1 DBS2

…

Noden Nodem

DBSn

Master

Client ClientClient

Scheduler

Controller

Slave Slave Slave

Figure 3.8.: Cluster Database System Architecture

the server component is split up again. Usually the controller is a relatively lightweight
middleware system that distributes the incoming queries to the backends. The backends
are fully-fledged database systems that each manage either a full replica or a a part of the
global database. Although it would be possible to move some of the DBMS functionality
completely from the backend to the controller, it is usually more efficient to use a complete
DBMS on the backend. In this way the backend DBMSs do not share any resources
and therefore also reflect the shared-nothing architecture. This design scales well in the
number of nodes if the single queries can be processed by a single backend. However,
for large numbers of nodes the controller can become a bottleneck. In this case it is
possible to use a hierarchy of controllers that manage subsets of the backends. In the
rest of the thesis we will only consider single controller systems. In the next section,
we will introduce a simplified processing model for cluster database systems that allows
automatic partitioning and allocation.

3.4. CDBS Processing Model

To increase the speed of a DBMS on a distributed system, some form of parallelism has
to be employed. As mentioned above, based on the processing of single queries, two forms
can be distinguished. A system with intra-query parallelism splits up a single query into
multiple query fragments and then fragments can be processed in parallel. This is illus-
trated in figure 3.9. Using inter-query parallelism multiple queries can be processed in
parallel. Employing intra-query parallelism can reduce the processing time of a single

22 3. Database, Database System and Database Management System

DBS1 DBS2 DBS1 DBS2

Figure 3.9.: Intra-Query Parallelism (left) vs. Inter-Query Parallelism (right)

query, while inter-query parallelism only increases the throughput. However, intra-query
parallelism introduces dependencies between nodes which will lead to an increase of net-
work communication. Apart from decision support and scientific database applications,
most queries are relatively small, which means they can be processed in reasonable time
on a single system. With the advent of multi-core processors, many DBMSs feature intra-
query parallelism, which will speed up the local processing of a query. For this reason, on
the cluster level only inter-query parallelism is commonly used. Apart from performance
issues distributed query processing can also be used to allow querying distributed data.
This is necessary in integrated systems that have no influence on the data distribution.

However, in a CDBS we consider a query as an atomic unit. Each incoming query is
processed completely by a single backend. It has to be assured that a backend has all
input data for the queries it will process. Since all queries can be processed locally, there
is no need for communication between the nodes. Each query can be sent to any backend
that has all required data for the query. A common approach in cluster database systems
is full replication, so each query can be processed by each backend. To achieve a fairly
balanced load distribution between the nodes, a simple online strategy can be applied for
the query scheduling: the least pending request first strategy (LPRF) sends a query to the
backend, which at the time has the least queries queued [57]. This strategy is based on the
so called Greedy algorithm for online load balancing [48, Chap. 12]. Its competitive ratio
is 2, which means that in the worst case an optimal offline solution might be at most twice
as fast as the Greedy algorithm. In contrast to an online algorithm an offline algorithm
has complete knowledge of all events in advance. Only randomized online algorithms may
have better competitive ratios than the Greedy algorithm [18].

Obviously, updates cannot be simply processed by a single backend. Instead they have
to be executed on each replica of the updated data. The straightforward approach is
therefore to send the update to every backend that holds data that will be updated.
Combined to the query processing approach above, this is called the read once / write all
protocol (ROWA) [120, Chap. 2.2]. In order to keep the databases in a consistent state,
it is important, that all backends get the updates in the same order. Although there are

3.4. CDBS Processing Model 23

more efficient approaches for update synchronization, such as primary copy [20] and lazy
replication [145], we will limit the discussion to the ROWA protocol. In the following, we
will give some estimations on the performance of a cluster database system. These use a
simplified processing model, we will discuss the limitations of the model below in section
3.4.1.

In its most simple form a cluster database system places a full replica of the managed
database on each backend. This means that each query can be sent to any backend. If
the workload consists only of read requests, then the throughput of such a system will
increase linearly with the number of nodes. The throughput can be calculated with the
following formula:

throughput =
#queries

processing time
(3.8)

Obviously, the throughput is also dependent on the utilization of the systems. There-
fore, the maximum throughput which will be reached at the peak performance of the
system is searched. Based on the throughput of two systems with different scale the
speedup can be computed:

speedup =
throughput1

throughput2

(3.9)

Usually, the interest lies in the speedup of a clustered database system compared to a
single node system. If the number of queries is the same in all tests, the speedup is only
dependent on the processing time of the queries. Theoretically, the maximum throughput
in a homogeneous system with only read requests should be proportional to the number
of nodes. If no additional overhead is introduced, it should be equal to the number of
nodes:

speedupopt = #nodes (3.10)

However, in a fully replicated system updates have to be processed on each backend.
Therefore, the throughput of the system will decrease with the number of updates. The
throughput can be defined as the amount of queries and updates processed per time unit.

throughput =
#queries + #updates

processing time
(3.11)

On a system with multiple nodes, the number of updates processed by the system
increases with the number of nodes:

processed updates = #updates×#nodes (3.12)

On a homogeneous, fully replicated system, each update will take the same amount
of time on each node. Therefore, it takes the same time as if the updates are processed
on a single node, while the queries can be distributed on the nodes. So in theory the

24 3. Database, Database System and Database Management System

processing time of the updates is constant, while the processing time of the queries is
inversely proportional to the number of nodes:

processing time =
processing time queries

nodes
+ processing time updates (3.13)

Hence, the speedup will decrease with the processing time of the updates. The corre-
lation is defined by Amdahl’s law [23]:

speedup =
1

parallel
#nodes + serial

(3.14)

In this context, parallel is the ratio of query processing time and serial is the ratio
of update processing time. This model has some limitations which will be discussed in
the next section. Nevertheless, it allows a closed formal approach to other forms of data
allocation and a good throughput prediction.

3.4.1. Limitations of the Model

As mentioned above, the model has several limitations. Amdahl’s law was criticized for
being to pessimistic since it does not take positive effects such as caching into account
[112]. Obviously, the same is true for database systems. If single systems frequently
process similar queries, they will have increased performance because of positive effects
of the cache manager. Especially when the database is partitioned (see chapter 7.1), less
data has to be read and hence the query processing is sped up. Furthermore, the model
only calculates the maximum speedup; it makes no assumptions about the deviations in
the processing speed of the queries. There are several factors that could vary:

• Unbalanced load

• Query dependencies

• System variations

As explained above, we use a greedy scheduling algorithm. Hence, the algorithm can
perform differently on different scales of a system. The deviations in the processing
times between backends can be very different, especially if very long running queries are
scheduled. This results in an unbalanced load, which will decrease the throughput of the
system. A further factor which causes variations is interdependencies of queries. If similar
queries are processed by a single backend, the optimizer will reuse query plans and the
required data will already be cached. Finally, even on a single node system, processing
times of a query will vary because of variations of the system load from other processes
and concurrent disk reads. Therefore, exact predictions on the speedup are not possible.

Another important aspect of DBMSs that is not considered by the model is the concept
of transactions. Transactions combine a series of queries and updates to an atomic process.

3.4. CDBS Processing Model 25

Transaction management ensures that each transaction is either processed completely or
revoked. This allows consistency and correctness of the data. Although all current en-
terprise DBMSs support transactions, there is a trend in large scale systems away from
transactions [213]. This is because of the overhead introduced by distributed transac-
tion management. In the next section, we will give some remarks on how to integrate
transaction management into the model presented.

3.4.2. Transactions

Transactions are necessary to manage multi-user access, a common example are accesses
to bank accounts: If an account is accessed by multiple users in parallel, it has to be
guaranteed that concurrent updates do not get lost or corrupt the state of the account.
A withdrawal is usually implemented by a query that retrieves the current balance and
a subsequent update that sets the new balance. If multiple withdrawals are done in
parallel without transactional support, all queries read the same balance and the updates
overwrite each other. In this way only the last withdrawal will be persistent, the others
are lost.

Transactions follow the ACID paradigm [133]: a transaction has to be atomic and it
has to leave the database in a consistent state. If multiple transactions are processed in
parallel, they should not interfere with each other; they should be processed in isolation.
Finally, the effects of a transaction have to be durable in the database. There are several
techniques to implement transactions in a database system, such as two phase locking and
multiversion concurrency control (surveys can be found in [38, 224]). As mentioned above,
most current systems support transactions. To implement distributed transactions a two-
phase commit protocol (2PC) can be used [106]. In the first phase of the 2PC protocol
the master asks all nodes that take part in a transaction if they are ready to commit. If
all are ready, the master sends a commit to the nodes in the second phase. If one or more
fail or time out, the master sends an abort. This protocol is widely used in distributed
transaction systems. More advanced protocols have been proposed to avoid blocking of
nodes after failures, but they have shown to be too inefficient for realistic workloads [136].

The SQL 92 standard defines four different levels of isolation for transactions [1]: Read
Uncommitted, Read Committed, Repeatable Read, and Serializable. These differ in the
way how transactions may interfere with each other. In the Read Uncommitted level
dirty reads are possible. Hence, a transaction can read data that an other transaction has
written before it has committed. In the Serializable level the transactions see only their
own data changes as if they are processed one after the other. Serial execution reduces the
possibilities for concurrency in the database system, therefore often non standard levels
such as snapshot isolation are used [35]. These multiversion approaches allow transactions
to work on their on version of the database.

In a CDBS four types of transactions can appear. Read-only or update and local or
distributed transactions. Local transactions are handled completely by a single local
database system. Distributed transactions have to be started on all participating nodes,
while reads can be processed on a single node, the updates have to be processed on all

26 3. Database, Database System and Database Management System

nodes with the relevant data. For full replication this includes all nodes. Basically, the
single queries of a transaction are processed in the same way as without transactions.
Hence, the throughput only deviates from non-transactional processing if transactions
interfere with each other. This is if two transactions require the same data and at least
one is an update. This happens only on very rare occasions, Gray estimates a percentage
of 0.001 or 0.0001 for online transaction systems [109]. Hence, the resulting decrease of
the throughput can be estimated with a constant factor.

Besides traditional 2PC protocols, a CDBS can make use of the transaction ordering.
If the transactions are processed on all nodes in the order of their arrival, all nodes always
have the same state. Therefore, a simple one-phase commit protocol is sufficient. It
can be implemented in the middleware [90, 202] or directly in the backend DBMS [216].
Following this approach, a distributed transaction has to be started on all nodes that have
relevant data. If the operations are processed in the same order on all nodes participating,
all nodes either succeed or have a conflict. Obviously, some further restrictions have to
be considered such as the use of the current system time in a query.

3.5. Scientific and Commercial CDBSs

There are many implementations of cluster database systems that use the processing
model presented. In this section, we will give an overview of scientific and commercial
systems. The list is far from being exhaustive. What is more, many database systems
that carry the word cluster in their name have quite a different processing model. These
usually derive their name from the underlying hardware platform. A prominent example
is Oracle Real Application Cluster (RAC), which has a shared disk architecture [7].

Scientific projects are often implemented in the form of a middleware, using off-the-shelf
database management systems. Examples are the C-JDBC project and Ganymed.

3.5.1. C-JDBC

The C-JDBC project is a middleware platform for transparent database replication [59]. It
provides a Java Database Connectivity (JDBC) driver that allows the distributed system
to be accessed as if it were a single database (see figure 3.10). The database backends only
have to provide a JDBC driver again. The replication mechanism in C-JDBC is called
Redundant Array of Inexpensive Databases (RAIDb) [57], which is an analogy of classical
RAID for databases [174]. The C-JDBC driver was the basis for the first prototype of
a cluster database system for this thesis, which was presented in [188]. However, it is
primarily designed for full replication and does not allow partitioning. Still, the relations
of a database can be distributed according to the following RAIDb levels:

RAIDb-0 RAIDb-0 defines full partitioning. It is similar to the RAID level 0. Each
relation in the database is allocated on a single backend. The overall disk usage is equal
to a single system. Similar to RAID 0 the mean time between failure (MTBF) is inversely

3.5. Scientific and Commercial CDBSs 27

proportional to the number of backends. For n backends, where each has MTBF t, the
MTBF is t

n . Furthermore, the size of the cluster is limited to the number of relations in
the database. Since C-JDBC does not support distributed query processing RAIDb-0 can
in general only be used for queries with single tables access.

RAIDb-1 RAIDb-1 defines full replication; each database backend manages a copy of
the complete database. A RAIDb-1 system provides highly increased fault tolerance and
high read-only query processing speed, at the price of high disk usage. The controller
has less work for request dispatching, since read requests can be sent to any backend and
write requests have to be sent to all backends according to the ROWA protocol. This level
limits the size of the database to the disk capacity of a single backend. For databases
with a considerable number of update requests the scalability of a RAIDb-1 system is
very limited, as described in section 3.4. RAIDb-1 is the default level for C-JDBC.

RAIDb-2 The RAIDb-2 level allows partial replication of the relations. To provide fault
tolerance, each relation has to be allocated to at least two backends. An example of a
RAIDb-2 configuration can be seen in figure 3.10. The controller has to do more work than
for RAIDb-1, since it has to decide which backend can answer incoming requests. Since
C-JDBC cannot process distributed queries, each incoming query has to be processed by
a single backend. To assure the existence of an adequate backend, one backend usually
contains the complete database.

C-JDBC Driver

Client ClientClient

A B A B

jdbc

jdbc

Figure 3.10.: Architecture of a C-JDBC Cluster with RAIDb Level 2

The C-JDBC project was continued as an open-source project in the Sequoia project.

28 3. Database, Database System and Database Management System

This was then further extended in the Tungsten projects3 [74], which feature a complete
middleware stack for horizontally scaled database systems.

3.5.2. Ganymed

The Ganymed project4 provides a middleware layer that allows replication of databases
and transparent access [177, 178]. The system is divided into a master and several satellite
database systems, in which the satellites feature read-only access, while write access is
processed only on the master node (see figure 3.11). The consistency of the database is
guaranteed by snapshot isolation. The system has a very similar processing model to the
one presented in section 3.4. It gains speedup by processing each query on a single node.
However, to speed up the update propagation, a lazy approach is used. This means that
updates are not necessarily propagated at their arrival and that the state of the backend
databases may temporarily differ. Furthermore, the system allows the dynamic creation
of specialized satellite databases. These can be satellites for skyline or keyword searches.
To ensure an optimal throughput for write-heavy workloads, the system can automatically
scale down to the master.

DynamicStatic

Master DB Primary
Satellite

Secondary
Satellite

Secondary
Satellite Spare

Dispatcher

Requests

Write Sets

Figure 3.11.: Overview of the Ganymed Architecture

3.5.3. MIDDLE-R

The system Middle-R implements a middleware for database replication [155, 173]. The
work is based on the Postgres-R system [135], which implemented a similar system within
the PostgreSQL DBMS. The system uses group communication to synchronize update
requests. This way requests can be directed to any node in the system and there is no
need for a central master node. The architecture can be seen in figure 3.12. The system

3Tungsten Replicator - http://code.google.com/p/tungsten-replicator/ (last visited 2011-04-15)
4The Ganymed Project - http://www.ganymed.ethz.ch/ (last visited 2011-04-15)

http://code.google.com/p/tungsten-replicator/
http://www.ganymed.ethz.ch/

3.5. Scientific and Commercial CDBSs 29

consists of a queue manager, a database interceptor and a communication manager. The
queue manager implements the replication protocols and interacts with the database
system using the database interceptor. The database interceptor connects to the DBMS
and submits incoming transactions. The communication manager is the queue manager’s
interface to the group communication system. In order to increase network performance
multicast messages are used.

MIDDLE-R

Database
Interceptor

Queue Manager

Communication
Manager

DBMS

MIDDLE-R

Database
Interceptor

Queue Manager

Communication
Manager

DBMS

Group Communication

Figure 3.12.: MIDDLE-R Architecture

3.5.4. MySQL Cluster

MySQL Cluster is an extension of the open-source MySQL database management sys-
tem designed for high availability and high performance [167]. It has a shared nothing
architecture, which can be seen in figure 3.13. There are three different node types:

Data node stores the data,

Management node configures and monitors the cluster,

SQL node processes SQL queries.

In MySQL cluster, data is usually partitioned and replicated across the cluster. The
replication uses a master-slave approach, similar to Ganymed. Management nodes moni-
tor the system and allow re-synchronization in cases of errors. The data nodes store the
database and manage the access. Initially, the data was stored only in-memory, but new
versions allow disk-based storage. SQL nodes translate SQL queries to low-level API calls
to the data nodes. Since the data nodes do not act as complete DBMSs, the system is
strictly speaking not a cluster database management system. However, on the data node
level it works in a similar way to the processing model presented.

30 3. Database, Database System and Database Management System

Data
Node1

Data
Node2

Data
Node3

Data
Node4

Management
Node

SQL Node SQL Node SQL Node

Figure 3.13.: Architecture of the MySQL Cluster

3.5.5. NonStop SQL

NonStop SQL is a commercial parallel database management system. It was originally
developed by Tandem Computers [92]. Today it is distributed by HP in the Neoview
platform [6]. NonStop SQL can achieve linear speedup by horizontally partitioning data
across multiple shared nothing nodes and by executing the same query on all nodes in
parallel. For the execution of updates, this is equivalent to the processing model presented.
For queries however, the system employs intra-query parallelism.

3.5.6. DB2

DB2 is a commercial DBMS produced by IBM [67]. Like most business DBMSs, it can
be run on shared everything and shared nothing architectures. DB2 has a shared nothing
architecture. IBM specified the Distributed Relational Database Architecture (DRDA)
standard for the interoperability of distributed databases based on an early version of
DB2 [4]. This standard defines four different levels of distributed access to distributed
databases:

1. Remote Request enables a single request to be sent to a distant server.

2. Remote Unit of Work enables a transaction to be sent to a single distant server.

3. Distributed Unit of Work enables requests of a transaction to be distributed to
different distant servers.

4. Distributed Request enables a single request to be distributed to multiple servers.

Recent DB2 versions support all four levels of DRDA. Up to level three, the query
processing is similar to the model presented. Level four includes intra-query parallelism.

3.5. Scientific and Commercial CDBSs 31

3.5.7. Discussion

The presented systems all have a relation to the CDBS query processing model. In the
following tabular the differences can be seen.

System Query processing Update propagation Synchronization

C-JDBC Local Eager ROWA
Ganymed Local Lazy Primary Copy
MIDDLE-R Local Eager Group Communication
MySQL Cluster Local Eager Primary Copy
NonStop SQL Distributed Eager RAWA
DB2 Both Both Primary Copy
CDBS Local Eager ROWA

The closest thing to our approach is C-JDBC. For full replication the approaches are
identical. Ganymed has an equivalent approach for query processing, however, in contrast
to our work it uses a primary copy update mechanism. This reduces delays that stem from
synchronization, but makes performance estimations difficult. For our processing model
this analysis is easily predictable, as can be seen in section 3.4. The same is true for the
MIDDLE-R system, while query processing is equivalent to the CDBS model, updates
are synchronized by group communication. This reduces the network traffic, but again
limits predictability.

MySQL Cluster, NonStop SQL, and DB2 have a slightly different processing model.
MySQL Cluster has a two-staged query processing, in which low level API calls are
processed similar to the CDBS model. NonStop SQL is a classical parallel database
system, data is fully declustered (see section 8) and every query is processed at all nodes
(read-all), similarly updates are processed at all nodes as in the CDBS model (write-all).
Our model could be adapted to comply with the parallel model. The enterprise database
system DB2 has various configuration possibilities that range from the CDBS model to a
parallel processing model.

The major advantage of our approach is the good performance predictability. The
determinism in the CDBS approach reduces processing complexity and has been shown
to be scalable and adjusted to modern technology trends in recent research [202, 216]

Part II.

Scaling

4. Scaling Distributed Database Systems

Scalability is of major interest for Internet based applications. Access peaks that overload
the application are a financial risk. Therefore, software and hardware systems have to
be built to scale. Usually, they are configured to be able to process peaks at any given
moment. Obviously, this is very inefficient. Yet, there are various ways to improve
efficiency. One reasonable, straight forward approach is to scale applications according to
their workload at any particular time.

Scalability of a system involves two abilities: on the one hand, to deal with increased
workload and on the other hand, to increase the performance of a system by adding
resources [225]. According to Bondi four types of scalability of a software system can
be differentiated: load scalability, space scalability, space-time scalability, and structural
scalability [47]. We will examine the cluster database system architecture according to
these types:

Load scalability A system that has a stable performance under different amounts of load
is said to be load scalable. For database systems this means that it can process
requests with equivalent answer times for low, medium or high loads, when the load
never exceeds the maximum throughput of the system. For queries in a cluster
database system the load scalability is obviously dependent on the load scalability
of the backend database systems. Each read-query is scheduled to one backend and
the processing of the queries in the middleware is independent of the number of
queries in the system. The scheduling of updates is per se not load scalable, since
the full replication enforces the middleware to replicate the updates to all backends,
reducing the update speed to the speed of a single node system.

Space scalability The space requirements of a system in relation to the number of man-
aged elements define its space efficiency. A system is space efficient if its memory
and disk requirements increase to an acceptable degree when the number of man-
aged elements increases. In a cluster database system the space efficiency concerning
memory is again mostly dependent on the backend database system. The middle-
ware has only minimal space requirements, since it only holds the data dictionary in
order to know where to send the queries. The memory requirements of a database
system are usually space scalable, since buffer strategies allow the processing of var-
ious database sizes with a fixed memory size. The disk space requirements increase
linearly according to the number of tuples in the database for a single system. The
degree of replication increases the requirements of the cluster database system by a
constant factor, which for full replication is the same as the number of backends in
the system. Because of this, the disk space scalability is somewhat limited.

35

36 4. Scaling Distributed Database Systems

Space-time scalability A system is said to be space-time scalable if it still functions if the
number of managed elements is increased by numbers of magnitude. This scalability
is again mostly dependent of the backend database systems. The middleware can
manage various numbers of backends, if its limits are reached, a hierarchical mid-
dleware structure allows further scalability. For the backend systems, the scalability
is again dependent on the scalability of a single system. Usually database systems
allow the management of various sizes of databases and are therefore space-time
scalable.

Structural scalability If a system is not limited in the number of elements it manages
by implementation, it has structural scalability. Structural scalability is limited
if address spaces limit the number of managed elements to a fixed number. In
general the middleware has no restriction on the number of backends therefore it
is structurally scalable. Modern database systems usually have flexible addressing
schemes that allow astronomical numbers of tuples in a database (current versions
of the Oracle Database Server allow up to 8 exabytes, i.e. 260 bytes, in a single
database [5]).

As shown, the cluster architecture is not scalable in all dimensions. The update load
scalability and the disk space scalability are limited. However, these limits stem from the
use of full replication. Because of full replication the database has to be stored completely
on to all backends and the updates have to be replicated to all backends. Using more
advanced allocation strategies the degree of replication can be greatly reduced. This
reduces the disk space requirements and increases space scalability. Furthermore, the
load scalability for updates is increased. We will give more details on allocation strategies
in part III, therefore, we will postpone the treatment of this problem at this point.

A system that has a good scalability should be able to scale. For distributed systems,
this can be done in two ways: vertically and horizontally. The two forms are depicted in
figure 4.1. To scale a system vertically or scale it up means increasing the resources of a
single system [85]. This can be done by changing the CPU, adding RAM or completely
migrating to a more powerful server. Horizontal scaling or scale out scalability means
increasing the number of nodes in a distributed system. In a CDBS this means adding a
new backend node to the cluster.

As obvious in figure 4.1 vertical scaling maintains the original system architecture, while
horizontal scaling changes the software architecture by increasing the degree of distribu-
tion of a system [225]. In the extreme case a vertically scaled system can still work as a
single integrated system, while a horizontally scaled system with equal performance al-
ready has tens or hundreds of nodes. This introduces a significant management overhead.
In general a system can easily be migrated to more powerful hardware with the same
architecture to achieve better performance. However, using horizontal scaling allows the
use of cheaper hardware. Michael et al. have shown that scale-out solutions are up to 4
times faster than equal priced scale-up solutions, even if enterprise hardware is used [154].
Furthermore, it has been demonstrated that clusters of off-the-shelf hardware enable very

4.1. Automatic CDBS Scaling 37

Figure 4.1.: Vertical (above) vs. Horizontal (below) Scaling

large scale clusters to be built at a fraction of the cost of high-end hardware [29, 37].
With the advent of multiprocessors and cloud computing, scaling out is the only solution
in many large scale applications [194]. A further very important factor is that horizontal
scaling can be done online, while the migration to a larger system usually has to be done
offline.

The horizontal scalability of a database system depends on the scalability of the DBMS
and the scalability of the database. The cluster database system architecture has a good
horizontal scalability, as we identified above. The horizontal scalability of a database
depends on its workload, it can be estimated by the speedup we defined in section 3.4
in equation 3.14. The theoretical maximum speedup can be estimated by calculating the
upper limit:

speedupmax = lim
#nodes→∞

speedup =
1

serial
(4.1)

Obviously, the use of an infinite number of nodes is not efficient; we will give details on
efficiency in section 4.2. The scalability of a system is a mere indicator of the capability
of scaling. The scaling procedure itself introduces further challenges. For larger numbers
of nodes in particular, the scaling has to be done automatically. In the following, we will
give details of the procedure of scaling a CDBS and information on how to automatize
the single steps.

4.1. Automatic CDBS Scaling

To scale a CDBS means adding a new backend node to the system. As indicated before,
we will not give details on scaling the controller of the CDBS. Obviously, the larger the
number of nodes in a system grows, the more nodes are necessary to achieve a noticeable
increase of performance. Therefore, automatic routines are necessary to increase the
manageability of a CDBS. Adding a new node involves several steps:

• Acquire a new backend system.

• Install and start the software on the backend.

38 4. Scaling Distributed Database Systems

• Integrate the backend into the CDBS.

• Migrate or replicate data on the backend.

• Synchronize the backend.

Acquiring a new backend means setting up a new or a spare cluster node and giving
it access to the intercom. Obviously, this is a manual task in a traditional server room.
If the system is run on a cloud platform, this step can be automated. Typical cloud
platforms are, for example, Amazon’s Elastic Compute Cloud [16] and Microsoft’s Azure
[122]. These provide APIs to acquire a new compute node automatically.

The complexity of installing the software can vary highly, based on the backend database
system. Lightweight DBMSs, such as Apache Derby1, HyperSQL2, and H23 need little
or no installation at all and can therefore simply be started on the node. Commercial
systems often have complex installation procedures which do not allow an automatic
approach [156]. A solution to automate the DBMS installation is virtualization, using
preconfigured virtual machines eases the installation overhead. This is usually also used
in cloud serving systems.

It is possible to load data to the node before integrating it into the middleware. How-
ever, then the database on the node has to be resynchronized at the point of integration.
Therefore, it is easier first to add the node to the cluster and then ship the data. This
way the middleware can also decide which data is placed on the node. To integrate the
node into the cluster the middleware simply needs access to the DBMS on the node. Usu-
ally, management tasks such as bulk loading cannot be done via the SQL interface of the
DBMS; these are also not standardized between different DBMSs. In order to automatize
the integration into the cluster a slave program or a set of scripts is utilized. This usually
has to be implemented for every brand of DBMS separately. When the middleware is
aware of the node and it has access to the DBMS on the node, it can load the data on
the node.

Depending on the size of the database the migration is a time consuming task. It
consists of the export, the transmission phase, and the load phase, this is also known as
ETL process [114]. In the export phase, the data is exported from the database on a
running node of the system. The data is either stored in a file or directly transmitted.
During the transmission phase the data is sent via the network to the new node. The new
node either stores the data in a file first, or directly imports the data into the database.
This is usually done using bulk loading techniques [220]. Data export and transmission
obviously take linear time in relation to the data size. The import however has super
linear costs because of the construction of indexes and the like. If the database engines
are the same on the old and new node, the data can be simply transferred by copying the
database on the file level. However, the database must be in a consistent state before and

1Apache Derby homepage - http://db.apache.org/derby/ (last visited 2011-04-15)
2HyperSQL homepage - http://hsqldb.org/ (last visited 2011-04-15)
3H2 Database Engine homepage - http://www.h2database.com/html/main.html (last visited 2011-04-

15)

http://db.apache.org/derby/
http://hsqldb.org/
http://www.h2database.com/html/main.html

4.2. Efficiency of Distributed Systems 39

while transmission. This can be ensured by generating a snapshot of the database and
logging all subsequent changes. In the CDBS architecture, the middleware can trigger a
snapshot at any time and store subsequent changes or send them directly to the new node.
In terms of scalability it is better to queue the updates on the node in order not to clog
the controller. To automate the migration the ETL process has to be automated. This is
feasible if the CDBS is homogeneous in terms of the software. If the backend DBMSs are
very diverse, migration tools or scripts for all DBMSs are needed and mappings for the
data representations.

When the snapshot is loaded into the new node, it has to be synchronized. Since the
updates are stored on the middleware or queued on the node, they simply have to be
processed. New updates will also be sent to the node. Obviously, it is important, that
the updates are processed in the right order. When the node has an updated state, it can
be fully operated in the cluster. If the updates are queued on the node, it has to inform
the middleware after synchronization, otherwise the middleware automatically notices the
state of the synchronization.

In this section we have shown how the CDBS scaling can be automatized. The auto-
matic scaling not only allows the system to grow over time without excessive adminis-
trative overheads, but it also enables us to scale the system according to the load at any
given point. To find an optimal scale the efficiency of the system has to be measured. In
the following section, we will explain different forms of efficiency and show how they can
be analyzed.

4.2. Efficiency of Distributed Systems

Although efficiency is a core principle in computer science, many large scale data process-
ing systems have very low processing per node [30]. In order to increase the efficiency of
a distributed system local as well as global optimizations should be taken into consider-
ation. Local optimizations try to enhance the efficiency of a single system, while global
optimizations improve the distributed system as a whole. In the CDBS architecture the
efficiency of the backend DBMSs is interesting as well as the efficiency of the complete
architecture. However, since we can assume that the backend DBMS is basically a black
box, its efficiency can be estimated, but only improved on a limited scale. Therefore, we
will not expand on this topic.

Efficiency does not only concern the processing per node, but also other metrics. An-
derson and Tucek define the following types of efficiency for distributed, large scale data
processing systems [25]:

Compute efficiency Compute efficiency is dependent on the amount of work a node can
process in a certain time and how much work has to be processed. This is the
most investigated form of efficiency. In theoretical computer sciences, this efficiency
can for example be described by the big-O notation. For distributed database
systems this is the throughput of queries per node. In a system that does not scale
linearly, the efficiency obviously decreases with the number of nodes. For a CDBS

40 4. Scaling Distributed Database Systems

the compute efficiency can be measured by the speedup as defined in equation 3.14
in relation to the number of nodes:

efficiencycompute ∼
speedup

#nodes
(4.2)

Usually, the efficiency is a value equal or less than 1. In this special case, the ef-
ficiency may be greater than 1, since superlinear speedups are possible. However,
this definition of efficiency is only valid for arbitrarily large problem sizes, i.e. arbi-
trarily heavy workloads. If a system has good compute efficiency according to the
definition above, it is said to be weak scaling ; if the system is also efficient for a
fixed problem size, it is said to be strong scaling [22]. For an actual workload, the
efficiency is therefore dependent on the utilization of the system. This relation can
be described as follows:

efficiencycompute ∼
workload

throughput
(4.3)

This equation implies that the system is not overloaded, i.e. the workload is not
larger than the throughput. A system has an optimal compute efficiency if it is fully
utilized while it has a maximum throughput per node.

Storage efficiency Storage efficiency is the ratio of used disk space to raw data size. In a
database system this is disk usage versus the raw database size, without additional
data structures. For distributed systems it is also interesting to measure the disk
usage compared to a single node system:

efficiencystorage ∼
disk usagesingle node

disk usagecluster

(4.4)

An approximation of the storage efficiency is the inverse of the degree of replication
in the system, i.e. the number of replicas per table.

efficiencystorage ∼
1

degree of replication
(4.5)

If the degree of replication varies highly between different tables or database par-
titions, the average can deviate greatly from the actual disk usage. Because of the
fault-tolerance a distributed system usually has less then 50% storage efficiency.

I/O efficiency I/O efficiency is the goodput of a network or disk in comparison to the
theoretical maximum throughput of the device. The goodput is defined as the
amount of useful bits transferred per second. The goodput is dependent on the
protocol overhead as well as other factors such as replication. Replicated data
increases the network traffic and therefore decreases the I/O efficiency, since updates

4.2. Efficiency of Distributed Systems 41

have to be replicated, i.e. sent via the network to all replicas. However, the use of
multicast techniques can greatly improve the efficiency of a network [56]. In the best
case, the multicast reduces the amount of traffic in a replicated CDBS to that of
simple client server system. Since the CDBS architecture is optimized to minimize
network traffic resulting from query processing, network efficiency in general is low.
However, network efficiency is more important with scaling. Usually, a network
can be fully utilized in bulk data transfers. If network bandwidths differ between
nodes, protocols such as the Fast Send Protocol (FSP) can be utilized to speed up
data transfers [186]. Obviously, the disk I/O efficiency for query processing depends
mainly on the backend DBMS.

Memory efficiency Memory efficiency determines the degree of memory waste compared
to an optimal representation. This is an important factor; unlike CPU or net-
work contention, memory exhaustion usually causes systems to fail or at least abort
tasks. For DBMSs this means that memory intensive queries may be aborted. In
the CDBS architecture, the memory efficiency of the backends cannot be directly
influenced. However, advanced allocation schemes enable the memory footprint of
a query during processing to be reduced. This will be further discussed in chapter
7.1. The memory efficiency of the middleware is dependent on the data structures
for node management and query processing.

Programmer efficiency Programmer efficiency measures the speed at which program-
mers can implement a given task with different systems. In DBMSs this is the
speed in which users can express queries. Many distributed database systems use
non transparent partitioning and distribution of the data, which is also known as
sharding. Furthermore, the current non-SQL movement recommends using concur-
rent programming languages like Erlang [27]. However, since distributed computing
is highly complex [125], transparent access to the distributed data increases the
programmer efficiency. The SQL language features a declarative model that also
increases the programmer efficiency in comparison to imperative models [148].

Management efficiency The management of a system is efficient if the number of people
needed to manage the system is minimal. It can also be described by the time needed
to manage a system. This efficiency can be increased by automating management
tasks, reducing system complexity and using known, well documented technology.
Obviously, the automation of scaling and data movement is an important increase
in management efficiency. Even if tasks are automated, they usually have to be
triggered by administrators. The decision if a certain management task is executed
is often also difficult and time critical. For this reason self-managing systems were
introduced, especially in the database domain they are often called autonomic sys-
tems. We will give details on autonomic systems and how to introduce autonomic
computing to CDBSs in section 4.4.

Energy efficiency The amount of energy used by a system compared to a system with

42 4. Scaling Distributed Database Systems

minimal energy requirements specifies its energy efficiency. Energy efficiency is re-
lated to other forms of efficiencies, since a system with bad compute efficiency will
usually use a lot of energy. The same is true for storage and I/O efficiency. In dis-
tributed systems, the scale of a system, i.e. the number of nodes, has great influence
on its utilization and therefore the energy efficiency of a system. Obviously, the en-
ergy efficiency of a system is hard to quantify. Therefore, the efficiency improvement
of a system is usually quoted:

improvementefficiency ∼
energy usageold

energy usagenew

(4.6)

Obviously, this metric does not allow valid comparisons of different systems. Apart
from that, there are many factors that can be considered. Besides the energy con-
sumption of a running system, the energy consumption for networking, cooling,
hardware production, and even lightening can be taken into account [32]. Hence,
standardized metrics differ in their factors and measurement requirements [181].
For DBMSs the TPC Energy standard specifies the Watts per transactions metric
[230]; this metric enables the energy efficiency of DBMSs to be compared based on
the TPC benchmarks (see section 17). However, the load of the system under test is
not considered, it is assumed that the system is constantly running at its maximum
performance. As we stated above, most systems seldom run at their maximum per-
formance; valid comparisons would need to measure the energy consumption at a
specified throughput. If the throughput varies over time, the efficiency of a static
system will vary, therefore dynamic techniques are necessary to increase it. We will
give details of ways to increase the energy efficiency from a software architectural
point of view below.

Cost efficiency The cost efficiency of a system is obviously also related to the other
forms of efficiencies. More compute efficient systems require less hardware, which
reduces costs of acquisition. The same is true for storage, I/O, and memory efficient
systems. Programmer and management efficiency reduce the costs of labor and
energy efficiency reduces the cost of energy consumption, which is apparently the
main driver for energy efficiency. Apart from that, the use of commodity hardware
can significantly reduce the cost of a system and therefore increase the cost efficiency
[175]. A typical metric related to the cost efficiency are the TPC price/performance
metrics, these measure the cost of a system per transactions per second. However,
they only consider the acquisition and maintenance costs.

The CDBS architecture aims to increase all forms of efficiency. Apart from programmer
and memory efficiency, all forms of efficiency benefit from scaling the system to the right
size. Further gains can be achieved by automatically adapting the system to the current
load. In the next section, we will discuss how dynamic scaling helps to increase the energy
efficiency of a system; after that we will present the principle of feedback control loops.
These allow an autonomous optimization of arbitrary system properties.

4.3. Energy Efficiency of Scaling 43

4.3. Energy Efficiency of Scaling

As stated above, distributed systems can be optimized locally or globally. Examples of
local optimizations for energy efficiency are dynamic voltage scaling [226] and switching
off devices such as hard drives. An exhaustive survey can be found in [221]. Global
optimizations are based on global decisions such as switching off complete nodes or pri-
oritization of services [152]. Naturally, the combination of both options brings the best
results. However, recent research has shown that global optimizations result in a higher
benefit than local ones [192]. Obviously, the number of processing nodes in a CDBS is
an important efficiency factor. Too few nodes will not be able to process the given work-
load; an over scaled system will contain many nodes that are idle or only used rarely.
It is common practice to use a system scale, that has enough resources to process peak
workloads easily. Even if the peaks occur very frequently, most of the time the system is
underloaded. An example of this behavior can be seen in figure 4.2: it shows the number
of requests per second at the Wikimedia clusters, host of the Wikipedia website.

Figure 4.2.: Requests per Second at the Wikimedia clusters in October 2009 in Europe
(green) and the USA (blue) (image source: http://en.wikipedia.org/

wiki/Most_viewed_article).

The workload of the Wikimedia clusters is variable and the average load is only about
65% of the maximum load. So scaling the system according to the active workload could
reduce the number of nodes on average by 35%. Furthermore, server systems usually
have a very low utilization, often as low as 6% [134]. Adequate scaling can increase the
utilization dramatically. Contrary to common belief it is possible to run many systems
efficiently on 100% CPU utilization [140]. It has to be pointed out, however, that a
constant utilization of 100% is usually not desirable in a dynamic environment if the
danger of overloading a system is high. Besides the workload characteristics, the adequate
utilization depends on the duration of the scaling process and the temporary performance

http://en.wikipedia.org/wiki/Most_viewed_article
http://en.wikipedia.org/wiki/Most_viewed_article

44 4. Scaling Distributed Database Systems

loss due to the scaling. If the scaling process is very costly in terms of resources, the
general utilization has to be lower than if the scaling process is cheap. Obviously, the cost
of the scaling process reduces the overall efficiency of the system. Because of the many
variables that have to be considered in the scaling process, autonomous techniques are
needed in a dynamic environment.

4.4. Autonomic Computing

There are different approaches to adapting a system to dynamic environments, they can
be classified in three categories: static, proactive and reactive. A static approach defines
a single state of configuration. This state is usually chosen to be optimal on average and
adequate in all situations. For the scale of a DBS this means that it is large enough to
process incoming workload peaks and as small as possible to maximize the efficiency of
the system. Proactive and reactive systems change the state of the system to adapt it to
the environment. While proactive approaches anticipate the changes in the environment
and prepare the system for the future environment, reactive approaches adapt a system
if certain changes in the environment are detected. Proactive strategies are possible
if the changes in the environment follow known rules or if external knowledge enables
the future changes to be foreseen. Reactive procedures are especially useful in dynamic
environments with infrequent, unexpected changes. In general, reactive solutions are
easier to implement and are computationally less expensive. However, reactive strategies
have - depending on the managed entity - a considerable delay, resulting in efficiency or
even performance decrease. Proactive strategies, on the other hand, can increase efficiency
if the anticipation of the future workload is reasonably accurate. If it is not, they either
fall back to the reactive case or tend to over-provision.

If a system is capable of adapting itself proactively or reactively, it is called self-
managing. IBM coined the term autonomic computing for technologies of self-management
for distributed systems [137]. Self-management consists of the four concepts: self-config-
uration, self-optimization, self-healing and self-protection. Self-configuration refers to the
ability to install, configure and integrate a system or component autonomously. The
autonomous and continuous improvement of performance and efficiency is called self-
optimization. Autonomic detection and repair of problems and attacks is subsumed
under the terms self-healing and self-protection, respectively. In the following, we will
concentrate on self-optimization, but will also consider the other concepts.

To enable a system to react or proact autonomously a control loop can be used. These
usually have a form like the MAPE model [3] or the OPR model [223]. The online
feedback control loop described by MAPE consists of four phases, monitor, analyze, plan
and execute, while the OPR loop consists of three phases: observation, prediction and
reaction, in which the analyze and plan phase of MAPE is merged into the prediction
phase. In the following, we will further outline the better known MAPE loop. The phases
in MAPE can be seen in figure 4.3. In the MAPE model a single loop concentrates
on a single managed element or resource. The element’s state can be measured via

4.4. Autonomic Computing 45

sensors and manipulated via effectors. The interface of a set of sensors and effectors is
called touchpoint. Using various touchpoints an autonomic manager can automate some
management tasks concerning the managed element by providing the four functions for the
phases of the control loop. The autonomic manager uses knowledge that can be accessed
by all of its functions. This knowledge can include metrics, thresholds, logs and other
information. The knowledge is either provided externally or gathered by the manager
itself. The managers functions, i.e. the phases of the control loop, have the following
functionalities:

Monitor Execute
Knowledge

PlanAnalyze

Sensor Effector

Figure 4.3.: The MAPE Loop

Monitor Using the monitoring function the system gathers information on its state. In
order to get the information the system uses sensors that continuously or periodi-
cally measure the state of the managed element. The information of the sensors is
collected, aggregated and filtered. The resulting information is also referred to as
symptoms. This information can also be incorporated into the knowledge base of
the manager. The monitoring can be a continuous process that is not interrupted
by the other phases.

Analyze The analyze function checks the symptoms that are provided by the monitoring
function. It determines if all requirements, such as policies or thresholds are met.
These requirements are also called constraints. In order to predict the trend of the
system behavior, the analyze function can employ time-series analysis and the like.
If it decides that a constraint is violated, it can send a change request to the plan
function, which includes the state changes needed.

Plan If the analyze function has found a dysfunction, the plan function develops a change
plan, i.e. a program or workflow that includes the desired changes of the managed el-
ement in order to obtain an acceptable system state. The system is in an acceptable
state if all or enough policies and thresholds are met.

Execute The execute function schedules the change plan and executes the required actions
that are specified in the change plan. It uses the effectors of the managed element.
The execute function might also update the knowledge base.

46 4. Scaling Distributed Database Systems

Apart from the autonomic management, the MAPE model includes a manual manage-
ment interface, this allows a user or external program to perform the management tasks
by bypassing the autonomic manager. The MAPE model enables autonomic management
to be introduced to managed resources that provide interfaces that act as touchpoints and
knowledge about the management task. As a part of this thesis the MAPE middleware
Scalileo was implemented for managing and, in particular, scaling distributed systems.

5. Scalileo

The Scalileo framework is a middleware system that is based on the MAPE model.
The main focus of its design was to scale and migrate distributed Java applications au-
tonomously. It is highly configurable and easy to extend. In the following chapter we
will describe the architecture of the system and use it to scale a distributed web server
application. Goal of the prototype is to give a proof of concept that the framework is
able to autonomously manage a distributed application. Since we aim for efficiency, we
use the scaling framework to increase the energy efficiency of the distributed web server.
As we argued in section 4.2, energy efficiency is related to multiple forms of efficiency;
furthermore, increases in energy efficiency are relatively easy to measure. Therefore, we
use energy efficiency as a showcase for other forms of efficiency.

5.1. Scalileo’s Architecture

Most distributed applications feature several worker nodes that carry out computation-
ally expensive tasks, as well as a central component which is responsible for organizing
and controlling the entire system (see section 3.5). In these systems not all of the nodes
have the same function, as the central component has different tasks to the worker nodes.
Therefore, the Scalileo framework implements a multi-tier architecture. It uses a cen-
tral component, called master node, which is responsible for organizing a set of workers
running on different physical nodes. The workers are controlled by the master and pro-
cess its commands. Furthermore, they perform benchmarks to monitor the status of
their corresponding node. An overview of the architecture of Scalileo and its relation to
the distributed application can be seen in figure 5.1. This architecture also reflects the
CDBS architecture. As far as the MAPE model is concerned, the master implements the
autonomic manager, while the workers act as touchpoints.

5.1.1. Workers

A Scalileo worker is a process, running on a specific physical node that is host to a process
of the distributed application or may be host in the future. Its main task is to spawn
or shut down processes of the distributed application in order to increase or decrease its
scale. The distributed application can supply a set of files and a set of commands to
be executed on the host machine for this task. These will then be transferred by the
Scalileo system. By doing so, the application can transfer an executable program as well
as initial data needed by the distributed process that will be started. Thus, the remaining
task of the distributed process is to integrate itself in the distributed application, e.g. by

47

48 5. Scalileo

Master

Scalileo Master

Controller
Interface

XML
Config

Application Master

Scalileo
Worker

App
Node

Node1

Scalileo
Worker

App
Node

Node2

Scalileo
Worker

Nodem Noden

Network

unused offlineworking

Figure 5.1.: Overview of the Scalileo Architecture

registering itself at a superior instance. If the node is not needed any more the worker
can shut down the spawned process by executing a command that is provided by the
application. If specified, it then transfers the data back from that node.

The second task of a worker is to run benchmarks on its system. These can be mea-
surements of system-wide performance parameters like load, CPU utilization or free space
but also special performance parameters provided by the distributed process that runs on
the machine at the time. These data are acquired in specified intervals and are sent to
the master node for evaluation.

Furthermore, the workers can perform any management tasks that is commanded by
the master. For each task an interface to the managed element or a set of scripts or
executables has to be provided.

5.1.2. Master

A worker deals with the tasks that are processed on a single node. In contrast, the duties
of the master node are the organization and management of the worker nodes and keeping
track of the global state regarding the overall performance and efficiency of the distributed
application. The main tasks of the master are:

5.1. Scalileo’s Architecture 49

Initializing workers First, the master starts a worker on every node that may be used to
run processes of the distributed application. It will log on to each node, transfer
the worker’s executable file and start the worker process.

Collecting benchmark results The master node collects the benchmark results that are
measured by the workers. The workers send the benchmark results back to the
master node and the master receives these results using a special listening thread.
If the master node also has to be managed, it will also have a worker running.

Tracking system state As the central instance in Scalileo, the master node is the only
one aware of the benchmark data of all workers in the system. Using this informa-
tion, the master will reduce the values for each benchmark type to a single value.
For example the free space of every single node in a distributed storage system is
accumulated to a single value describing the free space still available on all active
nodes in the system. It is also possible to aggregate the reduced values of different
benchmarks into a single combined value.

Maintain specifications The master node constantly monitors the benchmark results and
compares them to a set of preset constraints that define upper and lower boundaries
between which these values should lie. If a certain value exceeds such a boundary
for a specified time, the system needs to be adapted. If this is the case the master
node informs the distributed application that an adaption is necessary. In the case
of a scaling, the master passes a list of nodes to the application that can be added to
the system or removed from it. This list is ordered according to the suitability of the
nodes: the most promising nodes are at the top of the list. If a storage system, for
example, runs out of free space the nodes with the most available space are ranked
first.

Adapt the system The master plans the adaption of the system and informs the managed
application of its plan. The application can either conform with the plan, alter the
plan or reject the plan completely. If the application conforms with the plan or
provides an adapted plan, the master will execute it. For scaling the plan is a
scale up or scale down request. If the distributed application receives a scaling
request from the master it decides if it complies with the request; it then picks a
node from the given list. As the easiest option, the application can take the first
element on the list. It is most promising to solve the problem in correspondence to
the benchmark data. However, it can also independently choose a node for scaling
or even decide not to scale at all. If a node is chosen for scaling, the application
provides a command to the master node either to spawn a node or shut it down.
Additionally, a set of files can be defined that is transferred to the node or back
from it. Then the master node first spawns a worker process on that node (if not
already running) and secondly executes the command given with the help of the
worker.

50 5. Scalileo

As the master node has to communicate with the distributed application in order to
perform the adaption, an interface is necessary. In Scalileo this is achieved by imple-
menting the Controller interface. It contains all necessary methods to cooperate with the
master node and to provide the required data. We will describe the different interface
methods in detail below. Currently, the interface reflects Scalileo’s purpose for scaling:

constraintViolated This method informs the controller that a constraint has been vio-
lated. This might be a policy that is not met or a threshold that is exceeded. Such
an event might not necessarily lead to an adaption or scaling, as the violation could
be temporary and therefore not long enough to initiate an action, but it gives the
application the chance to react to certain changes of the system’s state.

beforeScale This method is used by the master node if it determined that scaling is
necessary and the violated constraint is passed to the application. It allows the
application to prepare for the scaling process.

chooseNode In order to choose the correct node for scaling, an ordered list of nodes is
passed to the application by the chooseNode method. The application returns the
node that should be used for scaling or null if no scaling is desired at this time.
This method gives the application the possibility to alter the scaling process.

getNodeSetup If a node was chosen for scaling, the master node will ask for the setup of
the node through the getNodeSetup method. The setup contains the command to be
executed, the files to be transferred to the node as well as the target directory, where
the files should be copied to and where the command will be executed. The executed
command has to terminate after it has started the desired process and return 0 if
this was successful and a value greater than 0 if a problem occurred. This method
allows the manager to access the knowledge provided by the application.

getNodeShutdown In the case of a scale-down event, the manager will ask for a shut
down command using this method. The application provides the command for
shutting the application down. It can optionally specify a path to a file or directory
on the node, which will be zipped and transferred back to the master.

afterScale After the scaling process the application is informed of the result. With this
information the application can determine if the scaling was successful or if an
error occurred. The method returns an error code if an error occurred before the
command could be started. If the command could be executed the return value of
this command is returned instead.

There are further methods for informing the controller of certain events, like receiving
benchmark results, handling errors such as hardware failure, etc. However, since many of
these methods are not necessary for every application, Scalileo offers an AbstractController
class, which already implements most of these methods with default behavior. This
reduces the programming effort, for a basic setup a programmer only needs to implement
the two obligatory methods for retrieving the node setup and shutdown commands.

5.1. Scalileo’s Architecture 51

5.1.3. Parameterized Components

A certain type of component exists for every task in Scalileo that either specifies how to
do this task or holds the necessary data for it. To make Scalileo extensible and to achieve
a high adaptability for most scenarios and applications, the components have a common
structure so that the complete configuration of Scalileo can be defined within an XML file.
Scalileo uses the Java Reflection API, which enables objects to be constructed at runtime
by using metadata about the object’s class. The metadata stores information such as the
name of the methods contained, the name of the class, the name of parent classes, and/or
what the compound statement is supposed to do. Using this information, an object can
be created by reflecting upon the given class name and determine if that class exists, what
kind of operations it supports, which interfaces it implements and what parent classes it
has. This gives Scalileo the ability to specify its components in XML and to construct the
corresponding Java object at runtime with this information. Therefore, it is not necessary
to hard-code any predefined components. It is sufficient to specify only certain interfaces
which define the methods that the implementation of a certain component must provide.

In the configuration file every Scalileo component is specified with a certain tag, depend-
ing on the type of the component. The tag requires two attributes: an ID for referencing
this component and a fully qualified Java class name that specifies the Java class which
will be implementing this component. Consider the following example that implements
the login process to nodes via the Secure Shell protocol (SSH):

Listing 5.1: XML Snipet for the SSH Login

<l og in−method id=” sshLogin ” c l a s s=” s c a l i l e o . l o g i n . SSHLogin” />

The chosen ID is ”sshLogin” and the implementing class is scalileo . login .SSHLogin.
To instantiate this class via the Java Reflection API all classes must follow a common
architecture. All classes that implement a Scalileo component must be derived from a
specified abstract class, depending on the component’s type. Common to all these classes
is that the class must have a public constructor that takes two arguments: an ID of
type java.lang.String and a set of parameters of type java. util .Map<String,Object>.
Every parameter in this map is identified with a key and has a java.lang.Object as a
corresponding value. Additionally, a component must provide the method hasValidPa-
rameters, which is invoked after constructing the object to determine if all necessary
parameters are set. In this method the programmer must ensure that the parameters set
in the constructor are complete and valid. If they are not valid, the component will not
be instantiated.

Listing 5.2: Interface for Components

public <const ructor >(S t r ing id , Map<Str ing , Object> parameters) {}
public abstract boolean hasVal idParameters () ;

The parameters used in the constructor are specified in the XML file when a certain
instance of this component is defined. Following the example above, an instance of a
login component is defined in the XML file at the specification of every node. For the

52 5. Scalileo

SSH login example two parameters for user name and password must be passed to the
login component. In the node definition in the XML file a login-method must be defined
in the <login−with> element, so that Scalileo knows how to access the specified node.
As login type the ID of the login-method must be given. Additionally the <login−with>
tag can contain several <parameter> tags that define the parameters for this component.
A parameter is identified with a key and must specify the type of the parameter which
must be a fully qualified Java class name. This class must provide a public constructor
that takes a String as an argument, which will become the content of the value attribute.
Thus, every class that provides such a constructor can be used as a parameter object. The
Java framework already provides many possibilities for this as for example all primitive
types like String, Integer, Float, Boolean or more complex objects like java. util .Date. A
node specification in the XML file could therefore look like this:

Listing 5.3: Specification for a Node Login

<node name=”node−01” address=”node1 . example . com”>
<l og in−with type=” sshLogin ”>
<parameter key=”username”

type=” java . lang . S t r ing ” value=” a l i c e ” />
<parameter key=”password”

type=” java . lang . S t r ing ” value=” s e c r e t ” />
</ log in−with>
. . .

</node>

When Scalileo parses the node definition in the XML configuration file it will first
instantiate all defined parameter objects and save them in a parameter map object. Then
the specification of the given login type sshLogin is looked up and the corresponding class
scalileo . login .SSHLogin will be instantiated with the components ID and the parameter
map. When Scalileo later needs to log on to that node this login-component will be used.
All other components are defined following the same principle.

In the following, the different Scalileo components are described. Figure 5.2 depicts the
internal control cycle of Scalileo and its relation to the MAPE model. It shows the most
important components with their relationship and interaction.

5.1.4. Benchmarks

The components for measuring performance and other properties are called benchmarks,
these perform the tasks of the sensors in the MAPE model. All benchmarks must extend
the abstract class scalileo .benchmark.Benchmark, which requires - in addition to the
requirements mentioned before - a method run that returns a Double value as result of
the benchmark.

Listing 5.4: Interface for Benchmarks

public abstract double run () throws BenchmarkException ;

5.1. Scalileo’s Architecture 53

Collect
Benchmarks Reduce Condition

Choose
Action

Choose
Nodes

Executed
Action

Master

Application
Master

inform

confirm

provide

Node1

Node2

Node3

Noden

Working Nodes

start

setup

Monitor Analyze

PlanExecute

Figure 5.2.: Scalileo’s Feedback Control Loop

The Scalileo Benchmark class provides functionality to repeat a benchmark at given
time intervals. This can be achieved by specifying an Integer parameter called interval
which defines the interval length in milliseconds by which the benchmark will be repeated.
In the XML configuration file an example benchmark definition could look like this:

Listing 5.5: Specification of two Benchmarks

<benchmarks>
<benchmark id=”ExampleBenchmark”

c l a s s=”example . package . ExampleBenchmark” />
<benchmark id=”OtherBenchmark”

c l a s s=”example . package . OtherBenchmark” />
</benchmarks>

<node . . .>
. . .
<use−benchmark type=”ExampleBenchmark”>
<parameter key=” i n t e r v a l ”

type=” java . lang . I n t e g e r ” value=”10000”/>
</use−benchmark>
<use−benchmark type=”OtherBenchmark”>
. . .

</node>

When a worker process is spawned on a node by the master, the benchmarks assigned
to this node are transmitted and the worker will ensure that the benchmarks are executed

54 5. Scalileo

in the given interval. If no interval is specified, the benchmark will only be run once at the
start of the worker process. This is used for benchmarks that measure static parameters
like CPU frequency or other primarily hardware related parameters.

Scalileo comes with a set of predefined benchmark components like a PingBenchmark
class, measuring the round-trip time of a ping packet to a certain host; and a benchmark
for measuring the available disk space on a certain file system. All predefined benchmark
classes are located in the scalileo .benchmark package. It is also possible to use already
available measurements, for example from monitoring systems such as Ganglia [151]. They
only have to be wrapped by a implementation of the Benchmark interface.

5.1.5. Reduction

When the master node receives a benchmark result from a worker it will update all
constraints affected by that benchmark. Before this can be done, the benchmark results
must be merged into a single value. To do this, Scalileo uses reduction components that
will reduce a set of values into one aggregated value. Reduction components must be
derived from the abstract class scalileo .reduction.Reduction which specifies one method
for performing the reduction. This method takes a collection of Double values and will
return the reduced value of this collection:

Listing 5.6: Interface for Reduction

public abstract double reduce (Co l l e c t i on<Double> r e s u l t s) ;

The Scalileo package includes a number of reduction components, covering the most
common reduction functions. Among others these are components for reducing a given
list of values to their maximum, minimum, sum, average or median value. Apart from
simple aggregation, the reduction component also enables filtering to be implemented.

5.1.6. Conditions

The next components in the Scalileo framework are so called conditions, which the re-
duced values are compared to by the master node in order to determine if the system’s
performance is still in the desired state. Those conditional components must be derived
from the abstract class scalileo .condition.Condition and therefore implement a check
method that takes a reduced Double value as its argument and return a Boolean value,
which indicates if the condition is met or not.

Listing 5.7: Interface for Condition

public abstract boolean check (double value) ;

Three conditional components are predefined in Scalileo, one to test if a value is equal
to another value (EqualCondition), if it is smaller than an upper bound (MaxCondition),
or if it is greater than a lower bound (MinCondition). It is also possible to specify several
conditions which are connected with a logical AND conjunction, so it is for example
possible to specify an interval in which a value must be by combining a MinCondition
and a MaxCondition.

5.1. Scalileo’s Architecture 55

5.1.7. Constraints

The three components mentioned earlier, benchmarks, reductions and conditions, are
combined into so-called Constraint components. A constraint defines a boundary for the
values of a certain benchmark. If the values are not within this boundary, the constraint
is violated. Therefore, a constraint specifies one benchmark component whose values
are reduced to a single value with a specified reduction component and defines one or
several conditions which must be met by the reduced value. The constraint does not only
observe the last known value, but tracks the values over a specified period of time. Only
when the constraint is violated over this period is a specified adaption performed. This
avoids, for example, an expensive scale operation being executed due to a single short-
term peak or a temporary slowdown of a node. The results of a reduction are tracked
over a time period and are averaged over this period. Only when this average exceeds the
defined boundaries is an adaption operation suggested by the Scalileo framework. Like all
components of Scalileo constraints are defined in the configuration XML file. An example
of a constraint definition can be seen below.

Listing 5.8: Specification of a Constraint

<c o n s t r a i n t s>
<c o n s t r a i n t id=”SomeID” h i s to ryDe lay=”20000”>
<use−benchmark type=”ExampleBenchmark” />
<reduce−by type=”MaxReduction” />
<check−cond i t i on type=”MaxCondition”>
<parameter key=”max” value=”45”

type=” java . lang . Double” />
</check−cond i t i on>
<s ca l e−ac t i on ac t i on=”addNode”>
<choose−by benchmark=”ExampleBenchmark”

b e t t e r=” lower ” weight=”1” />
</ s ca l e−ac t i on>

</ c o n s t r a i n t>
. . .

</ c o n s t r a i n t s>

The constraint shown above uses the ExampleBenchmark to measure the state of the
system. The benchmark could be, for example, the CPU utilization or the network
delay. If the maximum measurement of ExampleBenchmark on all nodes is above 45 in
the last 200 seconds an addNode scale action is issued. To choose a suitable node the
ExampleBenchmark is used once more.

Two types of scale actions (addNode and removeNode) can be used in a constraint,
causing the adding or the removal of a node. It is also possible to define both types in one
constraint in order to achieve a replacement of a node. For each action the controller is
given a list of nodes ordered by their suitability for being removed or added. This order is
created by the master node by comparing the nodes with the help of choice methods. A

56 5. Scalileo

choice method defines a benchmark component whose results are used in order to compare
the nodes in an ascending or descending order. This order depends on whether higher
values or lower values are preferable. Nodes can be compared by means of several choice
methods, so that the ranking is not based on the values of a single benchmark, but on a
set of benchmarks.

The order algorithm is implemented following the Java Comparator interface, which in
this case takes two nodes (n1 and n2). It returns a negative integer, zero, or a positive
integer as the first node is more suitable, equally suitable or less suitable than the second
node. To compare the suitability of two nodes a point system is used. The nodes will be
compared for every choice method defined. At each of these comparisons every node is
given a certain number of points. If the current choice method states that higher values
are better, the points for node n1 result from the benchmark value bn1 of n1 divided by
the benchmark value bn2 of n2. The number of points assigned to n2 is the reciprocal
value of this fraction. So if n1 has a higher benchmark value, it will get more points than
n2 and thus be evaluated as more suitable in regards to this choice method. The points
for each choice method are summed up to a total number of points pn1 and pn2. The
node which achieves a higher point number at the end will be ranked higher on the list.
Additionally, every choice method can be weighted to increase the influence of a certain
benchmark on the order of the nodes. The points of every round are multiplied with
the weight wc of the choice method before they are added to the total number of points,
where c is a choice method and C is the set of all choice methods. The calculation of
points corresponds to the equations 5.1 and 5.2.

pn1 =
∑
c∈C

{
bn1
bn2
· wc, if higher values are better

bn2
bn1
· wc, if lower values are better

(5.1)

pn2 =
∑
c∈C

{
bn2
bn1
· wc, if higher values are better

bn1
bn2
· wc, if lower values are better

(5.2)

5.1.8. Login Methods

To enable Scalileo to access nodes running under arbitrary operation systems and en-
vironments, the login process is encapsulated in separate login components. When the
master node has to spawn a worker on a certain node it needs access to the node first. It
further needs to have the ability to run commands on this node and transfer files to it.
The login component’s task is to provide this functionality to the master node. It must
be derived from the abstract Java class scalileo . login .Login. The derived class must
implement one method for transferring data and running a program on the target node.

Listing 5.9: Interface for Login

public abstract void runProgram (AppSetup setup) ;

The AppSetup object is the argument of the runProgram method. It contains a com-
mand string that is executed, a path string to a target directory in which the command is

5.2. Web Server Application 57

executed and a file object that contains a link to the file that is transferred to the target
directory before running the command. To transfer several files at once, the files must be
zipped or compressed to a single file which can then be transferred via the login method.
The command can then extract the file and run the command. Scalileo comes with one
login component implemented which is able to log in via Secure Shell (SSHv2) on the
node. SSH is available for nearly every platform and is considered to be secure. Thus,
Scalileo can cover a wide variety of node types.

Using the implementations provided, a variety of distributed applications can be aug-
mented with autonomic scaling. As a first show case a distributed web application was
implemented, we will discuss the implementation and the performance results below.

5.2. Web Server Application

In order to test Scalileo we chose a distributed web server. Similar to CDBSs, web
servers are exposed to dynamic workloads and are often implemented as distributed or
replicated applications. In contrast to a CDBS, each node in a distributed web server
is a completely independent application. There is no need for communication between
the nodes, since every node can serve incoming requests independently. This enables us
to add and remove nodes from the system very easily. In our example the data set is
static, if requests would change the data set, a common database is needed. This could,
for example, be implemented by a CDBS, as presented in the next chapter 6. The system
consists of a central dispatcher server that distributes incoming requests to a set of up
to 4 worker machines, which handle the actual request. The dispatcher uses round-robin
scheduling, which is also used in DNS servers for load balancing. The redirection from
the dispatcher to a worker machine is done by a HTTP 302 redirect (Found), so that the
client will generate a new request to the corresponding worker. A overview of the test
setup can be seen in figure 5.3.

The workload produced by the clients in this test was based on real-world system loads.
We used workload traces of the web based E-learning management system Stud.IP at the
University of Passau, which handles requests from a total of 15,000 users, consisting
of different user groups – students, teachers and administrators. Like most web-based
systems, Stud.IP shows a significant variation over a day, a week and even a year. The
load is high during working time on days in during the lecture period, whereas at night
time, weekends or semester break the load is comparatively low. We will give a more
detailed description of the system and the workload in chapter 17.3, a sample of the
workload can bee seen in figure 5.4.

In our test we set up the clients so that the workload during the test simulates the first
day of the lecture period of the Stud.IP system. We differentiate between two types of
requests: dynamic and static websites. The response returned to a dynamic client request
from the web servers was a web page containing an image, which was resized for every
request by the web servers. The computational effort was therefore mainly dependent on
this image resizing. For static requests we chose to return a simple HTML document.

58 5. Scalileo

Clients
Dispatcher

Scalileo Master

Web Server1

Scalileo Worker

Web Server2

Scalileo Worker

Web Server3

Scalileo Worker

Web Server4

Scalileo Worker

Figure 5.3.: Scalileo Web Application Setup

The workload was chosen in a way, so that the system could easily handle the requests at
peak times when using all four available web servers. Accordingly, at times with reduced
load, it is possible to reduce the number of worker servers while still being able to handle
all requests. Aggregated in 10 minute steps, the original workload has a peak of about 80
requests per second and is on average 25 request per second. To reduce testing time and
increase the workload, we sped the replay of the trace up by a factor of 48 and used only
every 20th request, resulting in a peak load of 192 requests per second and an average
load of 60 requests per second. The ratio between static and dynamic accesses varies
between 0.2 and 66.4 and the median is 0.3. Hence, on average every fourth requested
web page is dynamic. As the average load is only a third of the peak load, it is likely that
reducing the number of servers in times of lower load can lead to a drastic reduction in
energy consumption. It has to be pointed out that the first day of the lecture period has
the highest workload in the whole year. Accordingly, for the complete year even higher
energy savings will be possible.

Our tests were conducted on 6 workstation PCs with Intel Pentium D 3 GHz Dual Core
Processors, 3GB RAM and 100 Mbit/s Fast Ethernet. The OS is Ubuntu Linux 8.04.2,
Kernel 2.6.24-23 and the used Java version is 1.6.0 16. The workstations have a power
consumption of 91 Watts when idle, 200 Watts during boot phase and 2 Watts when they
are switched off. All power measurements were conducted using a PCE-PA 6000 power
analyzer.

We used the Scalileo framework to implement a distributed web server. The Scalileo
master was running on the same machine as the dispatcher server. On every running
worker machine a Scalileo worker node measured the processor load on the machine and
reported back to the master as benchmark results. If the overall load on the system was
beyond a threshold, Scalileo started a further web server worker on a new machine to

5.2. Web Server Application 59

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00

re
qu

es
ts

 /
10

 m
in

October 19, 2009

static
dynamic

Figure 5.4.: HTTP Workload Trace of Stud.IP at University of Passau for the First Day
of the Winter Term 2009

increase the system’s performance. To save energy the Scalileo system shut down unused
machines and woke them up via Wake-on-LAN when they were needed again.

Since booting and halting of the machines consumes energy without any value for the
distributed web server, it had to be assured that scaling did not take place on small and
temporary load changes but only when necessary. The constraints for the application
were determined iteratively and the final values were as follows: if the average CPU usage
over all active nodes was higher than 45% in two thirds of all benchmark samples over 20
seconds in the simulation, a new node would be spawned. This corresponds to a period of
16 minutes in original speed. At the lower boundary the CPU usage had to be lower than
20% over 35 seconds before a node was shut down. This corresponds to 28 minutes in real
time. In a real world setup, both thresholds could be set higher, but the high simulation
speed enforced these parameters in order to give the system enough time to spawn a new
node.

We focused on two goals in the test: on the one hand, the reduction of the necessary
energy to operate the system and, on the other hand, a stable response time for the
requests. It is clear that both goals had to be met, as energy saving should not happen
at the cost of increased response times.

In figure 5.5 the power consumption of the cluster with and without the on/off policy
is shown in comparison to the request rate. It can be clearly seen that shutting down
unnecessary nodes effectively reduces power consumption. The total energy consumption
for the test run was 175 Wh with scaling and 250 Wh without scaling, so the energy
savings were 30%. In figure 5.6 the number of active servers is compared to the workload.
Due to the fast replay speed of the workload trace, the booting time of offline nodes
resulted in the visible lag in scaling. Because of this lag the system had to boot nodes
earlier than necessary under real world conditions. It also has to be pointed out that the
fast replay has a negative effect on the energy efficiency, since booting time and booting
power consumption had a much larger effect. In relation to the simulation speed a worker

60 5. Scalileo

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00
 0

 100

 200

 300

 400

 500

 600

 700
re

qu
es

ts
 /

10
 m

in

po
w

er
 c

on
su

m
pt

io
n

(w
at

t)

October 19, 2009

static requests
dynamic requests
power - w/o scaling
power

Figure 5.5.: Energy Consumption Compared to Workload

machine needed 50 minutes for booting. As mentioned before, the first day of the lecture
period has the highest workload in the year. So even if the workload were equally high
every day, the savings per year were 1300 kWh.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00
 0

 1

 2

 3

 4

 5

re
qu

es
ts

 /
10

 m
in

nu
m

be
r

of
 w

or
ke

r
se

rv
er

s

October 19, 2009

static requests
dynamic requests
number of servers

Figure 5.6.: Number of Active Servers Compared to Workload

This simple test was carried out to check the implementation costs of the Scalileo
integration and to get results on the efficiency increase using autonomic scaling. It was
shown that the integration of the Scalileo framework was comparatively easy and could
be done within a single day. The energy efficiency results are considerable, even though
the tuning was rough.

It has to be noted that the reduction of energy usage may come at the cost of increased
wear of the hardware. To the best of our knowledge there is no publicly available study
on this topic. However, Belam et al. try to enhance the reliability of disk systems by
selectively powering off disks [33]. Their work starts from the assumption that switching
of a system for a certain amount of time rather increases the lifetime instead of reducing
it.

After discussing related work on scaling and energy efficiency, we will outline the inte-

5.3. Other Scaling Frameworks 61

gration of Scalileo in the CDBS architecture.

5.3. Other Scaling Frameworks

There is little research on frameworks for self-scaling. In the cloud computing world
some frameworks for automatic application scaling are used. An example of a commercial
system is Scalr1. It uses the Amazon Elastic Compute Cloud (EC2)2 [102]. Scalr uses
different Amazon Machine Images (AMI), an Amazon proprietary virtual machine, to
scale and replicate applications. These AMIs are configured to run certain applications
such as web servers, load balancers or database servers. Additionally the AMIs have a
monitoring suite, which is comparable to the benchmarking system of Scalileo. Unlike
Scalileo, Scalr is limited to the EC2 environment and cannot be run on arbitrary clusters.

Although virtualization is a viable technique for energy efficiency – an example is the
Virtual Home Environment project [123] – Scalr does not aim for energy efficiency. Scalileo
can also be used with virtualization techniques. The virtualization layer can be made self-
scaling, similar to Scalr, but independent of the base system. The distributed application
is then started on a fixed number of virtual machines (VMs) and Scalileo allocates the
VMs on real systems according to the current load.

A similar service to Scalr is provided by RightScale3. RightScale offers a cloud manage-
ment platform, that allows automatic adaption of cloud based deployments [144]. Unlike
Scalr, RightScale features a multi-cloud engine that enables it to access various cloud
serving systems. However, the system is also based on the scaling of instances of virtual
machines and can therefore not be integrated into an application.

5.4. Frameworks for Energy Efficiency

Several frameworks for energy efficiency have been proposed. Petrucci et al. have pre-
sented a dynamic framework for power aware server clusters [176]. Besides an on/off-
policy, they also support dynamic voltage scaling to reduce power consumption. Special-
ized hardware and software to measure performance and power consumption of individual
machines are used. Based on the results a theoretically optimal cluster configuration is
calculated using mixed integer linear programming. This involved approach makes it im-
possible to use self-scaling techniques as in Scalileo. Since management efficiency is an
important factor besides energy efficiency [25], Scalileo has built-in performance bench-
marks and makes simplified assumptions for energy consumption to reduce the setup
complexity and management overhead.

A similar framework was presented by Rusu et al. [192]. It also uses dynamic voltage
scaling and on/off policies, but relies – like Scalileo – on more simplified optimization
schemes. However, it also requires extensive power consumption measurements and does

1Scalr - http://www.scalr.net (last visited 2011-04-15)
2Amazon Elastic Compute Cloud - http://aws.amazon.com/ec2/ (last visited 2011-04-15)
3RightScale - http://www.rightscale.com/ (last visited 2011-04-15)

http://www.scalr.net
http://aws.amazon.com/ec2/
http://www.rightscale.com/

62 5. Scalileo

not use self-scaling. With the use of these measurements the framework is able to improve
energy efficiency in heterogeneous clusters. The benefit of considering heterogeneity was
also demonstrated in [119]. In Scalileo heterogeneity is currently only considered on
a performance level. By using adapted benchmarks and conditions, previous hardware
efficiency measurements could be utilized as well in the choice of new nodes or nodes
that have to be removed or replaced. The according benchmarks would simply return the
result of the previous measurements.

On the application level additional energy savings are possible. For example, Horovath
et al. have shown that using prioritization for request queuing in web servers additional to
dynamic voltage scaling can lead to substantial energy savings [128]. However, these kind
of optimizations are outside the scope of a scaling framework and have to be implemented
in the scalable application.

On a larger scale the GREEN-NET framework [79] and Muse architecture [63] show how
energy efficiency of computing grids and hosting centers can be improved. This is done
using on/off policies as well as energy aware service level agreements. At the scale of data
centers, energy consumption of network devices such as switches can also be considered.
These devices usually do not offer any low power states and constantly communicate even
if systems are idle. Therefore, switching them off further reduces energy consumption
[19]. These techniques are currently beyond the scope of the Scalileo framework, but will
be considered for future work.

Similar approaches for energy efficiency have been presented in specialized applications.
For example, Chen et al. present a energy aware cluster of connection servers for Internet
services [64]. It uses an on/off policy to adapt the number of connection servers to the
number of TCP connections. Systems like this can also be implemented using the Scalileo
framework.

5.5. Conclusion

This chapter described the architecture and design of the scaling framework Scalileo. The
framework is highly configurable and allows dynamic scaling of Java applications. It is
easy extensible and needs little to no changing of the target application. For evaluation
purposes, we have implemented a simple web server cluster. By using an on/off policy,
the system was able to reduce power consumption by 30% for a real world web server
workload. Since we used an annual peak workload and sped up simulation time, it is clear
that much higher percentage of savings are possible. To the best of our knowledge, the
Scalileo framework is the only generic scaling framework that features a bootstrapping
procedure.

In the next chapter we will show how this approach can be used to implement a self-
scaling CDBS.

6. Autonomic Scaling for CDBSs

Using the Scalileo framework an autonomic CDBS can be realized. In this chapter we will
outline the implementation of such a system. We will concentrate on the aspects of CDBSs
that enable it to increase the efficiency and again the energy efficiency in particular.
Furthermore, we will show how to manage the scaling of a CDBS autonomically. Following
the MAPE terminology, we will give various symptoms that can be observed, their root
causes and how to adapt the system accordingly. Although it is possible to automate
various tasks in the CDBS configuration, we will limit the discussion to the scaling and
node migration of CDBSs, which were also implemented in a prototype. These cover
the aspects of self-configuration, self-optimization, and self-healing that are part of self-
management (see section 4.4). The abstract symptoms that the system can exhibit are
low efficiency, low performance and some kind of fault. To diagnose a certain symptom,
the autonomic manager needs sensors to observe the symptom and knowledge to identify
it.

6.1. Sensors

There are several data sources in CDBSs that can act as sensors; some are rather static;
some are dynamic. These can be divided into sensors on the master, sensors on the nodes
and sensors on the backend DBMSs. On the master there are the following sensors:

Workload All requests are initially sent to the master. It has therefore an overview of
the current traffic on the system. The average number of queries per time unit is
interesting as well as the composition of the workload, i.e. the read to write ratio.

Query queue The master schedules the queries on the backend DBMSs. For this the
master has a query queue for every node. The length of the queue is an indicator
of the load of a backend. If the database is not fully replicated, the ratio of the
average queue sizes is an indicator for the quality of the load balancing.

Answer time Based on the average answer time of a backend the master can determine
its performance. Obviously, the answer time is highly dependent on the queries. If
the workload is very diverse the average answer time alone can be misleading and
must be correlated with a workload analysis. For database systems this can be a
query classification as presented in section 10.

Network performance Based on the delay and bandwidth, the master can evaluate the
network performance.

63

64 6. Autonomic Scaling for CDBSs

Node availability The master has regular contact with the nodes; it is therefore also
aware of the availability of the nodes.

On each of the backend nodes, a worker process observes the system state and the
following measurements are carried out:

System performance If the cluster is heterogeneous, the worker can perform benchmarks
to determine the performance of its host. Apart from direct benchmarks also hard-
ware specifications such as CPU clock speed and available RAM can be analyzed.
However, the performance of a DBMS is hard to predict based solely on the hard-
ware characteristics [15]. Therefore, actual benchmarks results are preferable to the
specifications, an example of such a benchmark is SysBench1.

System utilization The worker can monitor the current system utilization. This includes
the CPU load, the memory utilization and the I/O workload. These can be measured
with OS programs like top2 or Iotop3.

Disk space An important factor for the CDBS is the available disk space on each node.
This includes the available free space, as well as the space that is used by the
database.

Obviously, these parameters can also be observed on the master. The DBMS itself has
several interfaces that enable the user to get information about the query processing:

Optimizer The optimizer of the DBMS estimates the processing cost of a query. Usually,
this can also be logged by the system. Papadomanolakis et al. have shown that the
optimizer can be utilized to optimize the physical layout of a system [172].

Logs Most DBMSs feature several logs that store the queries, status information, warn-
ings and errors. MySQL, for example, has a so-called slow query log that enables
particularly long running queries to be tracked for special optimization.

Besides these sensors many others are possible. As mentioned above, there are special
monitoring tools like Ganglia that can be used to get a more detailed view of the system.
Based on the data of these sensors and its knowledge base, the manager will observe the
symptoms and diagnose the problems in the system.

6.2. Knowledge

The mater’s knowledge can come from external sources and it can be created by the
master itself. Obviously, the various sensor outputs are a knowledge base that enable it

1SysBench: a system performance benchmark - http://sysbench.sourceforge.net (last visited 2011-
04-15)

2Procps package - http://procps.sourceforge.net/ (last visited 2011-04-15)
3Iotop - http://guichaz.free.fr/iotop/ (last visited 2011-04-15)

http://sysbench.sourceforge.net
http://procps.sourceforge.net/
http://guichaz.free.fr/iotop/

6.2. Knowledge 65

to retrieve further information about the system behavior. Typically, the addresses of the
nodes are external knowledge, even though they could be automatically retrieved using
Universal Plug and Play4 (UPnP). The symptom definitions are also external knowledge
that is passed to the master. We identified the abstract symptoms low performance, low
efficiency and fault earlier. These high level symptoms will not be directly observed.
A concrete symptom is the overload of a backend or the complete CDBS. This can be
identified from the sensor data. Based on its knowledge, the master knows how to diagnose
the symptoms from the sensor data and which task must be performed to adapt the
system. This can be shown in a decision tree.

Do Nothing Scale Up

System
Utilization

too
high

Scale
Prediction

Node
Available

good

yes

ok

bad

no

Figure 6.1.: Decision Tree for Scaling Up on High System Utilization

Figure 6.1 shows a part of a decision for the symptom high system utilization. In a fully
replicated system, this can be identified by the average CPU and / or hard disk utilization
of the backends. The actual thresholds for the utilization can be external knowledge or
they can be retrieved from the sensor data. The scale prediction computes the theoretical
speedup that results from the scaling. If the workload is upload heavy, a scaling might
reduce the throughput. If this is the case the system will not be scaled. Finally, there
is a test to establish if a node is available for scaling. Other symptoms are handled in a
similar way. It is also possible to use proactive techniques this way. For example, trends
in the workload can be used to predict future development. The result of the prediction
can also be treated as a symptom.

Similar to high system utilization is low system utilization. If the system is frequently
underloaded, the number of active nodes will be reduced. Furthermore, we treat the
symptoms lack of disk space and node failure. In a fully replicated system, the lack of
disk space can only be treated by migrating the database to a node with more disk space.

4The UPnP Forum - http://www.upnp.org/ (last visited 2011-04-15)

http://www.upnp.org/

66 6. Autonomic Scaling for CDBSs

If a node fails, i.e. it is not responding or only producing errors, it has to be replaced.
This is the same as a migration. Yet, the database has to be transfered from another
node. The high level procedures - scaling and migration - are composed of small tasks
that can be executed by the effectors.

The decision trees can be built manually or using machine learning. A heuristic algo-
rithm for generating decision trees is the C4.5 algorithm [185]. An advantage of decision
trees over other models is that they are easy to understand and interpret. Therefore,
new routines can be modeled easily. However, for non discrete data other classification
strategies such as neuronal networks and support vector machines perform better [141].
If the benchmark results are vector-valued or real-valued a combination of decision trees
and neuronal networks can be used, in which inefficient branches of the decision tree are
replaced by neuronal networks [200].

6.3. Effectors

The manager has several ways of influencing the system. The low level effectors all have
a single task, which in combination enable them to execute a high level procedure such
as scaling or migration. In our prototype we use the following effectors:

Issue command To start the backend DBMS or issue a bulk loading operation, an effector
for command execution is used.

Transmit data The master can send data and retrieve data from nodes. Furthermore, it
can issue the transmission of data between nodes.

Server off A special command is used to shut a server down. Usually, this can only be
issued by the super user. Therefore, we use a special configuration that allows a
regular user to shut the system down.

Server on To wake a server up, we use the Wake-on-LAN standard [2]. The master sends
a so-called magic packet to a sleeping node’s network card, which then starts the
server.

Synchronize database The synchronization of the database can be done as described in
section 4.1.

Using these effectors scaling and migration can be implemented. The actual procedure
depends on the state of the system at any given point. In figure 6.2 a schematic of the
scaling up procedure can be seen.

When the decision to scale the system up has been made, it has to be planned and
executed. The planning phase chooses which tasks have to be carried out. In the example
in figure 6.2, the node for scaling has to be chosen first. This can be an arbitrarily available
node; if the system is heterogeneous, it is also possible to choose a node that best suits
the system. The choice can be based on the performance of the available nodes, or if a

6.4. Evaluation 67

Do Nothing /
Inform App

Choose Node

Scale Up
Request

end

Wake NodeDatabase
available?

Synchronize
Database

Migrate
Database

asleepnone available
awake

no
yes

Figure 6.2.: Scaling Procedure

system already contains a DBMS and the database. The node can be either running or
switched off. If it is off, it has to be waken up first; this also includes the start of the
system. If no node is available, the system cannot be scaled and therefore nothing is done.
If the node is part of the system for the first time, it has no instance of the database. In
this case, a current snapshot will be copied onto the system. If the node already has a
copy of the database, it will probably be outdated. Either way, the database has to be
synchronized. If the copy is very old, it might be more efficient to replace the database
with a more current snapshot. Then the missed updates have to be processed until the
database is up to date. In general, the process is an optimization problem. To reduce the
complexity of the choice of nodes, we use a point system as presented in section 5.1.7.
Similarly, scaling down and node migration are implemented.

6.4. Evaluation

We implemented a prototype to give a proof of concept for autonomic scaling. As for
the web server example in section 5.2, we measured the energy efficiency improvements
that can be reached as a showcase for efficiency. The same hardware cluster as described
in section 5.2 was used. The system architecture can be seen in figure 6.3. The system
consisted of 6 nodes. One of the nodes served as controller node, which hosted the Scalileo
master and the query scheduler. The query scheduler wrote an update log, in order to

68 6. Autonomic Scaling for CDBSs

allow an asynchronous synchronization of offline nodes. The backends hosted a MySQL
DBMS in version 5.1.49. Again, we used the PCE-PA 6000 power analyzer to measure
the energy consumption.

Query
Scheduler

Log
Scalileo
Master

Scalileo
Worker

MySQL
DBMS

Node1

Scalileo
Worker

MySQL
DBMS

Node2

Scalileo
Worker

MySQL
DBMS

Node3 Node4

Network

Controller

Figure 6.3.: Architecture of the Autonomic Scaling CDBS

To test a realistic database application, the TPC-App benchmark was used, which is
presented in detail in section 17. The test database was generated with common scaling
factor EB = 300, which resulted in a raw database size of 280MB. Since TPC benchmarks
do not define variations in the amount of workload, we used the Stud.IP traces to generate
realistic workloads. The scaling factor of TPC-App was chosen to be similar to the real
Stud.IP database. For this test, we used only the dynamic HTTP accesses of the workload
trace since they also create database accesses in the real system. The trace can be seen
in figure 6.4.

To generate database accesses from the log, we aggregated the HTTP accesses in 2.5
minute steps. The resulting sum was scaled down by a factor of 0.01. For each request
30 transactions where generated according to the TPC-App specification. To reduce the
test time, we sped up the trace replay by a factor of 30 which reduced the test time
to 48 minutes. The requests were generated in 5 second steps. In the end, the average
workload was 70 requests per second and the peak load was 250 requests per second. The
ratio between read and update requests was 1 to 7. For each select statement 7 insert
or update statements were processed. However, the aggregated workload of the select

6.4. Evaluation 69

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00

re
q

u
e

s
ts

 /
 1

0
 m

in

October 20, 2009

Figure 6.4.: Trace of Dynamic HTTP Accesses of Stud.IP at University of Passau for the
Second Day of the Winter Term 2009

statements was 7 times higher than the workload of all updates; the ratio between the
read and update workload was 0.88 : 0.12. According to the speedup formula in equation
3.14 this allows the following speedups:

#Nodes 1 2 3 4 5

Speedup 1 1.8 2.4 2.9 3.4

This shows that replicating the database on five backends results in considerable per-
formance improvements and therefore makes sense. For higher update loads this might
not be the case as we explained earlier in section 3.4; this will also be shown in the
evaluation of the allocation strategies in section 15. We used a single day of a periodic
workload and, therefore, we initially installed all systems and loaded the database. This
is consistent to a real setup, since the installation and initial data load will usually not
be part of the daily routine. We ran two test series: one without scaling, using all 5
nodes; and one with scaling, starting from a single node. Because of the faster replay,
booting and resynchronization have an over-proportional effect. Booting a system took
85 seconds on average, starting the DBMS 23 seconds; in real-time this would mean over
50 minutes of initialization. Additionally, after scaling the system up the new backends
had to be resynchronized; at the first scaling, this took on average 5 seconds and for the
5th backend on average 55 seconds. This corresponds to up to 30 minutes of resynchro-
nization in real time. We used reactive scaling constraints. Scaling was done based on the
CPU utilization using a maximum reduction. If one backend system had over 85% load
over 20 seconds a scale up request was sent. Scaling down was done if CPU utilization
on one backend was over 20 seconds below 30%. Each test series was repeated 5 times.
An additional constraint for inadequate answer times for queries was used, however, the
CPU utilization constraint was always more precise and anticipated the result. Since the
database was relatively small constraints using the I/O performance where not employed.

70 6. Autonomic Scaling for CDBSs

 0

 1000

 2000

 3000

 4000

 5000

3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000
 0 4 8 12 16 20 24 28 32 36 40 44 48

re
q

u
e

s
ts

 /
 1

0
 m

in

p
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 (

w
a

tt
)

October 20, 2009

test runtime (minutes)

requests
power
power w/o scaling

Figure 6.5.: Energy Consumption Compared to Workload

 0

 1000

 2000

 3000

 4000

 5000

3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00
 0

 1

 2

 3

 4

 5

 6
 0 4 8 12 16 20 24 28 32 36 40 44 48

re
q

u
e

s
ts

 /
 1

0
 m

in

n
u

m
b

e
r

o
f

a
c
ti
v
e

 n
o

d
e

s

October 20, 2009

test runtime (minutes)

HTTP requests
nodes

Figure 6.6.: Number of Active Servers Compared to Workload

In figure 6.5 the energy consumption can be seen. Both energy consumption without
and with scaling are shown. The measurement included all backends as well as the master
node. The total energy consumption was 508.3 Wh with scaling and 667.7 Wh without
scaling. This results in energy savings of 160 Wh or 24%. It can be seen that for both
the static configuration and the dynamic configuration the energy consumption is related
to the workload. However, because of low efficiency of the systems for low utilization the
dynamic configuration fits the workload curve much better. As our previous measurements
have shown (cf. section 5.2) the workstations require a minimum of 91 Watts when
they are idle and a maximum of 200 Watts while booting. Hence, resulting in a base
consumption of at least 50%. This is the main source for improvements using the scaling.

In figure 6.6 the number of active nodes for the dynamic configuration can be seen. A
node is identified as active if it is able to handle SQL requests and booting and initializa-
tion are already finished. Due to the conservative constraints, the system is further scaled
when the peak load is already reached. It has to be noted, however, that the according
scaling requests have been sent up to 2.5 minutes earlier (75 minutes in real time). This

6.4. Evaluation 71

 0

 1000

 2000

 3000

 4000

 5000

3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00
 0

 10

 20

 30

 40

 50

 60

 70

 0 4 8 12 16 20 24 28 32 36 40 44 48

re
q

u
e

s
ts

 /
 1

0
 m

in

q
u

e
ry

 e
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

October 20, 2009

test runtime (minutes)

HTTP requests
avg. response time w scaling
avg. response time w/o scaling

Figure 6.7.: Average Response Time Compared to Workload

results in a considerable lag in the scaling procedure. Furthermore, it can be seen that
at the end of the trace the system was scaled up again due to stronger variations in the
workload. An improvement would be the possibility to stop a scaling process if it is not
needed any more.

In figure 6.7 the average query response times can be seen for a cold start of the cluster.
It can be seen that both the static and the dynamic configuration have a noticeable
initialization overhead, which has more effect for the single system than the replicated
system. This overhead stems from increased query answer times due to cache misses
while the update times are relatively constant. The answer time of both configurations
have a similar evolution until the load becomes too high for the single system. When
the second and third nodes are active in the dynamic configuration the response time
starts converging the response time of the static configuration. Although the dynamic
configuration has an increased response time the average response time never exceeds 50
milliseconds and is on average 10 milliseconds. A very important detail that can be seen
in the figure is that the scaling procedure – as implemented in our prototype – does not
decrease the throughput.

The tests show that a scale-out approach can be used in the context of cluster database
systems. Furthermore, it can be seen that considerable energy savings can be achieved us-
ing a simple on/off policy. The use of the Scalileo framework reduced the implementation
overhead to a minimum. Apart from the energy savings, the system is very cost effective
since it is completely built of off-the-shelf hardware. Although we used a relatively small
database in the test, the fast replay and the resulting additional costs for booting, initial-
ization, and synchronization indicate that for real systems much larger databases can be
used with similar results.

72 6. Autonomic Scaling for CDBSs

6.5. Research Projects in Autonomic Scaling

Although there is a large body of research on autonomic tuning of database systems
[195, 198, 50], there is little work on autonomic scaling of clustered database systems.
Many systems do not allow a new node to be added at runtime [58]. We are aware of only
two other systems that introduce autonomic scaling of distributed DBMSs. Some work
has been done on estimating the right scale of a distributed database [98, 111], which can
help to make the scaling proactive.

6.5.1. Ganymed

As mentioned in section 3.5, the Ganymed project allows dynamic creation of satellite
databases. This is, however, not an autonomic procedure, but on very update heavy loads,
the system automatically delays the propagation of updates and basically reduces itself
to a single node system. This is actually not real scaling, even if it is a similar procedure.

6.5.2. KNN Prediction

Chen et al. propose a proactive scaling approach that is based on the K-nearest-neighbors
(KNN) algorithm [65]. The system allows autonomic adding and removal of new DBMS
nodes. The removal is done reactively if the system is underloaded. The authors pay
special attention to oscillation effects, such as the constant adding and removal of nodes.
Therefore, the removal is two phased, first the system is temporarily removed, but still
updated and if the performance of the remaining nodes is still adequate, the node is
completely removed. The adding of the nodes is done proactively, in contrast to their
earlier work [205]. Based on the system metrics, as defined above in section 6.1, KNN
classifiers are trained. The authors used a cluster with 8 nodes and tested it with the
TPC-W benchmark (a predecessor of TPC-App). Because of the lack of variation in
the amount of workload the authors used a sine function to simulate variations. With
this relatively simple setting, the authors achieve good efficiency while maintaining a
predefined query latency.

6.5.3. Sprint

Sprint is a distributed in-memory DBMS [54]. Although it does not directly support
scaling, it features automatic recovery from failures. This is similar to node migration.
Sprints architecture can be seen in figure 6.8. It consists of three types of logical servers.
Edge servers, data servers and durability servers. These can be hosted on the same or
different physical servers. Edge servers correspond to the master node in the CDBS
architecture. They schedule the queries to the data servers. Data servers run in-memory
database systems and execute the queries. Durability servers write logs to disk and
handle the recovery. Sprint offers some form of distributed query processing. However,
the queries are completely predefined and parameterized, which allows a simple table
based substitution. Sprint is also capable of working with distributed data. However,

6.5. Research Projects in Autonomic Scaling 73

distribution is also a manual task. Despite the recovery, the system does not do an
autonomic optimization of the degree of replication and the like.

Edge
Server

Data Server

Result
Assembler

Query
Decomposer

Dispatcher

Execution
Manager

In Memory
DB

Durability Server

Log
Manager

On Disk
Log

Recovery
Manager

Figure 6.8.: Sprint Architecture

6.5.4. WattDB

WattDB is a distributed, energy proportional database system, recently presented by
Härder et al. [117, 196, 131]. It has a three tier architecture consisting of data nodes,
computation nodes, and a master, similar to the MySQL Cluster architecture (see section
3.5.4). The master node is the centralized coordinator for performance tuning, energy
tuning and node adding and removal. Data nodes store the database files and feature only
simple access routines such as selection and projection. The computation nodes perform
CPU intensive operations such as joins. Energy efficiency is increased by dynamically
adding and removing nodes based on the workload off the system. The system uses
lightweight hardware that has reduced energy consumption. To this end, there is no
information on what cost models or workload predictions are used for energy tuning.
The system is implemented as a testbed for energy efficient hardware and algorithms for
database systems as presented in [105, 219].

74 6. Autonomic Scaling for CDBSs

6.6. Discussion

There are several database system projects that incorporate autonomic scaling. In con-
trast to our work these all use scaling to improve one aspect of the system. Using the
generic Scalileo framework, our system can be adapted to employ scaling for various
optimizations. In the following table a comparison of the presented projects can be seen.

Project Scope Processing model

Ganymed Performance CDBS
KNN Prediction SLA CDBS
Sprint Fault tolerance PDBS
WattDB Energy efficiency PDBS
CDBS Adaptable CDBS

The table shows the scope of the scaling in each of the systems and the query processing
model. It can be seen that various goals can be pursued with autonomic scaling. Ganymed
uses scaling to increase the performance of the database system. The approach by Chen
et al. focuses on service level agreements, in order to keep answer times within a certain
threshold. Sprint uses a limited form of scaling for fault tolerance and WattDB increases
energy efficiency by scaling. With our generic approach the system can be adapted to
all of the presented goals. In contrast to our work, Sprint uses intra-query parallelism to
improve performance which is traditionally a feature of parallel database systems (PDBS).
WattDB has a two-staged processing model which uses distributed query processing.

In conclusion, there are some interesting approaches to refine our scaling approach
using proactive techniques and more advanced analysis. However, we are not aware of
any other system, that is capable of a cold start scaling of distributed DBMSs. In the
next section, we will discuss advanced allocation strategies that improve disk utilization
and performance in the presence of updates.

Part III.

Allocation

7. Distributed Database Layout

In chapter 3 we introduced the ANSI/SPARC reference model. The model ensures that
the database can be seen as a single integrated entity. The benefit is transparent access to
the database regardless of the internal representation. For integrated distributed database
systems, this model can be adapted. Obviously, it is preferable, if the database can be
seen as a single entity and transparently accessed. The database will therefore have an
integrated schema that does not consider the distribution of data. This is illustrated in
figure 7.1, for each node of the distributed system there is a local internal and conceptual
schema. For the complete system a global conceptual schema is defined, as well as the
external schemata. If the system is fully replicated, as we assumed before, the local and
global conceptual schema are identical.

Global
External

View

Local
Internal View

Global Conceptual View

Global
External

View

Local
Internal View

Global
External

View

Local
Internal View

Local
Conceptual

View

Local
Conceptual

View

Local
Conceptual

View

Figure 7.1.: Adaption of the ANSI/SPARC Reference Model for Distributed Systems

As we mentioned before, it is not always preferable to store the complete database on
every node. The two major reasons are disk usage and update replication. Every copy
of a database increases the disk usage linearly. At times of clusters with thousands of
nodes, this is not feasible. As shown in section 3.4, with full replication the ratio of
updates has increasing influence on the system performance in relation to the number of
nodes. In order to store the data efficiently on an arbitrary number of nodes, the data
must either be divided in disjoint parts or replicated or both. The data distribution must

77

78 7. Distributed Database Layout

allow efficient processing of all incoming queries. Queries usually can be processed most
efficiently on a single node. Therefore, queries benefit from replication, while updates
have to be processed on all nodes that contain referenced data. If the rate of updates is
significant, a fully replicated system will suffer considerable performance losses. To avoid
this the data can be partitioned such that nodes contain only parts of the database that
still allow local processing of queries. Therefore, the best performance is in most cases
achieved by a combination of partitioning and replication.

The global conceptual schema of a distributed database is extended by a partitioning
schema and an allocation schema. The partitioning schema stores the way in which global
relations are partitioned and the allocation schema stores the way in which the partitions
are allocated on the nodes. In this part of the thesis, we will discuss integrated allocation
strategies for the CDBS query processing model. Our goal is to develop an automatic and
computationally feasible allocation strategy. The following requirements have to be met:

Automation The allocation has to be computed completely automatically. There should
be no need for manual interference or adjustment.

Computability The approach has to be feasible for realistic problem sizes. In general, the
allocation problem is NP-complete [193], therefore, heuristic approaches are needed.

Efficiency The resulting data layout should be near to the optimum based on the CDBS
processing model. An optimal allocation enables an optimal throughput and mini-
mizes disk requirements.

In this chapter we will explain the fundamentals of the distribution of relations. We
will first give a short overview of different forms of partitioning and replication and after
that describe the physical distribution of data fragments. The rest of part III is organized
as follows. We will give an overview of related work in chapter 8. After the discussion
of automatic allocation in chapter 9, we will describe the query classification for different
levels of partitioning in chapter 10. We will then explain our algorithms for allocation in
detail; chapter 11 explains the allocation for read-only databases; chapter 12 explains the
allocation for databases with updates and chapter 13 shows extensions of the algorithms
for high availability. After that, we will show how allocation can be implemented in an
existing system in chapter 14. This part concludes with an evaluation of the presented
methods in chapter 15.

7.1. Partitioning

Partitioning or fragmentation is the process of dividing a relation into several, usually
disjoint fragments. There are two basic forms of partitioning: vertical and horizontal
partitioning. Vertical partitioning divides a relation by its columns (see figure 7.2), while
horizontal partitioning divides it by its rows (see figure 7.3). Either way the relation is
partitioned, it must be possible to retrieve the original data from the partitioned data.
This can be ensured if the following three properties are met [169]:

7.1. Partitioning 79

Figure 7.2.: Schematic of Vertical Partitioning

Figure 7.3.: Schematic of Horizontal Partitioning

Completeness All data units are assigned to a partition.

Reconstruction The original relation can be retrieved from the partitions.

Disjointness The partitions do not overlap.

Although disjointness is usually required by textbooks (e.g. [136, 169]), it is not nec-
essary and for vertical partitioning not possible. In order to reconstruct a vertical par-
titioned table, every partition has to replicate a key (we will discuss exceptions to this
rule below). Relations can be partitioned in three different ways, vertically, horizontally
or both.

7.1.1. Vertical Partitioning

Vertical partitioning divides a relation into several relations with fewer attributes, but
usually with an equal amount of tuples. This is depicted in figure 7.2. In order to
guarantee the reconstruction of a relation, each partition requires a key of the relation.
Usually, the primary key is therefore replicated in each partition. Consider the following
example from section 3.1.

80 7. Distributed Database Layout

ORDERS

ID ITEM CUSTOMER DATE

1 Screws Mike 11-10-2010

2 Nails Andy 22-11-2010

3 Hammer Chris 22-11-2010

4 Nuts Mike 05-12-2010

.

The relation ORDERS will be vertically partitioned in two parts. In order to guarantee
the reconstruction of the relation, the primary key ID is replicated in both partitions.
Since relation names have to be unique, the new partitions names are extended with a
suffix or prefix.

ORDERS1

ID ITEM

1 Screws

2 Nails

3 Hammer

4 Nuts

.

ORDERS2

ID CUSTOMER DATE

1 Mike 11-10-2010

2 Andy 22-11-2010

3 Chris 22-11-2010

4 Mike 05-12-2010

.

The original relation ORDERS can be reconstructed by joining the two partitions on
the primary key.

ORDERS = ORDERS1 on ORDERS2 (7.1)

In the original relational model a relation can be interpreted as a set of tuples [70].
Therefore, the DBMS does not have to guarantee the order of the tuples within a relation.
However, some DBMSs keep the tuples strictly ordered by their entry. Therefore, they
do not require a key on each partition, but can use the order for the join. An example is
the C-Store project [211] and its commercial continuation Vertica [8].

7.1.2. Horizontal Partitioning

Using horizontal partitioning, a relation can be divided into several parts with equal
schema. One way to do this is by applying some sort of constraint to an attribute and
dividing the relation into two parts: one that satisfies the constraint and one that does
not. Another way is using a distribution function that assigns tuples to a partition.
Consider the following example, relation ORDERS from section 3.1 will be partitioned
by the constraint DATE <= ’30-11-2010’.

7.1. Partitioning 81

ORDERS1

ID ITEM CUSTOMER DATE

1 Screws Mike 11-10-2010

2 Nails Andy 22-11-2010

3 Hammer Chris 22-11-2010

ORDERS2

ID ITEM CUSTOMER DATE

4 Nuts Mike 05-12-2010

.

To reconstruct the original table the partitions have to be merged:

ORDERS = ORDERS1 ∪ORDERS2 (7.2)

Obviously, many different constraints and functions can be used. Generally, seven forms
can be distinguished: round-robin partitioning, random partitioning, hash partitioning,
range partitioning, list partitioning, predicate-based partitioning, and derived partitioning
[86, 169, 164]. These can be divided into value-based and non-value-based partitioning.
Non-value-based approaches are round-robin and random partitioning. These do not
consider the values of a tuple but its position in the relation. In contrast to that the value-
based partitioning approaches divide a relation according to the values of an attribute.

Round-Robin Partitioning Round-robin partitioning distributes the tuples evenly on the
partitions. This is done using a modulo of the row number of a tuple. This partitioning
is mainly used in parallel database systems. Obviously, each query has to be executed on
each partition. However, the reduced size of the partitions reduces the execution time.
For two partitions the round-robin partitioning of ORDERS would be:

ORDERS1

ID ITEM CUSTOMER DATE

1 Screws Mike 11-10-2010

3 Hammer Chris 22-11-2010

.

ORDERS2

ID ITEM CUSTOMER DATE

2 Nails Andy 22-11-2010

4 Nuts Mike 05-12-2010

.

82 7. Distributed Database Layout

Random Partitioning Similar to round-robin partitioning, random partitioning aims to
distribute tuples evenly across the partitions. Using a random function the tuples are
assigned to the partitions without any correlations which might appear in a round-robin
approach.

Hash Partitioning Hash partitioning uses some form of hash function on an attribute
of the relation and partitions the relation accordingly. This is similar to the random
approach. However, for exact match queries on the hashed attribute, the hash function
can be used to find the matching partition. This enables to answer a query by accessing
only one partition.

Range Partitioning As depicted in the example above, range partitioning divides a
relation according to value intervals of a particular attribute. This is probably the most
common used form of horizontal partitioning. This form is especially useful for queries
with high locality. The partitioning constraints can be added to the query attributes and
if the query results are empty, the query does not have to be executed. Consider the
following example SQL query:

Listing 7.1: SQL Query Example

select CUSTOMER, sum(ITEM)
from ORDERS

where DATE >= date ’ 2010−10−01 ’
and DATE <= date ’ 2010−10−31 ’

group by CUSTOMER

If the query is extended with the range constraint from above, it is clear that only the
first partition can contain matching tuples. Using this information the query execution
can be reduced to a single partition and hence in a distributed DBS to a single node.
Obviously, this is only possible if the attribute in the range constraint is also an attribute
of the predicate part in the query. The quality of a range partitioning greatly depends
on the choice of the partitioning intervals; for poor choices the result may be data skew
and execution skew. Data skew is an uneven distribution of the data, where one partition
has a much larger part of the data than another. Similarly, execution skew is an uneven
distribution of workload across partitions.

List Partitioning Another option to partition relations according to their attribute values
is list partitioning. A list of attribute values is assigned to each partition. For the relation
orders this could be L1 = {Screws,Nuts} and L2 = {Hammer,Nails} for the attribute
ITEM .

Predicate Based Partitioning As well as constraints that divide the relation into several
intervals, the relation can be divided based on predicates. This is similar to range parti-
tioning, except that predicates not intervals are defined. The relation is then partitioned

7.1. Partitioning 83

into tuples that satisfy the constraint and tuples that do not. An example could be the
constraint:

ORDERS.CUSTOMER = ’ Mike ’

The resulting partitions are:

ORDERS1

ID ITEM CUSTOMER DATE

1 Screws Mike 11-10-2010

4 Nuts Mike 05-12-2010

.

ORDERS2

ID ITEM CUSTOMER DATE

2 Nails Andy 22-11-2010

3 Hammer Chris 22-11-2010

.

If the predicates are retrieved from the query workload, the locality and load balancing
can be adapted automatically.

Derived Partitioning A special form of horizontal partitioning is derived partitioning.
If a partitioned relation is frequently joined with another relation, the other relation can
be partitioned according to the join predicate. Consider the relation CUSTOMERS
from section 3.1. The relation ORDERS can be partitioned using the foreign key
CUSTOMER on CUSTOMERS.NICK. If each value of CUSTOMER is in a separate
partition the result is:

ORDERS1

ID ITEM CUSTOMER DATE

1 Screws Mike 11-10-2010

4 Nuts Mike 05-12-2010

.

ORDERS2

ID ITEM CUSTOMER DATE

2 Nails Andy 22-11-2010

.

ORDERS3

ID ITEM CUSTOMER DATE

3 Hammer Chris 22-11-2010

.

84 7. Distributed Database Layout

If the partitioning has to be disjoint, the referenced attribute must be either unique or
all instances with the same value must be in the same partition.

7.1.3. Hybrid Partitioning

Obviously, multiple partitioning approaches or constraints can be used simultaneously.
Relations can be partitioned horizontally and vertically, or with multiple horizontal ap-
proaches, or both. The different forms of partitioning can be applied equally or hierarchi-
cally. For equal partitioning, multiple partitioning approaches are applied to a relation
and all resulting partitions iteratively. Using hierarchical partitioning, the resulting par-
titions can be partitioned using different approaches or constraints. Hence, the execution
order influences the resulting partitions. This is shown in the following examples.

Equal Multidimensional Horizontal Partitioning In practice usually only predicate par-
titioning and range partitioning are used on multiple attributes. They are especially
useful if multiple attributes are referenced with equal frequency or if a single attribute
does not allow a sufficiently fine-grained partitioning. Consider the following example, in
which relation orders are partitioned according to the predicates ITEM = ’Screws’ and
CUSTOMER = ’Mike’. In general the result is a partitioning into four fragments with
the predicates:

• (ITEM = ’Screws’) ∧ (CUSTOMER = ’Mike’)

• (ITEM = ’Screws’) ∧ ¬(CUSTOMER = ’Mike’)

• ¬(ITEM = ’Screws’) ∧ (CUSTOMER = ’Mike’)

• ¬(ITEM = ’Screws’) ∧ ¬(CUSTOMER = ’Mike’)

There is no entry that satisfy the predicate (ITEM = ’Screws’) ∧ ¬(CUSTOMER =
’Mike’), hence the result are three partitions:

ORDERS(ITEM=’Screws’)∧(CUSTOMER=’Mike’)

ID ITEM CUSTOMER DATE

1 Screws Mike 11-10-2010

.

ORDERS(ITEM=’Screws’)∧¬(CUSTOMER=’Mike’)

ID ITEM CUSTOMER DATE

4 Nuts Mike 05-12-2010

.

7.2. Replication 85

ORDERS¬(ITEM=’Screws’)∧¬(CUSTOMER=’Mike’)

ID ITEM CUSTOMER DATE

2 Nails Andy 22-11-2010

3 Hammer Chris 22-11-2010

.

Hierarchical Horizontal and Vertical Partitioning Hierarchical partitioning is interest-
ing if different parts of a relation are accessed differently. For example, the treatment of
’Nails’ and ’Hammer’ may differ to that of ’Screws’ and ’Nuts’ in the ORDERS relation,
in such a way that for ’Nails’ and ’Hammer’ only the quantity of orders is interesting,
while for ’Screws’ and ’Nuts’ the complete relation is accessed. Hence, the relation is
list partitioned accordingly and then the Nails and Hammer partition may be further
partitioned vertically into relations {[ID, ITEM]} and {[ID, CUSTOMER, DATE]}:

ORDERSITEM={’Screws’,’Nuts’}

ID ITEM CUSTOMER DATE

1 Screws Mike 11-10-2010

4 Nuts Mike 05-12-2010

.

ORDERSITEM={’Nails’,’Hammer’}1

ID ITEM

2 Nails

3 Hammer

.

ORDERSITEM={’Nails’,’Hammer’}2

ID CUSTOMER DATE

2 Andy 22-11-2010

3 Chris 22-11-2010

.

There are many different methods and algorithms to compute a partitioning of a rela-
tion. We will give an overview in chapter 8.

7.2. Replication

Although partitioning can speed up the query processing of a single node system [104],
it is frequently used in distributed systems to improve disk utilization and performance.
Until now, we have only considered the full replication of the database. However, the
data can also be fully distributed or partially replicated. The full replication and the full
distribution of a database are only applied in special cases [169]. Full replication can only
be used if the database is small and the number of nodes is limited. The full distribution
can be found in parallel databases (e.g. round-robin or random partitioning). Larger
distributed systems will therefore usually use a partially replicated database layout. The
allocation decides where the copies of a partition are placed.

86 7. Distributed Database Layout

Relation R

Fragment F1 F2

F3

B1

B2

B3

Figure 7.4.: Partitioning and Allocation

7.3. Allocation

Allocation is the process of assigning and placing data fragments F1, . . . , Fm on the nodes
or backends B1, . . . , Bn of the distributed system. This is shown in figure 7.4. An optimal
allocation is dependent on the data access, the available disk space, the disk cost, the
maximum disk space, the transmission cost, etc. The general problem has been extensively
studied and originates from the file allocation problem in computer networks [68]. This
and many variations have been proven to be NP-hard [193]. For cluster database systems,
the problem can be reduced, since queries are processed locally and hence transmission
costs are negligible. An optimal allocation is therefore a minimal allocation that allows
local processing and achieves maximum throughput. Obviously, further constraints have
to be considered. We will distinguish two instances of the allocation problem: the read-
only case, in which the workload contains no updates, and the update-considering case.
Often, the allocation is a manual task and considered as black art [169, 223]. However,
in large scale systems manual approaches are not feasible, therefore, we will present an
automatic approach in chapter 9. Before that, we will give an overview of related work
on partitioning and allocation.

8. Related Work

There is a plethora of work on data placement and allocation in database systems. Al-
though data placement is a mature field of research and has been studied for over 40
years, the ever-growing number of publications indicates that there is a constant need for
improvements. As mentioned above, the general problem is based on the file allocation
problem in distributed computers (FAP), which was described in 1969 by Chu [68]. FAP
and probably all of its descendants are at least NP-complete [101]. As we will show in
section 11.3, this is also true of the allocation problems described in this thesis. In this
chapter, we will classify different approaches to the allocation problem and discuss selected
representatives of these approaches. Due to our processing model we will concentrate on
shared nothing systems; however, we are aware that there are many valid approaches for
other systems such as shared disk or single node.

In general, two categories of allocation approaches can be found, static and dynamic
approaches. While static approaches try to find a good initial allocation, dynamic ap-
proaches try to optimize a given allocation by reorganizing it during execution. This
classification is not distinct, since many approaches have procedures for both. The allo-
cation process has multiple steps. Obviously, each of the of these steps can be implemented
differently. Hence, a further classification can be made based on the steps of an allocation
described by Daudpota [83]:

• Collect existing global relations.

• Analyze Frequently Asked Queries.

• Set data allocation objectives.

• Transform global relations into fragment relations.

• Allocate fragment relations to sites.

We will exclude the collection of the global relations, since this is usually no problem
and does not change the overall procedure. A similar classification was presented by Zhou
and Williams [231]. Although they used the allocation objectives as general classification,
they remarked that algorithms differ in their form of declustering, data placement and
reorganization. Based on these two categorizations, we will analyze related approaches
according to the following characteristics:

Analyzed Workload Generally, the allocation is performed on the basis of workload ana-
lysis. Two basic variations are common: the analysis of transaction and the analysis

87

88 8. Related Work

of single queries. Static approaches in the design phase of a database often require
estimations of the future workload characteristics. However, the form of the collec-
tion of common queries usually is not an integral part of the algorithm.

Data Allocation Objectives The most common objective in data allocation is perfor-
mance optimization. This can be found in two different forms: throughput opti-
mization and response time optimization. However, there are multiple other opti-
mization goals, such as storage balancing, network traffic minimization, etc.

Partitioning There are many possible ways to partition data. In distributed systems one
goal of the partitioning is to generate multiple fragments of the data with high
locality of the accesses.

Data Allocation The allocation itself is in general computed heuristically. However, there
are also optimal approaches. The algorithms use very different models to generate
an allocation. We will report on the relevant allocation approach and if it interacts,
how it does with the other steps in the process.

Reorganization Since workloads in distributed systems are likely to change, most inte-
grated allocation strategies include a reorganization strategy that allows the alloca-
tion to be adapted.

There are several approaches that only solve single aspects of the complete approach.
For partitioning in particular there are many different algorithms, some of which are
intended as a part of an allocation, while others try to improve the data layout of single
node systems. We will give an overview of these algorithms, since they often serve as the
basis for integrated approaches. In the following we will first give an overview of selected
partitioning algorithms; after that we will discuss allocation-only algorithms briefly. The
main part of this chapter will then discuss selected integrated approaches to the allocation
problem.

8.1. Partitioning

Most partitioning algorithms concentrate on a single type of partitioning. Different al-
gorithms can then be combined to hybrid partitioning algorithms. Horizontal partition-
ing algorithms are usually based on the evaluation of the predicates of frequently asked
queries. An exception are round-robin, hash and random partitioning for parallel systems
[86, 36, 189, 207, 93, 103]. These use full or partial declustering of relations in order to
increase the intra-query parallelism [153].

General formulations of predicate based approaches can be found in many textbooks
such as [169, 136, 81, 61]. Therefore we will only give a short summary. In general the
predicate based approach can be divided into three steps:

• Find predicates

8.1. Partitioning 89

• Build combinations

• Recombine fragments / reduce predicates

In the first step simple predicates of all or frequently asked queries are gathered, where
simple predicates are triples consisting of an attribute of a relation, a relational operator
and constant which should lie in the domain of the attribute. An example is:

ORDERS.CUSTOMER = ’ Mike ’

Each of these simple predicates can be inverted and combined into minterm-predicates.
If P = {p1, . . . , pn} is the set of all predicates, and p− is the inversion of predicate p.
The set of all possible minterm-predicates is M = {m|m =

∧n
i=1 p

±
i , p ∈ P} [81]. M is a

complete, non-overlapping horizontal partitioning. However, the cardinality of M is 2n.
Since many simple predicates can usually be found, the set of minterm-predicates has to
be reduced. When and in which way the reduction is done allows a given algorithm to
be classified. A direct implementation of the general formulation above was presented by
Ceri et al. [62]. Iteratively simple predicates are added to the partitioning. The resulting
minterm-predicates are reduced, by first sorting out contradictory minterm-predicates and
minterm-predicates that are irrelevant. An example of a contradictory minterm-predicate
is the following:

ORDERS.CUSTOMER = ’ Mike ’ AND ORDERS.CUSTOMER = ’Andy ’

A minterm-predicate with a irrelevant part is:

ORDERS.CUSTOMER = ’ Mike ’ AND NOT ORDERS.CUSTOMER = ’Andy ’

The relevance of each simple predicate is tested. This is the case if the resulting
partitioning results in a significant improvement. This can be analyzed using the access
frequency access(m) of a minterm-predicate and the size of the resulting fragment size(f).
The access frequency is the number of requests containing the relevant predicates. A
predicate p is relevant for a minterm-predicate if the resulting partitions have different
access rates. This can be formulated as:

access(m ∧ p)
size(fp)

6= access(m ∧ p−)

size(fp−)
(8.1)

Obviously, this approach still leads to a huge set of minterm-predicates and partitions.
Therefore, other approaches do not initially collect all simple predicates, but only the
most common.

Another approach to the combination of predicates is the use of graphs. Navathe et
al. represent the affinity of predicates, i.e. the frequency in which they are used within
a single request or transaction by an edge with according weight between the predicates
[163]. Curino et al. use tuples as nodes and then connect nodes which are used together
in the same request or transactions [80]. Another approach based on hypergraphs was
presented by Koyutürk and Aykanat [142]. In all three cases a partitioning can be found
using a graph partitioning algorithm.

90 8. Related Work

For vertical partitioning two basic approaches exist: splitting and grouping [169]. Split-
ting algorithms start with a complete relation and then iteratively partition it, while
grouping algorithms start with a complete decomposition of a relation and iteratively
join the fragments. An example of a splitting algorithm was presented by Navathe et al.
[162], which is an extension to the method presented by Hoffer and Severance [126]. The
algorithm uses the affinity of attributes and then clusters them in order to find a good
partitioning. A grouping algorithm for single node systems was presented by Hammer and
Niamir [115]. This approach was later extended by Sacca and Wiederhold for distributed
architectures [193].

The algorithms presented all use access frequencies as the basis of the partitioning.
However, it has been shown that this is inappropriate since it neglects the actual cost of a
query [170, 172]. Several approaches extend the algorithms above with the usage of cost
models and cost analysis [78, 171]. Overviews of further vertical partitioning algorithms
can be found in [160, 233].

As we will show in section 10, our approach to partitioning is not directly comparable
to the algorithms presented above since it is integrated into the allocation. However,
the predicate-based classification is similar to the predicate-based partitioning. In con-
trast to the approaches presented, we use a cost function instead of the access frequency.
Our attribute based classification leads to a vertical partitioning that is comparable to a
grouping approach.

8.2. Allocation

As mentioned above, the allocation algorithm can have multiple goals, such as perfor-
mance optimization, reliability, etc. Özsu and Valduriez present a general problem defi-
nition which respects various factors such as network characteristics and properties of the
host systems [169]. The resulting optimization problem is NP-complete and therefore not
feasible for realistic problem sizes. There have been many modifications of the model,
for example, for sites in communication networks [26] and for special purposes such as
heterogeneous storage [55, 40] and energy-efficiency [139]. To compute an allocation for
realistic problem sizes heuristics are used. These either exploit the relation to the bin
packing problem and apply first-fit and best-fit strategies [52, 193], or use metaheuristics
such as simulated annealing [24] or evolutionary strategies [14].

Our allocation approach is also presented as an optimization problem in section 11.2. In
contrast to other allocation strategies (e.g. [169, 26]), we do not consider network traffic,
since we aim for local execution and consider cluster hardware configurations rather then
wide area networks. Because of the NP-completeness, we use a best-fit strategy to find
a initial solution and a evolutionary algorithm to improve the initial solution. However,
the independent calculation of partitioning and allocation is in general inferior to an
integrated approach, since an optimal partitioning can only be determined considering
the optimal allocation of partitions [62].

8.3. Integrated Allocation Strategies 91

8.3. Integrated Allocation Strategies

In the following we will present selected integrated allocation strategies. These consist at
least of a partitioning and allocation part.

Bubba Copeland et al. presented the database system Bubba, which uses a partial
declustering and a greedy heuristic for data placement [76]. Its partitioning approach
is a simple range based declusterin that fragments each relation into a fixed number of
equal-sized partitions. These partitions are allocated according to their heat (i.e. the
access frequency) so that each node in the system has an equal heat. The placement
strategy is a simple first-fit approach, which does not guarantee a balanced load. If the
systems load is unbalanced the placement strategy is applied to the fragments with the
highest temperature (i.e. heat divided by size); this way the data movement is minimized.
Although Bubba was built as a parallel database system, it exploited data locality similar
to our cluster database system, in contrast to other parallel database systems [197, 87] or
multi disk systems [11]. However, it uses no workload-aware partitioning and uses access
frequencies rather then actual costs. An overview of parallel database systems can be
found in [138]. A workload aware approach was recently presented by Ozemn et al. [168].
It uses a linear programming approach to balance the workload. This approach however
does not consider locality.

Ganesan et al. A purely dynamic approach to the allocation problem is presented by
Ganesan et al. [99]. The data is range partitioned into equal sized fragments and allocated
to different nodes. The approach makes no assumptions about the initial allocation. The
optimization goal is storage balance, although the authors claim that the approach can be
generalized to load balance. Whenever the storage on the nodes is out of balance according
to a certain threshold, one of two rebalancing strategies is invoked. The NbrAdjust shifts
weight to a node containing the neighbor fragment, while the Reorder strategy shares
weight with an empty node. Although the algorithm aims at parallel database systems,
the general idea can be adapted for reorganization in a cluster database system.

DYFRAM A decentralized fragmentation approach was presented by Hauglid et al.
[118]. DYFRAM is similar to the approach above, a purely dynamic approach, that
makes no assumptions about the initial allocation and partitioning. Based on statistics
captured for each tuple, the number of local accesses versus the number of remote accesses
is calculated. The following strategies are employed:

• if a fragment is often requested remotely, a copy is placed on the remote site;

• if access frequencies within a fragment vary significantly locally and remotely, the
fragment is further fragmented;

• if a fragment is requested mostly from a remote site, it is moved.

92 8. Related Work

The approach aims to localize the data access in a distributed system with heterogeneous
access to data, which is common in federated database systems. A similar approach
was presented by Stonebraker et al. [212]. This differs from our problem statement,
which aims at load balancing. It is questionable whether the tuple based statistics are
manageable for larger databases.

Tashkent+ In [91] Elnikety et al. present the Tashkent+ system, a successor of the
Tashkent system [90]. The main target of the Tashkent+ system is load balancing. The
basic assumption is that all transactions are known in advance. Tashkent+ schedules
transactions on nodes such that they can be processed in memory. Starting from a fully
replicated allocation, the backends are specialized to certain transaction types. Unused
relations are eventually dropped and hence an optimized data layout is generated. Due
to the memory aware scheduling, a super-linear speedup is achieved. However, no parti-
tioning is used. The approach has a similar processing model to our approach.

8.4. Discussion

In this chapter we have presented on overview of approaches for partitioning and alloca-
tion. We have shown several projects that use an integrated allocation strategy. In the
following table the core differences of these approaches are summarized:

Project Partitioning Objective

Bubba Range-based Load balancing
Ganesan et al. Range-based Storage balancing
DYFRAM Tuple-based Localization
Tashkent+ No Load balancing

All these approaches only consider horizontal partitioning. Besides load balancing also
storage balancing and localization are optimization goals. Although there is lots of work
on allocation algorithms, we are not aware of an integrated approach that is based on
the cluster database processing model presented in section 3.4. In the following we will
present an integrated allocation strategy that allows a completely automatic allocation
with horizontal and vertical partitioning and is based on the CDBS model. Goal of the
allocation is load balancing.

9. Automatic Allocation

Partitioning and allocation traditionally are part of the design of a distributed database.
Database design is the beginning of a database’s life cycle. Depending on the preconditions
it can be done in two forms, either top-down or bottom-up. The top-down approach is
used when a database is built from scratch and the bottom-up approach is used whenever
existing databases or applications have to be integrated [61]. Of course, there are practical
design procedures which combine both approaches. The biggest challenge in the bottom-
up approach is the integration of the preconditions. But since we will concentrate on single
database applications, which feature a single integrated schema, the top-down approach
is preferable. The top-down design of a database comprises several abstract levels [229]:

• Requirements analysis

• Conceptual design

• Logical design

• Physical design

In the requirements analysis the different goals for the use of the database are collected.
These include the size of the database, user groups, applications as well as performance
constraints. Based on the collected requirements a conceptual design is built. This is
often done in the form of a ER-model or a UML-model [66, 9]. The resulting schema is
independent of the implementation of the database management system. In the logical
design phase the conceptual design is converted to the concrete schema type, which today
is usually a relational schema. The logical schema is still system independent, but it is
model-dependent. The physical design adapts the schema to the features of the chosen
DBMS. This includes the selection of indexes and data allocation. A detailed overview of
this database design process can be found in [89].

In distributed database systems the physical distribution of data has to be considered.
Therefore a fifth level, called distribution design was proposed [60]. This level is located
between logical and physical design. In the distribution design the global logical schema
is refined by a fragmentation schema and an allocation schema [136].

However, at the design phase of a system the requirements are hard to determine and
they also can change. Wrong decisions at this stage result in bad system performance.
The performance at runtime strongly depends on the usage characteristics, especially in
shared-nothing architectures. Since the allocation is a non trivial task, it is desirable to
have an automated method that calculates an adequate allocation. As mentioned above,
Daudpota defined a five step procedure for database allocation [83]:

93

94 9. Automatic Allocation

• Collect existing global relations.

• Analyze Frequently Asked Queries.

• Set data allocation objectives.

• Transform global relations into fragment relations.

• Allocate fragment relations to sites.

Many allocation schemes follow these steps. In order to automate the allocation, all
steps have to be automated. However, common allocation algorithms often contain man-
ual procedures or prerequisites that cannot be determined exactly. Examples are the
knowledge of all queries and the size of the data access of each query [169, 81]. Because
of the complexity of such algorithms, it is usually not possible to alter the allocation
at runtime. Therefore, we propose a simplified allocation model that can be completely
automated.

Our method is also divided into the steps above. Since we aim to improve the allocation
of a running system, we consider the global schema as given. To analyze frequently asked
queries, we use a query log. From the query log classes of similar queries are extracted.
As pointed out earlier, the main objectives of our allocation are minimal communication
costs, minimizing storage costs and maximizing throughput. A further optional objective
is availability and reliability. The transformation into fragmented relations is calculated
by our allocation algorithms. The implementation of the allocation in the distributed
system is done by a cost optimal matching. The more specific procedure is as follows:

• Query Classification

• Allocation Calculation

• Allocation Improvement (optional)

• Physical Allocation

In the first step a query history or journal is analyzed. In this context, queries may be
read or update requests. The analysis performs a classification of the queries, queries are
grouped according to the data they access. The classification determines the partitioning.
If queries are grouped according to the tables they access, the allocation will have no par-
titioning. If the queries are grouped according to the columns they access, the allocation
will probably have vertical partitioning.

Based on the classification and on the set of nodes, the allocation is calculated. Each
class of similar queries or query class is assigned to one or more backends, so that each
backend has about the same amount of work in a homogeneous system. Optionally, a
meta heuristic can be used to improve the allocation for space efficiency and reduced
replication.

95

A B C

B1

A B

B1

B C

B2

A

B1

A B

B2

B

B3

C

B4 A B 20%C4

C 25%C3

B 25%C2

A 30%C1

Figure 9.1.: Allocation of Read-Only Query Classes on 1 to 4 Nodes

The calculated allocation does not consider the data distribution on the backends. To
keep the overhead of the reallocation as small as possible, an optimal matching of the
current and the calculated allocation is computed.

Although full replication is utilized in many systems (cf. section 6.4), it usually is
desirable to reduce the amount of replication for two reasons. First, replication increases
disk space usage. Second, and often more important, all replicas have to be maintained.
This includes update propagation as well as synchronization. Nevertheless, replication is
the simplest means to increase read throughput, since read requests can be processed in
parallel. Furthermore, in distributed systems the failure rate is very high; this can be
compensated for by using replication.

In the following examples we will give an idea of our allocation strategy. First we will
show an example for a read-only database and an optimal allocation on different cluster
sizes. After that we show the more complicated read and update case.

In the first example, which can be seen in figure 9.1, a database with three relations
A, B and C is allocated with partial replication, but without partitioning. The database
is accessed with four types of read requests C1, . . . , C4. The read request types are an
abstraction of actual database queries. In this and the next example, queries are classified
by the relations they reference. The first type of queries references relation A and makes
up 30% of the query workload. Accordingly, C2 references relation B and makes up 25%
of the workload, C3 references relation C with 25% of the workload and C4 references
relations A and B and makes up 20% of the workload. The distributed database consists
of 1 to 4 backends B1, . . . , B4 which all have equal processing power.

Three scalings of a distributed database system can be seen. First a single database
backend B1: it obviously has to contain all three relations. For two backends the workload
can be evenly distributed. The query types C1 and C4 together make up 50% of the query

96 9. Automatic Allocation

load, as do C2 and C3. Hence, a possible solution is to allocate relations A to backend B1

and relation C on backend B2 and replicate B on both backends. With this allocation
both backends get an equal share of the workload and the theoretical speedup is 2. It
is easy to see that this configuration is optimal in terms of space efficiency. The load
distribution is shown in the following table.

C1 C2 C3 C4 Overall

B1 30% 0% 0% 20% 50%
B2 0% 25% 25% 0% 50%

The same speedup can be achieved in this read-only case by using full replication,
but with the given allocation only one relation has to be replicated instead of all three
relations. For four backends each backend gets 25% of the workload. Query class C1 has
more than 25% of the workload and therefore it has to be assigned to more than one
backend, so relation A is replicated on backends B1 and B2. C2 and C3 fit directly on a
backend so they are allocated on B3 and B4 respectively. C4 can be assigned to backend
B2 since it still has processing capacities. The resulting allocation again has a theoretical
optimal speedup of 4, while replicating only two tables. The load distribution can be seen
below.

C1 C2 C3 C4 Overall

B1 25% 0% 0% 0% 25%
B2 5% 0% 0% 20% 25%
B3 0% 25% 0% 0% 25%
B4 0% 5% 25% 0% 25%

In the first scenario, we have not considered updates. The partial replication can achieve
a better theoretical speedup than a full replication for an update heavy workload, because
of the reduced replication costs of updates. Again, we consider a homogeneous hardware
setup. This can be seen in the second example in figure 9.2. Here, a similar setup is
considered, only with an additional update workload of 20%. The exact distribution of
the workload can be seen in figure 9.2. Again, three scalings of the database system
are shown. For a single database there is no change to the read only scenario. For
multiple backends however, the updates have to be considered. While read requests can
be distributed across the nodes, where the referenced data is stored, every update request
has to be executed on each replication of its referenced data. For two backends, the
optimal allocation is A and B on backend B1 and A and C on backend B2. This results
in an additional update load of 4% since A is allocated twice. This can be seen in the
load distribution matrix.

Q1 Q2 Q3 Q4 U1 U2 U3 Overall

B1 2% 20% 0% 16% 4% 10% 0% 52%
B2 22% 0% 20% 0% 4% 0% 6% 52%

97

A B C

B1

A B

B1

A C

B2

A

B1

A B

B2

B

B3

C

B4 A B 16%Q4

C 20%Q3

B 20%Q2

A 24%Q1

C 6%U3

B 10%U2

A 4%U1

Figure 9.2.: Allocation of Read and Update Query Classes on 1 to 4 Nodes

Due to the additional update work, each of the nodes has a throughput decreased by
2%. Compared to the throughput of a single node system, the throughput is therefore
decreased by 4%. To estimate the speedup the relative processing time has to be com-
puted. The single node system uses 100% amount of time, due to the overhead each of
the nodes in the two node configuration use 52% amount of time. Hence, the theoretical
speedup is 100%

52% ≈ 1.92. For full replication the additional update load is 20% and the
theoretical speedup 1.67. This can be seen in the load distribution table below.

Q1 Q2 Q3 Q4 U1 U2 U3 Overall

B1 12% 10% 10% 8% 4% 10% 6% 60%
B2 12% 10% 10% 8% 4% 10% 6% 60%

For four backends the optimal allocation is not balanced any more. Backends B2 and
B3 each get 30% of the workload, including additional updates. These two limit the
maximum throughput, so each node has an overhead of 5%. Therefore, the theoretical
speedup is 3.33. For a fully replicated system the theoretical speedup is 2.5.

Q1 Q2 Q3 Q4 U1 U2 U3 Overall

B1 24% 0% 0% 0% 4% 0% 0% 28%
B2 0% 0% 0% 16% 4% 10% 0% 30%
B3 0% 20% 0% 0% 0% 10% 0% 30%
B4 0% 0% 20% 0% 0% 0% 6% 26%

This example is rather drastic, since most systems will not have a update load of
20%. Furthermore, partitioning can improve the balancing and reduce the amount of
replication. Hence, in most cases better speedups can be achieved. We will give details

98 9. Automatic Allocation

on the calculation of theoretical speedups considering updates in section 12. The following
sections will give detailed descriptions of the single allocation steps.

9.1. Autonomic Allocation

Using the MAPE model presented in section 4.4, allocation can be adapted autonomically.
The steps of the allocation correspond to the phases of the model:

Monitor In the monitoring phase information about the state of the system is gathered.
For the allocation the workload is especially interesting, hence the incoming queries
are logged. In addition the availability of the nodes is observed.

Analyze The workload is analyzed regularly. Using the query classification, the workload
distribution can be calculated. If the workload distribution differs too much from
the basis distribution of the allocation, it has to be adapted.

Plan If the current allocation is not adequate any more, a new allocation is calculated
based on the current workload distribution. Using an optimal matching a cost
minimal plan for the implementation of the allocation can be found.

Execute In order to implement the new allocation, the data has to be moved and the
nodes have to be synchronized.

The resulting MAPE cycle is depicted in figure 9.3. The knowledge base for the allo-
cation is the schema of the managed database, the number and properties of the nodes
and the query history.

Knowledge
Schema

Backends
Query History

Sensor Effector

Workload

Workload
Allocation

Logical
Allocation

Analyze Plan

Execute
physical

Allocation

Monitor

Figure 9.3.: Allocation in the MAPE Model

9.2. Discussion 99

9.2. Discussion

In this section we explained the general approach for automatic allocation. We gave two
examples for allocations: an allocation for systems that only have to process read accesses
and an allocation for read and write access. After that we explained how the MAPE loop
can be utilized to implement an automatic allocation.

In the following sections we will explain the single steps of the allocation that were
defined above in detail. In section 15 we will present an evaluation of our allocation
strategies our prototype uses a MAPE loop and is able to calculate the allocation com-
pletely autonomous.

10. Query Classification

The first step in the allocation process is the requirements analysis. For the allocation
the access patterns of the data have to be determined. This can be done by examining
the queries that are processed by the database system. As mentioned above, traditional
approaches place the whole allocation process in the design phase of a database. Therefore,
the requirements analysis has to be done on predicted usage scenarios. Obviously, for
systems with large user groups and ad hoc queries this is difficult.

However, in a running system, the requirements analysis can be done based on a query
profile. A query profile contains statistical information about occurring query classes and
their proportional fraction of the overall query load. We will refer to the load fraction
as weight. The query classes can be obtained from a query log. The query log usually
contains the timestamp when the query was submitted and the query itself. This is not
sufficient for a query profile, since there is no information about the query weight. In
a homogeneous environment the execution time of a query is a good approximation of
its weight. It has to be pointed out, though, that it is not completely accurate. The
time that processing a certain query takes not only depends on the query itself, but to
a high extent on the state of the executing system. A system under high load will need
more time to execute a certain query than a system that is mostly idle. Furthermore,
the state of the DBMS cache and parallel processed queries will influence the execution
time. In a heterogeneous environment the execution time of a single query only has little
informational value. Another way to get information about the weight of a query is to
use cost analysis. This is a common database management task, since nearly all database
systems use cost analysis to optimize the query plan. So another option to get the query
weight is either to use additional cost estimation or, to avoid additional calculations, use
the values provided by the query optimizer [172]. We will refer to a query log that contains
the weight of the queries as a journal.

As mentioned above, the basis of an adequate allocation is to know the data access
patterns. Hence, queries are classified according to the data they reference. Our methods
for classification differ in the granularity of the analyzed data partitions. The most coarse
classification analyzes which relation a query accesses and adds queries that access the
same set of relations to the same class. A finer method uses the accessed attributes of a
relation; this allows allocation of vertically fragmented relations. Analogous to this the
predicates of the queries can be used in order to allow horizontal partitioning. Finally
both, the accessed attributes and the predicates, can be used to supply information for
hybrid fragmentations.

Consider the following example query, which is defined for a TPC-H database (see
section 17.1). It calculates the total which every customer spent in the year 1995:

101

102 10. Query Classification

Listing 10.1: SQL Query to the TPC-H Database

select sum(O TOTALPRICE) , C NAME
from ORDERS, CUSTOMER

where O CUSTKEY = C CUSTKEY
and O ORDERDATE >= date ’ 1995−01−01 ’
and O ORDERDATE <= date ’ 1995−12−31 ’

group by C NAME;

If classified by referenced tables, the query class of the query above holds queries that
reference tables ORDERS and CUSTOMER. For column-based classification the query’s
class holds queries that reference the following attributes:

• CUSTOMER.C CUSTKEY

• CUSTOMER.C NAME

• ORDERS.O CUSTKEY

• ORDERS.O ORDERDATE

• ORDERS.O TOTALPRICE

Using column-based classification will result in more query classes that reference less data.
In the TPC-H schema the query references only 5 of the total 17 columns of the two
tables. This is especially interesting in data warehouse environments, where fact tables
are frequently very broad. Finally, queries can be classified by their predicates. In the
example, predicates are restrictions on O ORDERDATE, which would result in a range
partitioning of ORDERS; C CUSTKEY = O CUSTKEY will result in a hash partitioning
of ORDERS. Using predicate-based classification will result in a large number of query
classes. It is sensible to reduce the number of query classes by removing predicates
on smaller tables and by grouping predicates that will result in very small partitions.
However, in the allocation step related query classes will preferably be placed on the
same backend. When the workload comprises a considerable amount of updates, an
initial distinction of read and write queries will be performed.

Obviously, there are further forms of classification. Queries can also be classified by
the originating application, or the operations they use. But for the allocation problem
the classifications given above seem most promising.

10.1. Formal Definition

As explained above, the basis of the classification is a query journal J . The journal is
a sequence of executed queries q. It does not need to contain every query executed, but
it should be representative1. The domain of J is the set of all distinguishable queries Q,

1Obviously, this is a flexible definition. For the sake of simplicity, we will require a journal to contain
queries of all occurring classes.

10.1. Formal Definition 103

where two queries are distinguishable if they are not textually identical. Therefore, every
q ∈ Q may appear multiple times in J . Since the order of elements is not important
we will interpret J as a multiset with support Q and characteristic function j. Each
query q ∈ Q accesses a set of data fragments. Depending on the classification method, a
data fragment f may be a relation, an attribute of a relation (or column) or a range or
set of tuples (determined by predicates). Each query is classified to a single query class
C ∈ C, where the set of all query classes is a subset of the power set, C ⊆ P(F) of all data
fragments. The classification can be defined formally as a function:

classify : Q→ C (10.1)

The classify function assigns a query q to a query class C, where C is the set of data
fragments referenced by q:

classify(q) = C,C = {f ∈ F |q references f} (10.2)

If query classes are classified column-based, they have to contain a candidate key to ensure
correct reconstruction of all data. For reasons of simplicity we will presume this in the
following. In the definition above reads and updates are not differentiated. For update
intensive workloads, the journal is divided into update requests and read requests. The
classification is analogous and the result is two sets of query classes CU and CQ:

classify(q) = C,C ∈
{
CQ, if q is read
CU , else

(10.3)

where CQ ∪CU = C. Strictly speaking C is a multiset in this case. However, for reasons of
simplicity we will treat C like a regular set. To calculate the allocation the fraction of the
overall workload produced by each query class is needed. The following function assigns
this weight to a query:

weight : Q→ R (10.4)

As mentioned before, the concrete application of this function can return the execution
time or a cost estimation. Using the following function the relative weight of a query class
can be computed:

weight : C → [0, 1] (10.5)

weight(C) =

∑
q∈{x∈Q|classify(x)=C} j(q) · weight(q)∑

q∈Q j(q) · weight(q)
(10.6)

The classification determines the partitioning calculated by the allocation algorithm. If
all queries are classified to a single class, the resulting allocation will always be a full
replication.

104 10. Query Classification

10.2. Relation Based Classification

The most simple form of classification is relation based classification. It classifies queries
according to the relations they reference. Since most databases comprise only a limited
number of relations, only few query classes can be found. However, the classification is
relatively easy. SQL queries have to name all tables used in the from clause. So the
classification can be done by only parsing the from clause of a query, as could be seen in
the introductory example 10.1. Consider the following query, which extracts names and
phone numbers of customers with open orders served by a certain clerk.

Listing 10.2: SQL Query to the TPC-H Database

select C NAME, C PHONE
from ORDERS, CUSTOMER

where O CUSTKEY = C CUSTKEY
and O ORDERSTATUS = ”O”
and O CLERK = ” Clerk004420256 ” ;

This query retrieves a completely different result set and will have completely different
runtime characteristics compared to the first example in listing 10.1. However, since the
same tables are queried – ORDERS and CUSTOMER – it will be classified to the same
query class. Hence, query classes will contain queries with highly different characteristics.

10.3. Attribute Based Classification

Attribute or column based classification considers the columns referenced by a SQL query.
This includes all columns that are needed to process a query. In the example queries 10.1
and 10.2, these are the columns defined in the select and the where clause. Besides the
name of the column also the name of the table is important, since relational database
systems allow name conflicts on attributes in different relations. The query in listing 10.2
will be classified in a query class with the attributes:

• CUSTOMER.C CUSTKEY

• CUSTOMER.C NAME

• CUSTOMER.C PHONE

• ORDERS.O CUSTKEY

• ORDERS.O CLERK

• ORDERS.O ORDERSTATUS

Considering attributes will result in a finer classification. On the one hand, this will allow a
more exact workload prediction. On the other hand, the classification defines possible and
sensible vertical partitions. Besides partitioning, the classification information can also

10.4. Predicate Based Classification 105

be used for other schema optimizations, examples are index selection and view selection.
For example, a heavy query class is an ideal candidate for a materialized view.

10.4. Predicate Based Classification

In large databases, queries usually only reference small amounts of the data. If a data
warehouse contains several years of wholesale transactions, single queries will rarely ref-
erence the complete data set, but will instead rather reference certain data ranges. An
example can be seen in the query in listing 10.1: only tuples from the ORDERS table are
referenced which have values in ORDERS.O ORDERDATE between 1995−01−01 and
1995−12−31. So the query can also be answered from a horizontal partition which only
contains this data. In general, an arbitrary number of ranges on a single attribute can be
found. However, it is likely that these have similar boundaries, e.g. the end of the year
as above. Nonetheless, this classification will generate a huge number of query classes.

Besides ranges, comparisons can be used to classify a query. For the second query the
predicates O ORDERSTATUS = ”O” and O CLERK = ”Clerk004420256” can be used
for classification. This classification can then be used for hash or list partitioning, in the
example the partition would only contain tuples with the according values.

Listing 10.3: SQL Query to the TPC-H Database

select P NAME, count (distinct PS SUPPKEY) as SUPPLIER CNT
from PART, PARTSUPP

where P TYPE l ike ’STANDARD%’
and P BRAND = ’BRAND#32 ’
and P PARTKEY = PS PARTKEY

group by P NAME;

Finally, join predicates can be used for derived partitioning. Consider the query in
listing 10.3. It calculates the number of suppliers of parts of a certain brand, with a name
beginning with ’STANDARD’. Again the comparisons P TYPE like ’STANDARD%’ and
P BRAND = ’BRAND#32’ can be used for hash or list partitioning. The tables PART
and PARTSUPP are joined with the condition P PARTKEY = PS PARTKEY. Using
derived partitioning, the table PARTSUPP can be hash partitioned using the predicate
P BRAND = ’BRAND#32’.

10.5. Hybrid Classification

Obviously, it is possible to classify queries according to their referenced columns and their
predicates. The result is an even finer classification that can be used for horizontal and
vertical partitioning. To be consistent with the classification formulation above, we use
vertical and horizontal partitioning equally, leading to an equal partitioning.

106 10. Query Classification

10.6. Discussion

In this section we have presented our approach to query classification. It is the basis
of the allocation algorithms presented in the next sections. The query classification can
be done in various granularities. We have shown examples for relation based, attribute
based, and predicate based classification. These can be combined to a form of hybrid
classification.

All presented classifications build an implicit partitioning of the data and hence deter-
mine the granularity of the distribution units in the allocation. While table based classifi-
cation enables a distribution of complete tables, attribute based classification potentially
enables a vertical partitioning, finally predicate based classification enables horizontal
partitioning. The more fine grained the classification is, the better the performance of
the allocation can be since the load can be distributed more evenly. However, a more
fractured allocation also increases the processing overhead to some extent. Nevertheless,
this overhead does not exceed the gains in the performance. This will be shown in our
test results in section 15.

11. Allocation – Read Mostly

With a given query classification the allocation problem is how to assign query classes to
database backends, such that all backends have a load fitting their capabilities and that
the disk usage is minimized. We will first give a formal definition of the problem, then
prove that it is NP-hard and after that show different approaches to calculate solutions.

11.1. Formal Definition

The allocation can be formally described as a function that assigns data fragments f ∈ F
to the backend databases B ∈ B. Since we aim for an balanced load we distinguish
backends by their query processing performance. This measure is given in relation to
the sum of the query processing performances of all backends. Thus, the domain of the
relative performance is [0, 1]. As the basis of our allocation is a classification, input of
the allocation are the query classes C ∈ C. The result is a partial replication. It can be
represented as a multiset of backends with domain P(F) × [0, 1], B = 〈P(F) × [0, 1], b〉,
where b is the characteristic function of B. A backend is therefore a pair 〈B∗, l〉 of a set
of fragments B∗ ⊆ F and a maximum relative load l ∈ [0, 1]. Hence, the allocation is
defined as:

allocation : P(P(F))→ PP(F)×[0,1] (11.1)

allocation(C) = B, ∀C ∈ C,∃B ∈ B, B = 〈B∗, l〉 : f ∈ C ⇒ f ∈ B∗ (11.2)

The definition assures that every query class is assigned to at least one backend. In a
homogeneous environment all backends will get the same share of the overall workload.
In a heterogeneous environment the shares of the workload that backends can handle may
differ. To simplify the following equations, we introduce the function load which extracts
the relative performance of a backend:

load : B → [0, 1] (11.3)

load(〈B∗, l〉) = l (11.4)∑
B∈B

load(B) = 1 (11.5)

In a homogeneous cluster of s nodes the relative load is 1
s . The set of fragments of a

backend can extracted by the following function:

fragments : B → F (11.6)

107

108 11. Allocation – Read Mostly

fragments(〈B∗, l〉) = B∗ (11.7)

To express the part of the weight of a query that is assigned to a backend the function
assign is used:

assign : C × B → [0, 1] (11.8)

assign(C,B) > 0⇒ C ⊆ fragments(B) (11.9)

An allocation is valid, i.e. the workload is balanced and all query classes are allocated if
the following constraints are satisfied:∑

B∈B
assign(C,B) = weight(C) (11.10)

∑
C∈C

assign(C,B) = load(B) (11.11)

Constraints (11.10) and (11.11) result in the following equation:∑
B∈B

∑
C∈C

assign(C,B) = 1 (11.12)

An allocation satisfying these constraints will enable the scheduler to balance the load
on the backends, nevertheless it is in general not minimal. This means that such an
allocation may contain more replicated fragments than needed. To get an allocation with
minimal replication the following sum has to be minimized:∑

B∈B

∑
f∈fragments(B)

1 (11.13)

The sum calculates the number of allocated fragments in the allocation. Since the data
fragments usually have different sizes, it is desirable to minimize disk usage. For this the
size of the data fragments is needed. We use the function size that maps a fragment to
its size:

size : F → R (11.14)

To get the minimal allocation in terms of disk usage we have to minimize the following
sum: ∑

B∈B

∑
f∈fragments(B)

size(f) (11.15)

To ensure completeness, data fragments f ∈ F that are not already allocated have to
be assigned to a backend. Basically, they can be assigned to any backend, in the sense
of minimality as defined above and according to the theoretical throughput there is no
difference. To ensure a less fractured schema, it is sensible to place the fragments on
backends where related data is allocated.

11.2. Optimal Allocation 109

A

B1 30%

B C

B2 30%

C

B3 20% B4 20%

A B 20%C4

C 25%C3

B 25%C2

A 30%C1

A B

Figure 11.1.: Allocation of Read-Only Query Classes on Heterogeneous Backends

11.2. Optimal Allocation

The allocation can be described by a matrix A ∈ {0, 1}|B|×|F |, which contains a row for
each backend and a column for each fragment. The allocation matrix for the example in
figure 11.1 is:

A =


A B C

B1 1 0 0
B2 0 1 1
B3 0 0 1
B4 1 1 0

 (11.16)

In general the allocation matrix is defined as:

A :

{
{1, .., |B|} × {1, .., |F |} → {0, 1}

(i, j) 7→ aij
(11.17)

Additionally, a load distribution matrix L ∈ [0, 1]|B|×|C| is defined which contains the
partial load of each query class per backend. For the example a balanced load is:

L =


C1 C2 C3 C4

B1 0.30 0 0 0
B2 0 0.25 0.05 0
B3 0 0 0.20 0
B4 0 0 0 0.20

 (11.18)

The general definition is:

L :

{
{1, .., |B|} × {1, .., |C|} → [0, 1]

(i, k) 7→ lik
(11.19)

110 11. Allocation – Read Mostly

With this matrix it is easy to see that for a given set of backends B and a set of query
classes C, there are 2|B|×|C| possible allocations. Because of the exponential number of
allocations exhaustive search is not an option to compute an optimal allocation. However,
the allocation problem can be formulated as a mixed integer linear program. Using the
matrix representation, the allocation problem can be characterized as a minimization
problem analogous to the definition in equation 11.15:

min
∑
aij∈A

aij · size(fj) (11.20)

Again equations 11.10 and 11.11 must be satisfied. These can be formulated using the
matrices as follows:

∀Bi ∈ B, lik ∈ L :

|C|∑
k=1

lik = load(Bi) (11.21)

∀Ck ∈ C, lik ∈ L :

|B|∑
i=1

lik = weight(Ck) (11.22)

To establish the connection between the query classes and their referenced data frag-
ments, additional helper variables hik ∈ {0, 1} are needed:

H :

{
{1, .., |B|} × {1, .., |C|} → {0, 1}

(i, k) 7→ hik
, hik =

{
1, if lik > 0

0, else
(11.23)

If hik = 1, then query class Ck is allocated to backend Bi. Therefore, all fragments fj
which are referenced by query class Ck have to be allocated to backend Bi. This can be
expressed by the following constraint:

∀Ck ∈ C,∀Bi ∈ B :
∑

j:fj∈Ck

aij ≥ |Ck| ∗ hik (11.24)

This constraint sums up the number of fragments of query class Ck, which are allocated
to backend Bi. If Ck is allocated to Bi it must be equal to the number of fragments in
Ck, otherwise it can be greater than 0. With these definitions a linear program can be
specified. For the example above this can be seen in listing 11.1. The source is written
in lp solve1 syntax. To improve readability, unnecessary constraints and constants were
omitted. The source starts with the objective function; this is the same as the definition in
equation 11.20. Since all tables (i.e. data fragments) have the same weight, the weighting
factors are omitted. Then, the restrictions of the allocation are introduced, i.e. the
weight of the query classes and the maximum load of the backends. These are the row
and column sums of the load distribution matrix L. After that, the helper variables are

1lp solve is an open source linear program solver, it is available at http://lpsolve.sourceforge.net/

(last visited 2011-04-15)

http://lpsolve.sourceforge.net/

11.2. Optimal Allocation 111

Listing 11.1: Linear Program for an Opti-
mal Allocation

/∗ Minimization problem ∗/
min : a 11 + a 12 + a 13

+ a 21 + a 22 + a 23
+ a 31 + a 32 + a 33
+ a 41 + a 42 + a 43 ;

/∗ Al l o ca t i on o f the query ∗/
/∗ c l a s s e s ∗/
l 1 1 + l 2 1 + l 3 1 + l 4 1 = 0 . 3 ;
l 1 2 + l 2 2 + l 3 2 + l 4 2 = 0 . 2 5 ;
l 1 3 + l 2 3 + l 3 3 + l 4 3 = 0 . 2 5 ;
l 1 4 + l 2 4 + l 3 4 + l 4 4 = 0 . 2 ;

/∗ Load con s t r a i n t s f o r backends ∗/
l 1 1 + l 1 2 + l 1 3 + l 1 4 = 0 . 3 ;
l 2 1 + l 2 2 + l 2 3 + l 2 4 = 0 . 3 ;
l 3 1 + l 3 2 + l 3 3 + l 3 4 = 0 . 2 ;
l 4 1 + l 4 2 + l 4 3 + l 4 4 = 0 . 2 ;

/∗ I f query c l a s s k i s on ∗/
/∗ backend i i t has to be ∗/
/∗ a l l o c a t e d ∗/
h 11 − l 1 1 >= 0 ;
h 12 − l 1 2 >= 0 ;
h 13 − l 1 3 >= 0 ;
h 14 − l 1 4 >= 0 ;

h 21 − l 2 1 >= 0 ;
h 22 − l 2 2 >= 0 ;
h 23 − l 2 3 >= 0 ;
h 24 − l 2 4 >= 0 ;

h 31 − l 3 1 >= 0 ;
h 32 − l 3 2 >= 0 ;
h 33 − l 3 3 >= 0 ;

h 34 − l 3 4 >= 0 ;
h 41 − l 4 1 >= 0 ;
h 42 − l 4 2 >= 0 ;
h 43 − l 4 3 >= 0 ;
h 44 − l 4 4 >= 0 ;

/∗ Al l fragments j o f query ∗/
/∗ c l a s s k have to be ∗/
/∗ a l l o c a t e d on backend i ∗/
a 11 − h 11 >= 0 ;
a 21 − h 21 >= 0 ;
a 31 − h 31 >= 0 ;
a 41 − h 41 >= 0 ;

a 12 − h 12 >= 0 ;
a 22 − h 22 >= 0 ;
a 32 − h 32 >= 0 ;
a 42 − h 42 >= 0 ;

a 13 − h 13 >= 0 ;
a 23 − h 23 >= 0 ;
a 33 − h 33 >= 0 ;
a 43 − h 43 >= 0 ;

a 11 + a 12 − 2 h 14 >= 0 ;
a 21 + a 22 − 2 h 24 >= 0 ;
a 31 + a 32 − 2 h 34 >= 0 ;
a 41 + a 42 − 2 h 44 >= 0 ;

/∗ a i j and h i k are b inary ∗/
bin a 11 , a 12 , a 13 ,

a 21 , a 22 , a 23 ,
a 31 , a 32 , a 33 ,
a 41 , a 42 , a 43 ,
h 11 , h 12 , h 13 , h 14 ,
h 21 , h 22 , h 23 , h 24 ,
h 31 , h 32 , h 33 , h 34 ,
h 41 , h 42 , h 43 , h 44 ;

112 11. Allocation – Read Mostly

introduced, according to equation 11.23. For each query class all relevant fragments have
to be allocated, as defined in equation 11.24. Finally, all aij and hik are declared as binary
variables. It would also be possible to introduce boundaries for lik, but since all variables
are non-negative by default this is not necessary.

The number of variables in the linear program is |A| + |L| + |H| and the number of
constraints |C| + |B| + 2 · |H|. Since mixed integer linear programming is NP-complete,
only small problem instances are solvable using this approach.

11.3. NP-Hardness of the Allocation

In this section, we will show that the allocation problem as defined above is NP-hard.
The general approach to proving NP-hardness is finding a suitable NP-complete problem
and reducing it to the problem at hand. The reduction has to have polynomial time
complexity. For our problem a reduction can be found from the strong NP-complete
problem 3-Partition. Strong NP-completeness indicates that a problem is hard to solve,
even for relatively small instances. The following definition is roughly taken from [101]:

8
8

8

7 107
87

9

7 8 9

7 7 10

8 8 8

Figure 11.2.: Example for the 3-Partition Problem.

3-Partition The 3-partition problem decides if a multiset of integers can be divided
into subsets of size 3, such that the sum of the elements of each subset is equal. Or
more formally, given a finite multiset A of 3m elements, a bound b ∈ N+ and a size
size : A → N+. Let the size of each element be such that b/4 < size(a) < b/2 and∑

a∈A size(a) = mb. Then the question is if A can be partitioned into m disjoint multisets
S1, S2, . . . , Sm such that for all Si, with 1 ≤ i ≤ m, the constraint

∑
a∈Si

size(a) = b is
satisfied.

Consider the example in figure 11.2, given a multiset A = {7, 7, 7, 8, 8, 8, 8, 9, 10}, with
|A| = 9 and

∑
a∈A = 72. Since A has 9 elements, m = 3 and b =

∑
a∈A /m = 24. All

elements a ∈ A lie within the required bounds 6 < a < 12. The 3-partition problem
decides if A can be partitioned into 3 multisets, each has the sum 24, which is possible
for the example.

Proof. To reduce 3-partition to the allocation problem, the following configuration can be
considered: let C be a set of 3m disjoint query classes, where each query class C ∈ C has
exactly one element f with size(f) = 1. Each query class has a weight b/4 < weight(C) <

11.4. Greedy Heuristic 113

A 7/72C1

B 7/72C2

C 7/72C3

D 8/72C4

E 8/72C5

F 8/72C6

G 8/72C7

H 9/72C8

I 10/72C9

E F G

B3

B1

A B I

B2

C D H

B1 B2 B3

24/72

24/72

24/72

Figure 11.3.: Cluster Allocation Solution to the 3-Partition Problem

b/2 and the overall weight is
∑

C∈C weight(C) = mb. This differs from the previous
definition; however, it is stricter and can be translated by normalizing the weight of all
query classes to 1. There are m homogeneous backends. Let allocation(C) = B be a
minimal allocation. Each backend has equal load of load(B) = b. The idea behind the
proof can be seen in figure 11.3.

If an optimal allocation B has the property:
∑

B∈B |fragments(B)| = 3m, then ∀B ∈
B : |fragments(B)| = 3 and each C ∈ C is assigned to exactly one backend. Since the
weight of each query class C is b/4 < weight(C) < b/2, each backend has to contain
more than 2 query classes. If no query class has to be replicated, each backend contains
3 query classes. Then C can be partitioned in m disjoint sets S1, . . . , Sm, with Si = {C ∈
C|assign(C,Bi) > 0}, such that

∑
C∈Si

weight(C) = b.

Such an allocation can only exist if the set of weights of the query classes can be
partitioned into m sets with an equal sum. Hence, the allocation algorithm generates a
solution for the 3-partition problem.

11.4. Greedy Heuristic

The allocation problem is similar to bin packing. Therefore, we use a first-fit strategy to
calculate the allocation in polynomial time [72]. Input of the algorithm is the classification
and an empty set of backends; output is the set of backends with allocated query classes.

The heuristic starts by sorting the query classes descending by their weight multiplied by
the size of the referenced fragments in line 1. This ensures that query classes that require
the most space will be allocated first. We define variables freeCapacity and restWeight
that store the remaining processing capacity for each backend and the rest of the workload
of each query class.

Then, for each query class the difference to the query classes already allocated on each
backend is calculated in the inner foreach loop starting in line 5. If the load of the backend
is already reached, the difference is ∞. If no query class is allocated to a backend, the

114 11. Allocation – Read Mostly

Input: Classification C, set of empty backends B
Output: Heuristic allocation B

1 C← sort C descending to weight(C)× size(C);
2 freeCapacity(B)← load(B);
3 restWeight(C)← weight(C);

4 foreach C ∈ C do
5 foreach B ∈ B do
6 if freeCapacity(B) = 0 then
7 difference(C,B)←∞;
8 else if freeCapacity(B) = load(B) then
9 difference(C,B)← 0;

10 else
11 difference(C,B)← size(C \ fragments(B));
12 end

13 end
14 while restWeight(C) > 0 do
15 B ← B ∈ B with difference(C,B) minimal;
16 fragments(B)← fragments(B) ∪ C;
17 if restWeight(C) ≤ freeCapacity(B) then
18 assign(C,B)← restWeight(C);
19 freeCapacity(B)← freeCapacity(B)− restWeight(C);
20 restWeight(C)← 0;

21 else
22 assign(C,B)← restWeight(C)− freeCapacity(B);
23 restWeight(C)← restWeight(C)− assign(C,B);
24 freeCapacity(B)← 0;

25 end
26 difference(C,B)←∞;

27 end

28 end

29 return B
Algorithm 11.1: Greedy Allocation Algorithm

difference is 0; or it is the size of the fragments that have to be additionally allocated.

The query class is assigned to the backend with the least difference in the while loop
starting in line 14. Two cases have to be distinguished: either the remaining workload of
the query class can be completely assigned to the backend; then the free capacity of the
backend is updated and the next query class can be processed. If the workload of query
class cannot be completely processed by the best fitting backend, then as much weight of
the query class as possible is placed on the backend and the rest weight of the query class

11.4. Greedy Heuristic 115

A

B1 30%

B C

B2 30%

C

B3 20% B4 20%

A B 20%C4

C 25%C3

B 25%C2

A 30%C1

A B

B1 30%

A B

B2 30%

B

B3 20% B4 20%

C A A

1GB

3GB

6GB

4GB

Figure 11.4.: Allocation of Different-Sized Tables on Heterogeneous Backends with (be-
low) and without (above) Consideration of the Size

is updated. This is repeated until all query classes are assigned.

Since the outer loop is repeated |C| times and the inner while loop at most |B| times,
the runtime of the algorithm lies in O(|C| · |B|).

Consider the example in figure 11.4. An allocation for 4 query classes with different-
sized relations to 4 backends is shown. In the upper allocation is optimal in terms of
number of replicas, while the lower allocation is also optimal in terms of required space.
Based on the lower example we will explain the function of the greedy algorithm.

Input of the allocation algorithm is the set of query classes C = C1, C2, C3, C4 and the
four empty backends B1, . . . , B4. Initially, the query classes are sorted according to the
product of their size and relative weight (line 1). For C3 the product is 6 · 0.25 = 1.5 and
for C4 (1 + 3) · 0.2 = 0.8. Result is the following descending list or sequence of the query
classes: C = (C3, C4, C2, C1). Then a list of the capacities of the backends is generated,
for the empty backends this is equal to their relative processing power:

freeCapacity = (B1 : 0.3, B2 : 0.3, B3 : 0.2, B4 : 0.2) (11.25)

An other auxiliary list contains the weight of each query class that has not yet been
allocated:

restWeight = (C1 : 0.3, C2 : 0.25, C3 : 0.25, C4 : 0.2) (11.26)

Then the main loop iterates over the sorted set of query classes (line 4). To find the
most suitable backend, the fragments that are referenced by the query class are compared
with the fragments that are already allocated to the backends (line 5).

For query class C3 the computed difference is 0 for all backends, since all backends
are empty. The query class is allocated to the first backend with minimal difference, so
in the given case B1. The backend now contains the fragment C, and the restWeight
and freeCapacity are updated. Since the query class can be fully allocated to backend
B1 the new restWeight is: restWeight = (C1 : 0.3, C2 : 0.25, C3 : 0, C4 : 0.2). The new

116 11. Allocation – Read Mostly

freeCapacity is: freeCapacity = (B1 : 0.05, B2 : 0.3, B3 : 0.2, B4 : 0.2). The allocation
matrix is now:

A B C

B1 0 0 1
B2 0 0 0
B3 0 0 0
B4 0 0 0

The load matrix is:

C1 C2 C3 C4 Overall

B1 0% 0% 25% 0% 25%
B2 0% 0% 0% 0% 0%
B3 0% 0% 0% 0% 0%
B4 0% 0% 0% 0% 0%

Since C1 was fully allocated, the next query class is processed. For C4 again the
differences are computed, for B1 the difference is 4, for the other backends it is 0. Hence,
the query class is allocated on backend B2 and restWeight and freeCapacity are updated:
restWeight = (C1 : 0.3, C2 : 0.25, C3 : 0, C4 : 0), freeCapacity = (B1 : 0.05, B2 : 0.1, B3 :
0.2, B4 : 0.2). The allocation matrix is now:

A B C

B1 0 0 1
B2 1 1 0
B3 0 0 0
B4 0 0 0

The load matrix is:

C1 C2 C3 C4 Overall

B1 0% 0% 25% 0% 25%
B2 0% 0% 0% 20% 20%
B3 0% 0% 0% 0% 0%
B4 0% 0% 0% 0% 0%

Again, C4 is fully allocated and the next query class is processed. The differences for C2

are: (C2, B1) : 3, (C2, B2) : 0, (C2, B3) : 0, (C2, B4) : 0. The query class C2 gets allocated
to the first backend with minimal difference B2 and restWeight and freeCapacity are
updated: restWeight = (C1 : 0.3, C2 : 0.15, C3 : 0, C4 : 0), freeCapacity = (B1 : 0.05, B2 :
0, B3 : 0.2, B4 : 0.2). Since the C2 is not fully allocated, it has to be allocated to another
backend. The difference to B2 is updated to ∞. The second backend with minimal
difference is B3. Again, restWeight and freeCapacity are updated: restWeight = (C1 :
0.3, C2 : 0, C3 : 0, C4 : 0), freeCapacity = (B1 : 0.05, B2 : 0, B3 : 0.05, B4 : 0.2). C2 is now
fully allocated and the last query class C1 can be processed. The allocation matrix is:

11.4. Greedy Heuristic 117

A B C

B1 0 0 1
B2 1 1 0
B3 0 1 0
B4 0 0 0

The load matrix is:

C1 C2 C3 C4 Overall

B1 0% 0% 25% 0% 25%
B2 0% 10% 0% 20% 30%
B3 0% 15% 0% 0% 15%
B4 0% 0% 0% 0% 0%

The differences for C1 are: (C1, B1) : 1, (C1, B2) : ∞, (C1, B3) : 1, (C1, B4) : 0. There-
fore C1 allocated B4 and restWeight and freeCapacity are updated: restWeight = (C1 :
0.2, C2 : 0, C3 : 0.0, C4 : 0), freeCapacity = (B1 : 0.05, B2 : 0, B3 : 0.05, B4 : 0). The differ-
ence to B4 is updated to ∞. C1 is then allocated to B1, the updates are: restWeight =
(C1 : 0.05, C2 : 0, C3 : 0.0, C4 : 0), freeCapacity = (B1 : 0, B2 : 0, B3 : 0.05, B4 : 0).
Finally, the rest of C2 is allocated to B2. Since all query classes are completely allocated
the algorithm stops. The allocation matrix is:

A B C

B1 1 0 1
B2 1 1 0
B3 1 1 0
B4 1 0 0

The final load matrix is:

C1 C2 C3 C4 Overall

B1 5% 0% 25% 0% 30%
B2 0% 10% 0% 20% 30%
B3 5% 15% 0% 0% 20%
B4 20% 0% 0% 0% 20%

As can be seen in relation to the optimal allocation in figure 11.4 this allocation is not
optimal. In general, the heuristic calculates good, but not optimal results in most cases
(this can also be seen in the evaluation in section 15.1). Consider the example in figure
11.5. Here, a database with three tables A, B, and C of equal size is allocated on three
backends with equal processing power. There are four query classes, where query class C1

references A, C2 references B, C3 references C, and C4 references A, B and C. The first
three have an equal share of 31% of the workload and query class C4 has only 7%. Due
to their larger workload, first query classes C1, C2, and C3 are allocated. Obviously, the

118 11. Allocation – Read Mostly

heuristic will place them on separate backends, since they reference disjoint data. When
C4 is allocated, it has to be placed on all backends, resulting in a full replication. It is
easy to see that this is not an optimal solution, as can be seen in figure 11.5. However,
the results of the greedy heuristic can be further optimized using meta heuristics.

A B

B2 B3

A B 7%C4

C 31%C3

B 31%C2

A 31%C1B2 B3

A B C

B1

A B C A B C

A B C

B1

B C C

Figure 11.5.: Heuristic (above) vs. Optimal (below) Allocation

11.5. Meta Heuristics

In general, the greedy heuristic computes a valid, but not an optimal solution. By altering
the heuristically found solution, it is possible to generate a better solution. Since the
search space is exponential, not all possible solutions can be tested. A common approach
is to generate valid mutations of the initial solution randomly. For the allocation, it is
possible to alter the allocation matrix A, while ensuring the validity of the allocation. To
control the number and order of the mutations a meta heuristic can be used. Many meta
heuristics have a similar approach:

Initialization An initial solution is generated randomly or deterministically.

Mutation A number of mutations is generated randomly.

Evaluation The mutations are evaluated according to a cost function.

Selection A new initial solution is selected from the mutations and the initial solution.

Termination After a predetermined number of iterations or a defined stopping condition
the best solution is returned.

The algorithms differ mostly in the way in which the mutations are selected. An
overview of different approaches can be found in [222]. For the allocation problem an
evolutionary programming approach was chosen. Evolutionary programming differs from
other evolutionary approaches, such as genetic algorithms and evolution strategies, since
it uses no recombination of solutions [39]. Since we also use local improvements the
algorithm can be classified as hybrid heuristic or memetic algorithm [158].

11.5. Meta Heuristics 119

11.5.1. Evolutionary Algorithm

Evolutionary algorithms use a set of solutions that store the current population. For each
iteration a new population P with a determined number of old solutions and mutations
is generated. After a fixed number of iterations or a stopping condition the best solution
is returned. A pseudo code formulation can be found in algorithm 11.2.

Input: Initial solution Sinit = (A,L), size of the population p
Output: Optimized solutions Smin

1 P← {Sinit} ;

2 for number of iterations do
3 P′ ← mutate(P, p);
4 P← select(P, 2

3 , best) ∪ select(P′, 1
3 ,best);

5 I← select(P, 1
3 , random);

6 P← P \ I;
7 foreach S ∈ I do
8 S ← improve(S);
9 end

10 P← P ∪ I;

11 end

12 Smin ← {S ∈ P|weight(S) = minS′∈P weight(S′)};
13 return Smin

Algorithm 11.2: Evolutionary strategy

The algorithm starts with the generation of the initial population in line 2. In general,
this can be a set of randomly generated allocations or simply a full replication. For a faster
convergence of the algorithm, we start with the solution of the greedy heuristic. In the
loop, in line 1, the evolutionary process is executed, the number of iterations determines
the runtime. Another common stopping criterion is to stop if for a certain number of
iterations no better solutions have been found. However, this makes the runtime of the
algorithm non-deterministic. The first step in the evolutionary approach is to mutate
the population to generate the offspring (line 2). In this step a new set of allocations is
generated by randomly altering the current population. As is common in evolutionary
programming the mutation is based on single parents instead of combining parents. The
exact procedure is described below in section 11.5.2. After that, the new population is
chosen (line 3). The strategy is a so-called (λ + µ) approach. This means that parents
and offspring are mixed for the new population, instead of only using the offspring. The
function select(X, y,Θ) choses a fraction y of the set X using the operator Θ. For the new
population, the best 2

3 of the old population and the best 1
3 of the offspring survive. In

contrast to a classic evolutionary program, the memetic algorithm now chooses randomly
1
3 of the new population that is improved using a local search (lines 4 - 9). The local
search methods can be found below in section 11.5.3. After a certain number of iterations

120 11. Allocation – Read Mostly

the best solutions, i.e. all solutions with minimal costs, are returned.

11.5.2. Mutation

To generate mutations, existing solutions are altered randomly to generate new solutions.
However, the generated allocations have to be valid in terms of the constraints defined
in section 11.1. As stated above, the allocation problem is similar to the bin packing
problem. Hence, a similar mutation strategy can be applied. Alvim et al. presented an
improvement strategy for bin packing, where two bins are chosen and the items contained
are redistributed to the bins [21]. This can also be applied to the allocation problem. From
an initial solution, two backends are randomly chosen and the allocated query classes are
redistributed to the backends. To generate random mutations the order in which the
query classes are allocated can be randomized. Consider the example in figure 11.5. In
the non-optimal solution, backends B1 and B2 have the following allocation:

B1 : 33.3% B2 : 33.3%

C1 : 31.0% C2 : 31.0%

C4 : 2.3% C4 : 2.3%

To redistribute the query classes, first the set of all query classes that are allocated to
the two backends is generated. It is {C1 : 31%, C2 : 31%, C4 : 6.6%}. This set is shuffled
and the query classes are allocated to the backends. For example, if the new order of
query classes is C2, C4, C1, then first query class C2 will be allocated, then query class C4

and finally query class C1. If multiple backends can hold the query class it will be picked
randomly, as long as both backends still have free capacity. The resulting allocation could
then be:

B1 : 33.3% B2 : 33.3%

C2 : 31.0% C4 : 4.6%

C1 : 2.3% C1 : 28.7%

First, C2 is fully allocated to B1, then C4 is fully allocated to B2 and finally the weight
of C1 has to be distributed onto both backends. In this example, the resulting solution
will have reduced replication compared to the initial solution since C4 which references
all tables is only allocated to a single backend.

11.5.3. Local Improvement

Besides using random mutations, the knowledge about the allocation procedure can also
be used to improve allocations deterministically. A well-known example of a local im-
provement is the 2-opt algorithm for the traveling salesman problem. It searches for
crossings in routes, which obviously lead to a longer route and reorganizes the route to
remove them. A similar idea can be applied on the allocation problem. One configuration
that obviously leads to a non optimal allocation is the following:

11.5. Meta Heuristics 121

B1 : 50% B2 : 50%

C1 : 30% C1 : 25%

C2 : 20% C2 : 25%

Here two backends contain - in general among other - two common query classes. Such
a configuration will not be generated by the greedy heuristic, but could be a result of
random permutations. If this is the case, the query class weights can be shifted, until at
least one of the backends contains only one of the two query classes. For the example
above, shifting the weight of C2 completely onto the second backend will lead to the
improved allocation:

B1 : 50% B2 : 50%

C1 : 50% C1 : 5%

C2 : 45%

The general formulation is the following. If an allocation contains two backends B1 and
B2 with more than one common query class,

|{C ∈ C|assign(C,B1) > 0} ∩ {C ∈ C|assign(C,B2) > 0}| ≥ 2 (11.27)

then the weights of the common query classes can be shifted such that the backends have
at most one query class in common. This can be done by reassigning the common query
classes in a first fit manner. Since only common query classes are reassigned, the size of
the fragments and the load of the backends are unimportant.

This optimization can be applied to a given allocation in O(|C|2 × |B|), since for each
combination of query classes all backends have to be checked. Another configuration that
can be deterministically improved is the following:

B1 : 50% B2 : 50%

C1{A} : 45% C2{B} : 45%

C3{A,B,C} : 5% C3{A,B,C} : 5%

Here two backends contain - again, in general among others - the same query class C3

and another query class C1 or C2 that contain a subset of the relations of the replicated
query class, with C1 ∪ C2 ⊂ C3. If the weight of C3 is less than or equal to the weight
of C1 or C2, C1 or C2 can be replicated instead of C3, resulting in a reduced replication
degree and reduced size of the allocation:

B1 : 50% B2 : 50%

C1{A} : 45% C2{B} : 40%

C2{B} : 5% C3{A,B,C} : 10%

A generic formulation is as follows. If two backends B1, B2 contain a common query
class C1 and backend B1 contains an other query class C2 which references a subset of

122 11. Allocation – Read Mostly

the fragments in C1, i.e. C2 ⊂ C1, and which has a higher load on backend B1 than C1

on backend B2, then C2 can be replicated instead of C1. More formally, if the following
constraints are satisfied:

C1 ∈ {C ∈ C|assign(C,B1) > 0 ∧ assign(C,B2) > 0} (11.28)

C2 ∈ {C ∈ C|assign(C,B1) > 0 ∧ C ⊂ C1} (11.29)

assign(B1, C2) ≥ assign(B2, C1) (11.30)

C2 can be replicated on both backends and C1 can be assigned solely to backend B1.
Again this optimization is not influenced by the processing power of the backends and the
size of the data fragments. It lies in O(|C|3 × |B|), since for every query class, two query
classes have to be found which are a subset of the query class. For these three query
classes all backends have to be checked. Using these two local improvement strategies,
solutions can be improved deterministically.

11.6. Discussion

In this section we have presented an automatic allocation strategy for distributed database
systems which only process requests. After a formal definition of the allocation problem we
have shown that it is NP-complete. Nevertheless, for small instances an optimal solution
can be computed using linear programming. Therefore, we have given an additional
representation in form of a linear optimization problem.

For real problem sizes the optimal solution is not feasible, hence, we have provided
a greedy algorithm. To improve the result of the greedy heuristic a meta heuristic was
presented. Since some of the deficiencies of the greedy solution have a simple pattern we
chose a memetic algorithm that uses deterministic improvements in combination to the
randomized approach.

The allocation strategy may also be sensible for database systems with a very limited
number of updates. However, for large numbers of updates it will generate a suboptimal
data layout. Therefore we present an update aware definition in the next section.

12. Considering Updates

If the workload contains a fair number of update requests, the approach presented in
chapter 12 will generate a suboptimal allocation. This is because the algorithm ignores
the fact that updates have to be executed on all backends that host referenced data.
Therefore, in this chapter the formal definition from above is extended to consider updates.
As for the read only allocation, if a query class is allocated to a backend, all its referenced
data has to be allocated completely to this backend. Furthermore, all update query classes
that reference the same data as the allocated query classes also have to be allocated to
the backend.

12.1. Formal Definition - Update Considering

As explained above in chapter 10, the basis of the allocation for workloads with updates is
a classification that distinguishes between update and read requests. The formal definition
of the allocation is similar to the one in section 11.1, yet some additional constraints have
to be considered. In this section only new or altered definitions will be specified. Input
for the allocation are two sets of query classes, update query classes CU and read query
classes CQ, where C = CQ ∪ CU . As mentioned in section 10, in general C is a multiset,
but to simplify the equations below, we will treat it like a regular set. For an easier
identification of read and update query classes, we will denote read query classes with Q
and update query classes with U in the following.

allocation : P(P(F))× P(F))→ PP(F)×[0,1] (12.1)

allocation(CQ, CU) = B, ∀C ∈ C, ∃B ∈ B : f ∈ C ⇒ f ∈ fragments(B) (12.2)

Again, the allocation definition does not ensure that the load is balanced. As shown in
the introductory example in section 9, in the case of read and write requests a balanced
load cannot be guaranteed in general for an optimal allocation. The share of the workload
each backend can process is defined as above in equation 11.11. To define where query
classes are allocated, the function assign, as defined in equations 11.8 and 11.9, is used.
An allocation that considers updates is valid if all query classes are allocated and if every
update query class is allocated to all backends that store its referenced data. The following
constraints must be satisfied:

∀C ∈ CQ :
∑
B∈B

assign(C,B) = weight(C) (12.3)

∀C ∈ CU ,∀B ∈ B, C ∩ fragments(B) 6= ∅ : assign(C,B) = weight(C) (12.4)

123

124 12. Considering Updates

∀C ∈ CU :
∑
B∈B

assign(C,B) ≥ weight(C) (12.5)

If the first constraint is satisfied, all read queries are completely assigned. The second
constraint guarantees that the update queries are assigned to every backend that contains
referenced data. If the third constraint is satisfied, every write query is assigned to at
least one backend. These constraints ensure that the allocation is valid. To ensure that
the backends are as balanced as possible, first the function updates and updateWeight
are defined:

updates : C → P(CU) (12.6)

updates(C) = {CU ∈ CU |C ∩ CU 6= ∅} (12.7)

updateWeight : B × C → [0, 1] (12.8)

updateWeight(B,C) =
∑

CU∈updates(C)

assign(CU , B) (12.9)

The updates function returns the set of update query classes that reference related data for
a query class. The output of the updateWeights function is the sum of weights of update
query classes that are already allocated to backend B, which have an overlapping data
set to read query class C. The function can be used to calculate the additional update
load a read query class will cause on a backend. To simplify the following equations the
sum of assigned workloads for a backend is defined as its assignedLoad:

assignedLoad : B →]0,max
B∈B

load(B) +
∑
C∈CU

weight(C)] (12.10)

assignedLoad(B) =
∑
C∈C

assign(C,B) (12.11)

In a heterogeneous environment the maximum load of each backend has to be considered.
The sum of assigned workloads for an allocation considering updates with replicated
update query classes is greater than 1. Hence, the maximum load for each backend must
be scaled:

scaledLoad : B →]0,max
B∈B

load(B) +
∑
C∈CU

weight(C)] (12.12)

scaledLoad(B) = load(B) ∗

{
scale, if scale = maxB′∈B

assignedLoad(B′)
load(B′) > 1

1, else
(12.13)

For an optimal allocation in the sense of throughput, the scale must be minimized. This
can be ensured by the following constraint:

∀B,B′ ∈ B, B 6= B′,@C ∈ C, assign(C,B) > 0 :

scaledLoad(B)− assignedLoad(B) ≥
scaledLoad(B)− assignedLoad(B′)−
updateWeigth(B,CQ) + updateWeigth(B′, CQ)

(12.14)

12.2. Maximum Speedup 125

This constraint ensures that no pair of backends differ in weight so much that a query
class can be shifted between them to balance the load. This does not guarantee a fully-
balanced load, it only guarantees that the difference is as small as possible. The con-
straint is stricter, than it has to be for an optimized throughput. It would be enough to
ensure that no query class can be shifted away from a backend B with scaledLoad(B) =
assignedLoad(B).

12.2. Maximum Speedup

As stated above, for a read only workload the theoretical speedup is always linear. In
section 3.4, we presented methods to estimate the speedup for a fully replicated system.
In this section, we will extend the formulation for partially replicated allocations. The
basis is again the general formulation of Amdahl’s law:

speedup =
1

serial + parallel
#processors

(12.15)

Serial is the serial fraction of a program, parallel the parallel fraction and #processors
the number of processors the parallelized program is run on, the maximum speedup can
be estimated by using the following equation:

speedupmax ≤
1

serial
(12.16)

To apply this to the workload of a CDBS, the serial and parallel fractions of a query
workload have to be identified. Of course, the read load can be parallelized completely.
The update load can also be parallelized, by allocating unrelated classes to different
backends. But single update queries have to be processed completely by every backend
they are allocated to. Hence, the maximum speedup of a workload is bound by:

speedupmax ≤
1

maxC∈C
∑

CU∈updates(C) weight(CU)
(12.17)

To calculate the speedup of a specified allocation, the serial part of the workload has to
be specified. Since all query requests and update requests are processed in parallel, the
serial part is in general always 0. However, if an update class is allocated to two backends,
the updates that are part of the class have to be executed on both backends. Hence, the
workload that the two backends can process will be reduced by the weight of the update
class. To allow all query classes to be processed, the overall workload will be increased
by at least the weight of the update class. Accordingly, the workload each backend has
to process will be increased. This corresponds to the scaledLoad as defined above. The
scaledLoad of a backend is the load plus the backend’s share of the additional weight
of the replicated update classes. In a homogeneous environment the load is 1

|B| which

corresponds to 1
#processors . The scaledLoad can is defined as load ∗ scale, where scale can

126 12. Considering Updates

A

B1 25%

A B

B2 25%

B

B3 25%

C

B4 25%

A B 16%Q4

C 20%Q3

B 20%Q2

A 24%Q1

C 6%U3

B 10%U2

A 4%U1

B1 30%

A B

B2 30%

A

B3 20% B4 20%

B C C

Figure 12.1.: Optimal Update Aware Allocations on Homogeneous Backends (above) and
Heterogeneous Backends (below)

be interpreted as the increased workload. Using this information equation 3.14 can be
modified to:

speeduphom =
1

serial + parallel
#processors

=
1

0 + scale
#processors

=
1

scaledLoad
(12.18)

In a heterogeneous environment the scaledLoad is not equal for all backends. To get a
meaningful measurement for the speedup, the average throughput per backend must be
considered. Since the overall load is 1, the average load is again 1

|B| . Using the scale
factor, the speedup in the heterogeneous environment can be defined as:

speedup =
1

scale
|B|

=
|B|
scale

(12.19)

To express the speedup in proportion to a certain backend, the computed speedup can be
multiplied by the relative performance of the backend. The relative performance can be
calculated by dividing the number of backends by the load of a backend:

speeduphet(B) =
1

scale
|B|
· |B|

load(B)
=

1

scale · load(B)
(12.20)

An allocation with maximum speedup can therefore be found by minimizing the max-
imum scaledLoad, or more generally the scale of an allocation.

Consider the allocations shown in figure 12.1. For the upper, homogeneous allocation
the load matrix is as follows:

Q1 Q2 Q3 Q4 U1 U2 U3 Overall

B1 24% 0% 0% 0% 4% 0% 0% 28%
B2 0% 0% 0% 16% 4% 10% 0% 30%
B3 0% 20% 0% 0% 0% 10% 0% 30%
B4 0% 0% 20% 0% 0% 0% 6% 26%

12.2. Maximum Speedup 127

The scaledLoad of the backends is 30%, hence the scale is scaledLoad(Bi)
load(Bi)

= 30%
25% = 1.2.

The speedup can be calculated using either the scale factor or the scaledLoad.

speeduphom =
1

scaledLoad
=

1

30%
= 3.3̄ (12.21)

For the second, heterogeneous allocation the load matrix is:

Q1 Q2 Q3 Q4 U1 U2 U3 Overall

B1 0% 18% 2% 0% 0% 10% 6% 36%
B2 4% 2% 0% 16% 4% 10% 0% 36%
B3 20% 0% 0% 0% 4% 0% 0% 24%
B4 0% 0% 18% 0% 0% 0% 6% 24%

The scale of this allocation is can be calculated with every scaledLoad:

scaledLoad(B1)

load(B1)
=

scaledLoad(B3)

load(B3)
=

36%

30%
= 1.2 (12.22)

The speedup can be calculated compared to the average speed of the backends:

speedup =
|B|
scale

=
4

1.2
= 3.3̄ (12.23)

It can also be calculated in comparison to one of the backends. Since the allocation has
two kinds of backends, we only show this for B1 and B3:

speeduphet(B1) =
1

scale · load(B1)
=

1

1.2 · 0.3
= 2.7̄ (12.24)

speeduphet(B3) =
1

scale · load(B3)
=

1

1.2 · 0.2
= 4.16̄ (12.25)

In the current definition, updates are considered to have an equal weight on all backends.
This is correct for a read-once/write-all strategy for update propagation, i.e. updates are
sent to all backends. In more efficient approaches, such as primary copy, the cost of an
update will differ between the primary copy and the slaves. The formulation above can
be extended to include this fact.

To ensure minimality in the number fragments equation 11.13 must be minimized, for
minimal space requirements equation 11.15 must be minimized. If minimality is required,
the read only allocation is a special case of this allocation. For this case, the update
considering allocation is NP-hard as well. If minimality is not required, the allocation
problem is still NP-hard. This is shown in the next section.

128 12. Considering Updates

12.3. Proof of NP-Hardness

As stated above, if space minimality of the allocation is required, the update consider-
ing allocation is NP-hard, since the read only allocation is a special case of the update
allocation. However, the allocation is still NP-hard even if the space minimality is not
required. This can be shown by reducing bin packing to the allocation problem.

1

4 4

2

3

1

2

2
4

4

2

2

1
1

3

2

Figure 12.2.: Example of the Bin-Packing Problem

Bin Packing The bin packing problem decides if a set of weighted elements can be
distributed amongst a set of bins with limited capacity (see figure 12.2). To give a more
formal definition: given a number n ∈ N+ of bins with capacity b ∈ N+ and a set A of
elements a with size size : A→ N+, where ∀a ∈ A : size(a) < b. Then the question is if A
can be partitioned into n disjoint sets S1, S2, . . . , Sn such that for all Si, with 1 ≤ i ≤ n,
the constraint

∑
a∈Si

size(a) ≤ b is satisfied? This problem is NP-complete [28]. The
optimization problem to find the minimum needed b is NP-hard.

Proof. To reduce bin packing to the allocation problem, the following configuration can
be considered: let there be n homogeneous backends with equal load, with ∀B ∈ B :
load(B) ≤ b. Let C = CU be a set of disjoint update query classes. Each query class has
a weight weight(C) < b. Let allocation(C,m) = B be an optimal allocation, where the
maximum load is scale ∗ load(B).

In an optimal allocation B all query classes are allocated at least once. Furthermore,
the maximum load of the backends is minimized. Since all query classes are update
classes, they have to be allocated completely on the backends. Since all query classes
reference disjoint data, they are independent and can be allocated independently. An
optimal allocation will therefore not contain replicated query classes. Furthermore, an
optimal allocation will have a minimal factor scale. If scale is less or equal to b, the
optimal allocation is a solution to the bin packing problem.

12.4. Optimal Allocation

To compute an optimal allocation again a matrix representation is used. The allocation
matrix A ∈ {0, 1}|B|×|F | shows which data fragment is allocated to which backend. For
the example in figure 9.2 the allocation matrix is:

12.4. Optimal Allocation 129

A =


A B C

B1 1 0 0
B2 1 1 0
B3 0 1 0
B4 0 0 1

 (12.26)

The general definition is the same as to the read only case in equation 11.17. To
express the load distribution of the query classes two distribution matrices are used,
LQ ∈ [0, 1]|B|×|CQ| and LU ∈ [0, 1]|B|×|CU |. For the example in figure 9.2, these are:

LQ =


Q1 Q2 Q3 Q4

B1 0.24 0 0 0
B2 0.05 0 0 0.16
B3 0 0.20 0 0
B4 0 0 0.20 0

 (12.27)

LU =


U1 U2 U3

B1 0.04 0 0
B2 0.04 0.10 0
B3 0 0.10 0
B4 0 0 0.06

 (12.28)

The general definitions of these matrices are:

LQ :

{
{1, .., |B|} × {1, .., |CQ|} → [0, 1]

(i, k) 7→ lik
(12.29)

LU :

{
{1, .., |B|} × {1, .., |CU |} → [0, 1]

(i, k) 7→ l′ik
(12.30)

To ensure that all query classes are allocated the constraints 12.3 and 12.5 are satisfied.
They can be formulated straightforward, as follows:

∀Ck ∈ CQ, lik ∈ LQ :

|B|∑
i=1

lik = weight(Ck) (12.31)

∀Ck ∈ CU , l′ik ∈ LU :

|B|∑
i=1

l′ik ≥ weight(Ck) (12.32)

Again helper variables are needed to ensure that each update class is assigned to all
backends, where a query class with the same data references is allocated. Analogous to
equation 11.23, two matrices of helper variables are defined HQ for read query classes and
HU for update classes:

130 12. Considering Updates

HQ :

{
{1, .., |B|} × {1, .., |CQ|} → {0, 1}

(i, k) 7→ hik
, hik =

{
1, if lik > 0

0, else
(12.33)

Obviously, an update helper variable h′ik must also be 1 if a read query class m is
allocated to backend i that references the same data fragment as update query class k:

HU :

{
{1, .., |B|} × {1, .., |CU |} → {0, 1}

(i, k) 7→ h′ik

h′ik =


1, if l′ik > 0

1, if ∃lim ∈ LQ : lim > 0 and Ck ∈ updates(Cm)

0, else

(12.34)

Using the helper variables, constraint 12.4 can be formulated as follows:

∀Ck ∈ CU , l′ik ∈ LU : l′ik = h′ik ∗ weight(Ck) (12.35)

Again the load constraints of the backends must be considered. According to equation
12.13, this can be expressed using the factor scale:

∀Bi ∈ B, lik ∈ LQ, l
′
ik ∈ LU :

|CQ|∑
k=1

lik +

|CU |∑
m=1

l′im ≤ scale ∗ load(Bi) (12.36)

Finally, all fragments which are referenced by a read query class have to be allocated
to the backends where the query class is allocated:

∀Ck ∈ CQ, ∀Bi ∈ B :
∑

j:fj∈Ck

aij ≥ |Ck| ∗ hik (12.37)

Obviously, the same must be true for the fragments referenced by update query classes:

∀Ck ∈ CU ,∀Bi ∈ B :
∑

j:fj∈Ck

aij ≥ |Ck| ∗ h′ik (12.38)

An optimal allocation, in the sense of throughput, can be found by minimizing the
factor scale. The definitions above can easily be translated into a linear program. In
listing 12.1 a simplified instance of the example above in lp solve syntax can be seen.
The objective of the minimization is the scale, since all backends can process equal load,
scale is the maximum load of a backend. In general, this would have to be multiplied
by the relative load of each backend. Then the weight restrictions of the query classes
and the update classes are introduced. This guarantees that each query class is fully
allocated and that each update class is allocated at least once. Using the helper variables,
the connection between query and update classes is established. Finally, it is guaranteed
that all update classes are allocated completely to the relevant backends. However, the

12.4. Optimal Allocation 131

Listing 12.1: Linear Program for an Update
Considering Allocation

/∗ Minimization problem ∗/
min : s c a l e ;

/∗ s c a l e i s maximum ∗/
/∗ weigh t o f the backends ∗/
l q 1 1 + l q 1 2 + l q 1 3 +
l q 1 4 + lu 11 + lu 12 +
lu 13 <= s c a l e ;
l q 2 1 + l q 2 2 + l q 2 3 +
l q 2 4 + lu 21 + lu 22 +
lu 23 <= s c a l e ;
l q 3 1 + l q 3 2 + l q 3 3 +
l q 3 4 + lu 31 + lu 32 +
lu 33 <= s c a l e ;
l q 4 1 + l q 4 2 + l q 4 3 +
l q 4 4 + lu 41 + lu 42 +
lu 43 <= s c a l e ;

/∗ Al l o ca t i on o f the ∗/
/∗ query c l a s s e s ∗/
l q 1 1 + l q 2 1 +
l q 3 1 + l q 4 1 = 0 . 2 4 ;
l q 1 2 + l q 2 2 +
l q 3 2 + l q 4 2 = 0 . 2 0 ;
l q 1 3 + l q 2 3 +
l q 3 3 + l q 4 3 = 0 . 2 0 ;
l q 1 4 + l q 2 4 +
l q 3 4 + l q 4 4 = 0 . 1 6 ;

/∗ Al l o ca t i on o f the ∗/
/∗ update c l a s s e s ∗/
l u 11 + lu 21 +
lu 31 + lu 41 >= 0 . 0 4 ;
l u 12 + lu 22 +
lu 32 + lu 42 >= 0 . 1 0 ;
l u 13 + lu 23 +
lu 33 + lu 43 >= 0 . 0 6 ;

/∗ I f a query c l a s s i s ∗/
/∗ a l l o c a t e d , the ∗/
/∗ accord ing update ∗/
/∗ c l a s s e s must be ∗/
/∗ a l l o c a t e d ∗/

hu 11 − l q 1 1 >= 0 ;
hu 21 − l q 2 1 >= 0 ;
hu 31 − l q 3 1 >= 0 ;
hu 41 − l q 4 1 >= 0 ;

hu 12 − l q 1 2 >= 0 ;
hu 22 − l q 2 2 >= 0 ;
hu 32 − l q 3 2 >= 0 ;
hu 42 − l q 4 2 >= 0 ;

hu 13 − l q 1 3 >= 0 ;
hu 23 − l q 2 3 >= 0 ;
hu 33 − l q 3 3 >= 0 ;
hu 43 − l q 4 3 >= 0 ;

hu 11 − l q 1 4 >= 0 ;
hu 12 − l q 1 4 >= 0 ;
hu 21 − l q 2 4 >= 0 ;
hu 22 − l q 2 4 >= 0 ;
hu 31 − l q 3 4 >= 0 ;
hu 32 − l q 3 4 >= 0 ;
hu 41 − l q 4 4 >= 0 ;
hu 42 − l q 4 4 >= 0 ;

/∗ Update c l a s s e s must be ∗/
/∗ a l l o c a t e d comp l e t e l y ∗/
l u 11 − 0 .04 hu 11 = 0 ;
lu 21 − 0 .04 hu 21 = 0 ;
lu 31 − 0 .04 hu 31 = 0 ;
lu 41 − 0 .04 hu 41 = 0 ;

lu 12 − 0 .10 hu 12 = 0 ;
lu 22 − 0 .10 hu 22 = 0 ;
lu 32 − 0 .10 hu 32 = 0 ;
lu 42 − 0 .10 hu 42 = 0 ;

lu 13 − 0 .06 hu 13 = 0 ;
lu 23 − 0 .06 hu 23 = 0 ;
lu 33 − 0 .06 hu 33 = 0 ;
lu 43 − 0 .06 hu 43 = 0 ;

/∗ hu i k are b inary ∗/
bin hu 11 , hu 12 , hu 13 ,

hu 21 , hu 22 , hu 23 ,
hu 31 , hu 32 , hu 33 ,
hu 41 , hu 42 , hu 43 ;

132 12. Considering Updates

Listing 12.2: Linear Pro-
gram with
Known Scale
Factor

/∗ Minimization problem ∗/
min : a 11 + a 12 + a 13

+ a 21 + a 22 + a 23
+ a 31 + a 32 + a 33
+ a 41 + a 42 + a 43 ;

/∗ Maximum load o f the ∗/
/∗ backends i s s c a l e =0.3 ∗/
l q 1 1 + l q 1 2 + l q 1 3 +
l q 1 4 + lu 11 + lu 12 +
Lu 13 <= 0 . 3 ;
l q 2 1 + l q 2 2 + l q 2 3 +
l q 2 4 + lu 21 + lu 22 +
lu 23 <= 0 . 3 ;
l q 3 1 + l q 3 2 + l q 3 3 +
l q 3 4 + lu 31 + lu 32 +
lu 33 <= 0 . 3 ;
l q 4 1 + l q 4 2 + l q 4 3 +
l q 4 4 + lu 41 + lu 42 +
lu 43 <= 0 . 3 ;

/∗ Al l oca t i on o f the ∗/
/∗ query c l a s s e s ∗/
l q 1 1 + l q 2 1 +
l q 3 1 + l q 4 1 = 0 . 2 4 ;
l q 1 2 + l q 2 2 +
l q 3 2 + l q 4 2 = 0 . 2 0 ;
l q 1 3 + l q 2 3 +
l q 3 3 + l q 4 3 = 0 . 2 0 ;
l q 1 4 + l q 2 4 +
l q 3 4 + l q 4 4 = 0 . 1 6 ;

/∗ Al l oca t i on o f the ∗/
/∗ update c l a s s e s ∗/
l u 11 + lu 21 +
lu 31 + lu 41 >= 0 . 0 4 ;
l u 12 + lu 22 +
lu 32 + lu 42 >= 0 . 1 0 ;
l u 13 + lu 23 +
lu 33 + lu 43 >= 0 . 0 6 ;

/∗ I f a query c l a s s i s ∗/
/∗ a l l o ca t ed , the ∗/
/∗ according update ∗/
/∗ c l a s s e s must be ∗/
/∗ a l l o c a t e d ∗/
hu 11 − l q 1 1 >= 0 ;
hu 21 − l q 2 1 >= 0 ;
hu 31 − l q 3 1 >= 0 ;
hu 41 − l q 4 1 >= 0 ;

hu 12 − l q 1 2 >= 0 ;

hu 22 − l q 2 2 >= 0 ;
hu 32 − l q 3 2 >= 0 ;
hu 42 − l q 4 2 >= 0 ;

hu 13 − l q 1 3 >= 0 ;
hu 23 − l q 2 3 >= 0 ;
hu 33 − l q 3 3 >= 0 ;
hu 43 − l q 4 3 >= 0 ;

hu 11 − l q 1 4 >= 0 ;
hu 12 − l q 1 4 >= 0 ;
hu 21 − l q 2 4 >= 0 ;
hu 22 − l q 2 4 >= 0 ;
hu 31 − l q 3 4 >= 0 ;
hu 32 − l q 3 4 >= 0 ;
hu 41 − l q 4 4 >= 0 ;
hu 42 − l q 4 4 >= 0 ;

/∗ Query c l a s s e s must ∗/
/∗ be a l l o c a t e d on the ∗/
/∗ according backend ∗/
hq 11 − l q 1 1 >= 0 ;
hq 12 − l q 1 2 >= 0 ;
hq 13 − l q 1 3 >= 0 ;
hq 14 − l q 1 4 >= 0 ;

hq 21 − l q 2 1 >= 0 ;
hq 22 − l q 2 2 >= 0 ;
hq 23 − l q 2 3 >= 0 ;
hq 24 − l q 2 4 >= 0 ;

hq 31 − l q 3 1 >= 0 ;
hq 32 − l q 3 2 >= 0 ;
hq 33 − l q 3 3 >= 0 ;
hq 34 − l q 3 4 >= 0 ;

hq 41 − l q 4 1 >= 0 ;
hq 42 − l q 4 2 >= 0 ;
hq 43 − l q 4 3 >= 0 ;
hq 44 − l q 4 4 >= 0 ;

/∗ Update c l a s s e s ∗/
/∗ must be a l l o c a t e d ∗/
/∗ comp le te l y ∗/
l u 11 − 0 .04 hu 11 = 0 ;
lu 21 − 0 .04 hu 21 = 0 ;
lu 31 − 0 .04 hu 31 = 0 ;
lu 41 − 0 .04 hu 41 = 0 ;

lu 12 − 0 .10 hu 12 = 0 ;
lu 22 − 0 .10 hu 22 = 0 ;
lu 32 − 0 .10 hu 32 = 0 ;
lu 42 − 0 .10 hu 42 = 0 ;

lu 13 − 0 .06 hu 13 = 0 ;
lu 23 − 0 .06 hu 23 = 0 ;
lu 33 − 0 .06 hu 33 = 0 ;
lu 43 − 0 .06 hu 43 = 0 ;

/∗ Al l fragments o f a ∗/
/∗ query c l a s s must be ∗/
/∗ a l l o c a t e d on the ∗/
/∗ according backends ∗/
a 11 − hq 11 >= 0 ;
a 21 − hq 21 >= 0 ;
a 31 − hq 31 >= 0 ;
a 41 − hq 41 >= 0 ;

a 12 − hq 12 >= 0 ;
a 22 − hq 22 >= 0 ;
a 32 − hq 32 >= 0 ;
a 42 − hq 42 >= 0 ;

a 13 − hq 13 >= 0 ;
a 23 − hq 23 >= 0 ;
a 33 − hq 33 >= 0 ;
a 43 − hq 43 >= 0 ;

a 11 + a 12 − 2 hq 14 >= 0 ;
a 21 + a 22 − 2 hq 24 >= 0 ;
a 31 + a 32 − 2 hq 34 >= 0 ;
a 41 + a 42 − 2 hq 44 >= 0 ;

a 11 − hu 11 >= 0 ;
a 21 − hu 21 >= 0 ;
a 31 − hu 31 >= 0 ;
a 41 − hu 41 >= 0 ;

a 12 − hu 12 >= 0 ;
a 22 − hu 22 >= 0 ;
a 32 − hu 32 >= 0 ;
a 42 − hu 42 >= 0 ;

a 13 − hu 13 >= 0 ;
a 23 − hu 23 >= 0 ;
a 33 − hu 33 >= 0 ;
a 43 − hu 43 >= 0 ;

/∗ hu ik , a i j ∗/
/∗ are b inary ∗/
bin hq 11 , hq 12 ,

hq 13 , hq 14 ,
hq 21 , hq 22 ,
hq 23 , hq 24 ,
hq 31 , hq 32 ,
hq 33 , hq 34 ,
hq 41 , hq 42 ,
hq 43 , hq 44 ,
hu 11 , hu 12 , hu 13 ,
hu 21 , hu 22 , hu 23 ,
hu 31 , hu 32 , hu 33 ,
hu 41 , hu 42 , hu 43 ,
a 11 , a 12 , a 13 , a 14 ,
a 21 , a 22 , a 23 , a 24 ,
a 31 , a 32 , a 33 , a 34 ,
a 41 , a 42 , a 43 , a 44 ;

12.5. Greedy Heuristic 133

resulting allocation will not be minimal in space requirements. For the example in fig-
ure 9.2, update class U1 can additionally be allocated to backend B4 and the theoretic
throughput will still be optimal. In order to calculate a solution which is also optimal in
space requirements, a second linear program is needed.

Using the first linear program, the optimal scale factor is calculated. In the example,
the result is scale = 0.3. This factor is used in listing 12.2 to calculate an optimal
allocation with minimal space requirements. The example is again simplified, in order
to increase the readability. Therefore, the optimization goal is the number of allocated
fragments and the size of the fragments is omitted.

12.5. Greedy Heuristic

The update considering allocation is NP-hard and hence not solvable for realistic problem
sizes, therefore a heuristic is needed. The update considering heuristic is more complex
than the heuristic shown in section 11.4. Since the final load of a backend cannot be
calculated in advance, it has to be recalculated after every allocation of a query class.
The complete algorithm can be seen in algorithm 12.1.

The heuristic starts by calculating the set C∗:

C∗ = CQ ∪ {CU ∈ CU |@ CQ ∈ CQ : CU ∩ CQ 6= ∅} (12.39)

It is the set of query classes that have to be assigned explicitly. This includes all members
of CQ as well as the members of CU that reference no data referenced by a read query. The
members of C∗ are sorted in descending order according to the weight they will generate
on the backend, this includes the weight of update query classes with overlapping data.
The result is stored in the sequence C in line 2. Then auxiliary variables for the current
load of a backend, the scaled maximum load of a backend and the unassigned weight of
a query class are introduced in lines 3 to 5.

For each query class in C the weight that has to be assigned is stored, this is done in
the while loop starting in line 6. The query class which will produce the most weight on
a backend is allocated first. If all backends are already at their maximum capacity their
relative load is scaled. The difference to all backends is calculated in the foreach loop
starting in line 11. It is the size of the additionally allocated data fragments or 0 if the
backend is empty or ∞ if the backend is full.

Then the query class is allocated to the backend with the least difference (lines 20 to
39). If the current query class is an update query class, the weight of the query class and
the weight of its additional updates are added to the current load of the backend. The
weight of the query class is set to 0, since further allocation of an update query class will
result in less throughput. If the current load of the backend is larger than its scaled load,
scaledLoad is adapted. We omitted the adaption of the scaled load of the other backends
for the sake of brevity; this is done according to equation 12.13.

When the query class is a read query class, the maximum load of the backend has to
be scaled if the backend is already full or overloaded with the updates in question. It is

134 12. Considering Updates

Input: Classification C, set of empty backends B
Output: Heuristic allocation B

1 C∗ ← CQ ∪ {CU ∈ CU |@ CQ ∈ CQ : CU ∩ CQ 6= ∅};

2 C← sort C ∈ C∗ descending to weight(C) +
∑

CU∈CU

 0, C = CU

weight(CU), if C ∩ CU 6= ∅
0, else

;

3 currentLoad(B)← 0;
4 scaledLoad(B)← load(B);
5 restWeight(C)← weight(C);

6 while C ∈ C do
7 if all backends are full then
8 foreach B ∈ B do
9 scaledLoad(B)← currentLoad(B) + load(B) · weight(C);

10 end

11 foreach B ∈ B do
12 if currentLoad(B) = scaledLoad(B) then
13 difference(C,B)←∞;
14 else if currentLoad(B) = 0 then
15 difference(C,B)← 0;
16 else
17 difference(C,B)← size((C ∪ updates(C)) \ fragments(B));
18 end

19 end
20 B ← B ∈ B with difference(C,B) minimal;
21 fragments(B)← fragments(B) ∪ C ∪ updates(C);
22 currentLoad(B)← currentLoad(B) + weight(updates(C))− updateWeight(B,C);
23 if C ∈ CU then
24 if currentLoad(B) > scaledLoad(B) then
25 scaledLoad(B)← currentLoad(B);
26 end
27 C← C \ {C};
28 else
29 if currentLoad(B) ≥ scaledLoad(B) then
30 scaledLoad(B)← currentLoad(B) + load(B) · weight(C);
31 end
32 if restWeight(C) > scaledLoad(B)− currentLoad(B) then
33 restWeight(C)← restWeight(C)− (scaledLoad(B)− currentLoad(B));
34 currentLoad(B)← scaledLoad(B);

35 else
36 currentLoad(B)← currentLoad(B) + restWeight(C);
37 C← C \ {C};
38 end

39 end
40 sort(C) descending to restWeight;

41 end

42 return B
Algorithm 12.1: Greedy Update Considering Allocation Algorithm

12.5. Greedy Heuristic 135

increased, such that the backend can hold a share matching its relative load. Then two
cases have to be considered: if the complete remaining weight of the query class does
not fit on the backend, as much weight of the query class as possible is assigned to the
backend and the query class has to be assigned to further backends. If it does fit on the
backend, the remaining weight of query class is added to the backend completely and the
query class is processed completely.

At the end of the while loop (line 40) the sequence of query classes is sorted again as in
line 2. When all query classes have been completely allocated the algorithm terminates.

Consider the heterogeneous allocation example in figure 12.1. It contains 7 query
classes: 4 reads and 3 updates. The backends have different processing powers, while B1

and B2 can process 30% each, B3 and B4 can process 20% each.
First, the set of query classes that have to be allocated explicitly C∗ is calculated. Since

all fragments in update classes are also referenced in read classes only the read classes
have to be explicitly allocated. Hence, C∗ = {Q1, Q2, Q3, Q4}. This set is sorted according
to the weight it will produce on a backend. This is the weight of the query class itself and
all referenced updates. For Q1 this is weight(Q1) + weight(U1) = 28%. The result is the
following list: C = (Q2, Q4, Q1, Q3).

The algorithm uses the auxiliary lists currentLoad, scaledLoad and restWeight. These
are initially as follows:

currentLoad = (B1 : 0, B2 : 0, B3 : 0, B4 : 0) (12.40)

scaledLoad = (B1 : 0.3, B2 : 0.3, B3 : 0.2, B4 : 0.2) (12.41)

restWeight = (Q1 : 0.24, Q2 : 0.2, Q3 : 0.2, Q4 : 0.16) (12.42)

In the main loop, query class Q2 which is first in C is processed first. The difference to
each backend is calculated, which is 0 for all backends, since all are empty. In the next
step, all fragments of Q2 and its updates (i.e. U2) are allocated to B1. Now the weight
of the updates is allocated to B1. The allocation matrix is now:

A B C

B1 0 1 0
B2 0 0 0
B3 0 0 0
B4 0 0 0

The load matrix is:

Q1 Q2 Q3 Q4 U1 U2 U3 Overall

B1 0% 0% 0% 0% 0% 10% 0% 10%
B2 0% 0% 0% 0% 0% 0% 0% 0%
B3 0% 0% 0% 0% 0% 0% 0% 0%
B4 0% 0% 0% 0% 0% 0% 0% 0%

136 12. Considering Updates

The currentLoad is updated currentLoad = (B1 : 0.1, B2 : 0, B3 : 0, B4 : 0). Since Q2 is
a read query class, as much of the remaining weight as possible is allocated to B1. In this
case it is all weight of Q2. currentLoad is updated, currentLoad = (B1 : 0.3, B2 : 0, B3 :
0, B4 : 0) and the new load matrix is:

Q1 Q2 Q3 Q4 U1 U2 U3 Overall

B1 0% 20% 0% 0% 0% 10% 0% 30%
B2 0% 0% 0% 0% 0% 0% 0% 0%
B3 0% 0% 0% 0% 0% 0% 0% 0%
B4 0% 0% 0% 0% 0% 0% 0% 0%

The allocation matrix does not change. Since Q2 is completely allocated, it is removed
from C. Hence, restWeight does not need to be updated. At the end of the loop, C is sorted
again: C = (Q4, Q1, Q3). In the next execution of the loop Q4 is allocated. The differences
to all backends are calculated: (Q4, B1) : ∞, (Q4, B2) : 0, (Q4, B3) : 0, (Q4, B4) : 0.
Fragments referenced by Q4, U1 and U2 are allocated to B2. The resulting allocation
matrix is:

A B C

B1 0 1 0
B2 1 1 0
B3 0 0 0
B4 0 0 0

All load of the updates (U1 and U2) is allocated on B2 and since there is still enough
load capacity for Q4 it is also completely allocated on B2. currentLoad is updated:
currentLoad = (B1 : 0.3, B2 : 0, B3 : 0, B4 : 0) The new load matrix is:

Q1 Q2 Q3 Q4 U1 U2 U3 Overall

B1 0% 20% 0% 0% 0% 10% 0% 30%
B2 0% 0% 0% 16% 4% 10% 0% 30%
B3 0% 0% 0% 0% 0% 0% 0% 0%
B4 0% 0% 0% 0% 0% 0% 0% 0%

Q4 is completely allocated and can be removed from C. After the sorting C is C =
(Q1, Q3). In the next loop therefore Q1 is allocated. The differences are: (Q1, B1) :
∞, (Q1, B2) : ∞, (Q1, B3) : 0, (Q1, B4) : 0. Therefore, all updates and as much weight as
possible of Q1 is allocated on B3. The resulting allocation matrix is:

A B C

B1 0 1 0
B2 1 1 0
B3 1 0 0
B4 0 0 0

12.5. Greedy Heuristic 137

Since the sum of the weights of Q1 and its related update class U1 is higher than
scaledLoad of B3 it is not completely allocated. restWeight is updated: restWeight =
(Q1 : 0.08, Q2 : 0.2, Q3 : 0.2, Q4 : 0.16). It has to be noticed that the restWeight of Q2

and Q4 were not updated, since they are not used anymore. The resulting load matrix is:

Q1 Q2 Q3 Q4 U1 U2 U3 Overall

B1 0% 20% 0% 0% 0% 10% 0% 30%
B2 0% 0% 0% 16% 4% 10% 0% 30%
B3 16% 0% 0% 0% 4% 0% 0% 20%
B4 0% 0% 0% 0% 0% 0% 0% 0%

Q1 was not completely allocated and hence it is not removed from C. The result of
the sorting is C = (Q3, Q1). Obviously, Q3 is allocated to backend B4. Again it cannot
be completely allocated. The currentLoad and restWeight are updated and the resulting
allocation matrix is:

A B C

B1 0 1 0
B2 1 1 0
B3 1 0 0
B4 0 0 1

The resulting load matrix is:

Q1 Q2 Q3 Q4 U1 U2 U3 Overall

B1 0% 20% 0% 0% 0% 10% 0% 30%
B2 0% 0% 0% 16% 4% 10% 0% 30%
B3 16% 0% 0% 0% 4% 0% 0% 20%
B4 0% 0% 14% 0% 0% 0% 6% 20%

Like Q1, Q3 was not allocated completely and therefore it remains in C. The result of
the sorting is: C = (Q1, Q3). Since all backends are now at their maximum capacity, the
relative capacity has to be scaled. This is done in relation to the original size of query
class Q1. Each backend is scaled so that it could hold a relative portion of the query class.
For B1 this is:

scaledLoad(B1) = currentLoad(B1) + load(B1) · weight(Q1) = 0.372 (12.43)

The updated scaledLoad is scaledLoad = (B1 : 0.372, B2 : 0.372, B3 : 0.248, B4 : 0.248).
The differences for Q1 are: (Q1, B1) : size(A), (Q1, B2) : 0, (Q1, B3) : 0, (Q1, B4) : size(A).
Hence, as much weight of Q1 as possible is allocated to B2. Again, it cannot be completely
allocated. The resulting restWeight is: restWeight = (Q1 : 0.008, Q2 : 0.2, Q3 : 0.06, Q4 :
0.16). The currentLoad is: currentLoad = (B1 : 0.3, B2 : 0.372, B3 : 0.2, B4 : 0.2). Q2

stays in C. The allocation matrix has not changed. The new load matrix is:

138 12. Considering Updates

Q1 Q2 Q3 Q4 U1 U2 U3 Overall

B1 0% 20% 0% 0% 0% 10% 0% 30%
B2 7.2% 0% 0% 16% 4% 10% 0% 37.2%
B3 16% 0% 0% 0% 4% 0% 0% 20%
B4 0% 0% 14% 0% 0% 0% 6% 20%

ForQ3 the differences are: (Q3, B1) : size(C), (Q3, B2) :∞, (Q3, B3) : size(C), (Q3, B4) :
0. Therefore, Q3 is allocated to B4. The restWeight of Q3 is 0.06. It can therefore not be
allocated completely to B4. The resulting restWeight and currentLoad are: restWeight =
(Q1 : 0.008, Q2 : 0.2, Q3 : 0.012, Q4 : 0.16) and currentLoad = (B1 : 0.3, B2 : 0.372, B3 :
0.2, B4 : 0.248). The allocation matrix has not changed; the new load matrix is:

Q1 Q2 Q3 Q4 U1 U2 U3 Overall

B1 0% 20% 0% 0% 0% 10% 0% 30%
B2 7.2% 0% 0% 16% 4% 10% 0% 37.2%
B3 16% 0% 0% 0% 4% 0% 0% 20%
B4 0% 0% 18.8% 0% 0% 0% 6% 24.8%

After the sorting, Q1 is allocated. The differences are: (Q1, B1) : size(A), (Q1, B2) :
∞, (Q1, B3) : 0, (Q1, B4) : ∞. Therefore it is allocated to backend B3. It can be com-
pletely allocated on this backend and is removed from C. The resulting load matrix is:

Q1 Q2 Q3 Q4 U1 U2 U3 Overall

B1 0% 20% 0% 0% 0% 10% 0% 30%
B2 7.2% 0% 0% 16% 4% 10% 0% 37.2%
B3 16.8% 0% 0% 0% 4% 0% 0% 20.8%
B4 0% 0% 18.8% 0% 0% 0% 6% 24.8%

Finally, only Q3 is remaining. The differences are: (Q3, B1) : size(C), (Q3, B2) :
∞, (Q3, B3) : size(C), (Q3, B4) : ∞. It is allocated to backend B1. First the update
class U3 has to be allocated to B1. Since the remaining capacity of B1 is enough, Q3 can
be allocated completely and the algorithm terminates. The resulting allocation and load
matrices are:

A B C

B1 0 1 1
B2 1 1 0
B3 1 0 0
B4 0 0 1

Q1 Q2 Q3 Q4 U1 U2 U3 Overall

B1 0% 20% 1.2% 0% 6% 10% 0% 37.2%
B2 7.2% 0% 0% 16% 4% 10% 0% 37.2%
B3 16.8% 0% 0% 0% 4% 0% 0% 20.8%
B4 0% 0% 18.8% 0% 0% 0% 6% 24.8%

12.5. Greedy Heuristic 139

A B

B2 B3

A B 1%Q4

C 30%Q3

B 30%Q2

A 30%Q1B2 B3

A B C

B1

A B C A B C

A B C

B1

A C C

C 3%U3

B 3%U2

A 3%U1

Figure 12.3.: Heuristic (above) vs Optimal (below) Allocation

The greedy heuristic does not always find the optimal allocation. An example can be
seen in figure 12.3. In the example, three tables A, B and C are accessed by 7 query
classes, 4 read query classes CQ1, CQ2, CQ3, and CQ4 and 3 update query classes CU1,
CU2, and CU3. The heuristic starts with one of CQ1, CQ2, and CQ3, since all have same
accumulated weight of 33%, 30% from the query class and 3% from the affected update
class. Each of these classes is allocated to a single backend, since each backend can
process 1

3 of the workload. After this, each backend has one read and one update query
class allocated. However, the remaining query class CQ4 accesses all tables and hence
cannot be allocated to a backend, without rescaling the backend load. The heuristic
first allocates all update classes, which reference the same data as CQ4 to a backend and
then decides if the query class can be allocated or if the backend capacities have to be
rescaled. In the rescaling phase, the accumulated load of all backends will be increased
by the rest weight of the current query class. Since all backends have the same load in
the example, the heuristic will allocate 1

3 of CQ4 to each backend. The result is a fully
replicated allocation, with a theoretical speedup of 2.5. However, if CQ4 is allocated to a
single backend, and one of CQ1, CQ2, and CQ3 is distributed as in figure 12.3, the resulting
allocation can achieve a theoretic speedup of 2.7.

To improve the greedy results, a hybrid heuristic can again be applied. The general
approach is same as the hybrid heuristic described in section 11.5, only the mutation
and improvement strategies have to be adapted. The resulting approaches are described
below.

12.5.1. Mutation

The mutation strategy is similar to the mutation strategy for the read only heuristic in
section 11.5.2. Again, the bin packing approach is sensible. However, the strategy has to
consider the changed requirements for the update query classes. The strategy randomly
chooses two backends and redistributes the allocated query classes. The query classes are
reallocated in a random order. Consider the non-optimal allocation in the example in

140 12. Considering Updates

figure 12.3. Backends B1 and B2 have the following allocation (the percentage is given in
relation to the initial load restrictions):

B1 : 39.3% B2 : 39.3%

CQ1 : 30.0% CQ2 : 30.0%

CQ4 : 0.3% CQ4 : 0.3%

CU1 : 3.0% CU1 : 3.0%

CU2 : 3.0% CU2 : 3.0%

CU3 : 3.0% CU3 : 3.0%

To redistribute the query classes, the set of all query classes that have to be allocated
explicitly is generated: {CQ1, CQ2, CQ4}. Update classes that reference the same data as
read query classes in the set can be omitted, since replicating an update class will never
lead to improved allocation. The set of query classes is shuffled and the query classes are
allocated using a random first-fit strategy. For the sequence (CQ2, CQ4, CQ1) the result
is:

B1 : 38.0% B2 : 38.0%

CQ2 : 30.0% CQ4 : 1.0%

CU2 : 3.0% CU1 : 3.0%

CQ1 : 2.0% CU2 : 3.0%

CU1 : 3.0% CU3 : 3.0%

CQ1 : 28.0%

Initially, CQ2 is allocated to backend B1; since CU2 also references B, it is allocated
as well. Then CQ4 is allocated to backend B2, with CQ4 the update classes CU1, CU2,
and CU3 are allocated. Finally, QQ1 is allocated to both backends. As can be seen from
the overall workload, the resulting allocation has a better theoretic throughput than the
original solution.

12.5.2. Local Improvement

As for the read only case, the hybrid heuristic can employ strategies to improve the
allocation deterministically. The local improvement strategies for the read only case,
introduced in section 11.5.3, can also be used in the update considering allocation. Again,
they have to be adapted to the update considering case.

B1 : 60.0% B2 : 60.0%

CQ1 : 30.0% CQ1 : 20.0%

CQ2 : 10.0% CQ2 : 20.0%

CU1 : 10.0% CU1 : 10.0%

CU2 : 10.0% CU2 : 10.0%

12.5. Greedy Heuristic 141

In the example above, two query classes CQ1 and CQ1 are both replicated onto two
backends, each references the same data as an update class. However, the referenced data
of CQ1 and CQ2 are disjoint, as for CU1 and CU2. In this case, the weight of CQ2 can
be completely shifted to B2 and hence CU2, can also be deleted from B1. The resulting
allocation is shown below:

B1 : 55.0% B2 : 55.0%

CQ1 : 45.0% CU1 : 30.0%

CU2 : 5.0%

CU1 : 10.0% CU1 : 10.0%

CU2 : 10.0%

In general, the allocation can contain further relations. This optimization can also be
applied if the read query classes reference overlapping data, as long as replicated update
classes can be omitted. The necessary constraints are:

|{C ∈ CQ|assign(C,B1) > 0} ∩ {C ∈ CQ|assign(C,B2) > 0}| ≥ 2 (12.44)

C1 6= C2 ∈ {C ∈ CQ|assign(C,B1) > 0 ∧ assign(C,B2) > 0} :

updates(C1) 6= updates(C2)
(12.45)

If these constraints hold, it is possible to reduce the number of allocated update query
classes, by shifting the query classes and therefore potentially improve the throughput.
This strategy can be applied to an allocation in O(|Q|2 × |B|), since for each pair of
query classes all backends have to be analyzed. In some cases, where query classes are
replicated, changing the distributed query class improves the allocation. Consider the
following example:

B1 : 55.0% B2 : 55.0%

CQ1 : 35.0% CQ2 : 33.0%

CQ3 : 5.0% CQ3 : 5.0%

CU1 : 5.0% CU2 : 7.0%

CU3 : 10.0% CU3 : 10.0%

In this case the query class with the least weight, CQ3, is replicated and so is the related
update class CU3. However, since CU3 is the heaviest update class, the resulting allocation
has a non-optimal throughput. By replicating the data, which requires the least update
load the allocation can be improved:

B1 : 52.5% B2 : 52.5%

CQ1 : 27.5% CQ1 : 7.5%

CQ3 : 10.0% CQ2 : 33.0%

CU1 : 5.0% CU1 : 5.0%

CU3 : 10.0% CU2 : 7.0%

142 12. Considering Updates

Again, the improvement concentrates on reducing the workload introduced by replicated
update classes. The general formulation is:

CU1 ∈ {C ∈ CU |assign(C,B1) > 0 ∧ assign(C,B2) > 0} (12.46)

CU2 ∈ {C ∈ CU |assign(C,B1) > 0} : weight(CU2) < weight(CU1) (12.47)

∑
{C∈CQ|C∩CU2 6=∅}

assign(C,B1) ≥
∑

{C∈CQ|C∩CU1 6=∅}

assign(C,B2) (12.48)

∑
C∈

⋃
{C′∈CQ|assign(C′,B1)>0∧C′∩CU2 6=∅}

updates(C′)

weight(C) < weight(CU1) (12.49)

The first constraint selects the replicated update class CU1. The second constraint
selects an update class CU2 on backend B1 that has less weight than CU1. The third
constraint ensures that CU1 and the according read query classes can be shifted completely
to backend B2. The last constraint ensures, that the replication will not increase the
replicated updates due to other update classes that have to be replicated with CU2. This
improvement also lies in O(|Q|2 × |B|), since again for each pair of query classes all
backends have to be checked.

12.6. Discussion

In this section we have presented an allocation algorithm that considers the influence
of updates on the performance of a cluster database system. Due to the additional
dependencies it is considerably more complex than the read only version presented in
section 11. We have extended the definition of the read only version and again shown
that it is NP-complete. Since replicated write query classes increase the workload the
speedup of a distributed system with write access is usually not perfect. Hence, we have
given equations to calculate the maximum achievable speedup for a given configuration.
This definition also enables an evaluation of the performance of an implementation. It is
also the basis for deciding if a certain configuration can achieve the needed throughput.
Our test results show that the maximum speedup is also a good indicator for the effective
speedup. This will be shown in the evaluation in section 15.2.

We extended the linear program for the calculation of an optimal allocation and pre-
sented a more sophisticated greedy heuristic. To improve the results of the greedy heuristic
we adapted the memetic algorithm and the improvement strategies.

In the next section we will extend both the read only approach and the read write
approach to enhance the reliability of a cluster database system. This is done by ensuring
that each fragment or query class is replicated several times in the cluster.

13. K-Safety

In distributed systems error rates are multiplied by the number of components. Therefore,
in large scale clusters failures are daily business. For example, Google published numbers
that revealed each of their clusters of 1800 nodes had over 1000 machine failures in the
first year and thousands of hard disk failures [203]. Hence, distributed systems have to
include mechanisms to deal with hardware failures. In this chapter, we will limit the
discussion to the treatment of hardware or system failures that can be narrowed down to
a single backend or a group of backends. For systems that require high availability this
is obviously not enough; apart from hardware failures on the backends, master hardware
failures and software failures also have to be taken in consideration.

On the cluster level, the standard fault tolerance approach is redundancy [107, 191].
Therefore, we will present extensions of our algorithms that introduce k-safety [211].
With k-safety, the algorithms ensure that the loss of k backends can be tolerated. If each
fragment is allocated to at least k+1 backends, no data is lost if k backends fail. However,
to ensure that all queries can still be processed locally without a reallocation, each query
class has to be allocated to at least k+1 backends. The basis is still the CDBS processing
model introduced in section 3.4; hence, updates can only be processed on backends that
have all referenced data. As a result, the independent allocation of fragments that are
updated is not possible. According to equation 12.4 update query classes have to be
allocated completely to each backend.

In the read only case, the introduction of k-safety only has the drawback of increased
space requirements. Obviously, the theoretical speedup is unaffected by additional repli-
cas. On the contrary, additional replicas allow a more flexible load balancing, especially
if the load is slightly varying. In practice, however, the additional replicas will result in
a less fragmented schema and hence larger relations. In some cases, especially for large
relations, this will reduce the performance due to an increased cache miss rate. For the
update sensitive case, the replication reduces the performance if the replicas introduce
replicated updates.

The formal definitions and algorithms presented before can easily be adapted. First we
will explain the extensions for the allocation of k+1 replicas of each fragment for the read
only case and then the allocation of each query class to k + 1 backends for both cases.

13.1. Redundant Fragments

As explained above, the independent replication of fragments without replicating complete
query classes is in general only possible for read only access of data. However, in the
presence of updates the read only fragments can still be replicated without considering the

143

144 13. K-Safety

query classes. We will not elaborate on this option, since the approach is a straightforward
combination of the fragment and query class replication.

If k + 1 copies of each fragment have to be allocated, the following constraint can be
introduced to the formal definition in section 11.1:

∀f ∈ F :
∑

{B∈B|f∈fragments(B)}

1 ≥ k + 1 (13.1)

In the matrix definition (and hence the linear program), the constraint can be formu-
lated using the allocation matrix A as defined in 11.16:

∀i ∈ {1, ..., |B|}, aij ∈ A :

|F |∑
j=1

aij ≥ k + 1 (13.2)

Both formulations ensure that each fragment is allocated at least k+ 1 times. Without
further restrictions, a straightforward solution in the read only case is to place fragments
that have to be further allocated to the first backends to which they are not already
allocated. To ensure a better distribution of the additional data, a randomized approach
can be used. In the update sensitive case, only fragments that are never updated can be
freely placed. The placement of fragments with updates is part of the optimization goal.

The read only heuristic (algorithm 11.1) can be extended by an additional loop after
the main foreach loop (starting in line 4) that ensures the k-safety. The pseudo-code can
be seen in algorithm 13.1.

30 foreach f ∈ F do
31 B← {B ∈ B|f ∈ fragments(B)};
32 while |B| < k + 1 do
33 B ← random element(B \B);
34 fragments(B)← fragments(B) ∪ {f};
35 B← B ∪ {B};
36 end

37 end
Algorithm 13.1: K-Safety Loop for the Read Only Greedy Allocation Algorithm

13.2. Redundant Query Classes

To ensure that the CDBS is fully operational after the loss of k backends, each query class
has to be allocated to at least k + 1 backends. In the formal definitions of the read only
case (see section 11.1) and the update case (see section 12.1), the following constraint
ensures k-safety:

13.2. Redundant Query Classes 145

∀C ∈ C :
∑
B∈B

{
1, if assign(C,B) > 0

0, else
≥ k + 1 (13.3)

For the matrix definition and hence the linear program, the constraint can be neatly
defined using the helper variables in H for the read only case1:

∀i ∈ {1, ..., |B|}, hij ∈ H :

|C|∑
j=1

hij ≥ k + 1 (13.4)

The definition of the constraints in the update case for the matrices HQ and HU is
analog.

The adaption of the read only heuristic can be done similarly to the fragment replication
shown above as show in algorithm 13.2.

30 foreach C ∈ C do
31 B← {B ∈ B|C \ fragments(B) 6= ∅};
32 while |B| < k + 1 do
33 B ← random element(B \B);
34 fragments(B)← fragments(B) ∪ C;
35 B← B ∪ {B};
36 end

37 end
Algorithm 13.2: K-Safety Loop for the Read Only Greedy Allocation Algorithm

Since replicated updates increase the workload and thus potentially reduce the overall
throughput, the adaption of the update heuristic has to be more sophisticated. Therefore,
the replicated query classes are treated like other query classes and are allocated accord-
ingly. This can be done by introducing a new set Ck, which contains the query classes
that have to be further replicated. Initially, Ck is empty. Whenever a query class C ∈ CQ
is completely allocated, the number of backends that it has been allocated to is counted
and stored in replicas and if replicas < k+ 1, then k+ 1− replicas copies of C are added
to C and Ck = Ck ∪ {C}. This can be done by the pseudo-code shown in algorithm 13.3.

These replicated queries all have no weight, except for the update classes that have to be
allocated additionally. Hence, they can be treated like update classes and be allocated each
to a single backend. If the additional updates overload the backend the scaledLoad has to
be adapted, hence the condition of the if statement in line 23 is altered to C ∈ CU∨C ∈ Ck.
Finally, it has to be assured that replicated query classes are not allocated to backends
which already contain a replica. This can be done by setting the according difference to
∞.

1In order to avoid the name conflict of the index k for query classes and k-safety, we changed the query
class index to j.

146 13. K-Safety

35 B← {B ∈ B|C \ fragments(B) 6= ∅};
36 replicas← |B|;
37 if replicas < k + 1 then
38 C← C ∪ ((k + 1− replicas) · Ck);
39 Ck = Ck ∪ {C};
40 end

Algorithm 13.3: Pseudo Code for Adding Missing Replicas of Query Classes

To ensure that all update classes are allocated k+ 1 times, those that are not allocated
with query classes have to be added k + 1 times to C. The complete pseudo code can be
seen in algorithm 13.4.

13.3. Discussion

In this section we have extended our allocation approach to ensure k-safety. Replicating
every data fragment multiple times reduces the probability of data loss enormously. This
is equivalent to the increased reliability of a RAID system [174]. Since our processing
model enforces local execution of query classes k-safety of data fragments is not enough
to ensure that a system is still capable of processing all queries. Hence, we have presented
a second definition of k-safety which ensures that a CDBS can tolerate the loss of k
backends and still process all incoming queries. For write access this is the only valid
definition of k-safety, since our model does not allow distributed update processing.

13.3. Discussion 147

Input: Classification C, set of empty backends B, degree of redundancy k + 1
Output: Heuristic allocation B

1 C∗ ← CQ ∪ {CU ∈ CU |@ CQ ∈ CQ : CU ∩ CQ 6= ∅};
2 Ck ← {CU ∈ CU |@ CQ ∈ CQ : CU ∩ CQ 6= ∅};

3 C← sort C∗ ∪ (k · Ck) descending to weight(C) +
∑

CU∈CU


0, C = CU

weight(CU), if C ∩ CU 6= ∅
0, else

;

4 currentLoad(B)← 0;
5 scaledLoad(B)← load(B);
6 restWeight(C)← weight(C);

7 while C ∈ C do
8 if all backends are full then
9 foreach B ∈ B do

10 scaledLoad(B)← currentLoad(B) + load(B) · weight(C);
11 end

12 foreach B ∈ B do
13 if (currentLoad(B) = scaledLoad(B)) ∨ (assign(B,C) > 0) then
14 difference(C,B)←∞;
15 else if currentLoad(B) = 0 then
16 difference(C,B)← 0;
17 else
18 difference(C,B)← size((C ∪ updates(C)) \ fragments(B));
19 end

20 end
21 B ← B ∈ B with difference(C,B) minimal;
22 fragments(B)← fragments(B) ∪ C ∪ updates(C);
23 currentLoad(B)← currentLoad(B) + weight(updates(C))− updateWeight(B,C);
24 if (C ∈ CU) ∨ (C ∈ Ck) then
25 if currentLoad(B) > scaledLoad(B) then
26 scaledLoad(B)← currentLoad(B);
27 end
28 C← C \ {C};
29 else
30 if currentLoad(B) ≥ scaledLoad(B) then
31 scaledLoad(B)← currentLoad(B) + load(B) · weight(C);
32 end
33 if restWeight(C) > scaledLoad(B)− currentLoad(B) then
34 restWeight(C)← restWeight(C)− (scaledLoad(B)− currentLoad(B));
35 currentLoad(B)← scaledLoad(B);

36 else
37 currentLoad(B)← currentLoad(B) + restWeight(C);
38 C← C \ {C};
39 B← {B ∈ B|C \ fragments(B) 6= ∅};
40 replicas← |B|;
41 if replicas < k + 1 then
42 C← C ∪ ((k + 1− replicas) · Ck);
43 Ck = Ck ∪ {C};
44 end

45 end

46 end
47 sort(C) descending to restWeight;

48 end

49 return B

Algorithm 13.4: Greedy Update Considering Allocation Algorithm with K-Safety

14. Physical Allocation

The allocation algorithm presented before calculates an allocation based only on the query
history and the cluster environment. In most cases, the allocation will be calculated for
a system which already has several backends. The cluster allocation algorithm does
not take a previous allocation into account. Therefore, the new allocation has to be
implemented in the running database cost efficiently. Several factors contribute to the
cost of a physical allocation. Basically, it is again an ETL process (cf. section 4.1),
so data extraction, data transport and data loading have to be considered. Obviously,
data that is already allocated to a certain backend will not create any costs. However,
data that has to be transferred to a new backend and imported into the database system
will create noticeable costs. This cost is mainly related to the size of the data. Hence,
a good approach is to reduce the amount of transfered data. In order to implement
the allocation in the system in a cost optimal way according to this measure, a matching
between the newly calculated allocation and currently installed allocation has to be found.
The problem can be modeled using a complete, weighted bipartite graph G = (B′∪B,E).
Nodes B′ represent the backends in the new allocation and nodes B the backends in the
old allocation. Both node sets have the same size n. Each node in B′ is connected with
every node in B with an edge e ∈ E. The weight of an edge evu between node B′v ∈ B′
and node Bu ∈ B is the cost of allocating the data fragments in B′v to Bu. Usually, this
cost is mainly dependent of the size of the data that has to be transferred and imported.
Hence, in many cases a valid approximation of the weight is the sum of the sizes of data
fragments which have to be additionally allocated to the backend. This can be calculated
by the following equation:

weight(euv) =
∑

f∈fragments(B′v)\fragments(Bu)

size(f) (14.1)

This may not be true for all applications. If the import of data fragments has varying
costs, for example from the use of different storage structures and indices, the size of
the fragments alone will not be an adequate measurement. In heterogeneous clusters the
transport costs of the data may also vary, so the network topology can further complicate
the calculation.

Consider the example in figure 14.1. A cluster database with three backends is shown,
where B1 stores table A, B2 tables A and B and B3 table C. A new allocation was
calculated, where one B′1 has to store table A, B′2 stores tables B and C and B′3 stores
tables A and B. The costs for implementing allocation B′v to backend Bu is the size of the
data that has to be transferred to backend Bu. For example, allocating B′2 to backend
B2 will introduce costs relative to the size of table C, since C is not yet allocated to

149

150 14. Physical Allocation

A

B1

A B

B2

C

B3

A

B‘1

B C

B‘2 B‘3

A B

0 0 0

|A|

|C|

|B||B|+|C|

|A|+|B|

|B|

Figure 14.1.: Complete Bipartite Graph of the New Allocation (above) and the Existing
Configuration (below)

backend B2. A cost optimal implementation of the new allocation can be found using an
optimal matching between the new and old allocation. In the example, a cost optimal
implementation of the new allocation can be found by matching B′1 with B1, B′2 and B3,
and B′3 with B2 as shown in figure 14.2. It introduces costs relative to the size of table
B, since only this table has to be transferred.

A

B1

A B

B2

C

B3

A

B‘1

B C

B‘2 B‘3

A B

0 0

|B|

Figure 14.2.: Optimal Matching of the New Allocation (above) and the Existing Config-
uration (below)

This matching is a common problem and it is known as the assignment problem [51].
It is a special form of linear optimization which is strongly polynomial. To generate
a cost-minimal perfect matching the Hungarian method, also known as Kuhn-Munkres
algorithm, is used [143, 159]. This algorithm calculates an optimal matching in O(n3).
We will explain the function of the Hungarian method by the example in figure 14.3.

151

A

B1

A E

B2 B3

B‘1

B C

B‘2 B‘3

B4

B‘4

A B C D C E

B C B D D E

Figure 14.3.: Optimal Matching for a New Allocation (above) and an Existing Configu-
ration (below)

An allocation for 4 backends is calculated, where the sets of fragments in the new al-
location are: {AB}, {BC}, {CD}, and {CE}. The sets of already allocated fragments
are: {ABC}, {AE}, {BD}, and {DE}. Let the sizes of the tables be: size(A) = 1,
size(B) = 2, size(C) = 3, size(D) = 4, and size(E) = 5. The Hungarian method uses a
matrix representation of the complete bipartite graph of the sets of backends. The entries
are the costs of matching a backend of the new allocation to an existing backend. The
cost is calculated with equation 14.1:


B1 B2 B3 B4

B′1 0 |B| |A| |A|+ |B|
B′2 0 |B|+ |C| |C| |B|+ |C|
B′3 |D| |C|+ |D| |C|+ |D| |C|
B′4 |E| |C| |C|+ |E| |C|

 =


B1 B2 B3 B4

B′1 0 2 1 3
B′2 0 5 3 5
B′3 4 7 7 3
B′4 5 3 8 3

 (14.2)

In this matrix a matching can be found by selecting entries such that for each row one
entry is selected and that no other row’s element is in the same column. If the sum of
the selected elements is minimal the matching is optimal. Obviously, there are n! possible
matchings. The Hungarian method begins with searching the minimum of each row and
from the other elements in the same row. After this step each row has at least one element
that is 0:


B1 B2 B3 B4

B′1 0 2 1 3
B′2 0 5 3 5
B′3 1 4 4 0
B′4 2 0 5 0

 (14.3)

152 14. Physical Allocation

If there is at least one 0 in each column then an optimal matching can be selected. In
the example above this is not possible since for column B3 no element is 0. Therefore,
for each column the minimum is searched and subtracted from the other elements in that
column:


B1 B2 B3 B4

B′1 0 2 0 3
B′2 0 5 2 5
B′3 1 4 3 0
B′4 2 0 4 0

 (14.4)

In the example an optimal matching can be found by matching B′1 to B3, B′2 to B1, B′3
to B4, and B′4 to B2 (indicated by the underlined 0’s). In general the second step might
not directly lead to a result. If this is the case, then the minimum number of rows and
columns is selected that covers all 0’s. The minimum value of the unselected elements is
searched and subtracted from all unselected elements and added to all selected elements.
The resulting matrix is used as input for the Hungarian method again. This procedure is
repeated until a matching can be found.

The matching only makes sense for homogeneous clusters, since each backend of the al-
location can be mapped to any physical backend; for heterogeneous clusters the algorithm
calculates an allocation that is adapted to the different capacities of the backends. If ev-
ery node in the system has different processing capabilities, then the calculated allocation
is tailored to the capabilities of each backend and hence no matching is necessary. As
clusters usually comprise several groups of nodes with equal hardware, optimal matchings
within these clusters can be calculated.

14.1. Implementing Scaling

Using the matching, a cost optimal scaling of the database system can also be calculated.
If a system is scaled, a new allocation is calculated and either new nodes are added or
removed. The data mapping again can be modeled using a complete bipartite graph
G = (B′ ∪ B,E). In both situations the cardinality of B′ and B is different: in the
case of an increase in the number of nodes, |B′| > |B| and in the case of a scale down
|B′| < |B|. In order to use the Hungarian method, both sets have to have the same number
of nodes. In the case of a scale out, the old allocation is simply increased with empty
virtual backends. These present the new, unpopulated nodes. If the system is scaled
down, it might be reasonable to remove a certain set of backends which have less disk
capacity or bad connectivity or the like. In this case, the backends concerned are removed
and the matching is done as if there was no scaling. If the backends to be removed can
be freely chosen from all backends, the new allocation is extended with empty backends
and the matching is done. The backends of the old allocation that are matched with the
empty backends will then be removed from the cluster.

14.2. Discussion 153

A

B1

A B

B2

C

B3

A

B‘1

A B

B‘2 B‘3

B

0
0

|B|

B4

B‘4

C

|C|
|B|

Figure 14.4.: Complete Bipartite Graph for the Mapping between a Scaled Allocation
(above) and a New Hardware Configuration (below)

In figure 14.4, an example of a scale-out can be seen. The cluster database system is
scaled from three to four nodes. Obviously, the new backend B4 is initially empty. The
new allocation already has four backends, so the matching is done in the same way as
above, using the Hungarian method. The result of the Hungarian method can be seen in
figure 14.5.

A

B1

A B

B2

C

B3

A

B‘1

A B

B‘2 B‘3

B

0
0

B4

B‘4

C

Figure 14.5.: Optimal Mapping between a Scaled Allocation (above) and a New Hardware
Configuration (below)

14.2. Discussion

Using the Hungarian method a cost optimal implementation of a calculated allocation can
be found. In this section we limited the cost metric to the size of the transferred data.

154 14. Physical Allocation

Using more sophisticated cost metrics would make it possible to take additional factors
into account. For example, if the cost of the data import is non-linear to the size of the
transferred data, the presented metric is not exact. For vertical partitioning the adding of
columns as well as the subtraction of columns results in additional costs that are related
to the size of the sum of the fragments, which also could be taken into account.

As mentioned before, for completely heterogeneous systems the calculated allocation is
already tailored to each backend. This makes the matching unnecessary. However, many
heterogeneous systems consist of multiple subgroups of similar backends. Within these
groups the Hungarian method can be used to minimize the cost of the physical allocation.

15. Evaluation

We implemented two prototypes to test the allocation algorithms. In the following we
will discuss the architecture of the two prototypes and then present the results.

The first prototype was based on the Sequoia middleware (see section 3.5.1). We added
methods to adjust the allocation of the relations and degree of replication and methods
to scale a cluster at runtime. Our software communicates via the available JMX/RMI
interface with the Sequoia controller. This approach made it possible to manage a clus-
ter consisting of more than one controller and to keep changes to the Sequoia code base
as small as possible. An overview of the architecture can be seen in figure 15.1. Our
scalable cluster management tool (SCMT) consists of three main components: a mon-
itoring component, a strategy component, which implements the allocation algorithm
presented in chapter 11, and an execution component, which executes all actions on the
controller or the database backends. Monitoring includes collecting data from the back-
end database systems (i.e. memory- and CPU-utilization and available disk space) and
gathering statistics of requests submitted to the cluster. This information is stored in an
embedded database at the controller for further analysis. The strategy component has
two main functions. First, it decides whether the cluster should be resized by adding a
new database backend or by dropping an existing one as explained in section 6.4. The
second function is to calculate the allocation. The execution components perform the set
of actions identified by the strategy component. It contains a simple task scheduler which
executes a series of actions in parallel. This may include adding a new node to cluster,
removing a node, setting up the database system on the node and replicating or deleting
data on the database backends. To improve performance, database specific tools such as
bulk loaders etc. are used. To enable an automatic installation of the backend system,
the database management system Apache Derby was used. Apache Derby is a lightweight
database management system that is completely implemented in Java. It has a footprint
of 2 megabytes and needs no installation.

The prototype is a fully functional cluster database management system. However, it
has several limitations due to the use of third party software components. The Sequoia
system was primarily designed for full replication. It supports the RAIDb-2 level, which
allows a partial replication of the database. However, no partitioning is supported. This
limits the possibilities of the allocation algorithm. Furthermore, the backend DBMS
Apache Derby has problems with large data sizes. In our tests, it was not possible to run
a test with a one gigabyte database. Therefore, we implemented a second prototype.

The second prototype was implemented to only test the allocation algorithms. It con-
sists of a controller that encapsulates all logic. The architecture can be seen in figure 15.2.
The controller has two modes of operation: allocation and query processing. In the query

155

156 15. Evaluation

Sequoia SCMT

Backend Backend Backend

Analysis

Client Client Client

Figure 15.1.: Architecture of the First Prototype

processing mode, the controller starts the driver that issues SQL requests. The requests
are sent to the scheduler that holds a queue for each backend. The scheduler inserts
incoming requests into the queues according to the least pending request first order. If
the database is partially replicated across the backends, the scheduler also decides which
backend can handle a request. The data allocation is stored in the schema. For each queue
multiple connections are opened to the according database system and each connection
holds a single request at a time. PostgreSQL1 and MySQL2 are used as backend database
systems. In order to utilize the backend system at least one connection per processor core
of the backend system should be started, since both PostgreSQL and MySQL start one
thread per connection. Each processed request is stored in the query history along with
its processing time. Furthermore, statistical data is stored in an embedded database for
later analysis.

After a test run, i.e. after a predefined number of requests, the controller changes to
allocation mode. The allocator stops all backends, reads the query history and calculates
an allocation according to the number of backends and the query history. Based on this
allocation, the allocator assigns the data to the backends and starts them. Currently,
full replication, table based allocation and column based allocation are supported. The
allocator waits until all backends have finished the data bulk loading. After that, the
controller goes back to query processing mode.

In order to guarantee comparable results, we do not further optimize the data layout.
Therefore, the schema only includes indexes that are generated automatically (i.e. indexes
on the primary keys). All tests are run on a 16 node high performance computing cluster.
Each node has two Intel Xeon QuadCore processors with 2 GHz clock rate, 16 GB RAM
and two 74 GB SATA hard disks with a RAID 0 configuration. We use separate nodes
for the controller and the database backends. We tested our algorithms with TPC-H and
TPC-App style benchmarks.

1PostgreSQL - http://www.postgresql.org (last visited 2011-04-15)
2MySQL - http://www.mysql.com/ (last visited 2011-04-15)

http://www.postgresql.org
http://www.mysql.com/

15.1. TPC-H 157

Backend Backend Backend

Allocator

Scheduler

Queue Queue Queue

Driver

Query
History

Schema
Statistics

Controller

Figure 15.2.: Architecture of the Second Prototype

15.1. TPC-H

TPC-H is a decision support benchmark; a detailed description is given in section 17.1.
Even though TPC-H defines update statements, we used the benchmark without these to
test our read only algorithm. PostgreSQL and MySQL have problems with the complexity
of the queries in TPC-H. Since queries 17 and 20 are disproportionally slow in PostgreSQL,
we omitted them in the test. We used scale factor 1, which results in a 1 GB data set, since
larger scale factors further reduce the number of processable queries. We ran tests for
full replication, table based allocation and column based allocation. Each test consisted
of 10 runs on each number of backends. For the allocation test, we started with full
replication for each scale in order to get an initial weight distribution for the queries. In
each test 10000 queries were sent to the database, which corresponds to 500 variations of
each query. In figure 15.3 the average of the runs can be seen.

It can be seen that all configurations scale linearly. Furthermore, both, the table and
the column based allocation, outperform the full replication. For table based allocation,
this is due to the improved caching on the backend database systems. Since the query
classes differ strongly in their weight, some heavy classes are allocated exclusively to
multiple backends. Because the backends are specialized on single query classes, less data
is stored on the nodes and hence the caching on these backends improves. For column
based allocation the throughput further increases, since the vertical partitioning improves
the data transfer speed from the disk. Obviously, the quality of the allocation is highly
dependent on the quality of the classification and estimation of the weight of the query
classes. In figure 15.4 the minimum and maximum throughput of the column based
allocation in the 10 test runs is shown. Although the column based allocation has the
largest deviation in throughput, it is still never above 6%. This shows that the sum of
the execution times of the queries is an excellent measure for the weight of a query class.

158 15. Evaluation

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10
 0

 2

 4

 6

 8

 10

T
h

ro
u

g
h

p
u

t
(Q

u
e

ri
e

s
/s

e
c
)

S
p

e
e

d
u

p

Number of Backends

Full Replication
Table Based Allocation
Column Based Allocation

Figure 15.3.: TPC-H Throughput for Different Cluster Sizes

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10
 0

 2

 4

 6

 8

 10

T
h

ro
u

g
h

p
u

t
(Q

u
e

ri
e

s
/s

e
c
)

S
p

e
e

d
-U

p

Number of Backends

Average
Minimum
Maximum

Figure 15.4.: Deviation of the Throughput of the Column Based Allocation

Furthermore, table based and column based allocation reduce the amount of replication
substantially. In figure 15.5 the degree of replication of the TPC-H database for one to
ten backends can be seen.

The degree of replication r for an allocation B is calculated as follows:

r(B) =

∑
B∈B

∑
f∈B size(f)∑

f∈F size(f)
(15.1)

Figure 15.5 shows the degree of replication for full replication, table based allocation,
column based allocation and optimal column based allocation. Obviously, the degree of
replication for full replication matches the number of backends. The table based alloca-

15.2. TPC-App 159

 0

 2

 4

 6

 8

 10

 2 4 6 8 10

D
e

g
re

e
 o

f
R

e
p

lic
a

ti
o

n

Number of Backends

Full Replication
Table Based Allocation
Column Based Allocation
Optimal Column Based Allocation

Figure 15.5.: Degree of Replication for Different Cluster Sizes

tion has a slightly reduced degree of replication. The data model in TPC-H is a data
warehouse and nearly all queries reference the two biggest tables, which make up 80% of
the data. Therefore, it is not surprising that the table based allocation uses over 80%
of disk space compared to the full replication. Since the main tables in TPC-H are very
broad, column based allocation leads to a considerable reduction of replication. For ten
backends, the degree of replication is only 3.5. For reference the result of the optimal
allocation, computed by the linear program formulation is shown. Because of the high
number of variables and constraints, the optimal allocation could only be calculated for
up to 7 backends. It can be seen that the heuristically computed allocation is very close
to the optimal allocation. For seven backends the difference in the degree of replication
is 0.03. A nice side effect of the reduced degree of replication is an increased allocation
speed. Figure 15.6 shows the duration of the allocation procedure for full replication and
column based allocation.

The allocation time consists of the preparation of the table fragments, the network
transfer time and the data loading. Obviously, the reduced network transfer time and data
loading time for column based allocation result from the reduced degree of replication.
As shown in figure 15.6, this outweighs the initial overhead of table fragmentation.

15.2. TPC-App

To test the update considering allocation we used the TPC-App benchmark. TPC-App is
a simulation of an online bookseller which is implemented using web services. A detailed
description can be found in section 17.2. The benchmark is scaled by increasing and
decreasing the number of customers EB. We used EB = 300, which resulted in a database
size of 280MB. To test the allocation, the workflow of the web services was reimplemented
and the queries were automatically generated. The implementation slightly differed from

160 15. Evaluation

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7

A
llo

c
a

ti
o

n
 T

im
e

 (
m

in
)

Number of Backends

Full Replication
Column Based Allocation

Figure 15.6.: Duration of the Allocation for Different Cluster Sizes

the implementation used in section 6.4; it generated a higher percentage of writes. In the
test the number of queries was around 200,000 which we tested on full replication, table
based partitioning and column based partitioning. We tested the allocation on 1 to 10
backends, each test was repeated 10 times. The ratio of read to write queries was about
1 to 7. So for each read request 7 inserts and updates were sent. However, the select
statements produced overall 3 times more workload than the updates. In particular one
complex read query class generated 50% of the workload although its queries made up
only 1.5% of all queries. As mentioned above a read-once/write-all strategy was used for
the query scheduling. The workload consisted of 8 query classes for table based allocation
and 10 query classes for column based allocation. All tables that are queried were also
updated, therefore the column based allocation always allocated the complete tables.

In figure 15.7 the average speed up of all three allocation strategies can be seen. Due
to the high write ratio, the full replication only reaches a speedup of 2.5 which is then
stable. Additional backends do not reduce this speedup, but they also do not increase
the throughput. Since the weight of the write query classes is 25% in total, this is
not surprising. Using the formula presented in equation 3.14 the maximum theoretical
speedup can be estimated:

speedup =
1

parallel
#backends + serial

=
1

0.75
10 + 0.25

= 3.07 (15.2)

The maximum speedup achieved by the full replication is 2.6 which is close to the
maximum speedup. The table-based and the column-based allocation have a similar
speedup that is not limited for the 10 backends. The speedup for the table based and
column based allocation can be calculate in relation to the maximum weight of a write
request class. In our implementation the writes to the Order Line table generate about
13% of the query weight, therefore the maximum speedup can be reached if this write

15.2. TPC-App 161

 0

 1

 2

 3

 4

 5

 6

 2 4 6 8 10

S
p

e
e

d
u

p

Number of Backends

Column Based Allocation
Table Based Allocation
Full Replication

Figure 15.7.: TPC-APP Speedup for Different Cluster Sizes

request class is allocated exclusively on a backend. For 10 backends this results in an
increase of the scale factor to 1.3. Using equation 12.19 we can compute the theoretical
maximum throughput:

speedup =
|B|
scale

=
10

1.3
= 7.7 (15.3)

In our the tests the maximum achieved speedup was 5.8 for table based allocation and
6.7 for the column based allocation. Both are close to the theoretical maximum speedup.
In both cases the Order Line table was allocated on a single backend. The column based
allocation achieves a better speedup since it has a more query classes and thus has a more
fine grained allocation. In the column based allocation, the backend with the Order Line
table was the bottleneck of the system, while in the table based allocation other backends
had a higher load. In the figure 15.8 the total throughput of all configurations can be
seen

The throughput has a similar development as the speedup. However, the column based
allocation is slightly slower than the table based allocation and the full replication. This
is due to some overhead in the query processing for the column based allocation in our
implementation. Another effect that can be seen is that for some cluster sizes the average
throughput is slightly worse. This can also be seen in figure 15.7, for 5 backends and 9
backends the speedup is slightly decreased. This shows that in some cases the allocation
algorithm does not perform as well as in others. These are some corner cases where the
algorithm tries to balance the load by allocating small parts of a query class to a backend
which then result in an additional write overhead. Since the column based allocation has
more query classes it is more vulnerable to these misplacements. This can also be seen in
figure 15.9, it shows the deviation of the column based allocation. In contrast to the read
only allocation, as shown in figure 15.4, the read write allocation has a higher deviation

162 15. Evaluation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 2 4 6 8 10

T
h

ro
u

g
h

p
u

t
(Q

u
e

ri
e

s
/s

e
c
)

Number of Backends

Column Based Allocation
Table Based Allocation
Full Replication

Figure 15.8.: TPC-App Throughput for Different Cluster Sizes

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 2 4 6 8 10

T
h

ro
u

g
h

p
u

t
(Q

u
e

ri
e

s
/s

e
c
)

Number of Backends

Average
Minimum
Maximum

Figure 15.9.: Deviation of the Column Based Allocation

of up to 15%.

15.3. Discussion

In this section we have presented two CDBS prototypes and an evaluation of our allocation
algorithms. Our first prototype was a fully functional CDBS. Since it had no support for
partitioning we implemented a second more basic prototype that allowed us to experiment
with partitioning.

We ran two test series on our prototype: first we tested the read only allocation us-
ing the TPC-H benchmark, then we tested the read write allocation using the TPC-App

15.3. Discussion 163

benchmark. The TPC-H tests showed that our algorithm is able to reduce the replication
to a factor of 3.5 for 10 backends with column based replication compared to full repli-
cation. Furthermore, due to the better I/O performance and cache hit ratio our column
based algorithm achieves a super linear speedup of up to 10.6 for 10 backends. The results
indicate that the approach is valid and that the approximations are sufficiently accurate.

The test series with the TPC-App benchmark contained a diverse, write intense work-
load. This is a challenge for the approach since it does not take the effects of diverse
query processing times into account. However, the results show a performance that is
close to the theoretical optimum. For 10 backends the tests show a speedup of 5.8 for
table based allocation and a speedup of 6.7 for column based allocation, this is close to
the maximum possible speedup of 7.7 for both configurations. Furthermore, both allo-
cation strategies achieves a throughput that is considerably higher than the theoretical
maximum throughput of a fully replicated system.

16. Summary

In this part of the thesis we have presented a complete approach for data allocation
in cluster database systems. It is designed for the CDBS processing model which was
introduced in section 3.4. In the CDBS model every query is executed completely on a
single backend, distributed joins and data shipping are avoided. Therefore, the processing
time is independent of the network performance. This reduces the complexity of the model
to a high degree and makes it possible that all influencing factors can be determined
automatically.

The allocation strategy consists of four interrelated steps: query classification, alloca-
tion calculation, allocation optimization, and physical allocation. In the query classifica-
tion step queries are grouped according to the data fragments they access. The granu-
larity of these data fragments determines the partitioning of the data in the allocation
step. We have presented methods for relation based classification where the accessed rela-
tions determine the query class, attribute based classification where the accessed columns
within a relation determine the query class, and predicate based classification which uses
the queries predicates to determine the query class. In the literature there are also ap-
proaches that classify queries on a per record basis (e.g. [80]), however, in normal sized
databases this approach is not feasible. For every query in each query class a weight is
determined; we have used the processing time of the queries, which our results proofed
to be very accurate measure. Using the weights the relative weight of the query classes
can be determined. The goal of the allocation algorithm is to distribute this weight on
the backends in such a way that all backends have an equal workload.

We have presented two different allocation problems. One that does not consider up-
dates and therefore tries to minimize the storage requirements and one that considers
updates and tries to minimize the additional workload resulting from replicated updates.
For both problems we gave a formal definition, an optimal solution using linear program-
ming, a proof of their NP-hardness and a greedy heuristic. Since the greedy heuristics
usually produce a non-optimal solution and the complexity of the allocation makes a op-
timal solution impossible, we also presented a hybrid meta heuristic for both cases that
improves the greedy solution. The allocation algorithm is unaware of the method of clas-
sification and therefore can be used with any reasonable classification. Since distributed
systems tend to be error-prone we also have presented an extension of the algorithm that
ensures a tolerance to k failures by replicating query classes at least k + 1 times.

In order to implement the calculated allocation in the CDBS an optimal matching is
used. We use the Kuhn-Munkres algorithm, it calculates a cost-optimal matching in cubic
time. We evaluated both allocation algorithms with standard industry benchmarks. For
the read only allocation we have used TPC-H; we have compared a fully replicated system

165

166 16. Summary

to a table base allocation and a attribute based allocation. All three allocations scaled
linearly, however, the partially replicated solutions achieved a considerable reduction of
disk usage, which was up to 65%. Furthermore, the column based allocation actually had
a super linear speedup due to the improved cache hit rate and the reduced I/O load.

We have evaluated the update considering allocation using TPC-App an OLTP style
benchmark that simulates a web service based online bookseller. The TPC-App workload
consisted of a high percentage of updates. Therefore, the full replication of the database
limited the speedup to 2.6. The column and table based allocations achieved a much
higher throughput of 6.7 and 5.8 for 10 backends. This shows that our approach presents
a considerable improvement over a full replication and scales well. Due to the CDBS
processing model it can be completely automated and therefore be used for autonomic
adaption of database systems.

Part IV.

Benchmarking

17. Benchmarks

In parts II and III we presented automatic and autonomic approaches for the adaptation
and optimization of cluster database systems. Since the complexity of database adminis-
tration is growing, nearly all major database vendors offer offline database design advisors
[232, 82, 12] and recent research considers the online tuning of database systems [50, 227].
Certainly the query workload is the most important variable for physical tuning during
runtime. New developments in database benchmarks start to acknowledge this trend.
For example, TPC-DS [161] features a new query generator that enables a generation a
large set of queries which are syntactically different but semantically similar [179]. Syn-
thetic query streams are usually homogeneous in the frequency of queries and the ratio
between different query types, but real database workloads tend to be bursty [130]. New
approaches start to acknowledge this fact and define workload as a sequence [13] or chain
[127] of statements. This offers new opportunities to adapt the database system to dy-
namic environments. Nevertheless, there is only little research on how to analyze the
efficiency of such approaches. To the best of our knowledge, there is only one publication
that introduces a benchmark for autonomic database tuning [73], yet this benchmark also
only features homogeneous workloads.

In this section we will introduce new techniques in database system benchmarking that
enable realistic workloads to be generated. Furthermore, we will present an approach to
massively parallel data generation. The part is organized as follows, in this chapter we
will discuss benchmarks used to evaluate the approaches presented in this thesis. Then,
we will present our approach to parallel data generation in section 18.1 and the dynamic
workload generation in section 18.2. This section of the thesis is ongoing work, which is
currently adapted for standard benchmarks in close collaboration with the Transaction
Performance Processing Council1 (TPC).

In order to simulate real life applications of database systems and to test their behavior,
benchmark suites were developed. These usually comprise a database, a set of queries
and specifications on how to set the queries off. While early approaches had a rather
simple layout [44] and the results on different systems were often incomparable, mod-
ern benchmarks model realistic business applications and have precise rules that allow
accurate comparisons. Today the standard benchmarks for database online transaction
processing and decision support systems are developed by the TPC. These have been
proved to provide a good representation of industrial workloads [130]. For the evaluation
of our approaches, we use the TPC BenchmarkTMH and the TPC BenchmarkTMApp.

1The Transaction Performance Processing Council – http://www.tpc.org (last visited 2011-04-15)

169

http://www.tpc.org

170 17. Benchmarks

17.1. TPC BenchmarkTMH

The TPC BenchmarkTMH (TPC-H) is a decision support benchmark [183]. It models
a data warehouse of an international operating business company. The data model is
generic in order to allow a variety of modeled fields of business. TPC-H is a pure OLAP
benchmark; it defines a set of complex queries that are executed ad-hoc, i.e. the structure
is not known in advance.

In figure 17.1 the schema of the benchmark can be seen. It consists of 8 tables that are
interrelated by multiple foreign key constraints. Core of the schema are the Order and
Lineitem tables; these represent orders and single positions on the orders, respectively.
These two tables serve as fact tables of the schema. This is contrary to the common star
schema for data warehouses and is one of the major points of criticism [165]. Together
Lineitem and Orders contain over 80% of the data. The size of the data is scaled according
to a scaling factor, where scaling factor 100 results in a 100 gigabyte database. Legal
scaling factors are 1, 10, 30, 100, 300, 1000, 3000, 10000.

PART
P_PARTKEY
P_NAME
P_MFGR
P_BRAND
P_TYPE
P_SIZE
P_CONTAINER
P_RETAILPRICE
P_COMMENT

PARTSUPP
PS_PARTKEY
PS_SUPPKEY
PS_AVAILQTY
PS_SUPPLYCOST
PS_COMMENT

NATION
N_NATIONKEY
N_NAME
N_REGIONKEY
N_COMMENT

CUSTOMER
C_CUSTKEY
C_NAME
C_ADDRESS
C_NATIONKEY
C_PHONE
C_ACCTBAL
C_MKTSEGMENT
C_COMMENT

ORDER
O_ORDERKEY
O_CUSTKEY
O_ORDERSTATUS
O_TOTALPRICE
O_ORDERDATE
O_ORDERPRIORITY
O_CLERK
O_SHIPPRIORITY
O_COMMENTREGION

R_REGIONKEY
R_NAME
R_COMMENT

SUPPLIER
S_SUPPKEY
S_NAME
S_ADDRESS
S_NATIONKEY
S_PHONE
S_ACCTBAL
S_COMMENT

LINEITEM
L_ORDERKEY
L_PARTKEY
L_SUPPKEY
L_LINENUMBER
L_QUANTITY
L_EXTENDEDPRICE
L_DISCOUNT
L_TAX
L_RETURNFLAG
L_LINESTATUS
L_SHIPDATE
L_COMMITDATE
L_RECIEPTDATE
L_SHIPINSTRUCT
L_SHIPMODE
L_COMMENT

Figure 17.1.: Schema of the TPC BenchmarkTMH

The benchmark defines 22 complex read-only query templates and two refresh functions.
Each of the 22 specified queries models a typical task in business analysis. A relatively
simple example is query 6, which quantifies the loss of revenue due to certain company
wide discounts:

Listing 17.1: Query 6 of the TPC-H Benchmark

SELECT SUM(l e x t e n d e d p r i c e ∗ l d i s c o u n t) AS revenue
FROM l i n e i t e m

17.2. TPC BenchmarkTMApp 171

WHERE l s h i p d a t e >= DATE ’ [DATE] ’
AND l s h i p d a t e < DATE ’ [DATE] ’ + INTERVAL ’ 1 ’ YEAR
AND l d i s c o u n t BETWEEN [DISCOUNT] − 0 .01 AND [DISCOUNT] + 0.01
AND l q u a n t i t y < [QUANTITY] ;

The parameters DATE, DISCOUNT and QUANTITY are randomly replaced within
certain domains. The refresh function inserts and deletes a number of rows in the tables
Lineitem and Orders, thus keeping the table size constant. The purpose of the refresh
function is mainly to ensure the ACID compliance of the system under test.

The performance of a database system is measured in Queries per Hour (QphH). Two
possible test configurations are defined: a power test and a throughput test. In the power
test a single user environment is simulated, hence first the inserts are executed, then the
22 queries and finally the deletes. The duration of the stream measured determines the
processing power of a system. In the throughput test multiple query streams, each con-
sisting of the 22 queries, are issued in parallel. An additional stream sends the consecutive
refresh functions. The resulting duration determines the throughput of a system. TPC-H
also defines a composite metric that is based on the geometric mean of throughput and
processing power.

The benchmark aims at a comparable evaluation of the performance of commercial
database systems. Therefore, it has a very strict procedure. However, in scientific research
various modifications are used. Apart from deviations from the benchmark procedure also
modifications of the schema and queries are common. An example is the Star Schema
Benchmark by O’Neil et al. [165]. Because of the complexity of the queries, many
open source systems have problems processing them2. For example, in a performance
comparison the developers of MonetDB found out that PostgreSQL produces erroneous
results for several TPC-H queries. Therefore, these queries are often adapted. Since the
benchmark mainly tests the read throughput, the refresh functions are often omitted.
Furthermore, the power test and throughput test are relatively short, hence making the
system under test vulnerable to initialization overheads. Therefore, multiple consecutive
query streams are frequently used.

17.2. TPC BenchmarkTMApp

The TPC BenchmarkTMApp (TPC-App) is primarily an application and web services
benchmark [100]. It is the successor of the TPC BenchmarkTMW (TPC-W), which was
designed as a transactional web benchmark. Because of the low acceptance of both
benchmarks, they were discontinued by the TPC and marked as obsolete. TPC-App
is an online transaction processing benchmark that simulates application servers and
web services that perform business-to-business (B2B) transactions. The purpose of the
benchmark was to measure the performance of commercial application server products.

2Confer the performance comparison of MonetDB, MySQL and PostgreSQL - http://www.

monetdb-xquery.org/SQL/Benchmark/TPCH/ (last visited 2011-06-26)

http://www.monetdb-xquery.org/SQL/Benchmark/TPCH/
http://www.monetdb-xquery.org/SQL/Benchmark/TPCH/

172 17. Benchmarks

CUSTOMER
C_ID
C_BUSINESS_NAME
C_BUSINESS_INFO
C_PASSWD
C_CONTACT_FNAME
C_CONTACT_LNAME
C_ADDR_ID
C_CONTACT_PHONE
C_CONTACT_EMAIL
C_PAYMENT_METHOD
C_CREDIT_INFO
C_PO
C_DISCOUNT

ADDRESS
ADDR_ID
ADDR_STREET1
ADDR_STREET2
ADDR_CITY
ADDR_STATE
ADDR_ZIP
ADDR_CO_ID

ORDERS
O_ID
O_C_ID
O_DATE
O_SUB_TOTAL
O_TOTAL
O_PROCESS_DATE
O_SHIP_TYPE
O_SHIP_ADDR_ID
O_STATUS
O_AUTH_ID
O_SHIP_COST
O_DISCOUNT

COUNTRY
CO_ID
CO_NAME

ORDER_LINE
OL_ID
OL_O_ID
OL_I_ID
OL_QTY
OL_STATUS
OL_COST

ITEM
I_ID
I_TITLE
I_A_ID
I_PUB_DATE
I_PUBLISHER
I_SUBJECT
I_DESC
I_SRP
I_DESC
I_COST
I_AVAIL
I_ISBN
I_PAGE
I_BACKING
I_DIMENSIONS

AUTHOR
A_ID
A_FNAME
A_LNAME

STOCK
S_I_ID
S_QTY

Figure 17.2.: Schema of the TPC BenchmarkTMApp

For database performance measurements the benchmark is particularly interesting since
it models a web environment, which is a major application area of database systems.

In figure 17.2 the schema of the TPC-App benchmark can be seen. It consists of 8
tables that model a B2B book store. The tables are scaled according to the emulated
business clients (EB). For each EB 192 customers in the Customer table are generated.
The tables Address, Orders and Orderline are scaled according to the scale of Customer.
The Item and Stock tables are fixed to 100, 000 and the Author table is fixed to 25, 000.
For 100 EBs the database has a size of 176 megabytes.

The benchmark defines 7 different web services that are processed as transactions on
the database system. The web services are invoked by so-called active emulated business
clients (active EB). Each of the clients issues one transaction at a time. The transactions
and their relative probability can be seen in the table below:

17.3. E-Learning Benchmark 173

Web Service Percentage

New Customer 1%

Change Payment Method 5%

Create Order 50%

Order Status 5%

New Products 7%

Product Detail 30%

Change Item 2%

The benchmark has a predefined maximum processing time per transaction. In order to
scale the throughput of the benchmark, the number of active EBs has to be scaled. The
performance of the system is then measured in the number of Web Service Interactions
per Second (SIPS).

Although both TPC-W and TPC-App are obsolete, they are frequently used in aca-
demic projects to measure the performance of web related database systems. These
systems rarely use the complete benchmark specification. The web service architecture is
only of limited interest for the database system performance. Therefore, the benchmarks
are used like OLTP benchmarks. We chose the TPC-App benchmark for our tests, since
it was still active when the first tests were conducted.

Apart from the performance metrics, TPC also specifies two additional metrics for
pricing and energy efficiency. These can be applied to all the TPC benchmarks. The
pricing metric compares the performance relative to the price of the system, i.e. the
hardware and software costs and maintenance for 3 years. The result is the price per
performance unit, e.g. Price per Queries per Hour (Price/QphH). The energy efficiency
metric measures the energy consumption per performance [181], e.g. Watt per Queries
per Hour (Watt/QphH).

A shortcoming of the TPC benchmarks is that they are static in their database access
behavior, while real life systems often face shifting workloads. To simulate this for the
adaptive approaches, we use log data from an e-learning management system.

17.3. E-Learning Benchmark

In order to find a possibility to simulate realistic database workloads for the TPC-App
benchmark, real life online information systems are a promising application domain. Usu-
ally it is very hard to get any detailed information about the structure and especially the
workload of such systems, since they are treated as industrial secrets. However, we are
in the fortunate position of having access to a sufficiently large online e-learning manage-
ment platform that is used at the University of Passau. It was chosen as a basis of our
benchmarking workloads.

Stud.IP3 is a popular e-learning management system. It started as a simple forum and
evolved into a full-featured Course and Campus Management System over the years. The

3Stud.IP - http://www.studip.de (last visited 2011-04-15)

http://www.studip.de

174 17. Benchmarks

USER
USER_ID
PASSWORD
USERNAME
FIRSTNAME
LASTNAME
EMAIL
PERMISSION

SEMINAR_USER
SEMINAR_ID
USER_ID
DEGREE_PROG_ID

SEMINAR
SEMINAR_ID
NAME
WEEKDAY
STARTTIME
ENDTIME
STARTDATE
ENDDATE
ECTSDEGREE_PROG_ID

Figure 17.3.: Excerpt of the E-Learning Benchmark Schema

system supports the complete course life cycle, beginning with creating the course, filling
it with data, assigning times and rooms, specifying application procedures and exporting
the data into PDF or HTML. Online communication and cooperation are encouraged
by providing a forum for each course, wiki, messaging system, chat and online material.
Today, 38 universities and 17 other institutes are using Stud.IP4, one of them is the
University of Passau.

Stud.IP is written in PHP and uses a MySQL database. On a normal day during the
semester, between 50 and 100 parallel users are online at any given time. At the beginning
of a new semester, this number is drastically higher, normally there are about 200-300
users online at the same time. The normal MySQL load is at about 1,200 database
requests per second as each PHP page generates several database requests.

In the spring semester of 2009, there were 1,734 courses with a total of 15,047 registered
users of which 1,374 had a teacher role. Among those users, 672 teachers and 7,072
students logged in at least once during the semester. 6,921 of those student users are
registered in courses with a total of 63,895 course registrations. Since the launch of Stud.IP
in fall 2006, 8,907 courses have been entered, 222,349 course registrations processed, 52,017
documents uploaded and 178,070 internal messages sent. The database has 7,688,642
entries and is 1.3 GB in size.

We had the opportunity to get log traces of the Apache web server and an anonymized
dump of the database. As described in section 6.4 the log traces were used to simulate
varying workloads for the TPC-App benchmarks. However, we also used the data to
specify a complete benchmark that was presented in [187].

The database of the e-learning benchmark is only a fraction of the Stud.IP schema as
it is used at the University of Passau. For reasons of simplicity it has been reduced to
the core functionality, thus it only consists of 25 tables compared to the 200 tables in the
production system. In figure 17.3 the main tables of the course management can be seen.
The table User stores information about the users, which are students, teaching staff or
employees. The table Seminar contains all courses and lectures and their properties. The
relation between users and seminars is established via the table user seminar. Obviously,
there are many more tables that further specify the course management and other parts

4http://www.studip.de/referenzen/ (last visited 2011-04-15)

http://www.studip.de/referenzen/

17.3. E-Learning Benchmark 175

0
20

40
60

80
100

0

20

40

60

80

100
0

20

40

60

80

100

#Users per Seminar#Seminars per User

#
E

n
tr

ie
s

Figure 17.4.: The Reference Distribution in the Table Seminar User

of the system.
To populate the schema above, we have analyzed the value and reference distributions

between the tables. For the table seminar users a reference distribution can be seen
in figure 17.4. In order to allow a synthetic generation of the reference distribution,
we used maximum likelihood estimation to fit standard probability distributions to the
data. For this data we used lognormal distributions, since they model most distributions
sufficiently (for a discussion about lognormal distribution see [157]). Figure 17.5 shows
that the distribution of the number of seminars a user is registered for can be modeled
by a lognormal distribution, even though a gamma distribution would produce a better
fit. The distribution of the number of users per seminar does not match the log-normal
distribution very well, but for generation purposes it is still sufficient. This can be seen
in figure 17.6. Similar observations about reference distributions were made by Hsu et
al. in [130]. They used the Hill equation to model the references, which is related to the
loglogistic distribution.

Since we only had the Apache log traces, we had to extract the queries from the sys-
tem. We used the log traces to find the websites that were accessed most frequently. In
figure 17.7 the top 5 most accessed websites in June 2008 can be seen. Based on these
accesses, we analyzed the relevant PHP scripts and formulated SQL queries that reflect
the generated database accesses based on our schema. An example can be seen in listing
17.2. This query retrieves information about a user that will be presented at the login
page.

Listing 17.2: SQL Query from the E-Learning Benchmark

SELECT s . name , u . vorname , u . nachname , u i . address , u i . phone , u . emai l

176 17. Benchmarks

10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Seminars per User

E
n
tr

ie
s

Seminar References

Log−Normal Distribution

Gamma Distribution

Figure 17.5.: Distribution of Seminars per User in Table Seminar User

10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Users per Seminar

E
n
tr

ie
s

User References

Log−Normal Distribution

Figure 17.6.: Distribution of Users per Seminar in Table Seminar User

0 1 2 3 4 5
0

2000

4000

6000

8000

10000

12000

Weeks

P
ag

e
H

its

June 1 − July 6, 2008

plugins
extern
seminar_main
meine_seminare

Figure 17.7.: Most Accessed Websites in June 2008 per 6 Hours

17.3. E-Learning Benchmark 177

FROM user u , u s e r i n f o ui , u s e r d e g r e e p r o g ud , degree program d
WHERE u . u s e r i d = ui . u s e r i d

AND ud . u s e r i d = u . u s e r i d
AND ud . d e g r e e p r o g i d = d . d e g r e e p r o g i d
AND u . u s e r i d = ’ [USER] ’ ;

It can be seen that the log traces show daily and weekly patterns. Each stream has
a peak around noon each day. This is typical for any system with user interaction, the
same patterns can for example be found in the Wikimedia logs in section 4.3. Therefore,
we used time series analysis to allow an accurate representation of the workload. We will
give details of the analysis and the model in the next chapter.

18. Benchmarking Large Dynamic Systems

In the previous chapter, we presented two standard database system performance bench-
marks. These benchmarks test the performance of database systems by measuring peak
performance on homogeneous request streams. Nevertheless, in systems with user interac-
tion access patterns are constantly shifting as was shown in the analysis of the e-learning
system above. Even though database access in most cases is triggered by human inter-
action, programs generate the actual SQL code. Therefore most queries are very similar
and can be divided into relatively few distinct classes. Within these classes only simple
parameters, like predicates change. Due to user interaction the occurrence of the classes
depends on timetables. The most important examples are the day and night rhythm and
the weekly cycle. In figure 17.7 in section 17.3 this can be seen clearly for the accesses
of Stud.IP system. It is easy to see that there is a daily and a weekly period. Each of
the website accesses displayed will generate at least one and in most cases a sequence of
SQL queries. For one website the queries will only differ in the variables. Apart from the
difference in the amount of workload between day and night and workday and weekend,
shifts in the workload between the single classes can also be seen. In figure 18.1 an aver-
age of the days in the data above is pictured. Not all websites are accessed in the same
pattern. Thus, depending on the time of day, the database will have different access rates
and different access patterns.

Similar access patterns can be seen for any user accessed information system, see for
example the access rates at the Wikimedia clusters shown in figure 4.2 in section 4.3.
This periodic behavior provides opportunities for optimization. On the one hand peak
loads get more predictable and in times of low access the database can be prepared
for the higher load. However, there is little work on how to generate workloads which
comprise such patterns. Most benchmarks have static workloads in terms of content and
amount. As mentioned before this applies, for example, to the TPC benchmarks. Like
TPC benchmarks, most benchmarks measure only the peak performance of a system.
However, since many systems are notoriously underloaded this is not realistic [134]. For
many applications such as energy efficiency and scaling variable loads are required. A
recent approach by Beitch et al. tries to generate more realistic workloads by simulating
concurrent users [31]. Although the simulation of users makes very complex workloads
possible, it lacks of repeatability. Due to the parallel random generation of user accesses
results can vary even on a single machine. Furthermore, the simulation of single users does
not automatically generate daily and weekly patterns, Beitch et al. propose to increase the
number of simulated users one by one. A similar approach is used by SPECpower1, which

1SPECpower website - http://www.spec.org/power_ssj2008/ (last visisted 2011-06-26)

179

http://www.spec.org/power_ssj2008/

180 18. Benchmarking Large Dynamic Systems

8 10 12 14 16 18 20 22 0 2 4 6
0

50

100

150

200

250

Hours

P
ag

e
H

its

June 1 − July 6, 2008 − Average Day

plugins
extern
seminar_main
meine_seminare

Figure 18.1.: Most Accessed Websites in June 2008, Average Day per 10 Minutes

increases the load in 10% steps. To generate more realistic workloads we present a time
series based model. This model generates workloads based on real workload distributions.

Apart from varying workloads, there is a continuous growth of data sizes which is
already beyond petabyte scale for many applications. This poses new challenges for
the research community. Usually, data of this size is stored in large clusters or clouds.
Processing large data sets demands a higher degree of automation and adaptability than
smaller data sets. However, traditional benchmarks are not sufficient for cloud computing,
since they fall short on testing cloud specific challenges [41]. Currently, there are only a
few benchmarks available specifically for cloud computing. The first one was probably the
TeraSort Benchmark2. Others followed, such as MalStone, CloudStone [204], and YCSB
[75]. These benchmarks are dedicated to a single common task in cloud computing. While
this kind of benchmarks is essential for scientific research and evaluation, it fails to give a
holistic view of the system under test. Hence, there is a need for a benchmark suite that
covers various aspects of large dynamic systems such as clouds. The database community
traditionally has an affection for simple benchmarks [108, 209]. Although reduction of
complexity is a basic principle of computer science and unnecessary complexity should be
avoided at all costs, there seems to be a trend to simplistic evaluations. In order to get
meaningful results benchmarks should have diverse and relevant workloads and data [45].
It is often best to use real life data. For example, in scientific database research the Sloan
Digital Sky Survey is frequently referenced [215]. Yet for many applications, such as social
websites, there is no data publicly available. And even though storage prices are dropping
rapidly, they are still very high for petabyte scale systems. Therefore, it is not sensible to
store petabytes of data only for testing purposes. Besides storage, the network necessary
to move petabytes of data in a time efficient manner is costly. Hence, the data should be

2The current version can be found at http://www.sortbenchmark.org/ (last visited 2011-04-15)

http://www.sortbenchmark.org/

18.1. Data Generation 181

created where it is needed. For a cluster of nodes this means that each node generates
the data it will process later, e.g. load into a data base. In order to generate realistic
data, references have to be considered, which usually requires reading already generated
data. Examples of references are foreign keys. For clusters of computers this results in a
fair amount of communication between nodes. In order to generate data on cloud scale
systems efficiently, the generation has to be cloud-aware. That means it has to pursue
the top goals of cloud computing, namely scalability and decoupling, i.e. avoidance of
any interaction of nodes [42].

In the following, we will present our approach to parallel generation of large scale
relational data, and after that a new model for realistic workload generation.

18.1. Data Generation

Data generation for performance evaluation is part of the daily business of researchers and
DB administrators. Most of their data generators are special purpose implementations for
a single dataset. There has been quite a lot of research on data generation for performance
benchmarking purposes. An important milestone was the paper by Gray et al. [110], the
authors showed how to generate data sets with different distributions and dense unique
sequences in linear time and in parallel. Fast, parallel generation of data with special
distribution characteristics is the foundation of our data generation approach.

According to their reference generation procedure, data generators can be roughly di-
vided into three categories: no reference generation, scanning references, and computing
references. No reference generation means that no relationships between tables are ex-
plicitly considered. So references are either only simple or based on mathematical prob-
abilities. In this scheme it is, for example, not possible to generate foreign keys on a
non-continuous unique key. Examples are data sets that only consists of single tables or
data sets (e.g. SetQuery [166], TeraSort, MalGen [34], YCSB [75]) or unrelated tables
(e.g. Wisconsin database [44], Bristlecone3).

Scanned references are generated reading the referenced tuple. This is either done
simultaneously to the generation of the referenced tuple or by scanning the referenced
table. This approach is very flexible, since it allows a broad range of dependencies between
tables. However, the generation of dependent tables always requires the scanning or
calculation of the referenced table. When the referenced table is read, additional I/Os
are generated, which in many applications will limit the maximum data generation speed.
Generating tables simultaneously does not constitute a problem. However, it requires
generating all referenced tables. This is very inefficient if the referenced tables are very
large and do not need to be generated, e.g. for a materialized view with aggregation.
Most systems that generate references use scanned references. An example is dbgen4, the
data generator provided by the TPC for the TPC-H benchmark[180]. Another approach

3Available at https://bristlecone.svn.sourceforge.net/svnroot/bristlecone/trunk/

bristlecone/ (last visited 2011-06-26)
4dbgen can be downloaded from http://www.tpc.org/tpch/ (last visited 2011-06-26

https://bristlecone.svn.sourceforge.net/svnroot/bristlecone/trunk/bristlecone/
https://bristlecone.svn.sourceforge.net/svnroot/bristlecone/trunk/bristlecone/
http://www.tpc.org/tpch/

182 18. Benchmarking Large Dynamic Systems

was presented by Bruno and Chaudhuri [49]: it largely relies on scanning a given database
to generate various distributions and interdependencies. Houkjær et al. describe a graph-
based generation tool that models dependencies in a graph and uses a depth-first traversal
to generate dependent tables [129]. A similar approach was presented by Lin et al. [147].
Two further tools that offer quite similar capabilities are MUDD [206] and PSDG [124].
Both feature description languages for the definition of the data layout and advanced
distributions. Furthermore, both tools allow parallel generation. However, as described
above the independent generation of dependent data sets is not possible.

A computed reference is recalculated using the fact that the referenced data is deter-
ministically generated. This results in a very flexible approach that also makes it possible
to generate data with cyclic dependencies. The downside is the computational cost for
regenerating the keys. To the best of our knowledge, our approach is the only one that
relies on this technique for parallel data generation.

18.1.1. Parallel Random Number Generation

The basis of synthetic data generation is the use of random number generation. In most
cases deterministic data generation is necessary to allow repeatable experiments on various
kinds of systems. Therefore, pseudo random number generators are used, which allow
deterministic generation of random looking data. Many different kinds of pseudo random
number generators have been proposed. They differ highly in the statistical quality of
their data and the length of their period. The quality of random numbers is important
to avoid the creation of patterns. Equally important for generating very large data sets
is the period length of the pseudo random number stream. Every generator eventually
repeats the sequence of its data. It therefore has to be assured that the period is large
enough for the amount of data to be generated.

In order to generate data for large data sets it is necessary to generate data in parallel,
for which parallel pseudo random number generators have been developed. In contrast to
linear generators, parallel generators do not reseed the data generator after every number.
A linear generator (lrng) calculates a random number essentially as follows:

rng(n) = lrng(lrng(. . . lrng(seed) . . .))︸ ︷︷ ︸
n times

(18.1)

Efficient implementation of linear pseudo random number generators store the last gen-
erated value as their internal state. Parallel random number generators (prng), however,
are often stateless by generating random numbers independently using a hash function:

rng(n) = prng(seed+ n) (18.2)

Examples can be found in [184]. Using this approach, the generation of random number
sequences can easily be distributed to many parallel processes. In order to generate the
same sequence on different numbers of processors, either the leapfrog method or sequence
splitting is used [94, 71]. While the leapfrog method partitions the sequence between

18.1. Data Generation 183

processes in turn, sequence splitting partitions the sequence in contiguous sequences.
The concrete value generation is a function from the random number to a value. An
example of a generator of realistic data is a name generator based on a dictionary lookup.
To generate a name two entries of a list of common first and last names can be picked
based on a random number. Usually, random number generators generate uniformly
distributed values. However more natural distributions can be calculated easily. For
normal distributions the Box-Muller method and the related, usually faster, polar method
can be used [150].

18.1.2. Deterministic Data Generation

Based on the parallel pseudo random number generation realistic data with dependencies
can be generated. In order to achieve an acceptable generation speed, the determinism
in the random number generation can be exploited. As explained above, each single
independent value in the database can be generated by a function that maps the random
number to a concrete value. To generate dependent values, the generation can be based
on either the same random number or on the initial value.

Consider the excerpt of the Stud.IP schema presented in figure 17.3. There are three
tables, User, Seminar, and Seminar User. The generation of tables user and seminar are
straightforward. For seminar user only User ids and Seminar ids must be generated that
actually exist in User and Seminar. This is only easy if both attributes have continuous
values, otherwise it is necessary to check that the referenced tuples exist. A second
challenge is that Degree Prog ID is replicated in Seminar User, so the combination of
user id and degree program have to exist in user. Finally the values in seminar user have
a non-uniform distribution as shown in figure 17.4.

The common solution to generate the table seminar user is to first generate the two
tables that are referenced and then use a look-up or scan to generate the distribution.
If this is done in parallel, either the referenced data has to be replicated, or the data
generating process has to communicate with other nodes. This is feasible for smaller
clusters, but for cloud scale configurations the communication will produce a bottleneck.

Therefore, we propose a fully computational approach. Basically, our data generation
is a set of functions that map a virtual row id to a tuple’s attribute. Using this approach,
we can easily recompute every value. So for the example above we would define a function
for each attribute in the original tables. To generate uncorrelated data, the first compu-
tational step is usually either a permutation or a pseudo random number generation.

For the example above this is only needed for the degree program. The value can
either be chosen from a dictionary or be generated. To generate entries of seminar user,
two pseudo random numbers in the range of [1, |user |] and [1, |seminar |] are computed
with given distribution properties. Then the function to generate degree program is used,
resulting in a valid tuple for seminar user. This can be computed independently of the
generation of user and seminar. Since parallel pseudo random number generators are
used, seminar user can be generated on any reasonable number of computing nodes in
parallel.

184 18. Benchmarking Large Dynamic Systems

USER
USER_IDROW_ID DEGREE_PROG_ID …

1

2

3

Table RNGseed

Column RNGseed

Row RNGseed

Generatorrn

c_id

t_id

r_id

Figure 18.2.: Hierarchical Seeding Strategy

SEMINAR_USER
USER_IDROW_ID DEGREE_PROG_ID …

1

2

3

Table RNGseed

Column RNGseed

Row RNGseed

Generatorrn

c_id

t_id

r_id

Row RNGseed r_id

Lognormalrn

Figure 18.3.: Hierarchical Seeding Strategy for References

This flexibility opens up a broad field of application. Besides traditional relational,
row oriented data, our system can easily generate data in other storage models, such as
the Decomposed Storage Model [77], column wise as in MonetDB [46] or C-Store [211] or
even mixed models [190].

To generate field values independently and to avoid costly disk reads, a random number
generator and a corresponding seed are assigned to each field. The random number
generators used can be organized hierarchically, so that a deterministic seed for each field
can be calculated. This can be seen in figure 18.2. To generate the random number
of a certain field in the database the seed for the relevant column has to be calculated.
Starting from a single seed for the complete database (project) a seed for every table is
generated. With this seed a new random number generator is seeded and used to generate
seeds for every column. With the column seed the column random number generator is
seeded, which generates random numbers for every field in the database. These random
numbers are deterministically mapped to a value.

As the number of tables and columns are static, their seeds can be cached after the
first generation. Hence, it is not necessary to run through the complete seeding hierarchy
to determine the seed for a column. It is sufficient to re-seed the column random number
generator with its precalculated seed, skip forward to the row needed and get the next
value. Using a hash based random number generator this is a very inexpensive opera-
tion. After seeding, the random number is passed to the corresponding field generator to
generate the actual value.

To ensure referential integrity most data generators either have severe restrictions on the

18.1. Data Generation 185

key generation or read generated keys to generate consistent data. Using the deterministic
approach, referential integrity can be ensured by regenerating valid keys. The row number
of each value is used as a surrogate key. To generate a valid key, the random sequence
of the key column and the key generator is needed. By picking a random row of the key
column the relevant key can be generated. In order to generate statistical distributions of
references the random picking of row numbers can be distributed appropriately. This is
depicted in Figure 18.3, to generate a referenced value in the first step a random lognormal
distributed value within the number of rows of the referenced table is generated. This
value is used to regenerate the key value. Again, it is not necessary to process the complete
seeding hierarchy, since it is possible to cache all occurring seeds.

Obviously, it is also possible to generate other dependencies than simple foreign key
constraints. The basic idea to solve intra row dependencies is to use different streams of
random numbers for unrelated data and equal streams for related data. If two columns
must contain related data, for example different formatting of the same data, they must
share the same random sequence. Obviously, an attribute can depend on multiple other
attributes. In order to apply the approach above, the generation of the dependent value
has to consider either the random numbers of all values it depends on or the generated
values.

18.1.3. Implementation

In order to evaluate the performance of the data generation approach, we implemented it
as a generic, extensible framework. The parallel data generation framework (PDGF) was
written in Java with a focus on platform independence. It has a plug-in architecture that
allows an easy extension, which can be seen in figure 18.4.

Controller/View The controller takes user input such as the configuration files from
the command line or a built-in interactive mini-shell. This input is used to configure an
instance of PDGF and to control the data generation process. By default PDGF is a
stand alone command line tool, but there is also a graphical user interface. The controller
allows the use of PDGF as a library. Distributed startup is currently implemented by an
external shell script.

Random Number Generator A parallel random number generator is the key to make
the seeding algorithm efficient and fast. PDGF’s random number generator is based on
a hash function as explained above. The default random number generator can also be
exchanged and it is also possible to specify a custom random number generator for each
generator.

Generators The generators determine how the values for a field are generated. PDGF
comes with a set of generators for general purpose: ids, numeric values, references, dic-
tionary based, pseudo text grammar and several special generators for names, etc. Since

186 18. Benchmarking Large Dynamic Systems

View Controller
Generator

Output

Scheduler

GeneratorGeneratorGenerator

XML CSV DB

Plugins

XMLXML

PDGFPDGFPDGFPDGF

PDGF

Figure 18.4.: Architecture of the Parallel Data Generation Framework

some data sets require a special structure, e.g. the TPC-H benchmark data set, PDGF
provides a simple interface enabling easy implementation of generator plug-ins.

Distribution Functions Distribution functions allow generators to adapt and exchange
the statistical distributions of generated values. The distribution functions transform the
uniform random numbers provided by the random number generator into non-uniformly
distributed values. As for the generators, PDGF comes with basic distribution functions:
beta, binomial, exponential, log-normal, normal, Poisson, and Student’s-t.

Output Module The output module determines how to save the generated data. An
output module receives the values of an entire row for a table along with some meta
information. By default the generated data is written to a comma separated value file,
one per table and instance. Another possibility is to convert the generated values into
SQL insert statements. These can either be written to a file or sent directly to a DBMS.

Scheduler The scheduler calculates the work of the PDGF instance and assigns it to the
threads on the node. PDGF’s default strategy is to statically divide the work between
nodes and workers in chunks of equal size. This is efficient if the data is generated in a
homogeneous cluster or similar environment. In a heterogeneous environment the static
approach leads to varying elapsed times among the participating nodes.

Configuration PDGF is configured by several XML-based configuration files. One file
configures the runtime environment, while the others configures the data model and gen-

18.1. Data Generation 187

eration routines. The runtime configuration is optional and can also be specified by
command line parameters. It specifies which part of the data is generated on a node and
how many threads are used. This information is used by the scheduler for splitting the
work between participating nodes. Listing 18.1 shows a sample runtime configuration file.
This example is for Node 5 out of 10 nodes. Two worker threads are used.

Listing 18.1: ”Runtime Configuration File”

<nodeConfig>
<nodeNumber>5</nodeNumber>
<nodeCount>10</nodeCount>
<workers>2</ workers>
</ nodeConfig>

The model configuration file is used to specify the data model. It follows a hierarchical
structure that reflects a relational database schema. In figure 18.2 an excerpt of the
configuration of the Stud.IP example can be seen. The schema definition begins with
default definitions such as the scaling factor, the seed, and the random number generator.
After that the tables are specified. Each table has a size which can be specified in relation
to a scaling factor. For each field the type is given and a generator, which can be further
specified.

Listing 18.2: ”Data Model File Example for Seminar User References.”

<schema name=” simpleELearning ”>
<s c a l eF ac to r name=” user ”>10000</ s ca l e Fa c t o r>
<seed>1234567890</ seed>
<rng name=”PDGFDefaultRandom” />
<t a b l e s>
<t a b l e name=” user ”>
<s i z e>user</ s i z e>
< f i e l d s>
< f i e l d name=” u s e r i d ”>
<type>java . s q l . Types .INTEGER</ type>
<generato r name=” IdGenerator ”>
<unique />
</ generator>
</ f i e l d>
< f i e l d name=” degree program ”>
<type>java . s q l . Types .VARCHAR</ type>
<s i z e>20</ s i z e>
<generato r name=” Dic tL i s t ”>
< f i l e>d i c t s / degree . d i c t</ f i l e>
</ generator>
</ f i e l d>
</ f i e l d s>
</ t a b l e>
<t a b l e name=” seminar ”> [. .] </ t a b l e>
<t a b l e name=” seminar use r ”>

188 18. Benchmarking Large Dynamic Systems

<s i z e>20 ∗ user</ s i z e>
< f i e l d s>
< f i e l d name=” u s e r i d ”>
<type>java . s q l . Types .INTEGER</ type>
<r e f e r e n c e>
<r e f e r e n c e d F i e l d>u s e r i d</ r e f e r e n c e d F i e l d>
<r e f e r encedTab l e>user</ re f e r encedTab l e>
</ r e f e r e n c e>
<generato r name=” Defau l tReferenceGenerator ”>
<d i s t r i b u t i o n name=”LogNormal”>
<mu>7.60021</mu>
<sigma>1.40058</sigma>
</ d i s t r i b u t i o n>
</ generator>
</ f i e l d>
< f i e l d name=” degree program ”> [. .] </ f i e l d>
< f i e l d name=” seminar id ”> [. .] </ f i e l d>
</ f i e l d s>
</ t a b l e>
</ t a b l e s>
</schema>

To enable an output that differs from the data model a second file is used to specify the
actual generation. This is necessary if only part of the data model has to be generated.
Furthermore, it allows the data model to be separated from the generation specification.
An example of a generation specification can be seen in figure 18.3. It contains the
scheduler, the output module and its configuration and a list of all tables that have to be
generated. In order to allow different forms of output for different tables, the output can
be defined for every table.

Listing 18.3: ”Data Model File Example for Seminar User References.”

<p r o j e c t name=” simpleELearning ”>
<s chedu l e r name=” FixedJunkScheduler ”/>
<output name=”CSVRowOutput”>
<outputDir />
<f i l e E n d i n g> . tx t</ f i l e E n d i n g>
<d e l i m i t e r> |</ d e l i m i t e r>
<b u f f e r S i z e />
</ output>
<schema name=” simpleELearning ”>
<t a b l e s>
<t a b l e name=” user ”>
<output name=”CSVRowOutput”>
<outputF i l e>User\ F i l e</ outputF i l e>
</ output>
</ t a b l e>
[. .]

</ t a b l e s>

18.1. Data Generation 189

</schema>
</ p r o j e c t>

18.1.4. Performance

We used the TPC-H and the SetQuery databases to evaluate the performance of the data
generation approach. All tests were conducted on a high performance cluster with 16
nodes. Each node had two Intel Xeon QuadCore processors with 2 GHz clock rate, 16
gigabyte RAM and two 74 GB SATA hard disks configured with RAID 0. Additionally,
a master node was used, which had the same configuration, but an additional hard disk
array with a capacity of 2 TBytes. For both benchmarks two test series were conducted.
The first series tested the data generator’s scalability in terms of data size on one node.
The second series demonstrated the data generator’s scalability in terms of the number
of nodes with fixed data size. Each test was repeated at least five times. All results are
averages of these test runs.

SetQuery The SetQuery data set consists of a single table BENCH with 21 columns
[166]. 13 of the columns are integers with varying cardinalities from 2 to 1, 000, 000
of which 12 are generated randomly. 8 additional columns contain strings, one with 8
characters and the others with 20 characters. The table size is scaled linearly according
to a scaling factor SF , where SF = 1 results in about 220 MB. First we generated a 100
GB data set on 1 to 16 nodes (i.e. scaling factor 460). As can be seen in Figure 18.5
the average speed up per node is linear to the number of nodes. One node was able to
generate about 105 MB per second. The super linear speed up for a higher number of
nodes results from caching effects, which can be seen more clearly in the second test.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
p

e
e

d
 U

p

Nodes

PDGF
linear

Figure 18.5.: Scaleup Results for 1 to 16 Nodes for a 100 GB SetQuery Data Set

For the second test, different data sizes were generated on a single node. We used

190 18. Benchmarking Large Dynamic Systems

scale factor 1 to 460. The resulting durations are shown in figure 18.6. It can be seen
that the data generation scales well with the amount of data. However, the generation
is not constant. This is due to caching effects and initialization. For smaller data sizes
the initialization overhead decreases the overall generation speed. Then at scaling factor
10 (i.e. about 2 GB) there is a peak that results from hard disk and disk array caches.
For larger data sizes the hard disks write speed produces a bottleneck and limits the
generation speed to about 100 MB/s.

 0.1

 1

 10

 100

 1000

 1 10 46 100 460
 0

 50

 100

 150

 200

G
e

n
e

ra
ti
o

n
 T

im
e

 [
s
e

c
]

G
e

n
e

ra
ti
o

n
 S

p
e

e
d

 [
M

B
/s

]

Scaling Factor

 Generation Time

Generation Speed

Figure 18.6.: Generation Time and Speed for Different Scaling Factors of the SetQuery
Data Set

TPC-H To test a more complex scenario and compare the generation speed with other
data generation tools, we used the data generation approach to generate TPC-H data.
Again, we tested the data generator’s scalability in terms of the amount of data and the
number of nodes. Figure 18.7 shows the data generation elapsed times for scale factor 1,
10 and 100 for a single node. Additionally, we generated the same data sizes with dbgen.
Both axes of the figure are in logarithmic scale. To obtain fair results, dbgen was started
with 8 processes, thus fully exploiting the 8 core system. Generation times for both tools
were CPU bound. Since we had notable variations in the runtime of dbgen, we only report
the best of 5 runs for each scaling factor. As can be seen in the figure, our configurable
and extensible Java implemented tool can compete with a specialized C implementation.

Figure 18.8 shows the data generation times for different cluster sizes. For all cluster
sizes the data generation duration scales linearly with the data size. Furthermore, the
generation time for certain scale factors decreases linearly with the number of nodes it
is generated on. However, for scale factor 1 on 10 and 16 nodes the generation speed is
significantly slower than for the other configurations. This is due to the large initialization
overhead compared to the short generation time.

18.2. Workload Generation 191

 1

 10

 100

 1000

 1 10 100

G
e

n
e

ra
ti
o

n
 T

im
e

 [
s
e

c
]

Scaling Factor

PDGF
dbgen

Figure 18.7.: Comparison of the Generation Speed of dbgen and PDGF

18.2. Workload Generation

To benchmark adaptability in database systems, the query generator has to be able to
simulate realistic workloads that shift in quantity and ratio of the requests. Therefore, the
design focus was to build a realistic workload model that reflects user dependent workload
patterns. For that purpose we proposed a new kind of random generator for time series
in [187].

The basis of the generator is the assumption that the workload comprises several com-
ponents that can be modeled independently and that these components can be represented
by an approximating polynomial. This model was previously applied by Calzarossa and
Serazzi to classify and characterize workload patterns [53]. As was shown for the work-
loads of the Stud.IP system and the Wikimedia clusters, the workload consists of daily
patterns, hence we use our model to represent the workload of a single day. Since the
single queries in the workload can be classified, we use a single representation for each
class. The workload is not continuous (see figure 18.1), therefore, it is smoothed. We
use an aggregation of 60 minutes. Hence, the workload of a single class is a time series
consisting of 24 measurements, each reflecting the number of accesses in a time interval of
60 minutes. The time series starts at 4 am in the morning, when the number of accesses
is at the low point (see figure 18.1).

For each day and each class we are given a time series consisting of N + 1 = 24
observations yn at time points xn, with n ∈ {0, . . . , N}. These points are equidistant in
time. Therefore, we can find an optimally approximating polynomial of degree K using
a linear combination of K + 1 basis polynomials pk:

pa(x) =
K∑
k=0

akpk(x) (18.3)

192 18. Benchmarking Large Dynamic Systems

 1

 10

 100

 1000

 1 10 100 1000

G
e

n
e

ra
ti
o

n
 T

im
e

 [
s
e

c
]

Scaling Factor

1 Node
10 Nodes
16 Nodes

Figure 18.8.: Generation Times of TPC-H Data Sets on Different Cluster Sizes

where ak ∈ R are the weighting factors of the basis polynomials and build the weighting
vector a. An optimal approximation can be found using the least squares approximation.
Calzarossa and Serazzi use monomials to approximate the time series. Hence, they found
the weighting factors to be clustered but not following a standard distribution. However,
we require the polynomials to have the following properties:

• Their degree must ascend from 0 to K.

• The leading coefficient (coefficient of the monomial with the highest degree) of each
basis polynomial must be one.

• Each pair of basis polynomials pk1 and pk2 (with k1 6= k2) must be orthogonal with
respect to the inner product

〈pk1 |pk2〉 =

N∑
n=0

pk1(xn)pk2(xn). (18.4)

That is, 〈pk1 |pk2〉 = 0 for all k1 6= k2.

Since the observations were made at equidistant points in time, the choice of the basis
polynomials depends only on their number N + 1. We assume that the first observation
is made at time 0, otherwise we simply shift the time series to this point. In the context
of orthogonal basis polynomials, the weighting factors ak are called orthogonal expansion
coefficients. These are optimal estimators of the average (a0), slope (a1), curve (a2),
change of curve (a3), etc. of the time series [96, 97]. The mathematical background can
be found in [88, 95].

When using the orthogonal base polynomials for the approximation it can be seen that
the representations of the sample time series all originating from a particular kind of

18.2. Workload Generation 193

−5 0 5 10 15 20 25
−1

−0.5

0

0.5

1

1.5

2

x
0

x
1

(a) Monomial Coefficients

0 200 400 600 800 1000 1200
−40

−35

−30

−25

−20

−15

−10

−5

0

average

s
lo

p
e

(b) Orthogonal Coefficients

Figure 18.9.: Distribution of Monomial and Orthogonal Coefficients for Degree 0 and 1

day (e.g., public holiday, working Friday, etc.) can be regarded as being nearly normally
distributed. This can be seen in figure 18.9; here the coefficients of the approximation
of the most visited website of the Stud.IP system on Mondays in the semester in winter
term 2008 can be seen. It can be seen that in contrast to monomial coefficients (see figure
18.9(a)), the orthogonal coefficients (see figure 18.9(b)) can be modeled by a multivariate
Gaussian distribution:

N (a|µ,Σ) =
1

(2π)(K+1)/2|Σ|1/2
exp

(
−1

2
(a− µ)TΣ−1(a− µ)

)
(18.5)

where µ is the (K + 1)-dimensional center (or mean) and Σ the (K + 1) × (K + 1)-
dimensional covariance matrix. To find µ and Σ a standard maximum likelihood tech-
nique can be applied [43].

Based on these findings, a model for time series that represent a workload of a certain
working day can be built by approximating a set of sample time series (ideally more than
N) as described above and computing the resulting multivariate Gaussian distribution.
Using the model a random time series can be generated in the following way:

1. Using a random number generator points within the multivariate Gaussian distri-
bution can be generated.

2. These points can be transformed into the respective polynomials using the (known)
orthogonal basis polynomials.

3. The polynomials can be evaluated at the desired points in time, resulting in the
according intensity of the workload.

4. If a more unsteady workload is needed random noise can be added, for example
white noise with a standard deviation corresponding to the average approximation
error for the set of sample time series.

194 18. Benchmarking Large Dynamic Systems

6 8 10 12 14 16 18 20 22 0 2 4
0

200

400

600

800

1000

1200

Hours

P
a
g
e
 H

it
s

Most Likely Polynomial

Average Monday

Monday 17−11−08

Monday 12−01−09

Figure 18.10.: The Most Likely Approximating Polynomial for Mondays During the Lec-
ture Period

Using this approach, a generator for an arbitrary large set of artificial workloads can
be built, which all have a similar shape to the original time series. An example of a
polynomial approximation for Mondays during the semester can be seen in figure 18.10;
the average workload on Mondays as well as the most likely approximating polynomial
can be seen; the orthogonal coefficients of the most likely polynomial specify the mean of
the multivariate distribution. For comparison two regular workloads are shown.

The approximating polynomials tend to ±∞ in the limit case. This can result in
negative values at the boundaries of the modeled interval. In order to avoid this problem,
the interval analyzed can be extended at both ends. The complete procedure is the same,
except that the borders are not evaluated for the workload generation.

As shown before, each day of the week has different access rates. Therefore, we built
single models for every day of the week. In this way we can also easily simulate holidays
and outliers with anomalous accesses.

18.2.1. Scaling Time

An important factor for the usability of a benchmark is its runtime [45]. The smallest unit
of time that has periodical access rates is usually one day. To test adaptability several
periods have to be processed. Since this is too long for most benchmarking purposes,
we scale time (see section 6.4). With a scaling factor of 1/7 a complete week can be
simulated within 24 hours. Depending on the application under test, even smaller factors
could reasonable be tested. Another possibility to shorten runtime is to use a reduced
week that only consists of three days.

Of course, the system under test has to be aware of the time scaling factor. Since daily
and weekly periods are usual in information systems, good tuning processes will use this
knowledge for periodical tasks.

18.3. Benchmarking Objectives 195

18.3. Benchmarking Objectives

Depending on the benchmark objective, different test cases can be built. Shifting work-
loads give lots of opportunities to test automatic and autonomic systems. For database
systems a common metric is transactions per second or average response time for a given
database size, depending on the optimization goal (e.g. the QphDS@SF metric in TPC-DS
[161]). It has to be mentioned that whichever is used, the other should also be monitored
(for example TPC benchmarks define an upper limit for the response time). In the fol-
lowing we will give four examples of how shifting workloads can improve benchmarking.

18.3.1. Basic Performance

The most common benchmarking objective in database systems is to test the speed, i.e.
transactions per second or similar. A good baseline for such a test is the peak performance
of the system without any automatic tuning and without any workload shifts.

To test if the system can automatically produce a better throughput in a real life
environment, alternating workloads can be used. This way the system has phases of high
load, which can be used to measure the peak performance. In phases of low load, the
system has time to optimize its table structure, scale itself or tune the indices without
risking serious performance bottlenecks. Throughout the test the ratio of different query
classes stay constant. After some periods the peak performance should increase and
should be better than the baseline performance.

18.3.2. Adaptability

As stated before a major goal was to measure adaptability. The idea is to test how
well a system can adjust itself to the workload. As we have shown before, the rates of
query classes change within a single day. This can be simulated by shifting workloads.
So different query sets are defined and for each set a separate time series is generated.
Also the workload is different for each day of the week. Either a complete week can be
simulated, or a reduced week consisting of only two working days and one weekend day,
which should suffice in most cases. With this test, a system under test that is aware of the
temporal dependencies in the workload should get a better performance than a system
that is not.

Changes in the workload behavior can be introduced to further test the adaptability. In
figure 18.11 the most frequently accessed websites in Stud.IP between October 08 and May
09 can be seen. It is easy to see that there are sections with very different characteristics.
The diagram starts shortly after the beginning of the semester, which lasted until the first
week of February. The next semester started on April 20. Additionally the Christmas
break from December 24 until January 06 can be seen. So for an eLearning system
at a university a week can be classified in one of the three classes, semester, semester
break and holidays. All three of these sections are well-defined and their ranges are
previous knowledge. This form of test is in some respects already implemented in current

196 18. Benchmarking Large Dynamic Systems

November December January February11th March 16th April May June21st
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

D
ai

ly
 A

cc
es

se
s

Daily Website Accesses 24 October 08 − 11 June 09

plugins
extern
seminare_main
meine_seminare
details

Figure 18.11.: Most Accessed Websites in Stud.IP Between October 24, 2008 and June
10, 2009 per Day

benchmarks, TPC-DS, for example, consists of four consecutive phases with very different
characteristics (i.e. load, query run, data maintenance, query run - cf. [182]). However,
our form of query generation also makes it possible to model the trends within one phase.
Such a trend can be seen in the fall term 2008 when the workload constantly decreased
and then slightly increased at the end of the term.

18.3.3. Robustness

To test the robustness of an autonomic system outliers can be introduced. In figure
18.11 these can be seen in form of legal holidays on May 21 and June 1 and in the form
of unpredictable outliers for example on February 11 (server maintenance) or March 16
(unexpected user behavior). An autonomic system should be able to identify such outliers
and deal with them correctly. So, it should not change its configuration completely based
on that single day. Yet, it also must not have a serious performance collapse. For national
holidays this could also be presented by previous knowledge. Outliers can be modeled like
other days and either triggered randomly (maintenance) or at previously defined points
in time. To test robustness the performance before and after an outlier can be compared
and the time until the original performance level is reached again. To find out if a system
is over adapted, the performance during an outlier day can be used.

18.4. Discussion

In this part we have presented new techniques for benchmarking. First, we have explained
our approach for the deterministic generation of realistic data sets. After this we have
shown a new model to generate arbitrary workloads that simulate realistic user behavior.
Our contributions are the following:

18.4. Discussion 197

• The deterministic seeding approach enables the generation of realistic data sets.

• Using parallel random number generators our generic data generation approach has
equivalent speed as a native C implementation.

• Based on the deterministic generation complex dependencies are possible.

• The time series model for workload generation enables the generation of realistic
workloads.

• Based on a real e-learning application a benchmark for dynamic workloads was
specified.

Obviously, the data generation approach and the workload model can be combined.
This makes workloads possible that have non uniform access patterns. This enables, for
example, a simulation of hot spots in the database. On the other hand, integrating the
workload model in the data generation makes it possible to generate data which has time
based dependencies, such as timestamps.

Part V.

Conclusion

19. Conclusion

In this thesis, we have presented a processing model for the cluster database architecture,
a common architecture for distributed database systems. The model allows an accurate
analysis of the requirements of a distributed database system. Many research projects
use very complex models to get an exact image of the query processing in the distributed
system. These models, however, limit the application to small problem sizes or very
controlled environments. Our model allows an automatic computation of all parameters.
Therefore, all algorithms based on this model can be automatized. This increases the
possibilities for self-management.

Based on this model we presented an autonomic approach for the scaling of clus-
ter database systems. The scaling was implemented in the generic framework Scalileo.
Scalileo features an online feedback control loop based on the MAPE model. It can easily
be integrated into existing applications to extend them with self-management and par-
ticularly with autonomic scaling. We have shown two show cases as a proof of concept:
a distributed web server and a cluster database system. Both applications were scaled
according to their workload. Apart from the reduced management costs for installation
and integration of additional nodes, the systems have a substantially increased energy
efficiency. For the distributed web server with 4 nodes a reduction of the energy con-
sumption by 30% was possible and for the cluster database system a reduction of energy
consumption by 24% was achieved.

To increase the throughput and scalability of the CDBS, we presented a formal defini-
tion of the allocation problem in cluster database systems. As for the processing model,
the allocation problem is reduced to the necessary parameters, which can be computed
automatically. We have shown optimal and heuristic allocation algorithms that optimize
the storage efficiency of the cluster database system architecture. Furthermore, the query
processing performance is increased. Two versions of the algorithm were presented: a ver-
sion for read-only workloads and a version for workloads with updates on the database.
Both were evaluated with industry standard benchmarks. The evaluation showed that
for read only workloads our algorithm can compute allocations that reduce the storage
requirements by 65% and achieve super linear speedup. The allocation algorithm for
workloads with updates increases the performance by up to 2.4 times compared to a fully
replicated system and achieves a throughput that is not possible for a fully replicated
system.

Since there is no benchmark for database systems in dynamic environments, in the final
section we presented methods to generate realistic data and realistic workloads in cluster
environments. For the data generation we have developed a generic approach that allows
massively parallel generation of databases over large numbers of nodes. The resulting

201

202 19. Conclusion

data features complex dependencies and the generation speed has an ideal speedup. The
workload generation produces query streams with realistic variations and frequencies. The
model is based on an orthogonal polynomial approximation which allows a calendar based
classification of the workloads. Since coefficients of polynomials representing workloads
of equivalent periods in time have a normal distribution, these distributions can be found
with standard techniques. They can be used to generate arbitrary numbers of varying
query streams with similar, realistic characteristics.

20. Ongoing and Future Work

In this chapter, we will give details of current and future work. We have presented a model
for cluster database systems, which has several limitations due to the simple processing
model 3.4.1. In future work, we will introduce further features to the model, such as
transactions and distributed query processing. This will enable us to adapt our allocation
and scaling approaches and increase the area of application of our model.

20.1. Scaling

The autonomic scaling framework presented in part II can be extended to support all
kinds of autonomous tasks. An important extension will be the introduction of stochastic
models for the threshold estimation. Using hidden Markov models or support vector
machines will allow an automatic adaption of the parameters for scaling and the like.
Since many workloads have a periodic pattern, time series analysis will allow a proactive
approach for adaptation. Using the workload model presented in section 18.2 combined
with a clustering approach such as k-nearest neighbors, we will be able to classify a
workload to a certain group of days and predict the shape of the workload.

20.2. Allocation

We have presented several algorithms for the allocation problem in cluster database sys-
tems in part III. In future work we will implement the attribute based classification,
in order to provide horizontal partitioned data layouts. In our tests we have used a
baseline configuration of the backend database systems. However, the performance of
database systems can be increased drastically with local schema optimization strategies.
Most promising seem dynamic materialized view and index selection, as presented in
[50, 199, 149]. These will require the consideration of the local database layout, which we
saw as a black box in this work.

Obviously, the allocation strategies can be used for various other applications as well.
Using the weighting of the backend system capabilities, the optimal placement of data on
heterogeneous storage systems can be optimized as presented in [55].

Furthermore, we will extend our research in allocation strategies for highly dynamic
environments. Part of this work will be a more integrated approach of the scaling with
the advanced allocation strategies. We are currently also working on a pure online version
of the allocation algorithm. This will provide an option to improve the allocation without
excessive data transfer.

203

204 20. Ongoing and Future Work

To better exploit modern hardware architectures, it would be sensible to combine our
data parallel approach with local declustering techniques to increase the processing of
single requests. This would lead two a two staged architecture, reflecting the shared
nothing architecture on cluster level and the shared memory architecture of modern multi-
processor/multi-core systems [121].

20.3. Benchmarking

The methodologies presented in part IV allow a wide area of application. We are currently
exploring applications for medical informatics; due to data protection laws, it is in general
not possible to work with real life data. Generating synthetic medical records will allow
researchers to test medical information systems with large, realistic data sets.

The TPC is specifying a new benchmark for ETL systems [228]. Due to the genericness
and performance of our data generator, we have been invited to implement the official
data generator for this. This data integration benchmark consists of multiple data sources
that have to contain the same database in different models. The source systems are
represented by an OLAP style database model, an XML file containing user data, a
mixed file containing various types of information and a flat file containing news data.
The target system is modeled as a data warehouse. All data have to be consistent with
each other. Furthermore, random errors in the data have to be generated. This introduces
new challenges for the data generation, which we are currently studying and which we
approach with generic extensions to our data generation framework.

In order to generate consistent updates and queries, we will integrate the workload
generation in the data generation framework. Using the deterministic value generation,
various access patterns can be realized. This enables new workload characteristics such as
hot spots in data access, without the necessity of simulating single users as, for example,
proposed by the Rain workload generator [31]. Including the workload model in the
data generation will also enable temporal dependencies in the data. In real data sets,
time stamps of orders or the like will generally not be uniformly distributed, but follow
a pattern that matches the access frequency. This can be simulated using polynomial
representation.

Bibliography

[1] Information Technology - Database Language SQL, 1992.

[2] Magic Packet Technology. Technical Report 20213, Advanced Micro Devices, 1995.

[3] An Architectural Blueprint for Autonomic Computing. Technical report, IBM Cor-
poration, 2006.

[4] DRDA V4: Distributed Relational Database Architecture (DRDA), 2007.

[5] Oracle Database 11g Performance and Scalability. Whitepaper, Oracle, 2007.

[6] HP Neoview Advantage - A Data Warehouse Platform for the new Generation of
Business Intelligence. Technical report, Hewlett-Packard Development Company,
2010.

[7] Oracle Real Application Clusters in Oracle VM Environments. Whitepaper, Oracle,
2010.

[8] The Vertica Analytic Database Technical Overview White Paper. Technical report,
Vertica Systems Inc., 2010.

[9] Unified Modeling Language, 2010.

[10] M. Abd-El-Malek, W. V. C. II, C. Cranor, G. R. Ganger, J. Hendricks, A. J.
Klosterman, M. P. Mesnier, M. Prasad, B. Salmon, R. R. Sambasivan, S. Sinnamo-
hideen, J. D. Strunk, E. Thereska, M. Wachs, and J. J. Wylie. Early Experiences on
the Journey Towards Self-* Storage. IEEE Data Engineering Bulletin, 29(3):55–62,
2006.

[11] R. Agrawal, S. Chaudhuri, A. Das, and V. R. Narasayya. Automating Layout of Re-
lational Databases. In ICDE ’03: Proceedings of the 19th International Conference
on Data Engineering, pages 607–618, 2003.

[12] S. Agrawal, S. Chaudhuri, L. Kollár, A. P. Marathe, V. R. Narasayya, and M. Sya-
mala. Database Tuning Advisor for Microsoft SQL Server 2005. In VDLB ’04:
Proceedings of the Thirtieth International Conference on Very Large Data Bases,
pages 1110–1121. Morgan Kaufmann, 2004.

205

206 Bibliography

[13] S. Agrawal, E. Chu, and V. Narasayya. Automatic Physical Design Tuning: Work-
load as a Sequence. In SIGMOD ’06: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pages 683–694, New York, NY, USA,
2006. ACM.

[14] I. Ahmad, K. Karlapalem, Y.-K. Kwok, and S.-K. So. Evolutionary Algorithms
for Allocating Data in Distributed Database Systems. Distributed and Parallel
Databases, 11(1):5–32, 2002.

[15] A. Ailamaki, D. J. DeWitt, M. Hill, and D. A. Wood. DBMSs on a Modern Proces-
sor: Where Does Time Go? In Proceedings of the 25th International Conference on
Very Large Data Bases, pages 266–277, Edinburgh, Scotland, UK, September 1999.
Morgan Kaufmann.

[16] S. Akioka and Y. Muraoka. HPC benchmarks on Amazon EC2. In WAINA ’10:
Proceedings of the 2010 IEEE 24th International Conference on Advanced Informa-
tion Networking and Applications Workshops, pages 1029–1034, 2010.

[17] A. Alba, V. Bhagwan, M. Ching, A. Cozzi, R. Desai, D. Gruhl, K. Haas, L. Kato,
J. Kusnitz, B. Langston, F. Nagy, L. Nguyen, J. Pieper, S. Srinivasan, A. Stuart,
and R. Tang. A Funny Thing Happened on the Way to a Billion... IEEE Data
Engineering Bulletin, 31(4):27–36, 2006.

[18] S. Albers. Onlinealgorithmen - Was ist es wert, die Zukunft zu kennen? Informatik-
Spektrum, 33(5):438–443, 2010.

[19] M. Allman, K. Christensen, B. Nordman, and V. Paxson. Enabling an Energy-
Efficient Future Internet Through Selectively Connected End Systems. In HotNets
’07: Proceedings of the Sixth Workshop on Hot Topics in Networks, 2007.

[20] P. A. Alsberg and J. D. Day. A Principle for Resilient Sharing of Distributed Re-
sources. In ICSE ’76: Proceedings of the 2nd International Conference on Software
Engineering, pages 562–570. IEEE Computer Society Press, 1976.

[21] A. C. Alvim, C. C. Ribeiro, F. Glover, and D. J. Aloise. A Hybrid Improvement
Heuristic for the One-Dimensional Bin Packing Problem. Journal of Heuristics,
10(2):205–229, 2004.

[22] S. Amarasinghe, D. Campbell, W. Carlson, A. Chien, W. Dally, E. Elnohazy,
M. Hall, R. Harrison, W. Harrod, K. Hill, J. Hiller, S. Karp, C. Koelbel, D. Koester,
P. Kogge, J. Levesque, D. Reed, V. Sarkar, R. Schreiber, M. Richards, A. Scarpelli,
J. Shalf, A. Snavely, and T. Sterling. ExaScale Software Study: Software Challenges
in Extreme Scale Systems. Technical report, Georgia Institute of Technology, 2009.

[23] G. M. Amdahl. Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities. In AFIPS ’69: Proceedings of the AFIPS Spring Joint
Computer Conference, pages 483–485, 1967.

Bibliography 207

[24] R. R. Amossen. Vertical Partitioning of Relational OLTP Databases Using Inte-
ger Programming. In ICDEW ’10: 26th IEEE International Conference on Data
Engineering Workshops, pages 93–98, 2010.

[25] E. Anderson and J. Tucek. Efficiency Matters! In HotStorage ’09: Proceedings of
the SOSP Workshop on Hot Topics in Storage and File Systems, New York, NY,
USA, 2009. ACM.

[26] P. M. G. Apers. Data Allocation in Distributed Database Systems. ACM Transac-
tions on Database Systems, 13(3):263–304, 1988.

[27] J. Armstrong. A History of Erlang. In HOPL III: Proceedings of the third ACM
SIGPLAN conference on History of programming languages, pages 6–1–6–26, 2007.

[28] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, and A. M.-S. nd Marco Protasi.
Complexity and Approximation - Combinatorial Optimization Problems and Their
Approximability Properties. Springer Verlag, 2003.

[29] L. A. Barroso, J. Dean, and U. Hölzle. Web Search for a Planet: The Google Cluster
Architecture. IEEE Micro, 23(2):22–28, 2003.

[30] L. A. Barroso and U. Hölzle. The Case for Engergy-Proportional Computing. IEEE
Computer, 40(12):33–37, 2007.

[31] A. Beitch, B. Liu, T. Yung, R. Griffith, A. Fox, and D. A. Patterson. Rain: A
Workload Generation Toolkit for Cloud Computing Applications. Technical Report
UCB/EECS-2010-14, Electrical Engineering and Computer Sciences – University of
California at Berkeley, 2010.

[32] C. Belady. Green Grid Data Center Power Efficiency Metrics: PUE and DCiE.
Technical Report 6, The Green Grid, 2008.

[33] K. Bellam, A. Manzanares, X. Ruan, X. Qin, and Y. Yang. Improving Reliability
and Energy Efficiency of Disk Systems via Utilization Control. In ISCC ’08: IEEE
Symposium on Computers and Communications, pages 462–467, 2008.

[34] C. Bennett, R. Grossman, and J. Seidman. MalStone: A Benchmark for Data
Intensive Computing. Technical report, Open Cloud Consortium, 2009.

[35] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A Critique of
ANSI SQL Isolation Levels. In Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, pages 1–10, San Jose, California, May 1995.
ACM, ACM Press.

[36] J. Bernardino and H. Madeira. Experimental Evaluation of a New Distributed
Partitioning Technique for Data Warehouses. In IDEAS ’01: Proceedings of the In-
ternational Database Engineering & Applications Symposium, pages 312–321, 2001.

208 Bibliography

[37] P. A. Bernstein, N. Dani, B. Khessib, R. Manne, and D. Shutt. Data Management
Issues in Supporting Large-Scale Web Services. IEEE Data Engineering Bulletin,
31(4):3–9, 2006.

[38] P. A. Bernstein and E. Newcomer. Principles of Transaction Processing. The
Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann, 2009.

[39] H.-G. Beyer. Theory of Evolution Strategies. Springer Berlin / Heidelberg, 2001.

[40] B. Bhattacharjee, M. Canim, C. A. Lang, G. A. Mihaila, and K. A. Ross. Stor-
age Class Memory Aware Data Management. IEEE Data Engineering Bulletin,
33(4):35–40, 2010.

[41] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing. How is the Weather To-
morrow?: Towards a Benchmark for the Cloud. In DBTest ’09: Proceedings of the
Second International Workshop on Testing Database Systems, pages 1–6, New York,
NY, USA, 2009. ACM.

[42] K. Birman, G. Chockler, and R. van Renesse. Toward a Cloud Computing Research
Agenda. SIGACT News, 40(2):68–80, 2009.

[43] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York,
NY, 2006.

[44] D. Bitton, D. J. DeWitt, and C. Turbyfill. Benchmarking Database Systems: A
Systematic Approach. In VLDB ’83: Proceedings of the 9th International Confer-
ence on Very Large Data Bases, pages 8–19, San Francisco, CA, USA, November
1983. ACM, Morgan Kaufmann Publishers Inc.

[45] S. M. Blackburn, K. S. McKinley, R. Garner, C. Hoffmann, A. M. Khan, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. L. Hosking,
M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovic, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. Wake Up and Smell the Coffee: Evaluation
Methodology for the 21st Century. Communications of the ACM, 51(8):83–89, 2008.

[46] P. A. Boncz, S. Manegold, and M. L. Kersten. Database Architecture Evolution:
Mammals Flourished long before Dinosaurs became Extinct. In VLDB ’09: Pro-
ceedings of the 35th International Conference on Very Large Data Bases, pages
1648–1653. VLDB Endowment, 2009.

[47] A. B. Bondi. Characteristics of Scalability and Their Impact on Performance. In
WOSP ’00: Proceedings of the 2nd International Workshop on Software and Per-
formance, pages 195–203. ACM, 2000.

[48] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

Bibliography 209

[49] N. Bruno and S. Chaudhuri. Flexible Database Generators. In VLDB ’05: Proceed-
ings of the 31st international conference on Very large data bases, pages 1097–1107.
VLDB Endowment, 2005.

[50] N. Bruno and S. Chaudhuri. An Online Approach to Physical Design Tuning. In
ICDE ’07: Proceedings of the 23rd International Conference on Data Engineering,
pages 826–835. IEEE, 2007.

[51] R. Burkard, M. Dell’Amico, and S. Martello. Assignment Problems. Society for
Industrial and Applied Mathematics, 2009.

[52] B. Calder, C. Krintz, S. John, and T. Austin. Cache-Conscious Data Placement.
SIGOPS Operation System Review, 32(5):139–149, 1998.

[53] M. Calzarossa and G. Serazzi. A Characterization of the Variation in Time of
Workload Arrival Patterns. IEEE Transactions on Computers, 34(2):156–162, 1985.

[54] L. Camargos, F. Pedone, and M. Wieloch. Sprint: A Middleware for High-
Performance Transaction Processing. In EuroSys ’07: Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007, pages 385–398,
2007.

[55] M. Canim, B. Bhattacharjee, G. A. Mihaila, C. A. Lang, and K. A. Ross. An
Object Placement Advisor for DB2 Using Solid State Storage. Proceedings of VLDB
Endowment, 2(2):1318–1329, 2009.

[56] S. Casner and S. Deering. First IETF Internet Audiocast. ACM SIGCOMM Com-
puter Communication Review, 22(3):92–97, 1992.

[57] E. Cecchet. RAIDb: Redundant Array of Inexpensive Databases. In Parallel
and Distributed Processing and Applications, Second InternationalSymposium, ISPA
2004, pages 115–125, Hong Kong, China, December 2004. LNCS 3358, Springer Ver-
lag.

[58] E. Cecchet, G. Candea, and A. Ailamaki. Middleware-based Database Replication:
The Gaps Between Theory and Practice. In SIGMOD ’08: Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data, pages 739–752,
2008.

[59] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC: Flexible Database Clus-
tering Middleware. In Proc. USENIX Annual Technical Conference, Freenix Track,
Boston, MA, USA, June 2004.

[60] S. Ceri, S. Navahe, and G. Wiederhold. Distribution Design of Logical Database
Schemas. IEEE Transactions on Software Enginieering, 9(4):487–504, 1983.

[61] S. Ceri and G. Pelagatti. Distributed Databases - Principles and Systems. McGraw-
Hill, Inc., 1984.

210 Bibliography

[62] S. A. Ceri, M. Negri, and G. Pelagatti. Horizontal Data Partitioning in Database
Design. In SIGMOD ’82: Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, pages 128–136, 1982.

[63] J. S. Chase, D. C. Anderson, P. N. Thakar, A. Vahdat, and R. P. Doyle. Managing
Energy and Server Resources in Hosting Centers. In SOSP ’01: Proceedings of the
18th ACM Symposium on Operating System Principles, volume 35 of ACM SIGOPS
Operating Systems Review, pages 103–116, New York, NY, USA, 2001. ACM.

[64] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao. Energy-Aware
Server Provisioning and Load Dispatching for Connection-Intensive Internet Ser-
vices. In NSDI ’08: 5th USENIX Symposium on Networked Systems Design &
Implementation, pages 337–350. USENIX Association, 2008.

[65] J. Chen, G. Soundararajan, and C. Amza. Autonomic Provisioning of Backend
Databases in Dynamic Content Web Servers. In ICAC ’06: Proceedings of the 2006
IEEE International Conference on Autonomic Computing, 2006.

[66] P. P.-S. Chen. The Entity-Relationship Model — Toward a Unified View of Data.
ACM Transactions on Database Systems, 1(1):9–36, 1976.

[67] W.-J. Chen, R. Ahuja, Y. J. Bi, R. Borovsky, P. Fürer, C. Maddux, I. Ohta, and
M. Talens. DB2 Integrated Cluster Environment Deployment Guide. 2004.

[68] W. W. Chu. Optimal File Allocation in a Multiple Computer System. IEEE Trans-
actions on Computers, 18:885–889, 1969.

[69] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Communi-
cations of the ACM, 13(1):377–387, 1970.

[70] E. F. Codd. The Relational Model for Database Management: Version 2. Addison
Wesley, 1990.

[71] P. D. Coddington. Random Number Generators for Parallel Computers. National
HPCC Software Exchange Review Electronic Journal, 2, 1996.

[72] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation Algorithms for
Bin Packing: A Survey. In D. S. Hochbaum, editor, Approximation Algorithms for
NP-Hard Problems, chapter 2. PWS Publishing Company, 1996.

[73] M. P. Consens, D. Barbosa, A. M. Teisanu, and L. Mignet. Goals and Benchmarks
for Autonomic Configuration Recommenders. In SIGMOD ’05: Proceedings of the
2005 ACM SIGMOD International Conference on Management of Data, pages 239–
250, New York, NY, USA, 2005. ACM.

[74] Continuent. Tungsten Concepts and Administration Guide, 2010.

Bibliography 211

[75] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmark-
ing Cloud Serving Systems with YCSB. In SoCC ’10: Proceedings of the 1st ACM
symposium on Cloud computing, pages 143–154, New York, NY, USA, 2010. ACM.

[76] G. Copeland, W. Alexander, E. Boughter, and T. Keller. Data Placement in Bubba.
SIGMOD Record, 17(3):99–108, 1988.

[77] G. P. Copeland and S. Khoshafian. A Decomposition Storage Model. In SIGMOD
’85: Proceedings of the 1985 ACM SIGMOD International Conference on Manage-
ment of Data, pages 268–279, New York, NY, USA, 1985. ACM.

[78] D. W. Cornell and P. S. Yu. A Vertical Partitioning Algorithm for Relational
Databases. In ICDE ’87: Proceedings of the Third International Conference on
Data Engineering, pages 30–35, 1987.

[79] G. D. Costa, J.-P. Gelas, Y. Georgiou, L. Lefevre, A.-C. Orgerie, J.-M. Pierson,
O. Richard, and K. Sharma. The GREEN-NET Framework: Energy Efficiency
in Large Scale Distributed Systems. In IPDPS ’09: Proceedings of the 2009 IEEE
International Symposium on Parallel&Distributed Processing, pages 1–8, Los Alami-
tos, CA, USA, 2009. IEEE Computer Society.

[80] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: A Workload-Driven Ap-
proach to Database Replication and Partitioning. Proceedings of VLDB Endowment,
3(1-2):48–57, 2010.

[81] P. Dadam. Verteilte Datenbanken und Client/Server-Systeme — Grundlagen,
Konzepte und Realisierungsformen. Springer Berlin/Heidelberg, 1996.

[82] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zäıt, and M. Ziauddin. Automatic
SQL Tuning in Oracle 10g. In VDLB ’04: Proceedings of the Thirtieth International
Conference on Very Large Data Bases, pages 1098–1109. Morgan Kaufmann, 2004.

[83] N. H. Daudpota. Five Steps to Construct a Model of Data Allocation for Dis-
tributed Database Systems. Journal of Intelligent Information Systems, 11(2):153–
168, September 1998.

[84] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. Communications of the ACM, 51(1):107–113, 2008.

[85] B. Devlin, J. Gray, B. Laing, and G. Spix. Scalability Terminology: Farms, Clones,
Partitions, and Packs: RACS and RAPS. Technical Report MS-TR-99-85, Microsoft
Research, 1999.

[86] D. DeWitt and J. Gray. Parallel Database Systems: The Future of High Performance
Database Systems. Communications of the ACM, 35(6):85–98, 1992.

212 Bibliography

[87] D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. B. Kumar, and M. Mura-
likrishna. GAMMA - A High Performance Dataflow Database Machine. In VLDB
’86: Proceedings of the 12th International Conference on Very Large Data Bases,
pages 228–237, 1986.

[88] S. Elhay, G. H. Golub, and J. Kautsky. Updating and Downdating of Orthogonal
Polynomials with Data Fitting Applications. SIAM Journal on Matrix Analysis and
Applications, 12(2):327–353, 1991.

[89] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems, 2nd Edition.
Benjamin/Cummings, 1994.

[90] S. Elnikety, S. Dropsho, and F. Pedone. Tashkent: Uniting Durability with Transac-
tion Ordering for High-Performance Scalable Database Replication. In Proceedings
of the 1st ACM SIGOPS/EuroSys European Conference on Computer Systems 2006,
pages 117–130, 2006.

[91] S. Elnikety, S. Dropsho, and W. Zwaenepoel. Tashkent+: Memory-Aware Load Bal-
ancing and Update Filtering in Replicated Databases. In EuroSys ’07: Proceedings
of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems,
pages 399–412, 2007.

[92] S. Englert, J. Gray, T. Kocher, and P. Shah. A Benchmark of NonStop SQL Release
2 Demonstrating Near-Linear Speedup and Scaleup on Large Databases. Technical
Report 89.4, Tandem Computers Inc., 1989.

[93] C. Faloutsos and P. Bhagwat. Declustering Using Fractals. In PDIS ’93: Proceedings
of the Second International Conference on Parallel and Distributed Information
Systems, pages 18–25, 1993.

[94] I. Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel
Software Engineering. Addison Wesley, 1995.

[95] E. Fuchs. On Discrete Polynomial Least-Squares Approximation in Moving Time
Windows. In Proceedings of the Conference at the Mathematical Research Institute
Oberwolfach, volume 131 of International Series of Numerical Mathematics, pages
93–107, Basel, Switzerland, 1999. Birkhäuser.

[96] E. Fuchs, C. Gruber, T. Reitmaier, and B. Sick. Processing Short-Term and Long-
Term Information With a Combination of Polynomial Approximation Techniques
and Time-Delay Neural Networks. IEEE Transactions on Neural Networks, 2009.
(accepted – to appear).

[97] E. Fuchs, T. Gruber, J. Nitschke, and B. Sick. On-line Motif Detection in Time
Series With SwiftMotif. Pattern Recognition, 42(11):3015–3031, 2009.

Bibliography 213

[98] R. Gallersdörfer and M. Nicola. Improving Performance in Replicated Databases
through Relaxed Coherency. In VLDB ’95: Proceedings of the 21th International
Conference on Very Large Data Bases, pages 445–456, 1995.

[99] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online Balancing of Range-
Partitioned Data with Applications to Peer-to-Peer Systems. In VLDB ’04: Pro-
ceedings of the Thirtieth international conference on Very large data bases, pages
444–455. VLDB Endowment, 2004.

[100] D. F. Garcia, J. Garcia, M. Garcia, I. Peteira, R. Garcia, and P. Valledor. Bench-
marking of Web Services Platforms - An Evaluation with the TPC-App Benchmark.
In WEBIST ’06: International Conference on Web Information Systems and Tech-
nologies, 2006.

[101] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

[102] S. L. Garfinkel. An Evaluation of Amazon’s Grid Computing Services: EC2, S3 and
SQS. Technical Report TR-08-07, School for Engineering and Applied Sciences,
Harvard University, Cambridge, MA, USA, 2007.

[103] S. Ghandeharizadeh, D. J. DeWitt, and W. Qureshi. A Performance Analysis of
Alternative Multi-Attribute Declustering Strategies. In SIGMOD ’92: Proceedings
of the ACM SIGMOD International Conference on Management of Data, pages
29–38, 1992.

[104] G. Graefe. Query Evaluation Techniques for Large Databases. ACM Computing
Surveys, 25(2):73–169, 1993.

[105] G. Graefe. Database Servers Tailored to Improve Energy Efficiency. In SETMDM
’08: Proceedings of the EDBT Workshop on Software Engineering for Tailor-Made
Data Management, pages 24–28, 2008.

[106] J. Gray. Notes on Data Base Operating Systems. In R. Bayer, R. Graham, and
G. Seegmüller, editors, Operating Systems, volume 60 of Lecture Notes in Computer
Science, pages 393–481. Springer Berlin / Heidelberg, 1978.

[107] J. Gray. Why Do Computers Stop and What Can be Done About It? Technical
Report 85.7, Tandem Computers, 1985.

[108] J. Gray. Database and Transaction Processing Performance Handbook. In J. Gray,
editor, The Benchmark Handbook for Database and Transaction Systems (2nd Edi-
tion). Morgan Kaufmann Publishers, 1993.

[109] J. Gray, P. Homan, H. F. Korth, and R. Obermarck. A Straw Man Analysis of
the Probability of Waiting and Deadlock in a Database System. In Berkeley ’81:
Proceedings of the Fifth Berkeley Workshop on Distributed Data Management and
Computer Networks, page 125, 1981.

214 Bibliography

[110] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger. Quickly
Generating Billion-Record Synthetic Databases. In SIGMOD ’94: Proceedings of
the 1994 ACM SIGMOD international conference on Management of data, pages
243–252, New York, NY, USA, 1994. ACM.

[111] M. Gueye, I. Sarr, and S. Ndiaye. Database Replication in Large Scale Systems:
Optimizing the Number of Replicas. In EDBT/ICDT ’09: Proceedings of the 2009
EDBT/ICDT Workshops, pages 3–9, 2009.

[112] J. L. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM,
31(5):532–533, 1988.

[113] R. B. Hagmann and D. Ferrari. Performance Analysis of Several Back-End Database
Architectures. ACM Transactions on Database Systems, 11(1):1–26, 1986.

[114] K. Haller. Towards the Industrialization of Data Migration: Concepts and Patterns
for Standard Software Implementation Projects. In CAiSE ’09: Proceedings of the
21st International Conference on Advanced Information Systems Engineering, pages
63–78, 2009.

[115] M. Hammer and B. Niamir. A Heuristic Approach to Attribute Partitioning. In
SIGMOD ’79: Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pages 93–101, 1979.

[116] T. Härder. DBMS Architecture - the Layer Model and its Evolution. Datenbank-
Spektrum, 13:45–57, 2005.

[117] T. Härder, V. Hudlet, Y. Ou, and D. Schall. Energy Efficiency Is Not Enough, En-
ergy Proportionality Is Needed! In FlashDB ’11: The First International Workshop
on Flash-based Database Systems, pages 226–239, 2011.

[118] J. O. Hauglid, N. H. Ryeng, and K. Nørv̊ag. DYFRAM: Dynamic Fragmentation
and Replica Management in Distributed Database Systems. Distributed and Parallel
Databases, 28(2):157–185, 2010.

[119] T. Heath, B. Diniz, E. V. Carrera, W. M. Jr., and R. Bianchini. Energy Conservation
in Heterogeneous Server Clusters. In PPoPP ’05: Proceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of parallel programming, pages
186–195, New York, NY, USA, 2005. ACM.

[120] A. A. Helal, A. A. Heddaya, and B. B. Bhargava. Replication Techniques in Dis-
tributed Systems. Springer, 1996.

[121] J. M. Hellerstein, M. Stonebraker, and J. Hamilton. Architecture of a Database
System. Foundations and Trends in Databases, 1(2):141–259, 2007.

Bibliography 215

[122] Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and M. Humphrey. Early Observations on
the Performance of Windows Azure. In HPDC ’10: Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing, pages 367–
376, 2010.

[123] H. Hlavacs, K. A. Hummel, R. Weidlich, A. Houyou, A. Berl, and H. de Mee.
Distributed Energy Efficiency in Future Home Environments. Annals of Telecom-
munications, 63(9-10):473–485, October 2008.

[124] J. E. Hoag and C. W. Thompson. A Parallel General-Purpose Synthetic Data
Generator. SIGMOD Record, 36(1):19–24, 2007.

[125] L. Hochstein, J. Carver, F. Shull, S. Asgari, and V. Basili. Parallel Programmer
Productivity: A Case Study of Novice Parallel Programmers. In SC ’05: Proceedings
of the 2005 ACM/IEEE conference on Supercomputing, pages 35–43, 2005.

[126] J. A. Hoffer and D. G. Severance. The Use of Cluster Analysis in Physical Data
Base Design. In VLDB ’75: Proceedings of the 1st International Conference on
Very Large Data Bases, pages 69–86, 1975.

[127] M. Holze and N. Ritter. Autonomic Databases: Detection of Workload Shifts with
n-Gram-Models. In ADBIS ’08: Proceedings of the 12th East European conference
on Advances in Databases and Information Systems, volume 5207/2008 of Lecture
Notes in Computer Science, pages 127–142, Berlin / Heidelberg, Germany, 2008.
Springer-Verlag.

[128] T. Horvath, K. Skadron, and T. F. Abdelzaher. Enhancing Energy Efficiency in
Multi-tier Web Server Clusters via Prioritization. In IPDPS ’07: 21th International
Parallel and Distributed Processing Symposium, pages 1–6. IEEE Computer Society,
2007.

[129] K. Houkjær, K. Torp, and R. Wind. Simple and Realistic Data Generation. In
VLDB ’06: Proceedings of the 32nd international conference on Very large data
bases, pages 1243–1246. VLDB Endowment, 2006.

[130] W. W. Hsu, A. J. Smith, and H. C. Young. Characteristics of Production Database
Workloads and the TPC Benchmarks. IBM Systems Journal, 40(3):781–802, 2001.

[131] V. Hudlet and D. Schall. Measuring Energy Consumption of a Database Cluster. In
BTW ’11: Datenbanksysteme für Business, Technologie und Web, 14. Fachtagung
des GI-Fachbereichs DBIS, pages 734–737, 2011.

[132] T. Härder and A. Reuter. Concepts for Implementing a Centralized Database Man-
agement System. In Proceedings of the International Computing Symposium, 1983.

[133] T. Härder and A. Reuter. Principles of Transaction-Oriented Database Recovery.
ACM Computing Surveys, 15(4):287–317, 1983.

216 Bibliography

[134] J. M. Kaplan, W. Forrest, and N. Kindler. Revoluzionizing Datacenter Efficiency.
Technical report, McKinsey & Company, 2008.

[135] B. Kemme and G. Alonso. Don’t Be Lazy, Be Consistent: Postgres-R, A New Way to
Implement Database Replication. In VLDB ’00: Proceedings of 26th International
Conference on Very Large Data Bases, pages 134–143, 2000.

[136] A. Kemper and A. Eickler. Datenbanksysteme - Eine Einführung. Oldenbourg
Verlag, 2009.

[137] J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing. IEEE
Computer, 36:41–50, 2003.

[138] M. F. Khan, R. Paul, I. Ahmed, and A. Ghafoor. Intensive Data Management in
Parallel Systems: A Survey. Distributed and Parallel Databases, 7(4):383–414, 1999.

[139] Y.-J. Kim, K.-T. Kwon, and J. Kim. Energy-Efficient File Placement Techniques
for Heterogeneous Mobile Storage Systems. In EMSOFT ’06: Proceedings of the
6th ACM & IEEE International Conference on Embedded Software, 2006.

[140] G. King. Running IBM System z at High CPU Utilization. Technical report, IBM
Corporation, 2007.

[141] R. D. King, C. Feng, and A. Sutherland. StatLog: Comparision of Classification
Algorithms on Large Real-World Problems. Applied Artificial Intelligence: An In-
ternational Journal, 9(3):289–333, 1995.

[142] M. Koyutürk and C. Aykanat. Iterative-Improvement-Based Declustering Heuristics
for Multi-Disk Databases. Information Systems, 30(1):47–70, 2005.

[143] H. W. Kuhn. The Hungarian Method for the Assignment Problem. Naval Research
Logistic, 52(1):7–21, 2005.

[144] E. Laczynski. Scaling Brands in the Cloud - Leveraging the Cloud for High-Traffic,
High-Profile Web Marketing Events. Technical report, LTech, 2010.

[145] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing High Availability Using
Lazy Replication. ACM Transactions on Computer Systems, 10:360–391, 1992.

[146] J. Leverich and C. Kozyrakis. On the Energy (In)efficiency of Hadoop Clusters.
In HotPower ’09: Workshop on Power Aware Computing and Systems, New York,
NY, USA, 2009. ACM.

[147] P. J. Lin, B. Samadi, A. Cipolone, D. R. Jeske, S. Cox, C. Rendón, D. Holt, and
R. Xiao. Development of a Synthetic Data Set Generator for Building and Testing
Information Discovery Systems. In ITNG ’06: Proceedings of the Third Interna-
tional Conference on Information Technology: New Generations, pages 707–712,
Washington, DC, USA, 2006. IEEE Computer Society.

Bibliography 217

[148] J. W. Lloyd. Practical Advantages of Declarative Programming. In GULP-PRODE
’94: Proceedings of the Joint Conference on Declarative Programming, 1994.

[149] M. Luhring, K.-U. Sattler, K. Schmidt, and E. Schallehn. Autonomous Management
of Soft Indexes. In ICDEW ’07: Proceedings of the 2007 IEEE 23rd International
Conference on Data Engineering Workshop, pages 450–458. IEEE Computer Soci-
ety, 2007.

[150] G. Marsaglia. Normal (Gaussian) Random Variables for Supercomputers. The
Journal of Supercomputing, 5(1):49–55, 1991.

[151] M. L. Massie, B. N. Chun, and D. E. Culler. The Ganglia Distributed Monitoring
System: Design, Implementation, and Experience. Parallel Computing, 30(7):817–
840, 2004.

[152] D. T. McWherter, B. Schroeder, A. Ailamaki, and M. Harchol-Balter. Priority
Mechanisms for OLTP and Transactional Web Applications. In ICDE ’04: Priority
Mechanisms for OLTP and Transactional Web Applications, pages 535–546, 2004.

[153] M. Mehta and D. J. DeWitt. Data Placement in Shared-Nothing Parallel Database
Systems. The VLDB Journal, 6(1):53–72, 1997.

[154] M. Michael, J. E. Moreira, D. Shiloach, and R. W. Wisniewski. Scale-up x Scale-
out: A Case Study using Nutch/Lucene. In IPDPS ’07: International Parallel and
Distributed Processing Symposium. IEEE, 2007.

[155] J. M. Milan-Franco, R. Jiménez-Peris, M. P. no Mart́ınez, and B. Kemme. Adaptive
Middleware for Data Replication. In Middleware ’04: Proceedings of the 5th ACM/I-
FIP/USENIX International Conference on Middleware, pages 175–194, 2004.

[156] S. Mintz and B. Cohen. Comparative Management Cost Study: Oracle Database
10g Release 2 and IBM DB2 Universal Database 9.1. Technical report, Edison
Group, 2006.

[157] M. Mitzenmacher. A Brief History of Generative Models for Power Law and Log-
normal Distributions. Internet Mathematics, 1(2):226–251, 2004.

[158] P. Moscato. On Evolution, Search, Optimization, Genetic Algorithms and Martial
Arts: Towards Memetic Algorithms. Technical Report Caltech Concurrent Com-
putation Program 158-79, California Institute of Technology, Pasadena, CA, USA,
1989.

[159] J. Munkres. Algorithms for the Assignment and Transportation Problems. Journal
of the Society of Industrial and Applied Mathematics, 5(1):32–38, 1957.

[160] J. Muthuraj, S. Chakravarthy, R. Varadarajan, and S. B. Navathe. A Formal Ap-
proach to the Vertical Partitioning Problem in Distributed Database Design. In

218 Bibliography

PDIS ’93: Proceedings of the 2nd International Conference on Parallel and Dis-
tributed Information Systems, pages 26–34, Washington, DC, USA, 1993. IEEE
Computer Society.

[161] R. O. Nambiar and M. Poess. The Making of TPC-DS. In VLDB ’06: Proceedings
of the 32nd international conference on Very large data bases, pages 1049–1058,
2006.

[162] S. B. Navathe, S. Ceri, G. Wiederhold, and J. Dou. Vertical Partitioning Algorithms
for Database Design. ACM Transactions on Database Systems, 9(4):680–710, 1984.

[163] S. B. Navathe, K. Karlapalem, and M. Ra. A Mixed Fragmentation Methodol-
ogy For Initial Distributed Database Design. Journal of Computer and Software
Engineering, 1995.

[164] J. Nowitzky. Partitionierungstechniken in Datenbanksystemen – Motivation und
Überblick. Informatik-Spektrum, 24(6):345–356, 2001.

[165] P. O’Neil, E. O’Neil, X. Chen, and S. Revilak. The Star Schema Benchmark and
Augmented Fact Table Indexing. In TPCTC ’09: First TPC Technology Conference
on Performance Evaluation and Benchmarking, pages 237–252, 2009.

[166] P. E. O’Neil. The Set Query Benchmark. In J. Gray, editor, The Benchmark
Handbook for Database and Transaction Systems (2nd Edition). Morgan Kaufmann
Publishers, 1993.

[167] Oracle. MySQL Cluster, 2010. Extract from the MySQL 5.1 Reference Manual.

[168] O. Ozmen, K. Salem, J. Schindler, and S. Daniel. Workload-Aware Storage Layout
for Database Systems. In SIGMOD ’10: Proceedings of the International Conference
on Management of Data, pages 939–950, 2010.

[169] T. Özsu and P. Valduriez. Principles of Distributed Database Systems, Second
Edition. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1999.

[170] S. Papadomanolakis and A. Ailamaki. AutoPart: Automating Schema Design for
Large Scientific Databases Using Data Partitioning. In SSDBM ’04: Proceedings of
the 16th International Conference on Scientific and Statistical Database Manage-
ment, pages 383–392, Washington, DC, USA, 2004. IEEE Computer Society.

[171] S. Papadomanolakis and A. Ailamaki. An Integer Linear Programming Approach to
Database Design. In ICDEW ’07: Proceedings of the 2007 IEEE 23rd International
Conference on Data Engineering Workshops, pages 442–449, Washington, DC, USA,
2007. IEEE Computer Society.

[172] S. Papadomanolakis, D. Dash, and A. Ailamaki. Efficient Use of the Query Op-
timizer for Automated Physical Design. In VLDB ’07: Proceedings of the 33rd

Bibliography 219

international conference on Very large data bases, pages 1093–1104. VLDB Endow-
ment, 2007.

[173] M. Patino-Mart́ınez, R. Jiménez-Peris, B. Kemme, and G. Alonso. MIDDLE-R:
Consistent Database Replication at the Middleware Level. ACM Transactions on
Computer Systems, 23(4):375–423, 2005.

[174] D. A. Patterson, G. A. Gibson, and R. H. Katz. A Case for Redundant Arrays of
Inexpensive Disks (RAID). In Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data, Chicago, Illinois, June 1-3, 1988, volume 17
of SIGMOD Record, pages 109–116. ACM, ACM Press, September 1988.

[175] C. Pedraza, E. Castillo, J. Castillo, C. Camarero, J. L. Bosque, J. I. Mart́ınez, and
R. Menendez. SMILE: Scientific Parallel Multiprocessing based on Low-Cost Recon-
figurable Hardware. In FPL ’08: Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, pages 277–278, 2008.

[176] V. Petrucci, O. Loques, and D. Mossé. A Framework for Dynamic Adaptation of
Power-Aware Server Clusters. In SAC ’09: Proceedings of the 2009 ACM symposium
on Applied Computing, pages 1034–1039, New York, NY, USA, 2009. ACM.

[177] C. Plattner and G. Alonso. Ganymed: Scalable Replication for Transactional Web
Applications. In Proceedings of the 5th ACM/IFIP/USENIX International Confer-
ence on Middleware, pages 155–174, 2004.

[178] C. Plattner, G. Alonso, and M. T. Özsu. Extending DBMSs with Satellite
Databases. The VLDB Journal, 17(4):657–682, 2008.

[179] M. Poess. Controlled SQL Query Evolution for Decision Support Benchmarks.
In WSOP ’07: Proceedings of the 6th International Workshop on Software and
Performance, pages 38–41. ACM, 2007.

[180] M. Poess and C. Floyd. New TPC Benchmarks for Decision Support and Web
Commerce. SIGMOD Record, 29(2000):64–71, 2000.

[181] M. Poess, R. O. Nambiar, K. Vaid, J. John M. Stephens, K. Huppler, and E. Haines.
Energy Benchmarks: A Detailed Analysis. In e-Energy ’10: Proceedings of the 1st
International Conference on Energy-Efficient Computing and Networking, pages
131–140, 2010.

[182] M. Poess, R. O. Nambiar, and D. Walrath. Why You Should Run TPC-DS: A
Workload Analysis. In VLDB ’07: Proceedings of the 33rd international conference
on Very large data bases, pages 1138–1149. VLDB Endowment, 2007.

[183] M. Pöss and C. Floyd. New TPC Benchmarks for Decision Support and Web
Commerce. SIGMOD Record, 29(4):64–71, 2000.

220 Bibliography

[184] W. H. Press, S. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes:
The Art of Scientific Computing. Cambridge University Press, 3rd edition edition,
2007.

[185] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc., 1993.

[186] T. Rabl, C. Koch, , G. Hölbling, and H. Kosch. Design and Implementation of
the Fast Send Protocol. Journal of Digital Information Management, 7(2):120–127,
2009.

[187] T. Rabl, A. Lang, T. Hackl, B. Sick, and H. Kosch. Generating Shifting Workloads
to Benchmark Adaptability in Relational Database Systems. In R. O. Nambiar and
M. Poess, editors, TPCTC ’09: First TPC Technology Conference on Performance
Evaluation and Benchmarking, volume 5895 of Lecture Notes in Computer Science,
pages 116–131. Springer, 2009.

[188] T. Rabl, M. Pfeffer, and H. Kosch. Dynamic Allocation in a Self-Scaling Cluster
Database. Concurrency and Computation: Practice and Experience, 20(17):2025–
2038, 2007.

[189] E. Rahm. Mehrrechner-Datenbanksysteme: Grundlagen der verteilten und parallelen
Datenbankverarbeitung. Addison Wesley, 1994.

[190] R. Ramamurthy, D. J. DeWitt, and Q. Su. A Case for Fractured Mirrors. In VLDB
’02: Proceedings of the 28th international conference on Very Large Data Bases,
pages 430–441. VLDB Endowment, 2002.

[191] P. Rubel, M. Gillen, J. Loyall, R. Schantz, A. Gokhale, J. Balasubramanian, A. Pau-
los, and P. Narasimhan. Fault Tolerant Approaches for Distributed Real-time and
Embedded Systems. In MILCOM ’07: Military Communications Conference, pages
1–8. IEEE, 2007.

[192] C. Rusu, A. Ferreira, C. Scordino, and A. Watson. Energy-Efficient Real-Time Het-
erogeneous Server Clusters. In RTAS ’06: Proceedings of the 12th IEEE Real-Time
and Embedded Technology and Applications Symposium, pages 418–428, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[193] D. Sacca and G. Wiederhold. Database Partitioning in a Cluster of Processors.
ACM Transactions on Database Systems, 10(1):29–56, 1985.

[194] K. Sankaralingam and R. H. Arpaci-Dusseau. Get the Parallelism out of My Cloud.
In HotPar ’10: Proceedings of the 2nd USENIX conference on Hot topics in paral-
lelism, 2010.

[195] K.-U. Sattler, I. Geist, and E. Schallehn. QUIET: Continuous Query-Driven Index
Tuning. In VLDB ’03 Proceedings of the 29th International Conference on Very
Large Data Bases, pages 1129–1132, 2003.

Bibliography 221

[196] D. Schall and V. Hudlet. WattDB: An Energy-Proportional Cluster of Wimpy
Nodes. In SIGMOD ’11: Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, 2011.

[197] P. Scheuermann, G. Weikum, and P. Zabback. Data Partitioning and Load Balanc-
ing in Parallel Disk Systems. The VLDB Journal, 7(1):48–66, 1998.

[198] K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis. COLT: Continuous On-Line
Tuning. In SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, pages 793–795, 2006.

[199] K. Schnaitter, N. Polyzotis, and L. Getoor. Index Interactions in Physical Design
Tuning: Modeling, Analysis, and Applications. PVLDB, 2(1):1234–1245, 2009.

[200] A. K. Seewald, J. Petrak, and G. Widmer. Hybrid Decision Tree Learners with
Alternative Leaf Classifiers: An Empirical Study. In FLAIRS ’01: Proceedings of the
Fourteenth International Florida Artificial Intelligence Research Society Conference,
pages 407–411, 2001.

[201] M. E. Senko. Data Structures and Data Accessing in Data Base Systems Past,
Present, Future. IBM Systems Journal, 16(3):208–257, 1977.

[202] D. Serrano, M. P. no Mart́ınez, R. Jiménez-Peris, and B. Kemme. Boosting Database
Replication Scalability through Partial Replication and 1-Copy-Snapshot-Isolation.
In Proceedings of the 13th Pacific Rim International Symposium on Dependable
Computing, pages 290–297, 2007.

[203] S. Shankland. Google Spotlights Data Center Inner Workings. http://news.cnet.
com/8301-10784_3-9955184-7.html (last visited 02.03.2011), May 2008.

[204] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong, A. Klepchukov,
S. Patil, O. Fox, and D. Patterson. Cloudstone: Multi-Platform, Multi-Language
Benchmark and Measurement Tools for Web 2.0. In CCA ’08: Proceedings of the
1st Workshop on Cloud Computing and its Applications, 2008.

[205] G. Soundararajan, C. Amza, and A. Goel. Database Replication Policies for Dy-
namic Content Applications. In EuroSys ’06: Proceedings of the 1st ACM SIGOP-
S/EuroSys European Conference on Computer Systems, pages 89–102, 2006.

[206] J. M. Stephens and M. Poess. MUDD: a multi-dimensional data generator. In WOSP
’04: Proceedings of the 4th international workshop on Software and performance,
pages 104–109, New York, NY, USA, 2004. ACM.

[207] T. Stöhr, H. Märtens, and E. Rahm. Multi-Dimensional Database Allocation for
Parallel Data Warehouses. In VLDB ’00: Proceedings of the 26th International
Conference on Very Large Databases, pages 273–284, 2000.

http://news.cnet.com/8301-10784_3-9955184-7.html
http://news.cnet.com/8301-10784_3-9955184-7.html

222 Bibliography

[208] M. Stonebraker. The Case for Shared Nothing. IEEE Database Bulletin, 9(1):4–9,
1986.

[209] M. Stonebraker. A new Direction for TPC? In R. O. Nambiar and M. Poess, editors,
TPCTC ’09: First TPC Technology Conference on Performance Evaluation and
Benchmarking, volume 5895 of Lecture Notes in Computer Science, pages 11–17.
Springer, 2009.

[210] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson, A. Pavlo, and
A. Rasin. MapReduce and Parallel DBMSs: Friends or Foes? Communications of
the ACM, 53(1):64–71, 2010.

[211] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,
E. Lau, A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and S. B.
Zdonik. C-Store: A Column-oriented DBMS. In VLDB ’05: Proceedings of the
31st International Conference on Very Large Data Bases, pages 553–564. VLDB
Endowment, 2005.

[212] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and
A. Yu. Mariposa: A Wide-Area Distributed Database System. The VLDB Journal,
5(1):48–63, 1996.

[213] M. Stonebraker and R. Cattell. Ten Rules for Scalable Performance in Simple
Operation Datastores. Communications of the ACM, 2011. to appear.

[214] A. Syropoulos. Mathematics of Multisets. In WMP ’00: Proceedings of the Work-
shop on Multiset Processing, volume 2235 of Lecture Notes in Computer Science,
pages 347–358, Berlin, Germany, 2001. Springer.

[215] A. S. Szalay, J. Gray, A. Thakar, P. Z. Kunszt, T. Malik, J. Raddick, C. Stoughton,
and J. vandenBerg. The SDSS SkyServer: Public Access to the Sloan Digital Sky
Server Data. In SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, pages 570–581, New York, NY, USA, 2002.
ACM.

[216] A. Thomson and D. J. Abadi. The Case for Determinism in Database Systems. In
VLDB ’10: Proceedings of the 36th International Conference on Very Large Data
Bases, pages 70–80. VLDB Endowment, 2010.

[217] A. Thusoo, J. S. Sarma, N. Jai, Z. Shao, P. Chakka, N. Zhang, S. Antony, H. Liu,
and R. Murthy. Hive – A Petabyte Scale Data Warehouse Using Hadoop. In ICDE
’10: 26th IEEE International Conference on Data Engineering, pages 996–1005,
2010.

[218] D. Tsichritzis and A. C. Klug. The ANSI/X3/SPARC DBMS Framework Re-
port of the Study Group on Dabatase Management Systems. Information Systems,
3(3):173–191, 1978.

Bibliography 223

[219] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah. Analyzing the Energy Efficiency
of a Database Server. In SIGMOD ’10: Proceedings of the International Conference
on Management of Data, 2010.

[220] J. van den Bercken and B. Seeger. An Evaluation of Generic Bulk Loading Tech-
niques. In VLDB ’01: Proceedings of the 27th International Conference on Very
Large Databases, pages 461–470, 2001.

[221] V. Venkatachalam and M. Franz. Power Reduction Techniques For Microprocessor
Systems. ACM Computing Surveys, 37(3):195–237, 2005.

[222] S. Voß. Meta-heuristics: The State of the Art. In ECAI ’00: Proceedings of the
Workshop on Local Search for Planning and Scheduling-Revised Papers, volume
2148, pages 1–23. Springer Berlin / Heidelberg, 2001.

[223] G. Weikum, A. Mönkeberg, C. Hasse, and P. Zabback. Self-tuning Database Tech-
nology and Information Services: from Wishful Thinking to Viable Engineering. In
VLDB ’02: Proceedings of the 28th International Conference on Very Large Data
Bases, pages 20–31. VLDB Endowment, 2002.

[224] G. Weikum and G. Vossen. Transactional Information Systems: Theory, Algo-
rithms, and the Practice of Concurrency Control and Recovery. The Morgan Kauf-
mann Series in Data Management Systems. Morgan Kaufmann, 2001.

[225] C. B. Weinstock and J. B. Goodenough. On System Scalability. Technical Report
CMU/SEI-2006-TN-012, Carnegie Mellon University, 2006.

[226] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for Reduced CPU
Energy. In OSDI ’94: Proceedings of the 1st USENIX conference on Operating
Systems Design and Implementation, 1994.

[227] D. Wiese, G. Rabinovitch, M. Reichert, and S. Arenswald. Autonomic Tuning
Expert: a Framework for Best-Practice Oriented Autonomic Database Tuning. In
CASCON ’08: Proceedings of the 2008 conference of the center for advanced studies
on collaborative research, pages 27–41, New York, NY, USA, 2008. ACM.

[228] L. Wyatt, B. Caufield, and D. Pol. Principles for an ETL Benchmark. In TPC
TC ’09: First TPC Technology Conference on Performance Evaluation and Bench-
marking, pages 183–198, 2009.

[229] S. B. Yao, S. B. Navathe, and J.-L. Weldon. An Integrated Approach to Dabatase
Design. In S. B. Yao, S. B. Navathe, J.-L. Weldon, and T. Kunii, editors, ata Base
Design Techniques I, volume 132 of Lecture Notes in Computer Science, pages 1–30.
Springer Berlin / Heidelberg, 1982.

224 Bibliography

[230] E. Young, P. Cao, and M. Nikolaiev. First TPC-Energy Benchmark: Lessons
Learned in Practice. In TPCTC ’10: Second TPC Technology Conference on Per-
formance Evaluation and Benchmarking, volume 6417 of LNCS, pages 136—-152,
2010.

[231] S. Zhou and M. H. Williams. Data Placement in Parallel Database Systems. In
Parallel Database Techniques, pages 203–218. IEEE Computer Society, 1998.

[232] D. C. Zilio, J. Rao, S. Lightstone, G. M. Lohman, A. J. Storm, C. Garcia-Arellano,
and S. Fadden. DB2 Design Advisor: Integrated Automatic Physical Database
Design. In VLDB ’04: Proceedings of the Thirtieth International Conference on
Very Large Data Bases, pages 1087–1097. Morgan Kaufmann, 2004.

[233] M. E. Zorrilla, E. Mora, P. Corcuera, and J. Fernández. Vertical Partitioning Al-
gorithms in Distributed Databases. In EUROCAST ’99: Computer Aided Sys-
tems Theory, volume 1798 of Lecture Notes in Computer Science, pages 465–474.
Springer, 1999.

	Introduction
	Introduction
	Motivation
	Contributions
	Overview

	Preliminaries
	Set
	Function
	Family of Sets
	Multiset
	Sequence
	Graph

	Database, Database System and Database Management System
	Relational Model
	Relational Algebra
	SQL

	Architecture of a Database Management System
	Distributed Database Systems
	CDBS Processing Model
	Limitations of the Model
	Transactions

	Scientific and Commercial CDBSs
	C-JDBC
	Ganymed
	MIDDLE-R
	MySQL Cluster
	NonStop SQL
	DB2
	Discussion

	Scaling
	Scaling Distributed Database Systems
	Automatic CDBS Scaling
	Efficiency of Distributed Systems
	Energy Efficiency of Scaling
	Autonomic Computing

	Scalileo
	Scalileo's Architecture
	Workers
	Master
	Parameterized Components
	Benchmarks
	Reduction
	Conditions
	Constraints
	Login Methods

	Web Server Application
	Other Scaling Frameworks
	Frameworks for Energy Efficiency
	Conclusion

	Autonomic Scaling for CDBSs
	Sensors
	Knowledge
	Effectors
	Evaluation
	Research Projects in Autonomic Scaling
	Ganymed
	KNN Prediction
	Sprint
	WattDB

	Discussion

	Allocation
	Distributed Database Layout
	Partitioning
	Vertical Partitioning
	Horizontal Partitioning
	Hybrid Partitioning

	Replication
	Allocation

	Related Work
	Partitioning
	Allocation
	Integrated Allocation Strategies
	Discussion

	Automatic Allocation
	Autonomic Allocation
	Discussion

	Query Classification
	Formal Definition
	Relation Based Classification
	Attribute Based Classification
	Predicate Based Classification
	Hybrid Classification
	Discussion

	Allocation – Read Mostly
	Formal Definition
	Optimal Allocation
	NP-Hardness of the Allocation
	Greedy Heuristic
	Meta Heuristics
	Evolutionary Algorithm
	Mutation
	Local Improvement

	Discussion

	Considering Updates
	Formal Definition - Update Considering
	Maximum Speedup
	Proof of NP-Hardness
	Optimal Allocation
	Greedy Heuristic
	Mutation
	Local Improvement

	Discussion

	K-Safety
	Redundant Fragments
	Redundant Query Classes
	Discussion

	Physical Allocation
	Implementing Scaling
	Discussion

	Evaluation
	TPC-H
	TPC-App
	Discussion

	Summary

	Benchmarking
	Benchmarks
	TPC Benchmark™H
	TPC Benchmark™App
	E-Learning Benchmark

	Benchmarking Large Dynamic Systems
	Data Generation
	Parallel Random Number Generation
	Deterministic Data Generation
	Implementation
	Performance

	Workload Generation
	Scaling Time

	Benchmarking Objectives
	Basic Performance
	Adaptability
	Robustness

	Discussion

	Conclusion
	Conclusion
	Ongoing and Future Work
	Scaling
	Allocation
	Benchmarking

