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ABSTRACT 
The exponential growth in the amount of data retained by today’s 
systems is fostered by a recent paradigm shift towards cloud 
computing and the vast deployment of data-hungry applications, 
such as social media sites. At the same time systems are capturing 
more sophisticated data. Running realistic benchmarks to test the 
performance and robustness of these applications is becoming 
increasingly difficult, because of the amount of data that needs to 
be generated, the number of systems that need to generate the data 
and the complex structure of the data. These three reasons are 
intrinsically connected. Whenever large amounts of data are 
needed, its generation process needs to be highly parallel, in many 
cases across-systems. Since the structure of the data is becoming 
more and more complex, its parallel generation is extremely 
challenging. Over the years there have been many papers about 
data generators, but there has not been a comprehensive overview 
of the requirements of today’s data generators covering the most 
complex problems to be solved. In this paper we present such an 
overview by analyzing the requirements of today’s data generators 
and either explaining how the problems have been solved in exist-
ing data generators, or showing why the problems have not been 
solved yet. 

Categories and Subject Descriptors 
H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware - Performance evaluation (efficiency and effectiveness)  

General Terms 
Algorithms, Measurement, Performance, Experimentation. 

Keywords 
Parallel data generation, pseudorandom number generation, data-
base benchmarking. 

1. INTRODUCTION 
The exponential growth in the amount of data retained by today’s 
systems is fostered by a recent paradigm shift towards cloud 
computing and the vast deployment of data-hungry applications, 

such as social media sites. The amount of data Facebook collected 
grew exponentially from 15TByte in 2007 to 700TByte in 2010 
[14]. At the same time systems are capturing more sophisticated 
data. In these cases data may show complex dependencies. Nor-
malized schemas try to avoid data dependencies. However, even 
highly normalized schemas have dependencies. In order to in-
crease performance for analytical processing, less normalized or 
highly de-normalized schemas are used, such as in data ware-
houses or online analytical processing (OLAP) systems. These 
systems show many different types of dependencies. 
Running realistic benchmarks to test the performance of these 
systems is becoming increasingly difficult, because of the amount 
of data that needs to be generated, the number of systems that 
need to participate in the data generation and the complex struc-
ture of the data. Especially for system robustness testing it is 
necessary to drive systems to the edge of their limits in terms of 
the amount of data and the complexity of the data. Hence, the 
requirements to modern data generators have increased over time. 
They are required to generate data 
• Deterministically, 
• In parallel processes/threads, 
• In parallel across address space of multiple systems and 
• Generate complex data set. 

Yet data generators need to adapt to different schemas and need to 
be easy to set up. Generating data deterministically is one of the 
most important requirements, since without it, comparing results 
from multiple benchmark runs is very difficult. If data is not 
generated deterministically, one would need to proof that different 
data sets result in the same workload. This is difficult to proof on 
different hardware/software platforms, because the impact of 
different data sets on performance may depend on the hardware 
and software architecture. Hence, data generators must generate 
the exact same data set regardless of the degree of parallelism and 
hardware architecture. 
Data generation speed is also important since today’s systems 
need to test for very large amounts of data. This requires the 
programmer to take advantage of multi-core processors and large 
clusters of systems. Hence, data needs to be generated in parallel 
threads across address space boundaries. 
If the hurdle of generating and using data is too high, the accep-
tance of a benchmark is low. That is, the generation process 
should be simple and adaptive to allow for easy data generation 
and different forms of output. 
Benchmarks specifications try to model their domain as realisti-
cally as possible. “Time to market” is a crucial aspect in bench-
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mark design, because they are vulnerable to becoming outdated 
very quickly [13]. An important feature of a good data generator 
is, therefore, that it can be adapted to changing requirements in a 
simple way. 
In order to test the fine nuances of systems for a specific applica-
tion domain, one needs to generate data with certain properties. 
For instance, in order to measure the performance of Extract 
Transform and Load (ETL) system’s ability to maintain history 
changing dimensions, the data to feed the ETL system needs to 
follow certain patterns, i.e. address changes occur in a certain time 
order, account balances are computed based on transaction pat-
terns. These data characteristics can be formalized as intra row, 
intra table and inter table dependencies. Without the requirements 
of deterministic data generation, parallel data generation (across 
cores/ across address space of multiple systems), simplicity and 
adaptability, the generation of complex data has been solved in 
previously published work on data generators, we will present 
different approaches in the related work in Section 2. However, in 
the presence of these requirements efficient data generation is 
extremely difficult and has not been sufficiently studied.  
In this paper we present an overview of the requirements on gene-
rating complex data and how it can be generated efficiently. After 
we give an overview of related work in Section 2 we outline the 
fundamentals of modern data generators, namely the use of pseu-
do random numbers in parallel environments in Section 3. In 
Section 4 we develop requirements of modern data generators by 
analyzing the data used in some of today’s well known standard 
benchmarks and important future benchmarks in areas such as 
ETL. In Section 5 we present how most of the identified require-
ments can be implemented in the parallel data generation frame-
work PDGF presented in [11] and continue with an analysis of 
those requirements that cannot be implemented yet in PDGF 
before we conclude our paper in Section 6. 

2. RELATED WORK 
There has been a considerable amount of research published on 
data generation for benchmarking purposes. Gray et al. have 
shown how to generate large data sets with statistical distributions 
and dense unique sequences in parallel [4]. This work has been 
the basis for other works on parallel generation of uncorrelated 
data. 
Data generation for performance evaluation is part of the daily 
business of researchers and DB administrators. Since most of their 
data generators are special purpose implementations for a single 
dataset/ single test, developing these them is very time consuming 
and costly. Alternatively, some use data generators that were 
developed by standard benchmark organizations, such as TPC and 
SPEC or in open projects such as YCSB [3]. However, these data 
generators are also special purpose implementations, which can be 
adapted only to a limited degree. The existing generic data gene-
rators can be divided into two categories: a) Simulation of client 
interaction, and b) Usage of synthetic statistical distributions.  
Usually generic data generators that simulate client data are based 
on graphs. Houkjær et al. describe such a graph based generation 
tool [6]. It uses a depth-first graph traversal to generate dependent 
tables; cyclic dependencies are resolved by creating temporary 
values. The generated data is directly written to a database and 
read again for reference generation. A similar graph based ap-
proach was presented by Lin et al. [7]. The largest advantage of 
such generators is their possibility of generating data according to 

very complex and realistic workflows. The downside is a very 
slow generation speed that limits the usage to small data sets. 
Data generators based on synthetic data are based on statistical 
distributions. Examples are MUDD by Stephens and Poess [12] 
and PSDG by Hoag et al. [5]. Both generators feature a descrip-
tion language to describe the database schema and the data cha-
racteristics. Furthermore, both data generators are able to paral-
lelize data generation. MUDD uses a platform independent 64 bit 
linear congruential random number generator that, utilizing parti-
tion-wise data generation and dense-unique-pseudo-random se-
quences, enables it to generate in parallel deterministic, rando-
mized real world data. In order to generate consistent references, 
PSDG queries the generated data. The data has to be written 
directly to a single database system, which is then queried by the 
generator instances. Hence, the data generation speed is limited by 
the insert and access rate of the database system. A related ap-
proach was presented by Bruno and Chaudhuri [1]; it largely 
relies on scanning a given database to generate various distribu-
tions and interdependencies. Although the bootstrapping process 
from a given database is user friendly, this form of generation is 
very slow and is parallelized only partly.  

3. PARALLEL RNGs 
The basis of synthetic data generation is the use of random num-
ber generators (RNG). In most cases deterministic data generation 
is necessary to allow repeatable experiments on various kinds of 
systems. Therefore, pseudo random number generators are used, 
which allow deterministic generation of random looking data. 
Many different kinds of pseudo random number generators have 
been proposed. They differ highly in the statistical quality of their 
data and the length of their period. The quality of random num-
bers is important to avoid the creation of patterns. Quality can be 
measured with the Die Hard Battery of Tests of Randomness [9]. 
Equally important for the generation of very large data sets is the 
period length of the pseudo random number stream. Every genera-
tor eventually repeats its random number stream. It therefore has 
to be assured, that the period is large enough for the amount of 
data to be generated. 

In order to generate data for large data sets, it is desired to gener-
ate data in parallel. For this reason parallel pseudo random num-
ber generators have been developed. In contrast to linear genera-
tors, parallel generators do not reseed the data generator after 
every number. A linear generator calculates a random number as 
follows: 𝑟𝑛𝑔(𝑛) = 𝑙𝑟𝑛𝑔(𝑙𝑟𝑛𝑔(… (𝑙𝑟𝑛𝑔(𝑠𝑒𝑒𝑑) ) … ) ). Efficient 
implementation of linear pseudo random number generators store 
the last generated value as their internal state. Parallel random 
number generators, however, are often stateless by generating 
random numbers independently using a hash function: 𝑟𝑛𝑔(𝑛) =
𝑝𝑟𝑛𝑔(𝑛 + 𝑠𝑒𝑒𝑑). Examples can be found in [10]. Using this 
approach, the generation of random number sequences can easily 
be distributed to many parallel processes. In order to generate the 
same sequence on different numbers of processors, either the 
leapfrog method or sequence splitting is used [2]. While the leap-
frog method partitions the sequence in turn between processes, 
sequence splitting partitions the sequence in contiguous se-
quences. The concrete value generation is a function from the 
random number to a value. An example of a generator for realistic 
data is a name generator based on a dictionary lookup. To gener-



ate a name two entries of a list of common first and last names1

Usually random number generators generate uniformly distributed 
values. However more natural distributions can be calculated 
easily. For normal distributions the Box-Muller method and the 
related, usually faster polar method, can be used 

 
can picked based on a random number. 

[8]. 

4. DATA REQUIREMENTS  
In this section we motivate various data characteristics that are 
imperative to generating the data sets for large, complex database 
management systems. We introduce each topic by listing a couple 
of examples before formalizing the data characteristic. For the 
formalization we use the following simplified notation. The data 
generator generates one file FR per database table R{C1, 
C2,…,Cn}, where Ci denotes column i. Each file contains n rows, 
delimited by some character D. Row j is denoted as Rj with j>0. 
Rows are sorted, i.e. Rj < Rj+k for j,k>0. A specific value of R is 
denoted as Rn{Cm}, where n is the row in file FR

 

 and m is the 
column. 

Figure 1: Sample data warehouse schema 
Our standard example is shown in Figure 1; it depicts a simple 
data warehouse scenario. The relation OrderLine stores all order 
positions. The relation Customer stores all information about 
customers and Date is a dimensional table for dates. The follow-
ing list of data characteristics is focused on common data depen-
dencies, grouped in intra row, intra table and inter table depen-
dencies. It does not claim to be exhaustive. 

4.1 Intra Row Dependency 
Intrinsic to de-normalized data warehouse schemas is intra row 
dependency. That is, some fields of the same row may exhibit 
some sort of dependencies. For instance, in the US, value added 
tax (VAT) varies by state and within some states by county. 
Hence, the VAT depends on the location of the purchase. Intra 
row dependencies are also very common in hierarchies, which are 
key features in navigating dimensions of star and snowflake 
schemas. For instance, a date dimension might have multiple 
hierarchies, such as the calendar hierarchy, which starts at the day 
and rolls up into month, quarter and year. There is an obvious 
dependency between these fields. Often there are other hierarchies 
due to companies’ fiscal calendar not being aligned with the year 
calendar. Sample data using the date relation introduced in Figure 
1 can be found in the Figure 2 below. 

 
Figure 2: Intra row dependencies in the date hierarchy 

                                                                 
1 See http://www.census.gov/genealogy/www/ for US names 

Year, Quarter and Week are dependent on the entry in the column 
DateStamp This intra row dependency can be formally expressed 
as:{𝐷𝑎𝑡𝑒𝑆𝑡𝑎𝑚𝑝} →  {𝑌𝑒𝑎𝑟,𝑄𝑢𝑎𝑡𝑒𝑟,𝑊𝑒𝑒𝑘} 

In database theory intra row dependencies are called functional 
dependencies. They can exist between two subsets of attributes of 
a relation. Obviously, there always exists a functional dependency 
from any key of a relation to all attributes. In general intra row 
dependency of a set of columns X to a set of columns Y of relation 
R can be expressed as: 𝑅𝑛{𝑋} →  {𝑌} ∶ n > 0 

4.2 Intra Table Dependency 
In addition to intra row dependencies data warehouses often exhi-
bit intra table dependencies. That is, values of different rows 
within the same table have dependencies.  

 
Figure 3: Typical denormalized Order/Lineitem relationship 

One type of such dependencies can be found in the n:1 relation-
ships of normalized schemas and their de-normalized counter-
parts. For instance, consider the traditional order and lineitem 
scenario or a retailer, frequently used in benchmarks, e.g. TPC-C 
and TPC-H [13]. Usually customers buy between one and n items 
per order. Hence, in a normalized schema orders are stored in an 
order table and its corresponding items are stored in the lineitem 
table. A de-normalized version merges the two tables into one 
OrderLine table (see Figure 3). Usually benchmark configurations 
mandate a specific distribution of lineitems per order with min 
being the minimum and max being the maximum number of 
lineitems per order. Hence, the OrderLine table contains depen-
dencies between multiple rows, in this case rows grouped by 
OrderID. That is, there are between min and max number of rows 
with the same OrderID, but different LineNumbers.  
A more complex example is that of history-keeping dimensions. 
History-keeping dimensions keep information about data changes 
or entities, such as customers or parts. In order to distinguish 
between current and historic data, both the “natural” (a.k.a. “busi-
ness”) key for an entity and its surrogate key are stored in the 
same row. The business key is the primary key from the system 
the row was extracted from. Examples are customer id and pur-
chase number. Surrogate keys, being generated, are independent 
of the business function. The fact tables that need to reference a 
history-tracking dimension include a foreign key reference to the 
surrogate key, not the natural key. Additionally, each dimension 
entry has usually a start and end date, which indicate the time 
period for which records are valid. The most current one usually 
contains a special value (e.g. NULL) as the end date. Therefore 
data that reflect multiple incremental loads of a history keeping 
dimensions needs to have: 

1. Monotonically increasing numbers in surrogate key columns, 

2. Monotonically increasing date values in the start and end date, 

3. End date after begin date, except for the current row and  

4. The begin date of a row be equal to the end date of its predeces-
sor, except for the current row. 

http://www.census.gov/genealogy/www/�


 
Figure 4: Sample history keeping customer table 

Figure 4 shows a history keeping customer table. It contains en-
tries for two people Smith and Wilson. This example exhibits 
multiple dependencies that stem from the timeline the data was 
entered into the dimensions. This can be solved by sorting data 
during their generation. Obviously, surrogate keys are generated 
as increasing sequence. Furthermore, the start and end date are 
increasing for a single customer ID. And finally, the end date in a 
certain row is the start date of the next row with the identical 
business key. We can distinguish between regular and irregular 
sort orders. A regular sort order has the form of a sequence. So 
each value is dependent on the position. While an irregular order 
just requires that successive values follow the sort order. Example 
of data that is generated in regular order is the generation of sur-
rogate keys, which are usually implemented as a sequence of 
integers or timestamps of regular events. An example of data that 
is generated following an irregular order is the generation of 
timestamps of random events such as address changes. However, 
keep in mind that benchmarks would like to generate them ac-
cording to a specific distribution. The order can be in form of a 
dependency. This is shown in the example above. The start date of 
an entry in the history keeping dimension is the end date of the 
preceding entry with same business key.  

 
Figure 5: Multi valued dependency 

Yet another form of intra table dependency stems from schema 
de-normalization. If a customer has several telephone numbers, 
multiple rows per customer exist with some data being duplicated 
in the customer table. Furthermore, if a customer also has several 
addresses all combinations of telephone numbers and addresses 
have to be stored. This is also called multi-valued functional 
dependency: 𝐶{𝑖𝑑} →→ 𝐶{𝑎𝑑𝑑𝑟𝑒𝑠𝑠}, 𝐶{𝑖𝑑} →→ 𝐶{𝑡𝑒𝑙𝑒𝑝ℎ𝑜𝑛𝑒}. 
The reason for multi-valued functional dependencies can also be 
poor schema design. In this case benchmarks concerned with the 
testing of database robustness in the context of odd or poor sche-
ma design want to inject such dependencies into their data. 

In some cases aggregate data is kept for performance reasons. For 
instance, a fact table may record customer account transactions. 
For performance reasons the fact table entry recording the transac-
tions might record the customer account balance after the money 
was withdrawn/deposited. This type of dependency is between the 
current account balance, the current transaction amount and the 
previous account balance. Other aggregation types such as the 
average account balance across all customers have dependencies 
to all preceding transactions of a customer. 

4.3 Inter Table Dependency 
The classical example of inter table dependency is referential 
integrity (RI). If two tables have a parent/child relationship, then 
for each value in the foreign key column of the parent table a 
primary key value in the child table must exist. For instance, for 
each customer in the OrderLine table (see Figure 1), a corres-
ponding customer id must exist in the Customer table. More for-
mally: Let 𝑃𝑛{𝑃𝐾,𝐹𝐾} be the parent table and 𝐶𝑛{𝑃𝐾} be the 
child table and 𝑃𝑛{𝐹𝐾} is the foreign key referencing 𝐶𝑛{𝑃𝐾}, 
then the following must be true: ∀𝑃{𝐹𝐾} ∃𝐶{𝑃𝐾} ∶ 𝑃{𝐹𝐾} =
 𝐶{𝑃𝐾} 
Obviously, the same is true for redundant data. Redundancy is 
regularly employed to increase data processing efficiency. As-
sume the OrderLine fact table, in addition to the customer id, also 
stores the customer’s first and last names. During the generation 
of data for OrderLine valid names from the Customer table need 
to be generated.  

 
Figure 6: Aggregation example 

Another form of inter table dependency is the generation of data 
for auxiliary data structures, such as materialized views. For 
performance reasons one might, for example, store a materialized 
view containing daily quantities by customer, as seen in Figure 6. 
This is an aggregation of all quantities ordered by customers. In 
contrast to the referential integrity, for aggregations a single value 
in one relation depends on multiple values in another relation.  

5. DETERMINISTIC PARALLEL DATA 
GENERATION 
Based on the parallel pseudo random number generation concept 
presented in Section 3 some of the data with the dependencies 
described Section 4 can already be generated with PDGF. In order 
to achieve an acceptable generation speed, the deterministic beha-
vior of random number generators is exploited. As explained in 
Section 3, each single independent column value of a relation can 
be generated by mapping its random number or sequence of ran-
dom numbers to its concrete value. Please note that not all data 
dependencies have been implemented yet in PDGF. We will note 
this where necessary in the next sections. 

 
Figure 7: Hierarchical seeding approach 

In [11] Rabl et al. presented a hierarchical seeding approach for 
parallel random number generators that allows for the generation 
of data with different dependencies. Based on an initial seed for 
the complete schema seeds are generated in a hierarchical fashion 
for each table and column in a schema. This way deterministic 
seeds for every column can be calculated. Based on a column’s 
seed an independent sequence of random numbers is generated to 
produce its actual values. That is, to produce the n-th value in the 
m-th column, the n-th random number of the m-th column genera-
tor is used. This is depicted in Figure 7. 



Based on this seeding approach, a general purpose parallel data 
generation framework (PDGF) has been implemented at the Uni-
versity of Passau. It uses a parallel random number generator to 
generate data as depicted above. Even for large database schemas 
with hundreds of tables and thousands of columns PDGF can 
cache the seeds of all columns. The default random number gene-
rator has a period of 264 − 1 which is enough to generate peta-
bytes of data. The metadata, also referred to as data generators, for 
a specific database schema is presented to PDGF in form of an 
XML document and passed to it as an input file. It consists of a 
hierarchy of generators, following abbreviated with Gen: 
𝑆𝑐ℎ𝑒𝑚𝑎𝐺𝑒𝑛 → 𝑇𝑎𝑏𝑙𝑒𝐺𝑒𝑛 → 𝐶𝑜𝑙𝑢𝑚𝑛𝐺𝑒𝑛 → 𝐺𝑒𝑛𝑒𝑟𝑖𝑐𝐺𝑒𝑛. 
Below find the definition of a IDGenerator for the Customer 
relation introduced in Section 4. See [11] for more detailed exam-
ples. 
<schema name="warehouse"> 
 <scaleFactor name="custscale">5000</scaleFactor> 
 <seed>1234567890</seed> 
 <rng name="PdgfDefaultRandom" /> 
 <tables> 
  <table name="Customer"> 
   <size>custscale</size> 
   <fields> 
    <field name="ID"> 
    <type>java.sql.Types.BIGINT</type> 
    <generator name="IdGenerator" /> 
   </field> […] 

Figure 8: Sample CustomerGenerator using PDGF syntax 
The specification of a schema generator follows the relational 
schema closely. Each column generator specifies the data type of 
the field in the relational schema. In the example above, the ID-
Generator is of type java.sql.Types.BIGINT and uses the 
generic IDGenerator implemented as a Java class. The amount of 
data to be generated is specified in terms of scale factors (see 
CustScale above). To generate the data in parallel, each relation is 
partitioned horizontally between the generating instances. This is 
depicted in the figure below. 

 
Figure 9: Partitioning hierarchy of PDGF 

For instance, if a table with 1,000,000 rows has to be generated on 
two nodes with four threads/processes, each thread/process gene-
rates a continuous partition of 250,000 rows. Since each row is 
generated independently, the generation speed scales linearly. 
Obviously, this form of data generation works well for uncorre-
lated data. Generating dependant data as discussed in the previous 
section is more complicated. In the remainder of this section, we 
clarify what kind of dependencies can be generated with the cur-
rent version of PDGF. For those dependencies that cannot be 
implemented with the current version of PDGF we discuss ideas 
how the future version of PDGF could generated them. 

5.1 Intra Row Dependency 
Although PDGF generates all fields of a row independently, it is 
possible to generate all kinds of intra row dependencies. If two 
columns contain dependent data, as in the case of the date table in 

Section 4.1, they must share the same random sequence. DateS-
tamp is generated using a generic date generator. For each of the 
dependent fields, the same generator is invoked with the same 
random number, but different options reflecting the various date 
formats. It is also possible, to use a reference or exact value of one 
or more fields as the basis for value generation. In PDGF a refer-
ence is de-referenced by using the deterministic seeding approach 
to re-compute the value of an arbitrary field. In order to apply the 
approach above, the generation of the dependent value has to 
reference either the random numbers of all referenced fields or the 
values they generate. A reference is defined in PDGF as follows: 
<generator name="DefaultReferenceGenerator">  
 <sameRowAs>ID</sameRowAs>  
</generator> 

The default reference generator re-computes a value of the refe-
renced field. This can be used as input for another generator. An 
example for the use of the same random number sequence is the 
VAT example. The list of possible locations for a purchase is 
stored in a dictionary table locations and the concrete choice 
could be made based on a random number or the value of the 
location field. To get the VAT for a specific location, a second 
dictionary table with VAT values is employed, e.g. VAT. If VAT 
has the same order as locations, the matching VAT can be re-
trieved using the same random number as used to generate the 
value for location. Otherwise the VAT value can be picked using 
the value of the location field and a function mapping location to 
VATs. 
In summary, PDGF has three options to generate intra row depen-
dencies: shared generators, equal random number sequences and 
referencing fields. 

5.2 Intra Table Dependency 
In PDGF intra table dependencies are not implemented yet. They 
could be handled like intra row dependencies. However, intra 
table dependencies often have a recursive structure and, therefore, 
do not allow an independent computation of single values. This 
conflicts with the stateless generation approach of the current 
version of PDGF. In the following paragraphs we explain how 
intra table dependencies can be generated in general and PDGF 
specifically. 
Let’s assume that each order ID in the OrderLine example from 
Section 4 has to appear at least min and at most max times. That is 
each order has between min and max Item entries. In the serial 
data generation case, the approach is straight forward by generat-
ing between min and max rows at a time using the same order ID. 
However, the parallel case is more complicated, as each 
thread/process generates data for different IDs independently. In a 
naïve approach this will ultimately lead to a non-deterministic 
number of OrderLine rows per ID. This is the state of the art in 
current parallel data generators. A downside of this approach is 
that it does not allow an independent computation of a single row. 
Relational theory does not enforce the sorting of tuples. However, 
real world data sets exhibit some inherent sorting as could be seen 
in the examples in Section 4.2. Therefore, the data generation 
must be able to produce sorted data where necessary. If the sorting 
has a regular structure, it is usually possible to calculate a value 
based on its position, without knowing its predecessors. A trivial 
example for this is a surrogate key.  
To generate data with an irregular sorting, in general a sequential 
approach is needed, since each value is dependent on the pre-
viously generated value. Consider time stamps that have to be 



increasing with random intervals and each time stamp may occur 
multiple times. In order to generate a single time stamp know-
ledge of the previous value is needed. In PDGF, this would lead to 
a recursive dereferencing to the first value. Obviously, this ap-
proach is not feasible for large data sets. Therefore, the generation 
is usually split into several continuous partitions, which are each 
generated sequentially by a separate process. This is possible, if 
some deviations at the partition boarders are acceptable. However, 
using this approach the resulting data is dependent on the degree 
of parallelism, which is in contrast to the general requirement of 
platform independence. A possible solution to generate such data 
in parallel is to restrict the randomness in the data, i.e. make the 
sorting dependent of the row number. This can be done by apply-
ing a certain reoccurring pattern. Obviously, the data will exhibit 
the desired pattern.  
We are currently exploring an approach using conditional proba-
bilities to generate increasing number sequences with random 
characteristics. This can be seen as an integral of a random se-
quence. If it is possible to calculate the integral in constant time, 
the generation of sorted data will be possible in PDGF. 
To generate multi-valued functional dependencies in data, mul-
tiple rows have to be generated at a time. This approach can be 
used in the example above. However, if a continuous surrogate 
key has to be generated for each row, the problem is similar to the 
generation of irregular sorted data. A random number sequence is 
needed, that returns a certain random number multiple times.  

5.3 Inter Table Dependency 
To ensure referential integrity most data generators either have 
severe restrictions on the key generation or read generated keys to 
generate data consistent across tables. Using PDGF’s determinis-
tic approach, referential integrity can be ensured by regenerating 
valid keys. This is equal to the reference generation for intra row 
dependencies. The row number of each value is used as a surro-
gate key. To generate a valid key, the random sequence of the key 
column and the key generator is needed. By picking a random row 
of the key column the corresponding key is generated. In order to 
generate statistic distributions of references the random picking of 
row numbers can be distributed accordingly. This is depicted in 
Figure 10; to generate a referenced value in the first step a random 
lognormal distributed value within the number of rows of the 
referenced table is generated. This row number is used to regene-
rate the key value. Obviously, it is possible to generate any refer-
ence, not just foreign keys.  

 
Figure 10: Reference generation in PDGF 

A more complex problem is the generation of values that depend 
on multiple other values. Usually, there is a connection between 
the referenced values that has to be considered. Although it is 
possible to use multiple random references within a field and 
aggregate the according data, this method does generally not lead 
to the desired result. Consider the example of a materialized view. 
In this case, one value is dependent on multiple values in another 
table. Obviously, the reference approach does not work directly 
for aggregations. However, if the data is grouped by a field which 

allows a computation of the row number, then the aggregated 
values can be computed. Consider a daily aggregation of orders; if 
the time stamp is regular and the start value is known, then it is 
possible to calculate the first and last row of each day and com-
pute all values in between. Obviously, the computational com-
plexity is proportional to the number of aggregated values.  

6. CONCLUSION 
Advances in database technology call for new approaches in 
benchmarking. In the age of cloud computing and social media, 
new methods for parallel data generation are needed. In this paper, 
we developed requirements to data characteristics frequent in 
relational models that have currently not been addressed by gen-
erally available parallel data generators. Furthermore, we showed 
which of these requirements are fulfilled in PDGF. Some depen-
dencies cannot be generated with PDGF. In future work, we con-
centrate on the generation of these unsolved dependencies in 
PDGF. 
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