
Parallel Data Generation for Performance Analysis of
Large, Complex RDBMS

Tilmann Rabl
Universität Passau

Innstraße 43
94032 Passau

49-851-509-3067

rabl@fim.uni-passau.de

Meikel Poess
Oracle Corporation
500 Oracle Parkway

Redwood Shores, CA-94065
1-650-633-8012

meikel.poess@oracle.com

ABSTRACT
The exponential growth in the amount of data retained by today’s
systems is fostered by a recent paradigm shift towards cloud
computing and the vast deployment of data-hungry applications,
such as social media sites. At the same time systems are capturing
more sophisticated data. Running realistic benchmarks to test the
performance and robustness of these applications is becoming
increasingly difficult, because of the amount of data that needs to
be generated, the number of systems that need to generate the data
and the complex structure of the data. These three reasons are
intrinsically connected. Whenever large amounts of data are
needed, its generation process needs to be highly parallel, in many
cases across-systems. Since the structure of the data is becoming
more and more complex, its parallel generation is extremely
challenging. Over the years there have been many papers about
data generators, but there has not been a comprehensive overview
of the requirements of today’s data generators covering the most
complex problems to be solved. In this paper we present such an
overview by analyzing the requirements of today’s data generators
and either explaining how the problems have been solved in exist-
ing data generators, or showing why the problems have not been
solved yet.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware - Performance evaluation (efficiency and effectiveness)

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Parallel data generation, pseudorandom number generation, data-
base benchmarking.

1. INTRODUCTION
The exponential growth in the amount of data retained by today’s
systems is fostered by a recent paradigm shift towards cloud
computing and the vast deployment of data-hungry applications,

such as social media sites. The amount of data Facebook collected
grew exponentially from 15TByte in 2007 to 700TByte in 2010
[14]. At the same time systems are capturing more sophisticated
data. In these cases data may show complex dependencies. Nor-
malized schemas try to avoid data dependencies. However, even
highly normalized schemas have dependencies. In order to in-
crease performance for analytical processing, less normalized or
highly de-normalized schemas are used, such as in data ware-
houses or online analytical processing (OLAP) systems. These
systems show many different types of dependencies.
Running realistic benchmarks to test the performance of these
systems is becoming increasingly difficult, because of the amount
of data that needs to be generated, the number of systems that
need to participate in the data generation and the complex struc-
ture of the data. Especially for system robustness testing it is
necessary to drive systems to the edge of their limits in terms of
the amount of data and the complexity of the data. Hence, the
requirements to modern data generators have increased over time.
They are required to generate data
• Deterministically,
• In parallel processes/threads,
• In parallel across address space of multiple systems and
• Generate complex data set.

Yet data generators need to adapt to different schemas and need to
be easy to set up. Generating data deterministically is one of the
most important requirements, since without it, comparing results
from multiple benchmark runs is very difficult. If data is not
generated deterministically, one would need to proof that different
data sets result in the same workload. This is difficult to proof on
different hardware/software platforms, because the impact of
different data sets on performance may depend on the hardware
and software architecture. Hence, data generators must generate
the exact same data set regardless of the degree of parallelism and
hardware architecture.
Data generation speed is also important since today’s systems
need to test for very large amounts of data. This requires the
programmer to take advantage of multi-core processors and large
clusters of systems. Hence, data needs to be generated in parallel
threads across address space boundaries.
If the hurdle of generating and using data is too high, the accep-
tance of a benchmark is low. That is, the generation process
should be simple and adaptive to allow for easy data generation
and different forms of output.
Benchmarks specifications try to model their domain as realisti-
cally as possible. “Time to market” is a crucial aspect in bench-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DBTest ‘11, June 13, 2011 Athens, Greece
Copyright 2011 ACM 978-1-4503-0655-3/11/06…$10.00.

mark design, because they are vulnerable to becoming outdated
very quickly [13]. An important feature of a good data generator
is, therefore, that it can be adapted to changing requirements in a
simple way.
In order to test the fine nuances of systems for a specific applica-
tion domain, one needs to generate data with certain properties.
For instance, in order to measure the performance of Extract
Transform and Load (ETL) system’s ability to maintain history
changing dimensions, the data to feed the ETL system needs to
follow certain patterns, i.e. address changes occur in a certain time
order, account balances are computed based on transaction pat-
terns. These data characteristics can be formalized as intra row,
intra table and inter table dependencies. Without the requirements
of deterministic data generation, parallel data generation (across
cores/ across address space of multiple systems), simplicity and
adaptability, the generation of complex data has been solved in
previously published work on data generators, we will present
different approaches in the related work in Section 2. However, in
the presence of these requirements efficient data generation is
extremely difficult and has not been sufficiently studied.
In this paper we present an overview of the requirements on gene-
rating complex data and how it can be generated efficiently. After
we give an overview of related work in Section 2 we outline the
fundamentals of modern data generators, namely the use of pseu-
do random numbers in parallel environments in Section 3. In
Section 4 we develop requirements of modern data generators by
analyzing the data used in some of today’s well known standard
benchmarks and important future benchmarks in areas such as
ETL. In Section 5 we present how most of the identified require-
ments can be implemented in the parallel data generation frame-
work PDGF presented in [11] and continue with an analysis of
those requirements that cannot be implemented yet in PDGF
before we conclude our paper in Section 6.

2. RELATED WORK
There has been a considerable amount of research published on
data generation for benchmarking purposes. Gray et al. have
shown how to generate large data sets with statistical distributions
and dense unique sequences in parallel [4]. This work has been
the basis for other works on parallel generation of uncorrelated
data.
Data generation for performance evaluation is part of the daily
business of researchers and DB administrators. Since most of their
data generators are special purpose implementations for a single
dataset/ single test, developing these them is very time consuming
and costly. Alternatively, some use data generators that were
developed by standard benchmark organizations, such as TPC and
SPEC or in open projects such as YCSB [3]. However, these data
generators are also special purpose implementations, which can be
adapted only to a limited degree. The existing generic data gene-
rators can be divided into two categories: a) Simulation of client
interaction, and b) Usage of synthetic statistical distributions.
Usually generic data generators that simulate client data are based
on graphs. Houkjær et al. describe such a graph based generation
tool [6]. It uses a depth-first graph traversal to generate dependent
tables; cyclic dependencies are resolved by creating temporary
values. The generated data is directly written to a database and
read again for reference generation. A similar graph based ap-
proach was presented by Lin et al. [7]. The largest advantage of
such generators is their possibility of generating data according to

very complex and realistic workflows. The downside is a very
slow generation speed that limits the usage to small data sets.
Data generators based on synthetic data are based on statistical
distributions. Examples are MUDD by Stephens and Poess [12]
and PSDG by Hoag et al. [5]. Both generators feature a descrip-
tion language to describe the database schema and the data cha-
racteristics. Furthermore, both data generators are able to paral-
lelize data generation. MUDD uses a platform independent 64 bit
linear congruential random number generator that, utilizing parti-
tion-wise data generation and dense-unique-pseudo-random se-
quences, enables it to generate in parallel deterministic, rando-
mized real world data. In order to generate consistent references,
PSDG queries the generated data. The data has to be written
directly to a single database system, which is then queried by the
generator instances. Hence, the data generation speed is limited by
the insert and access rate of the database system. A related ap-
proach was presented by Bruno and Chaudhuri [1]; it largely
relies on scanning a given database to generate various distribu-
tions and interdependencies. Although the bootstrapping process
from a given database is user friendly, this form of generation is
very slow and is parallelized only partly.

3. PARALLEL RNGs
The basis of synthetic data generation is the use of random num-
ber generators (RNG). In most cases deterministic data generation
is necessary to allow repeatable experiments on various kinds of
systems. Therefore, pseudo random number generators are used,
which allow deterministic generation of random looking data.
Many different kinds of pseudo random number generators have
been proposed. They differ highly in the statistical quality of their
data and the length of their period. The quality of random num-
bers is important to avoid the creation of patterns. Quality can be
measured with the Die Hard Battery of Tests of Randomness [9].
Equally important for the generation of very large data sets is the
period length of the pseudo random number stream. Every genera-
tor eventually repeats its random number stream. It therefore has
to be assured, that the period is large enough for the amount of
data to be generated.

In order to generate data for large data sets, it is desired to gener-
ate data in parallel. For this reason parallel pseudo random num-
ber generators have been developed. In contrast to linear genera-
tors, parallel generators do not reseed the data generator after
every number. A linear generator calculates a random number as
follows: 𝑟𝑛𝑔(𝑛) = 𝑙𝑟𝑛𝑔(𝑙𝑟𝑛𝑔(… (𝑙𝑟𝑛𝑔(𝑠𝑒𝑒𝑑)) …)). Efficient
implementation of linear pseudo random number generators store
the last generated value as their internal state. Parallel random
number generators, however, are often stateless by generating
random numbers independently using a hash function: 𝑟𝑛𝑔(𝑛) =
𝑝𝑟𝑛𝑔(𝑛 + 𝑠𝑒𝑒𝑑). Examples can be found in [10]. Using this
approach, the generation of random number sequences can easily
be distributed to many parallel processes. In order to generate the
same sequence on different numbers of processors, either the
leapfrog method or sequence splitting is used [2]. While the leap-
frog method partitions the sequence in turn between processes,
sequence splitting partitions the sequence in contiguous se-
quences. The concrete value generation is a function from the
random number to a value. An example of a generator for realistic
data is a name generator based on a dictionary lookup. To gener-

ate a name two entries of a list of common first and last names1

Usually random number generators generate uniformly distributed
values. However more natural distributions can be calculated
easily. For normal distributions the Box-Muller method and the
related, usually faster polar method, can be used

can picked based on a random number.

[8].

4. DATA REQUIREMENTS
In this section we motivate various data characteristics that are
imperative to generating the data sets for large, complex database
management systems. We introduce each topic by listing a couple
of examples before formalizing the data characteristic. For the
formalization we use the following simplified notation. The data
generator generates one file FR per database table R{C1,
C2,…,Cn}, where Ci denotes column i. Each file contains n rows,
delimited by some character D. Row j is denoted as Rj with j>0.
Rows are sorted, i.e. Rj < Rj+k for j,k>0. A specific value of R is
denoted as Rn{Cm}, where n is the row in file FR

 and m is the
column.

Figure 1: Sample data warehouse schema
Our standard example is shown in Figure 1; it depicts a simple
data warehouse scenario. The relation OrderLine stores all order
positions. The relation Customer stores all information about
customers and Date is a dimensional table for dates. The follow-
ing list of data characteristics is focused on common data depen-
dencies, grouped in intra row, intra table and inter table depen-
dencies. It does not claim to be exhaustive.

4.1 Intra Row Dependency
Intrinsic to de-normalized data warehouse schemas is intra row
dependency. That is, some fields of the same row may exhibit
some sort of dependencies. For instance, in the US, value added
tax (VAT) varies by state and within some states by county.
Hence, the VAT depends on the location of the purchase. Intra
row dependencies are also very common in hierarchies, which are
key features in navigating dimensions of star and snowflake
schemas. For instance, a date dimension might have multiple
hierarchies, such as the calendar hierarchy, which starts at the day
and rolls up into month, quarter and year. There is an obvious
dependency between these fields. Often there are other hierarchies
due to companies’ fiscal calendar not being aligned with the year
calendar. Sample data using the date relation introduced in Figure
1 can be found in the Figure 2 below.

Figure 2: Intra row dependencies in the date hierarchy

1 See http://www.census.gov/genealogy/www/ for US names

Year, Quarter and Week are dependent on the entry in the column
DateStamp This intra row dependency can be formally expressed
as:{𝐷𝑎𝑡𝑒𝑆𝑡𝑎𝑚𝑝} → {𝑌𝑒𝑎𝑟,𝑄𝑢𝑎𝑡𝑒𝑟,𝑊𝑒𝑒𝑘}

In database theory intra row dependencies are called functional
dependencies. They can exist between two subsets of attributes of
a relation. Obviously, there always exists a functional dependency
from any key of a relation to all attributes. In general intra row
dependency of a set of columns X to a set of columns Y of relation
R can be expressed as: 𝑅𝑛{𝑋} → {𝑌} ∶ n > 0

4.2 Intra Table Dependency
In addition to intra row dependencies data warehouses often exhi-
bit intra table dependencies. That is, values of different rows
within the same table have dependencies.

Figure 3: Typical denormalized Order/Lineitem relationship

One type of such dependencies can be found in the n:1 relation-
ships of normalized schemas and their de-normalized counter-
parts. For instance, consider the traditional order and lineitem
scenario or a retailer, frequently used in benchmarks, e.g. TPC-C
and TPC-H [13]. Usually customers buy between one and n items
per order. Hence, in a normalized schema orders are stored in an
order table and its corresponding items are stored in the lineitem
table. A de-normalized version merges the two tables into one
OrderLine table (see Figure 3). Usually benchmark configurations
mandate a specific distribution of lineitems per order with min
being the minimum and max being the maximum number of
lineitems per order. Hence, the OrderLine table contains depen-
dencies between multiple rows, in this case rows grouped by
OrderID. That is, there are between min and max number of rows
with the same OrderID, but different LineNumbers.
A more complex example is that of history-keeping dimensions.
History-keeping dimensions keep information about data changes
or entities, such as customers or parts. In order to distinguish
between current and historic data, both the “natural” (a.k.a. “busi-
ness”) key for an entity and its surrogate key are stored in the
same row. The business key is the primary key from the system
the row was extracted from. Examples are customer id and pur-
chase number. Surrogate keys, being generated, are independent
of the business function. The fact tables that need to reference a
history-tracking dimension include a foreign key reference to the
surrogate key, not the natural key. Additionally, each dimension
entry has usually a start and end date, which indicate the time
period for which records are valid. The most current one usually
contains a special value (e.g. NULL) as the end date. Therefore
data that reflect multiple incremental loads of a history keeping
dimensions needs to have:

1. Monotonically increasing numbers in surrogate key columns,

2. Monotonically increasing date values in the start and end date,

3. End date after begin date, except for the current row and

4. The begin date of a row be equal to the end date of its predeces-
sor, except for the current row.

http://www.census.gov/genealogy/www/�

Figure 4: Sample history keeping customer table

Figure 4 shows a history keeping customer table. It contains en-
tries for two people Smith and Wilson. This example exhibits
multiple dependencies that stem from the timeline the data was
entered into the dimensions. This can be solved by sorting data
during their generation. Obviously, surrogate keys are generated
as increasing sequence. Furthermore, the start and end date are
increasing for a single customer ID. And finally, the end date in a
certain row is the start date of the next row with the identical
business key. We can distinguish between regular and irregular
sort orders. A regular sort order has the form of a sequence. So
each value is dependent on the position. While an irregular order
just requires that successive values follow the sort order. Example
of data that is generated in regular order is the generation of sur-
rogate keys, which are usually implemented as a sequence of
integers or timestamps of regular events. An example of data that
is generated following an irregular order is the generation of
timestamps of random events such as address changes. However,
keep in mind that benchmarks would like to generate them ac-
cording to a specific distribution. The order can be in form of a
dependency. This is shown in the example above. The start date of
an entry in the history keeping dimension is the end date of the
preceding entry with same business key.

Figure 5: Multi valued dependency

Yet another form of intra table dependency stems from schema
de-normalization. If a customer has several telephone numbers,
multiple rows per customer exist with some data being duplicated
in the customer table. Furthermore, if a customer also has several
addresses all combinations of telephone numbers and addresses
have to be stored. This is also called multi-valued functional
dependency: 𝐶{𝑖𝑑} →→ 𝐶{𝑎𝑑𝑑𝑟𝑒𝑠𝑠}, 𝐶{𝑖𝑑} →→ 𝐶{𝑡𝑒𝑙𝑒𝑝ℎ𝑜𝑛𝑒}.
The reason for multi-valued functional dependencies can also be
poor schema design. In this case benchmarks concerned with the
testing of database robustness in the context of odd or poor sche-
ma design want to inject such dependencies into their data.

In some cases aggregate data is kept for performance reasons. For
instance, a fact table may record customer account transactions.
For performance reasons the fact table entry recording the transac-
tions might record the customer account balance after the money
was withdrawn/deposited. This type of dependency is between the
current account balance, the current transaction amount and the
previous account balance. Other aggregation types such as the
average account balance across all customers have dependencies
to all preceding transactions of a customer.

4.3 Inter Table Dependency
The classical example of inter table dependency is referential
integrity (RI). If two tables have a parent/child relationship, then
for each value in the foreign key column of the parent table a
primary key value in the child table must exist. For instance, for
each customer in the OrderLine table (see Figure 1), a corres-
ponding customer id must exist in the Customer table. More for-
mally: Let 𝑃𝑛{𝑃𝐾,𝐹𝐾} be the parent table and 𝐶𝑛{𝑃𝐾} be the
child table and 𝑃𝑛{𝐹𝐾} is the foreign key referencing 𝐶𝑛{𝑃𝐾},
then the following must be true: ∀𝑃{𝐹𝐾} ∃𝐶{𝑃𝐾} ∶ 𝑃{𝐹𝐾} =
 𝐶{𝑃𝐾}
Obviously, the same is true for redundant data. Redundancy is
regularly employed to increase data processing efficiency. As-
sume the OrderLine fact table, in addition to the customer id, also
stores the customer’s first and last names. During the generation
of data for OrderLine valid names from the Customer table need
to be generated.

Figure 6: Aggregation example

Another form of inter table dependency is the generation of data
for auxiliary data structures, such as materialized views. For
performance reasons one might, for example, store a materialized
view containing daily quantities by customer, as seen in Figure 6.
This is an aggregation of all quantities ordered by customers. In
contrast to the referential integrity, for aggregations a single value
in one relation depends on multiple values in another relation.

5. DETERMINISTIC PARALLEL DATA
GENERATION
Based on the parallel pseudo random number generation concept
presented in Section 3 some of the data with the dependencies
described Section 4 can already be generated with PDGF. In order
to achieve an acceptable generation speed, the deterministic beha-
vior of random number generators is exploited. As explained in
Section 3, each single independent column value of a relation can
be generated by mapping its random number or sequence of ran-
dom numbers to its concrete value. Please note that not all data
dependencies have been implemented yet in PDGF. We will note
this where necessary in the next sections.

Figure 7: Hierarchical seeding approach

In [11] Rabl et al. presented a hierarchical seeding approach for
parallel random number generators that allows for the generation
of data with different dependencies. Based on an initial seed for
the complete schema seeds are generated in a hierarchical fashion
for each table and column in a schema. This way deterministic
seeds for every column can be calculated. Based on a column’s
seed an independent sequence of random numbers is generated to
produce its actual values. That is, to produce the n-th value in the
m-th column, the n-th random number of the m-th column genera-
tor is used. This is depicted in Figure 7.

Based on this seeding approach, a general purpose parallel data
generation framework (PDGF) has been implemented at the Uni-
versity of Passau. It uses a parallel random number generator to
generate data as depicted above. Even for large database schemas
with hundreds of tables and thousands of columns PDGF can
cache the seeds of all columns. The default random number gene-
rator has a period of 264 − 1 which is enough to generate peta-
bytes of data. The metadata, also referred to as data generators, for
a specific database schema is presented to PDGF in form of an
XML document and passed to it as an input file. It consists of a
hierarchy of generators, following abbreviated with Gen:
𝑆𝑐ℎ𝑒𝑚𝑎𝐺𝑒𝑛 → 𝑇𝑎𝑏𝑙𝑒𝐺𝑒𝑛 → 𝐶𝑜𝑙𝑢𝑚𝑛𝐺𝑒𝑛 → 𝐺𝑒𝑛𝑒𝑟𝑖𝑐𝐺𝑒𝑛.
Below find the definition of a IDGenerator for the Customer
relation introduced in Section 4. See [11] for more detailed exam-
ples.
<schema name="warehouse">
 <scaleFactor name="custscale">5000</scaleFactor>
 <seed>1234567890</seed>
 <rng name="PdgfDefaultRandom" />
 <tables>
 <table name="Customer">
 <size>custscale</size>
 <fields>
 <field name="ID">
 <type>java.sql.Types.BIGINT</type>
 <generator name="IdGenerator" />
 </field> […]

Figure 8: Sample CustomerGenerator using PDGF syntax
The specification of a schema generator follows the relational
schema closely. Each column generator specifies the data type of
the field in the relational schema. In the example above, the ID-
Generator is of type java.sql.Types.BIGINT and uses the
generic IDGenerator implemented as a Java class. The amount of
data to be generated is specified in terms of scale factors (see
CustScale above). To generate the data in parallel, each relation is
partitioned horizontally between the generating instances. This is
depicted in the figure below.

Figure 9: Partitioning hierarchy of PDGF

For instance, if a table with 1,000,000 rows has to be generated on
two nodes with four threads/processes, each thread/process gene-
rates a continuous partition of 250,000 rows. Since each row is
generated independently, the generation speed scales linearly.
Obviously, this form of data generation works well for uncorre-
lated data. Generating dependant data as discussed in the previous
section is more complicated. In the remainder of this section, we
clarify what kind of dependencies can be generated with the cur-
rent version of PDGF. For those dependencies that cannot be
implemented with the current version of PDGF we discuss ideas
how the future version of PDGF could generated them.

5.1 Intra Row Dependency
Although PDGF generates all fields of a row independently, it is
possible to generate all kinds of intra row dependencies. If two
columns contain dependent data, as in the case of the date table in

Section 4.1, they must share the same random sequence. DateS-
tamp is generated using a generic date generator. For each of the
dependent fields, the same generator is invoked with the same
random number, but different options reflecting the various date
formats. It is also possible, to use a reference or exact value of one
or more fields as the basis for value generation. In PDGF a refer-
ence is de-referenced by using the deterministic seeding approach
to re-compute the value of an arbitrary field. In order to apply the
approach above, the generation of the dependent value has to
reference either the random numbers of all referenced fields or the
values they generate. A reference is defined in PDGF as follows:
<generator name="DefaultReferenceGenerator">
 <sameRowAs>ID</sameRowAs>
</generator>

The default reference generator re-computes a value of the refe-
renced field. This can be used as input for another generator. An
example for the use of the same random number sequence is the
VAT example. The list of possible locations for a purchase is
stored in a dictionary table locations and the concrete choice
could be made based on a random number or the value of the
location field. To get the VAT for a specific location, a second
dictionary table with VAT values is employed, e.g. VAT. If VAT
has the same order as locations, the matching VAT can be re-
trieved using the same random number as used to generate the
value for location. Otherwise the VAT value can be picked using
the value of the location field and a function mapping location to
VATs.
In summary, PDGF has three options to generate intra row depen-
dencies: shared generators, equal random number sequences and
referencing fields.

5.2 Intra Table Dependency
In PDGF intra table dependencies are not implemented yet. They
could be handled like intra row dependencies. However, intra
table dependencies often have a recursive structure and, therefore,
do not allow an independent computation of single values. This
conflicts with the stateless generation approach of the current
version of PDGF. In the following paragraphs we explain how
intra table dependencies can be generated in general and PDGF
specifically.
Let’s assume that each order ID in the OrderLine example from
Section 4 has to appear at least min and at most max times. That is
each order has between min and max Item entries. In the serial
data generation case, the approach is straight forward by generat-
ing between min and max rows at a time using the same order ID.
However, the parallel case is more complicated, as each
thread/process generates data for different IDs independently. In a
naïve approach this will ultimately lead to a non-deterministic
number of OrderLine rows per ID. This is the state of the art in
current parallel data generators. A downside of this approach is
that it does not allow an independent computation of a single row.
Relational theory does not enforce the sorting of tuples. However,
real world data sets exhibit some inherent sorting as could be seen
in the examples in Section 4.2. Therefore, the data generation
must be able to produce sorted data where necessary. If the sorting
has a regular structure, it is usually possible to calculate a value
based on its position, without knowing its predecessors. A trivial
example for this is a surrogate key.
To generate data with an irregular sorting, in general a sequential
approach is needed, since each value is dependent on the pre-
viously generated value. Consider time stamps that have to be

increasing with random intervals and each time stamp may occur
multiple times. In order to generate a single time stamp know-
ledge of the previous value is needed. In PDGF, this would lead to
a recursive dereferencing to the first value. Obviously, this ap-
proach is not feasible for large data sets. Therefore, the generation
is usually split into several continuous partitions, which are each
generated sequentially by a separate process. This is possible, if
some deviations at the partition boarders are acceptable. However,
using this approach the resulting data is dependent on the degree
of parallelism, which is in contrast to the general requirement of
platform independence. A possible solution to generate such data
in parallel is to restrict the randomness in the data, i.e. make the
sorting dependent of the row number. This can be done by apply-
ing a certain reoccurring pattern. Obviously, the data will exhibit
the desired pattern.
We are currently exploring an approach using conditional proba-
bilities to generate increasing number sequences with random
characteristics. This can be seen as an integral of a random se-
quence. If it is possible to calculate the integral in constant time,
the generation of sorted data will be possible in PDGF.
To generate multi-valued functional dependencies in data, mul-
tiple rows have to be generated at a time. This approach can be
used in the example above. However, if a continuous surrogate
key has to be generated for each row, the problem is similar to the
generation of irregular sorted data. A random number sequence is
needed, that returns a certain random number multiple times.

5.3 Inter Table Dependency
To ensure referential integrity most data generators either have
severe restrictions on the key generation or read generated keys to
generate data consistent across tables. Using PDGF’s determinis-
tic approach, referential integrity can be ensured by regenerating
valid keys. This is equal to the reference generation for intra row
dependencies. The row number of each value is used as a surro-
gate key. To generate a valid key, the random sequence of the key
column and the key generator is needed. By picking a random row
of the key column the corresponding key is generated. In order to
generate statistic distributions of references the random picking of
row numbers can be distributed accordingly. This is depicted in
Figure 10; to generate a referenced value in the first step a random
lognormal distributed value within the number of rows of the
referenced table is generated. This row number is used to regene-
rate the key value. Obviously, it is possible to generate any refer-
ence, not just foreign keys.

Figure 10: Reference generation in PDGF

A more complex problem is the generation of values that depend
on multiple other values. Usually, there is a connection between
the referenced values that has to be considered. Although it is
possible to use multiple random references within a field and
aggregate the according data, this method does generally not lead
to the desired result. Consider the example of a materialized view.
In this case, one value is dependent on multiple values in another
table. Obviously, the reference approach does not work directly
for aggregations. However, if the data is grouped by a field which

allows a computation of the row number, then the aggregated
values can be computed. Consider a daily aggregation of orders; if
the time stamp is regular and the start value is known, then it is
possible to calculate the first and last row of each day and com-
pute all values in between. Obviously, the computational com-
plexity is proportional to the number of aggregated values.

6. CONCLUSION
Advances in database technology call for new approaches in
benchmarking. In the age of cloud computing and social media,
new methods for parallel data generation are needed. In this paper,
we developed requirements to data characteristics frequent in
relational models that have currently not been addressed by gen-
erally available parallel data generators. Furthermore, we showed
which of these requirements are fulfilled in PDGF. Some depen-
dencies cannot be generated with PDGF. In future work, we con-
centrate on the generation of these unsolved dependencies in
PDGF.

7. REFERENCES
[1] N. Bruno and S. Chaudhuri. 2005. Flexible database genera-

tors. VLDB '05, 1097-1107. VLDB Endowment.
[2] P. D. Coddington. 1996. Random number generators for

parallel computers. NHSE Review.
[3] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and

R. Sears. 2010. Benchmarking cloud serving systems with
YCSB. SoCC '10, 43-154. ACM.

[4] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J.
Weinberger.1994. Quickly generating billion-record synthet-
ic databases. SIGMOD '94, 243-252. ACM.

[5] J. E. Hoag and C. W. Thompson. 2007. A parallel general-
purpose synthetic data generator. SIGMOD Record,
36(1):19-24.

[6] K. Houkjær, K. Torp, and R. Wind. 2006. Simple and realis-
tic data generation. VLDB '06, 1243-1246. VLDB Endow-
ment.

[7] P. J. Lin, B. Samadi, A. Cipolone, D. R. Jeske, S. Cox, C.
Rendón, D. Holt, and R. Xiao. 2006. Development of a syn-
thetic data set generator for building and testing information
discovery systems. ITNG '06, 707-712. IEEE Computer So-
ciety.

[8] G. Marsaglia. 1991. Normal (Gaussian) random variables for
supercomputers. Journal of Supercomputing, 5 (1991):49-55.
Kluwer Academic Publishers.

[9] G. Marsaglia. The Diehard Battery of Tests of Randomness.
http://www.stat.fsu.edu/pub/diehard/

[10] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery Numerical Recipes – The Art of Scientific Compu-
ting. 2007. Cambridge University Press.

[11] T. Rabl, M. Frank, H. Mousselly Sergieh, H. Kosch. 2010. A
Data Generator for Cloud-Scale Benchmarking. TPC TC '10,
41-56. LNCS 6417. Springer.

[12] J. M. Stephens and M. Poess. 2004. MUDD: a multi-
dimensional data generator. WOSP '04, 104-109. ACM.

[13] M. Poess, C. Floyd. 2000. New TPC Benchmarks for Deci-
sion Support and Web Commerce. SIGMOD Record 29(4):
64-71

[14] M. Stonebraker. 2009. A New Direction for TPC? TPC TC
’09, 11-17. LNCS 5895. Springer.

[15] A. Thusoo,J. S. Sarma,N. Jain,Z. Shao,P. Chakka,N.
Zhang,S. Anthony,H. Liu,R. Murthy: Hive - a petabyte scale
data warehouse using Hadoop. ICDE 2010: 996-1005

http://www.stat.fsu.edu/pub/diehard/�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sarma:Joydeep_Sen.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Jain:Namit.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Shao:Zheng.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chakka:Prasad.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zhang_0002:Ning.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zhang_0002:Ning.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Anthony:Suresh.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Liu:Hao.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Murthy:Raghotham.html�
http://www.informatik.uni-trier.de/~ley/db/conf/icde/icde2010.html#ThusooSJSCZALM10�

	1. INTRODUCTION
	2. RELATED WORK
	3. PARALLEL RNGs
	4. DATA REQUIREMENTS
	4.1 Intra Row Dependency
	4.2 Intra Table Dependency
	4.3 Inter Table Dependency

	5. DETERMINISTIC PARALLEL DATA GENERATION
	5.1 Intra Row Dependency
	5.2 Intra Table Dependency
	5.3 Inter Table Dependency

	6. CONCLUSION
	7. REFERENCES

