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Abstract. Emerging use cases derived from the area of cloud comput-
ing, smart power grids, and business process management require a set
of capabilities not met by traditional event processing systems. These
use cases were chosen to illustrate the capabilities required from systems
that are able to process what we refer to as Big Fvents, that is Big
Data in motion. To further illustrate Big Fvents, we identify three use
cases and analyze the characteristics of the events involved. Based on
this analysis, we specify requirements regarding the event schema, event
query language, historic event processing needs, event timing, and result
accuracy. Collectively, we refer to the constellation of state changes in a
given system that exhibits these characteristics as event showers, refer-
ring to the collective of these events, similar to the notion of an event
stream in the context of event stream processing. We call systems that
offer capabilities for meeting these requirements event shower processing
systems in contrast to traditional event (stream) processing systems. The
use cases we picked, demonstrate that additional value can be captured
by having shower processing systems in place. The benefits lie in the
new possibilities to gain additional insights, increase observability, and
to further exert control and opportunities for optimizations in the given
applications.

1 Introduction

As storage prices continue to drop, more and more data is stored for subsequent
analysis. This trend has recently been coined as the era of Big Data [27]. As
more and more data can be stored, the value of data analysis increases, since
ever more patterns can be mined and data that previously was not of interest
can be monetized. However, still many data sources are unused since their value
perishes quickly. This kind of fast-paced data that needs to be processed in real-
time or near-real time is often called Big Fvents [17] and refers to the processing
of Big Data in motion.

The possibility to process Big Fvents by either exposing events from large
systems or by sensing events from many sources needs a powerful processing
system. We call systems that can process Big Fvents, (event) shower processing



systems. Fvents represent state transitions in the environment, conveyed as event
messages to the system. The terms event messages and events in this context
are typically used interchangeably.

More formally, an event shower is a partially ordered set of events, either
bounded or unbounded, where the partial orderings are imposed by the causal,
timing, and other relationships between the events. Others have referred to sim-
ilar notions as event clouds [25,26], which due to the affinity in terminology
to cloud computing, we would like to avoid to reuse here. Informally speaking,
an event shower represents the constellation of events over time resulting from
considering the collective of events originating from disparate event sources in a
distributed system.

Events can be sensed from the environment or can be exposed by existing
systems and applications. As we show in our use case analysis, valuable infor-
mation can be derived from correlating and analyzing event showers. Since our
society becomes more dependent on technology and systems become more com-
plex, observability is a critical requirement. Creating interfaces between systems
requires a lot of specification and testing. In case of a malfunction, reproducing
errors is a hard problem since the interactions internal to a system can not be
easily reproduced or since the unique conditions leading up to the failure only
occur once in a while.

Without doubt, debugging functionalities in software development tools in-
crease observability for programmers, while event exposure increases observ-
ability in complex systems [41]. When event showers originating from multiple
interacting systems can be analyzed, these systems become more observable and
transparent. In case of a malfunction in an observable system, it may be possible
to find ways to recover, if a well-behaved state is reached [12].

The difference between event stream processing systems and event shower
processing systems are defined by the characteristics of the events involved. In
stream processing systems, events tend to originate from one to a few data
sources, while in shower processing systems, events originate from many data
sources. Consequently, for event showers, it is impossible to accurately synchro-
nize time across the publishing data sources. Therefore, logical clocks or other
mechanism are required to establish some form of event ordering. In stream pro-
cessing, events are often implicitly timestamped, relative to the single source
they are emitted from or relative to the stream processor that received them in
a given order, often arrival order.

In stream processing systems, the stream schema is known a priori, in shower
processing systems, event schemas are subject to change and may not be known
a priori, because the systems exposing events are not within the organizational
control of the system which correlates and aggregates the events. Accordingly,
shower processing systems have to be able to deal with schema-less information.
More of the differences are discussed in Section

To this end, systems are needed, which can analyze massive amounts of events
from multiple systems and can deal with the characteristics of these events. With
shower processing systems, it is possible to discover emergent behavior, mine for



patterns, observe the interactions between disparate systems and, thus, increase
the overall observability, while this is less of a concern for stream processing.

In this paper, we analyze the characteristics of events derived from consider-
ing three emerging use cases. Based on our analysis, we formulated the require-
ments for systems, which can deal with these kind of events, which we refer to
as event shower processing system. We show how the different elements (i.e.,
query language, publish/subscribe semantics, and consistency requirements) fit
together and outline future research required in this area in order to establish
event shower processing systems. Throughout the text, we point to literature
that describes systems exhibiting some of the requirements we postulate.

The rest of the paper is organized as follows. In Section [2] we describe three
different use cases: cloud computing, smart power grids, and business process
management. In Section [3] we define the required feature set for an event shower
processing system, discuss how it differs from existing approaches, and present
the individual elements of such a system. Finally, in Section [d] we discuss how
event shower processing systems can be beneficial in the presented use cases.

2 Use Cases

We identified three emerging use cases where additional insights can be gained by
analyzing and correlating events from multiple systems. The domains were cho-
sen because of recent interest from the research community and where affordable
sensors could bring increased observability.

Figure [I] shows an exemplary overview of a system which processes event
showers. Multiple systems expose events or sense events from the environment.
Operators formulate queries which compile to pattern matching rules, content-
based routing topologies, aggregations and correlations. The topology is opti-
mized for low latency or maximum throughput.

2.1 Cloud Computing

With cloud computing, storage and computing resources get commoditized.
Cloud providers offer on-demand configurable computing resources [28].

Monitoring plays an important role when making systems running on cloud
computing platforms resilient (e.g., [39]). This helps to understand how systems
operate. In case of failure, monitoring helps with the root-cause analysis or to
discover potential weaknesses. As abstraction layers are added to the software
stack, one looses observability because typically performance problems are un-
derstood at the very lowest layer of the stack [10].

Shower processing systems make it possible to correlate the data streams of
the cloud environment with other event streams. While system-level events are
well defined in terms of schema, application specific events can change frequently.
A potential use case is to correlate exposed events from business processes and
performance indicators of cloud environments [29]. With this information it is,



Fig. 1. Event shower processing system

for example, possible to optimize the latency of a specific business process or to
forecast the impact on the infrastructure when a specific business process gets
executed more often.

2.2 Smart Power Grids

The smart grid is the next evolution of the electrical power grid by enabling
bidirectional communication and control of energy generators and consumers [3].
Energy demand and generation has to be exactly balanced. Until recently, the
demand was given and then matched with the generation. As the portion of
fluctuating energy sources, like solar and wind increases, the demand must in-
creasingly be matched to the generation.

Observability is a key ingredient to control and balance production and de-
mand in the smart grid ﬂgﬂ This can be seen in the following example. The total
production in Germany at 12:00 o’clock on June 20th, 2013, a sunny weekday,
was 70 GW. 18 GW or 26% of the total production were generated by solar
cells . The expected solar production, published the previous day was only
13 GW, resulting in a prediction error of 5 GW. Based on the previous day’s
prediction, power plants are scheduled. This results in monetary losses due to
severe over-provisioning. Furthermore, the gap between production and demand
had to be compensated by lowering the output of conventional generators. Even
more expensive is the inverse situation, where the expected solar production
is not met. In this case, the higher demand has to be compensated through
the spot market or more costly alternatives, with short-term regulation energy.
While shifting demand is already done by huge power consumers, such as cold
storages, there is a huge potential in controlling large numbers of electric vehi-
cles and smaller devices like heat pumps or fridges . Recent approaches
also show how consumption forecasting could be done more accurate .



To control the huge number of individual devices, the current state must
be observable to estimate the potential effect of control. This requires massive
sensing infrastructures and near real-time processing of event showers. Since
the events may have different kinds of latencies caused by changing networking
conditions, the system has to deal with missing information and respect those
in the overall state estimation. An area where low latency is required is, for
example, phasor measurements. Phasor measurement units include GPS clocks,
which provide an external time stamp for potentially correlating events, subject
to the achievable GPS clock accuracy [20]. As the cost of GPS clocks and phasor
measurement units decreases, it also becomes affordable to install them in low
voltage grids, to pro-actively take actions in developing situations [30].

Event shower processing can add significant value to this scenario. Events
from weather stations, buildings, generators, shiftable demand and energy stor-
ages can be correlated and aggregated and control can further be optimized.

2.3 Business Process Management

Exposing events from business processes can provide valuable insights if com-
bined and correlated with external data. Instead of mining existing log files one
can think of automatically exposing events via the business process execution
engine [41] or to leverage a process execution engine, already designed and im-
plemented through a publish/subscribe approach [24], thus, naturally exposing
events.

Business process mining has been shown to be applicable to real-world sce-
narios [32]. An extended scenario could be the correlation of events from business
processes with click-stream events from Web shops and weather data. An exem-
plary scenario is as follows: Historic click-stream events show that people tend to
do more online shopping on rainy days [4]. Analysis of the events exposed from
a business process engine could show that these sales have higher return rates.
Thus, returns increase and customers are not satisfied. Hence, additional per-
sonnel resources are needed to deal with the returns. This shows that correlating
weather data and historic events could help provision personnel accordingly.

Exposing events can also benefit white box testing in SOA environments [41].
This shows that increased observability can be used also for testing. More gen-
erally speaking, event exposure can be though of as an approach to expose
unstructured information over system boundaries to enable the above described
scenarios.

3 Definitions

The main characteristics of the events in the presented use cases above are the
following: The events are exposed implicitly, which makes it difficult to define
an event schema. They cross organizational boundaries or systems, which makes
it difficult to standardize and prescribe a given event schema. Also, events may
be exposed from proprietary and legacy systems, so changing the events is not



easily possible. Furthermore, events from inexpensive sensors may lack exact
timing information.

It is difficult to support the above use cases with existing event (stream)
processing systems. While existing event processing systems exhibit capabilities
to handle some of these event characteristics, event shower processing systems
are representatively covering all requirements (see Table .

[ Showers [ Streams
Schema Optional Defined
Boundaries Distributed across multiple systems |Part of a system
Routing Implicit publish/subscribe semantics|-
Historic Historic and current events Only current events
Query language|Declarative Can be declarative
Timing External or logical clocks Ordered by system arrival
Consistency Eventual consistent Consistent

Table 1. Event showers vs. event streams

Event stream processing and complex event processing: Event stream
processing systems typically do not cross organizational or system boundaries.
If those boundaries are crossed, typically the event schema is specified, e.g., in
financial markets. Complex event processing can combine multiple data sources
but the correlation and aggregation of the events is done within a single system.
An exemplary software which can be used in such an environment would be
IBM Infosphere [2].

A system capable of processing event showers can distribute the aggregation
and correlation of events across multiple systems and can consider infrastructure
concerns to optimize the topology. This could be done by leveraging existing
publish /subscribe-style event processing and overlay networks. [23,/43]

Rule-based systems: In rule-based systems it is possible to derive deduc-
tions |11]. Event shower processing systems take this approach one step further
by enabling deductions on multiple event streams by supporting a declarative
logic-based query language.

Publish/Subscribe systems: Publish/Subscribe systems consist of publishers
which produce events, subscribers which register for events, and brokers which
route the events through an overlay network [14]. New event sources are adver-
tised by a broadcast message. The advertisement contains schema and additional
information regarding event shape and timing.

Event shower processing systems compile queries to aggregations and correla-
tions, which are essentially join operations [22,23]. The operations are compiled



:—type(production (timestamp :number(integer), household:string(varchar)),
watt :number (integer))).
:—type(household (hhid:string (varchar), connectedTo:string (varchar))).
:—type(solarcell (hhid:string (varchar), kwpeak:number(integer))).
:—type(windturbine (hhid:string (varchar), kwpeak:number(integer),
diameter :number(integer))).
:—type(transformer (trid:string (varchar), a:string(varchar),
b:string (varchar))).

Listing 1. Type definition Datalog

to subscriptions that attract publications as intermediate results and pass match-
ing publications on throughout the system to higher-level subscriptions. Event
shower processing systems create these implicit subscriptions to events expressed
in the query language and spread the correlation and aggregation throughout
the topology [22,23].

3.1 Event Schema

An event schema is a formal definition of the structure of data. Events can be
observed or are automatically exposed by systems or databases [40,/41]. When
events are exposed implicitly, the schema of these events can change, if new fea-
tures are introduced in the underlying system. Hence, an event shower processing
system must be able to map unstructured, semi-structured and structured data
to a schema. An adaptor can map unstructured data to structured data, see
Figure [2] for an illustration. Existing approaches, which have been designed to
deal with semi-structured data are NoSQL databases [34]. It is also possible to
infer types based on discovered schemas. That is type providers |37] offer type
safe access inside a statically typed programming language. Listing[I] shows some
types from the smart grid domain. With type providers the corresponding types
and adapters could be generated automatically. This could be done based on an
advertisement, which contains type information or by discovering the schema of
events.

<ﬂ>.<ﬂ>.<ﬂ> > Adaptor Structured Events

Fig. 2. Schema adaptor




3.2 Historic Event Data And Databases

In a system, which can process event showers, there is no difference between
current events and historic event data, see Figure[3] This is an important feature
serving the discovery and correlation between event streams or to train machine
learning models. Accessing historic event data can be implemented as a feature
of publish/subscribe systems [18}[21] or as part of a hybrid event processing
architecture, such as MADES (38|, which is a distributed event store that can
query historic event data in the same way as process current and future events.

Event Exposure Publication
Historic

Sensing Infrastructure Publication
Historic

Fig. 3. Event sources

The NoSQL database CouchDB 7] can expose notifications when the under-
lying data changes. Relational databases have the possibility to expose events
by triggers. The notifications could be further exposed as events. This point of
view challenges the implementation of the query processor, which should be ca-
pable to process historic data in a batch-like fashion and also incorporate current
events.

Recent work [42] shows how the map-reduce model for batch processing can
be combined with event stream processing. Consequently, event shower process-
ing systems can be seen as the next evolutionary step of big data systems.

3.3 Query Language

To discover knowledge in event streams a powerful language is needed. Data-
log [11] can be viewed as a subset of general logic programs. It also supports
recursion which has advantages when querying graph structures, e.g., social net-
works or electrical grid topologies. Datalog queries are guaranteed to terminate
and can be run safely [35]. It has also been demonstrated [8] that complex events
can be derived from simpler events by means of deductive rules. To use Datalog



\% transformers, transactional data

mediumhighvoltagegrid, distributiongridnorth).

transformer (munichsouth, mediumhighvoltagegrid ,
distributiongridsouth ). transformer (munich, highvoltagegrid,
mediumhighvoltagegrid).

\% households, tramnsactional data
household (hh2, distributiongridsouth).
solarcell (hh2, 12).

windturbine (hh2, 23, 7).

\% current production, eventstreams with uniz timestamp
production (1375688745, hhl, 15).
production (1375688745, hh2, 18).
production (1375688746, hh3, 4).

Listing 2. Sample data and events

for event processing some extensions are needed, for example, to reason about
temporal relations [5]. Also deductions and inductions have to respect tempo-
ral semantics [6]. It has already been shown that Datalog can be executed in
parallel [15] and, therefore, Datalog processing can also utilize massive parallel
hardware like Graphic Processing Units (GPU) or Field Programmable Gate
Arrays (FPGAs). Historic data and exemplary events are shown in Listing
Listing [3] shows how this data is queried and aggregated. The output of the
query refreshes continuously as new data becomes available or static data is
updated.

3.4 Timing

Preserving ordering in a distributed system is a challenging task since clocks
can not be accurately synchronized. Ordering can be preserved by logical clocks
which need coordination. In case of large distributed event showers this is not
practicable. Corbett et al. [13] show how to use GPS clocks to preserve ordering
in a truly global distributed database. Depending on the consistency require-
ments approximately synchronizing to within a A,,,, may suffice [19]. Other
approaches use heartbeat signals in streams [36]. Systems which can process
event showers consequently rely on logical clocks, GPS clocks or must be aware
of the synchronization error.

3.5 Accuracy

Sensors may be deployed in the field with unreliable network connections or inac-
curate readings. Also, shower processing systems can span multiple organizations
domains, operating world-wide, and, thus, must be self-aware of the latency they
introduce. The immediate output of the event shower system may still not be



all_renewables_kw (HH, KW) :—
windturbine (HH, KW, _).

all_renewables_kw (HH, KW) :—
solarcell (HH, KW).

nearest_transformer (HH, TR) :—
household (HH, GRID),
transformer (TR, -, GRID).

sum_renewables_kw (SumSolar) :—
sum(all_renewables_kw (HH, KW), KW, SumSolar).

sum-renewables (HH, TR, SumSolar) :—
nearest_transformer (HH, TR),
sum(all_renewables_kw (HH, KW), KW, SumSolar).

sum_renewables (TR, SumRenewable) :—
sum(sum-_renewables (-, TR, ToSum), ToSum, SumRenewable).

current_production (TR, Prod) :—
nearest_transformer (HH, TR),
production (TS, HH, Prod).

sum_production (TR, SumProd) :—
sum(current_production (TR, Prod), Prod, SumProd).

Listing 3. Queries in Datalog

accurate and as additional events arrive at the system, the result becomes more
accurate. For example, if the maximum latency of incoming events from one
event stream was more than a second, the result stream must be delayed at least
a second to produce an accurate result.

4 Conclusions

We showed that there are emerging use cases in cloud environments, smart grids
and business process management where current state of the art event process-
ing systems are unable to cope. The events may be implicitly exposed from
legacy system, business process engines or are sensed from the environment with
cheap sensors and high latency network connections. Analyzing and correlating
these kind of events needs additional capabilities in the query language and the
underlying system, dealing, among others, with schemaless events, timing and
accuracy.

We outlined possibilities to overcome those hurdles when dealing with that
kind of events. First, by using a higher level logic-based query language which
abstracts from publish/subscribe. Second, by adding adapters to be able to deal
with unstructured events in a type-safe way. Third, by including historic data
and databases which can be used to train machine learning classifiers and to
discover correlations. Finally, by adding the possibility to adapt accuracy by
delaying the result or by supporting logical clocks or GPS clocks.
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