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ABSTRACT
In Smart Grid applications, as the number of deployed electric
smart meters increases, massive amounts of valuable meter data
is generated and collected every day. To enable reliable data col-
lection and make business decisions fast, high throughput storage
and high-performance analysis of massive meter data become cru-
cial for grid companies. Considering the advantage of high effi-
ciency, fault tolerance, and price-performance of Hadoop and Hive
systems, they are frequently deployed as underlying platform for
big data processing. However, in real business use cases, these
data analysis applications typically involve multidimensional range
queries (MDRQ) as well as batch reading and statistics on the meter
data. While Hive is high-performance at complex data batch read-
ing and analysis, it lacks efficient indexing techniques for MDRQ.

In this paper, we propose DGFIndex, an index structure for Hive
that efficiently supports MDRQ for massive meter data. DGFIndex
divides the data space into cubes using the grid file technique. Un-
like the existing indexes in Hive, which stores all combinations
of multiple dimensions, DGFIndex only stores the information of
cubes. This leads to smaller index size and faster query process-
ing. Furthermore, with pre-computing user-defined aggregations
of each cube, DGFIndex only needs to access the boundary region
for aggregation query. Our comprehensive experiments show that
DGFIndex can save significant disk space in comparison with the
existing indexes in Hive and the query performance with DGFIndex
is 2-63 times faster than existing indexes in Hive, 2-94 times faster
than HadoopDB, 2-75 times faster than scanning the whole table in
different query selectivity.

1. INTRODUCTION
With the development of the Smart Grid, more and more electric

smart meters are deployed. Massive amounts of meter data are sent
to centralized systems, like Smart Grid Electricity Information Col-
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lection System, at fixed frequencies. It is challenging to store these
data and perform efficient analysis, which leads to the smart meter
big data problem. For example, currently 17 million smart meters
are deployed in the Zhejiang Province, which will be increased to
22 million in next year. As required by the standard of the China
State Grid, each of them will generate meter data once every 15
minutes (96 times a day). Even only in a single table of electric
quantity, there will be 2.1 billion records needed to be stored and
analyzed effectively daily.

The traditional solution in the Zhejiang province was based on a
relational database management system (RDBMS). It implements
its analysis logics using SQL stored procedures, and builds many
indexes internally to improve the efficiency of selective data read-
ing. It is observed that global statistics on big tables lead to poor
performance, and the throughput of data writing is fairly low due to
the indexes used in the database system. With the increasing of the
number of metering devices and collection frequency, this situation
becomes more dramatic and the capacity of the current solution
is reached. Since traditional RDBMS exhibits weak scalability and
unsatisfied performance on big data. On top of that it is also surpris-
ingly expensive for business users to deploy a commercial parallel
database. Hadoop [2], an open source implementation of MapRe-
duce [12] and GFS [17] allows users to run complex analytical tasks
over massive data on large commodity hardware clusters. Thus, it
also is a good choice for the Zhejiang Grid. Furthermore, Hive [25,
5], a warehouse-like tool built on top of Hadoop that provides users
with an SQL-like query language, is also adopted, making it easier
to develop and deploy big data applications. As observed in our ex-
periences in Zhejiang Grid, because of the excellent scalability and
powerful analysis ability, Hive on top of Hadoop demonstrates its
superiority in term of high throughput storage, high efficient batch
reading and analyzing of big meter data. The problem is that, due
to the lack of efficient multidimensional indexing in Hive, the effi-
ciency of MDRQ processing becomes a new challenge.

Current work on indexes on HDFS either focuses on one-dimen-
sional indexes [13, 16], or mainly for spatial data type, such as
point, rectangle or polygon [15, 11]. They both can not perform
effective multidimensional range query processing on non-spatial
meter data. Currently, Hive features three kinds of indexes inter-
nally, the Compact Index, the Aggregate Index, and the Bitmap
Index, which can get relevant splits according to the predicates of
a query. These existing indexes are stored as a table in Hive con-



taining every index dimension and an array of locations of corre-
sponding records. As the number of index dimensions increases,
the index table becomes very large. It will occupy a large amounts
of disk space and result in low performance of MDRQs, as Hive
first scans the index table before processing.

With our observation of the meter data and queries in smart grid,
we find that it has some particular features mostly happen in gen-
eral IoT (Internet of Things) system: (i) Because the collected
data is directly related to physical events, there is always a time
stamp field in a record. (ii) Since meter data is a fact from physical
space, it becomes unchanged after being verified and persisted in
database. (iii) Since the change of the schema of meter data means
carefully redesign of the system, and will definitely lead to compli-
cate redeployment or at least reconfiguration of all end devices, the
schema is almost static in a fairly long period of time. (iv) Since
the business logic may require to add some constraints on more
than one data column, many queries contain MDRQ characteris-
tics. (v) Most of the MDRQ queries are aggregation queries.

In this paper, taking advantage of the features of the meter data,
we propose a distributed multidimensional index structure named
DGFIndex (Distributed Grid File Index), which uses grid file to di-
vide the data space into small cubes [22]. With this method, we
only need to store the information of the cubes instead of every
combination of multiple index dimensions. This results in a very
small index size. Moreover, by storing the index in form of key-
value pairs and cube-based pre-computing techniques, the process-
ing of MDRQ in Hive is highly improved. Our contributions are
three-fold: (i) We share the experience of deploying Hadoop in
Smart Grid and transforming legacy applications to Hadoop-based
applications. We analyze and summarize the existing index tech-
nologies used in Hive, and point out their weakness on MDRQ
processing, which implies the essential requirement for multiple
dimensional index in traditional industry . (ii) We propose a dis-
tributed grid file index structure named DGFIndex, which reor-
ganizes data on HDFS according to the splitting policy of grid
file(Thus, each table can only create one DGFIndex). DGFIndex
can filter unrelated splits based on predicate, and filter unrelated
data segments in each split. Moreover, with pre-computing tech-
nique, DGFIndex only needs to read less data than query-related
data. With above techniques, DGFIndex improves greatly the per-
formance of processing MDRQ in Hive. (iii) We conduct extensive
experiments on large scale real-world meter data workloads and
TPC-H workloads. The results demonstrates the improved perfor-
mance of processing MDRQs using DGFIndex over existing in-
dexes in Hive and HadoopDB.

Compared with current indexes in Hive and other indexes on
HDFS, DGFIndex’s advantages are: (i) Smaller index size can ac-
celerate the speed of accessing index and improve the query perfor-
mance. (ii) For aggregation query, DGFIndex can efficiently per-
form it by only scanning the boundary of query region and directly
get the pre-computed value of the inner query region. (iii) By mak-
ing use of the time stamp difference and setting the time stamp of
collecting data as the default index dimension, DGFIndex does not
need to update or rebuild after inserting more data, which makes
sure that the writing throughput will not be influenced by existence
of DGFIndex.

The rest of the paper is organized as follows. In Section 2, we
give details of the big smart meter data problem and introduce the
existing indexes in Hive. In Section 3, we will share the experience
of transforming traditional legacy system to cost effective Hadoop
based system. In Section 4, we describe DGFIndex, and give de-
tails on its architecture, the index construction, and how it is used in
the MDRQ process. Section 5 discusses our comprehensive exper-

UserId PowerConsumed TimeStamp PATE with Rate 1 Other Metrics
24012 12.34 1332988833 10.45 ...

Figure 1: An Example of Meter Data Record

iment results in detail. Section 6 shows some findings and practical
experience about the existing indexes in Hive. Section 7 presents
related work. Finally, Section 8 concludes the paper with future
work.

2. BACKGROUND
In this section, we will give an overview of the Big Smart Me-

ter Data Problem and introduce the Hive architecture and Hive’s
indexes.

2.1 The Big Smart Meter Data Problem
To make electric power consumption more economic, electric

power companies and grid companies are trying to improve the
precision of their understanding of the demand of power and the
trend of power consumption for increasing time frames. In recent
years, the development and broad adaption of smart meters makes
it possible to collect meter data multiple times every day. By an-
alyzing these data, electric power companies and grid companies
can get valuable information about continuous, up-to-date power
consumption and figure out in time important business supporting
results, like line loss rate, etc.

With the number of smart meters deployed and the frequency of
data collection increasing, the amount of meter data becomes very
large. The form of meter data record is illustrated in Figure 1. Each
record of meter data consists of a user id, power consumption, col-
lection date, positive active total electricity (PATE) with different
rates, reverse active total electricity with different rates and various
other metrics. The number of unique user ids is tens of millions in
a province of China.

To get more statistical information, analysts need to perform
many ad-hoc queries on these data. These queries have multi-
dimensional range feature. For example, below are some typical
queries:

• What was the average power consumption of user ids in the
range 100 to 1000 and dates in the rangs ”2013-01-01” to
”2013-02-01”?

• How many users exist with a power consumption between
120.34 and 230.2 in the date range from ”2013-01-01” to
”2013-02-01”?

Additionally, many timing work flows are executed to analysis
these meter data (stored procedures in previous RDBMS, will be
described in Section 3). Many HiveQL predicates in these work
flows have the same characteristics with the above ad-hoc queries.
Thus, an efficient multidimensional range index is crucial for pro-
cessing these queries in Hive.

2.2 Hive
Hive is a popular open-source data warehousing solution built

on top of Hadoop. Hive features HiveQL, an SQL-like declarative
language. By transforming HiveQL to a DAG (Directed Acyclic
Graph) flow of MapReduce jobs, Hive allows users to run complex
analysis expressed in HiveQL over massive data. When Hive reads
the input table, it first generates a certain number of mappers based
on the size of input table, every mapper processes a segment of the
input table, which is named a split. Then, these mappers filter data



Table 1: Schema of a 3-Dimensional Compact Index
Column Name Type

index dimension 1 type in base table
index dimension 2 type in base table
index dimension 3 type in base table

bucketname string
offset array < bigint >

according to the predicate of the query. Tables in Hive can be stored
in different file formats, for example, plain text format (TextFile)
and binary format (SequenceFile and RCFile [18]). Even though
each file format can be compressed with different compression al-
gorithms, Hive still has to scan the whole table without the help of
index. This in turn results in large amounts of redundant I/O, and
leads to high cost of resources and poor performance, especially for
queries with low selectivity.

Index is a powerful technique to reduce data I/O and to improve
query performance. Hive provides an interface for developers to
add new index implementations. The purpose of an index in Hive
is to reduce the number of input splits produced by the predicate in
a query. As a result, the number of mappers will also be reduced.
In the current version of Hive, there are three kinds of indexes, the
Compact Index [8], the Aggregate Index [6], and the Bitmap Index
[7]. All the three types are stored as a Hive table, and their purpose
is to decrease the amount of data that needs to be read.

For the Compact Index, the schema of the index table is shown
in Table 1. If the base table is not partitioned, Hive uses the
HiveQL statement shown in Listing 1 to populate the index table.
The INPUT_FILE_NAME represents the name of input file. The
BLOCK_OFFSET_INSIDE_FILE represents the line offset in the
TextFile format and the SequenceFile format and the block offset in
the RCFile (not to be mistaken with the block in HDFS). Compact
Index stores the position information of all combinations of multi-
ple index dimensions in different data files.

INSERT OVERWRITE TABLE IndexTable
SELECT <index dimension list>,

INPUT_FILE_NAME,
collect_set(BLOCK_OFFSET_INSIDE_FILE)

FROM BaseTable
GROUP BY <index dimension list>,

INPUT_FILE_NAME

Listing 1: The Creation of a Compact Index

An Aggregate Index is built on the basis of Compact Index,
its purpose is to improve the processing of the GROUP BY query
type. The user can specify pre-computed aggregations when cre-
ating an Aggregate Index (for now, only the Count aggregation
is supported). The schema of an Aggregate Index’ table includes
additional pre-computed aggregations at the end of every line in a
Compact Index table. The Aggregate Index uses the idea of index
as data. Using query rewriting technique, it changes the GROUP
BY query on the base table to a scan-based query over the smaller
index table. Unfortunately, the use of Aggregate Indexes is heavily
restricted: the dimensions that are referenced in SELECT, WHERE,
and GROUP BY should be in the index dimensions, and the aggre-
gations in a query should be in the pre-computed aggregation lists
or can be derived from them.

The Bitmap Index is a powerful structure for indexing columns
with a small amount of distinct values. In the RCFile format, ex-
cept storing the offset of block, it stores the offset of every row
in the block as a bitmap. In TextFile format, every line is seen

as a block, so the offset of every row in the block is 0. Thus,
Bitmap Index only improves the query performance on RCFile for-
mat data. A Bitmap Index changes the type of _offset in the
compact index to bigint and adds a column _bitmaps with
type array<bigint>.

Partition is another mechanism to improve query performance.
Every partition is a directory in HDFS. It is similar to partitioning
in a RDBMS. Partition can be seen as a coarse-grained index. The
difference of partition with index is that it needs to reorganize data
into different directories.

When Hive processes query with Compact Index or Bitmap In-
dex, it first scans the index table and writes relevant filename −
offsets pairs to a temporary file. Afterwards, the method getSplits
in InputFormat reads the temporary file, and gets all splits from
these file names in it. Finally, getSplits filters irrelevant splits
based on the offsets in temporary file.

Compact Index and Bitmap Index are used to filter unrelated
splits, and Aggregate Index is used to improve the performance
of GROUP BY queries. These three kinds of indexes have several
limitations when processing MDRQs:

1. When the number of distinct values in every index dimen-
sions is very large,the number of records in index table will
be huge. The reason is that tables of these three types of in-
dexes store all the combinations of each index dimensions.
This leads to excessive disk consumption and, ultimately, a
bad query performance.

2. When the records of an index dimension that have the same
value are scattered evenly in the file (for example, every split
has one record), these indexes will not filter any splits. The
reason is that they do not reorganize data to put these records
together, and their processing unit is split.

3. If the output temporary file of index is very big, it may over-
flow the memory of master, because the method getSplits is
run in a single master and it needs to load all information of
the temporary file into memory before running MapReduce
jobs.

Partitioning in Hive is not flexible, and when creating partitions
for multiple dimensions, it will create a huge amount of directo-
ries. This will quickly overload the NameNode. In HDFS, all
metadata about directories, files, and blocks are stored in the Na-
meNode’s memory. The metadata of every directory occupies 150
bytes memory of NameNode [1]. For example, if we create parti-
tions from three dimensions with 100 distinct values each, 1 mil-
lion directories will be created, and 143 MB will be occupied in the
NameNode’s memory, which is not including the metadata of files
and blocks. However, partition is a good complement for index,
because an index can be created on the basis of each partition.

3. SMART GRID ELECTRICITY INFORMA­
TION COLLECTION SYSTEM

In this section, we will describe the data flow, system migra-
tion experience from a RDBMS-based system to a RDBMS and
Hadoop/Hive-based system of the Electricity Consumption Infor-
mation Collection System in Zhejiang Grid.

3.1 Data Flow in Zhejiang Grid
Figure 2 shows the data flow abstraction in Zhejiang Grid. The

smart meters are deployed in resident houses, public facilities and
business facilities etc. The reporting frequency of smart meter can



 

Figure 2: Previous Solution and Current Solution in Zhejiang Grid

be set. The more frequent, the more precise. The reported me-
ter data is transmitted by a information collector service to several
queues. The clients of RDBMS then get the data from queues and
write them into meter data tables in database.

In Zhejiang Grid, the data can be classified into three categories.
The first one is meter data which is collected at fixed frequency. Its
features are: (1) massive amounts of data, (2) a time stamp field
in every record, (3) no changes are performed once meter data is
verified and persisted into the database, and (4) the schema of me-
ter data is almost static. The second category is archive data which
records the detailed archived information of meter data, for exam-
ple, user information of a particular smart meter, information of
power distribution areas, information of smart meter device, etc.
The archive data has different features compared to meter data: (1)
the amount is relatively small, (2) archive data is not static. The
third category is statistical data. The data analysis in Zhejiang Grid
consists of many off-line function modules. Each module is in the
form of a stored procedure (in the previous solution, which will
be described in Section 3.2). Each stored procedure contains tens
of SQL statements. These stored procedure are executed at fixed
frequencies to compute, for example, data acquisition rate, power
calculation, line loss analysis, terminal traffic statistics etc. Some
SQL statements in each stored procedure join a particular class of
meter data with corresponding archive data to generate statistic data
and populate related tables. The statistic data can be accessed by
consumers or decision makers in the Zhejiang Grid. Except func-
tion modules, the data analysis in the Zhejiang Grid also includes
ad-hoc queries. These queries are dynamic compared to the func-
tion modules.

3.2 System Migration Experience
Based on the description of the features of data and data flow

in the Zhejiang Grid, there are mainly three requirements for the
Electricity Consumption Information Collection System in Zhe-
jiang Grid:

1. High write throughput. The current collected data flow
needs to be written onto disk before the next data flow ar-
rives. Otherwise, cumulative meter data will overflow the
queues. Some records in current data flow may be lost. This
is forbidden in Zhejiang Grid, because complete meter data
analysis is crucial for power consuming monitoring and power
supply adjustment. Also, the collected data typically is in-
complete, which will influence the accuracy of analysis re-
sult.

2. High performance analysis. High performance analysis en-
ables more timely analysis report for decision makers, which
makes it possible to adjust the power supply on demand more
precisely.

3. Flexible scalability. The current meter data scale has in-
creased 30 times since 2008. As the collecting frequency
and the number of deployed smart meters increase, the meter
data scale will grow rapidly. The system should be flexibly
scaled as the data scale.

Figure 2 shows the previous solution and current solution of
the Electricity Consumption Information Collection System of the
Zhejiang Grid. The upper figure shows the previous solution - an
RDBMS-based storage and analysis system, this solution mainly
relies on a commercial RDBMS deployed on high-end servers. Con-
sidering the requirements above and the meter data explosion in
Zhejiang Grid, we can easily determine that the RDBMS in the
previous solution will become the bottleneck, mainly because of
three reasons: (1) Weak scalability. RDBMSes usually depend on
horizontal sharding and vertical sharding to scale out or upgrading
hardware to scale up to improve the performance. In each scale
out, the developers need to redesign the sharding strategy and the
logic in applications. In each scale up, the system maintainer needs
to buy more powerful hardware. In both cases, each improvement
will lead to huge cost of human and financial resources. (2) Low



write throughput. Figure 3 shows the write performance in real
environment of Zhejiang Grid. DBMS-X is a RDBMS from a ma-
jor relational database vendor, which is deployed on two high-end
servers. The Hadoop is deployed on 13 commodity servers cluster.
We can see that the write performance of DBMS-X is much lower
than HDFS. If the table in DBMS-X has an index, the write per-
formance will be worse. The result in Figure 3 is consistent with
the findings in [23, 24]. (3) Resources competition. Putting on-
line transaction processes and off-line analysis processes together
in single RDBMS will aggravate the performance. On top of that,
the commercial RDBMS license is very expensive.
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Figure 3: DBMS-X vs HDFS Write Performance

The lower figure in Figure 2 shows the current solution - a Hadoop
/ Hive and RDBMS-based storage and analysis system. Hadoop /
Hive are mainly utilized for data collecting, data analysis and ad-
hoc query. The RDBMS is still a good choice for online query
and CRUD operations on the archive data. The current solution
combines the advantage of off-line batch processing and high write
throughput of Hadoop ecosystem with the advantage of powerful
OLTP of RDBMS. It releases the burden of RDBMS on big data
analysis, and make Hadoop a data collecting / computing engine
for the whole system. After system migration, the burden on the
RDBMS is much smaller than before. Introducing such an cost-
efficient open source platform into Smart Grid is not costly, on
the contrary, it will consequently make it possible to reduce the
”heavy armor” configuration of the RDBMS-X, which do not need
to raise but significantly reduce the overall budget. The IT team
and the financial manager meet in their way to the business objec-
tive. Another advantage is that open source Hadoop ecosystem can
be customized for Smart Grid, for example, adding dedicated ef-
fective multidimensional index - DGFIndex, one of our efforts for
improving the performance of Hadoop/Hive on big data analysis of
Zhejiang Grid.

In the current solution, meter data is directly written into HDFS
by multiple HDFS clients. Although, HBase[4] as an alternative to
HDFS could also enable high write throughput and support more
update operations than append as does HDFS. Also, Hive could
perform queries on HBase. However, based on our experiments us-
ing a TPC-H workload, the query performance of Hive on HDFS is
3-4 times better than that of Hive on HBase. To get high analysis
performance, we use HDFS directly as the storage of meter data.
The archive data is stored in RDBMS, so as to perform efficient
CRUD operations by users. Furthermore, a copy of archive data is
stored in HDFS, which facilitates join operation analysis between
archive data and meter data. The two copies need to be consistent.
The analysis results (i.e., statistic data) are written into RDBMS
for online query. The SQL statements in stored procedures of the
RDBMS are transformed to corresponding HiveQL statements by

Header Location

 

Figure 4: DGFIndex Architecture

our mapping tool [26]. The HiveQL statements in a stored pro-
cedure are organized as work flow in Oozie [9]. All stored pro-
cedures, archive data synchronization, and statistic data ETL are
scheduled by the coordinator in Oozie.

Previous experiments questioned the performance of Hadoop/Hive
in comparison to RDBMSs or parallel databases [23, 24]. However,
many improvements have be developed for Hadoop / Hive [14] and
its performance has increased significantly. One of the main rea-
sons leading to poor performance of Hadoop / Hive is that scan-
based query processing method. To solve this problem, adding ef-
fective index can improves Hadoop/Hive’s performance dramati-
cally [20]. Other Hadoop/Hive optimization for Zhejiang Grid ap-
plications we have done are presented in [26, 19]. Furthermore,
much data analysis in Zhejiang Grid is based on loops on separate
regions, thus the logic can easily be parallelized. However, in cur-
rent RDBMS, the degree of parallelism is highly limited by the con-
figuration of the number of CPU cores, the memory capacity and
the speed of disk I/O. Higher degrees of parallelism will need more
high-end servers, which will lead to higher costs. In a Hadoop /
Hive cluster, we only need to add cheap commodity servers, which
puts less pressure on the budget. With a higher degree of paral-
lelism, efficient indexes, and other optimizations, Hadoop / Hive’s
performance can be comparable or even better than that of expen-
sive RDBMSs.

Parallel databases could also be a candidate for data analysis in
the State Grid. But it has the same drawbacks with RDBMS, e.g.,
its write throughput is much lower than HDFS [23, 24]. Again, the
software license cost is also high and it requires sophisticated con-
figuration parameter tuning and query performance optimization,
and lots of maintenance efforts.

4. DGFINDEX
In the following, we will present our novel indexing technique

DGFIndex for multidimensional range queries.

4.1 DGFIndex Architecture
Figure 4 shows a 2-dimensional DGFIndex, in which dimension

X and Y can be any two dimensions in the record of the meter data.
DGFIndex uses a grid file to split the data space into small units
named grid file unit (GFU), which consists of GFUKey and GFU-
Value. GFUKey is defined as the left lower coordinate of each GFU
in the data space. GFUValue consists of the header and the loca-
tion of the data Slice stored in HDFS. A Slice is a segment of a
file in HDFS. The header in GFUValue contains pre-computed ag-
gregation values of numerical dimensions, such as max, min, sum,
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Figure 5: DGFIndex Example

count, and other UDFs (need to be additive functions) supported by
Hive. For example, we can pre-compute sum(num ∗ price) of all
records located in the same GFU. The location in GFUValue con-
tains the start and end offset of the corresponding Slice. All records
in a Slice belong to the same GFU.

An example of a DGFIndex can be seen in Figure 5. In the ex-
ample, there is a Hive table consisting of three dimensions: A, B,
and C. Suppose that the most frequently queried HiveQL statement
on this table is like the one shown in Listing 2.

SELECT SUM(C)
FROM Table

WHERE A>=5 AND A<12
AND B>=12 AND B<16;

Listing 2: Multidimensional Range HiveQL Query

We build DGFIndex for dimensions A and B. Dimension A and
B are equally divided into intervals with granularity of 3 and 2,
respectively. Every interval is left closed-right open, e.g., [1, 4).
The data space is divided into GFUs along dimension A and B. The
records are scattered in these GFUs. For example, the first record
< 1, 14, 0.1 > is located in the region {(A,B)|1 ≤ A < 4, 13 ≤
B < 15}. All records in the same GFU are stored in a single HDFS
Slice. Every GFU is a key-value pair, for example, the key-value
pair of the highlighted GFU is as showed in Figure 5. The GFUKey
7 13 is the left lower coordinate of the red one. The first part in
GFUValue is pre-computed sum(C) of all records in the Slice.
Users can specify any Hive supported functions and UDFs when
constructing an DGFIndex. Once a DGFIndex is deployed, users
can still add more UDFs dynamically to DGFIndex on demand.
The second part in GFUValue is the location of the Slice on HDFS.

Since the index will become fairly big after many insertions, we
can utilize a distributed key-value store, such as HBase, Cassandra,
or Voldemort to improve the performance of the index access. In
the current implementation, we use HBase as the storage system
for DGFIndex.

4.2 DGFIndex Construction

Algorithm 1 Map(Text line)
1: idxDV alue = getIdxDimensionList(line);
2: GFUKey = ϕ;
3: for value in idxDV alue do
4: GFUKey

∪
standard(value);

5: end for
6: emit < GFUKey, line >

Algorithm 2 Reduce(Text GFUKey, List<Text> lineList)
1: start = current offset of ouput file;
2: end = −1;
3: sliceSize = 0;
4: fileName = current ouput file′s name;
5: header = NULL;
6: for line in lineList do
7: preComV alue = getPreComDimensionList(line);
8: for value in preComV alue do
9: header = combine(header, preCompute(value));

10: end for
11: sliceSize = sliceSize+ sizeOf(line);
12: end for
13: end = end+ sliceSize
14: GFUV alue =< header,< fileName, start, end >>;
15: KV Store.put(GFUKey,GFUV alue);

Before constructing a DGFIndex, one needs to specify the split-
ting policy (the interval size of every index dimension) according
to the distribution of the meter data. The construction of DGFIndex
is a MapReduce job. The job reorganizes the meter data into a set
of Slices based on the specified splitting policy. In the meantime,
it builds a GFUKey-GFUValue pair for every Slice and adds the
pair into the key-value store. The details of the job is showed in
Algorithm 1 and Algorithm 2. In the map phase, the mapper first
gets all values of index dimensions (Line 1). Then, the mapper
standardizes each value based on the splitting policy and combines
these standard values to generate GFUKey (Lines 2-5). The ”stan-
dard” method is to find the previous coordinate in splitting policy
relative to the value on this dimension. At last, the mapper emits
< GFUKey, line > to the reducer. In the reduce phase, the re-
ducer first sets the start and end position of current Slice as the
current offset of the output file of reducer and -1 respectively (Line
1-2), and then sets the sliceSize equal to 0, fileName as the cur-
rent output file’s name, header as null (Line 3-5). Second, the re-
ducer computes all the pre-computed values and combines them
into header, the sliceSize records the cumulative size of current
Slice (Line 6-12). At last, the reducer computes the end position
of current Slice and GFUValue (Line 13-14), then the reducer puts
the < GFUKey,GFUV alue > pair into the key-value store. In
addition, the minimum and maximum standardized values in every
index dimensions are stored in the key-value store when construct-
ing a DGFIndex. This information is very useful when the number
of index dimension in a query is less than the number of index di-
mension in the DGFIndex.

An example of the DGFIndex construction is shown in Figure
6. The 5th and 9th record are located in the same GFU, thus, after
reorganization, the two records are stored together in a Slice. Sup-
pose that the size of every record is 9 bytes. After the index con-
struction, every Slice generates a < GFUKey,GFUV alue >
pair. In this example, we pre-compute sum(C) from every Slice.
From the example, we can see that the maximum number of <
GFUKey,GFUV alue > pairs is the number of GFU no matter
how many distinct value exist in every index dimension.The num-
ber of records in index table is fairly small compared with the ex-
isting indexes in Hive. For example, if we have a table containing
1000 records, we create Compact Index for 3 dimensions which
have 10 distinct value respectively. There will be 1000 records in
index table, same with base table. If we create DGFIndex for these
3 dimensions with interval of 2 respectively. There are only 125
records in key-value store.

In our implementation, the syntax of constructing an DGFIndex



A B C 

1 14 0.1 

5 18 0.5 

7 12 1.2 

2 11 0.5 

9 14 0.8 

11 16 1.3 

3 18 0.9 

12 12 0.3 

8 13 0.2 

 

A B C 

1 14 0.1 

5 18 0.5 

7 12 1.2 

2 11 0.5 

9 14 0.8 

8 13 0.2 

3 18 0.9 

12 12 0.3 

11 16 1.3 

 

GFUKey GFUValue 

header location 

Sum(C) FileName Start End 

1_13 0.1 filename 0 0 

4_17 0.5 filename 9 9 

7_11 1.2 filename 18 18 

1_11 0.5 filename 27 27 

7_13 1.0 filename 36 45 

1_17 0.9 filename 54 54 

10_11 0.3 filename 63 63 

10_15 1.3 filename 72 72 

 
 

Figure 6: DGFIndex Construct Example

is the same as constructing a Compact Index in Hive except that the
user needs to specify the splitting policy and pre-computing UDF
in IDXPROPERTIES part as shown in Listing 3. We specify the
minimum value and interval for every index dimension. For date
type, we also need to specify the unit of interval.

CREATE INDEX idx_a_b
ON TABLE Table(A,B)
AS ’org...dgf.DgfIndexHandler’

IDXPROPERTIES (’A’=’1_3’, ’B’=’11_2’,
’precompute’=’sum(C)’);

Listing 3: DGFIndex Creation

There is a time stamp field in the meter data and it has been added
as a default dimension in our index. When the new meter data flow
is written into HDFS, these data first is stored in several tempo-
rary files. After these data is verified, the time stamp dimension in
DGFIndex is extended and the DGFIndex construction process is
executed on these temporary files, and the reorganized data is writ-
ten into the table directory. Thus, the data load process is the same
as the original HDFS, it does not influenced by our index.

4.3 DGFIndex Query
The DGFIndex query process can be divided into three steps.

In the first step, as shown in Algorithm 3, when the DGFIndex
handler receives a predicate from Hive, it first extracts the related
index value from the predicate (Line 1). If the number of index
dimension in predicate is less than the number of index dimension
in DGFIndex, the DGFIndex handler will get the minimum and
maximum standardized value of the missing index dimension from
the key-value store. Then the DGFIndex handler gets the query
related GFUs based on the splitting policy. There are two kinds
of GFUs, one is entirely in the query region (inner GFU) (Line
2), another is partially in query region (boundary GFU) (Line 3).
For inner GFUs, if the query is only an aggregation or UDF like
query, we only require the header from the key-value store, and
do not need to access data from HDFS. Thus, we can easily get
the sub result from these headers of the inner GFUs, and write it
to a temporary file (Line 5-7). When Hive finishes computing the

boundary GFUs, the two sub results are combined, and returned to
the user. If the query is not an aggregation or UDF like query, we
need to get all locations of the query-related Slices(not scanning
the index table which is different with Hive’s indexes) from the
key-value store, and write them to a temporary file to help filter
unrelated splits (Line 9-12).

Algorithm 3 DGFIndex Query(predicate)
1: idxPred = extract(predicate);
2: innerKeySet = DGFIndex.search(idxPred);
3: boundaryKeySet = DGFIndex.search(idxPred);
4: queryKeySet = boundaryKeySet
5: if isAggregationQuery then
6: subResult = KV Store.getHeader(innerKeySet);
7: writeToTmpFile(subResult);
8: else
9: queryKeySet = queryKeySet

∪
innerKeySet;

10: end if
11: sliceLoc = KV Store.getLocation(queryKeySet);
12: writeToTmpFile(sliceLoc);

In the second step, as shown in Algorithm 4, the algorithm is im-
plemented in DgfInputFormat.getSplits(). The process
is similar to the Compact Index. First, we get the set of Slices from
the temporary file in Algorithm 3 (Line 2). Then, we get all splits
according to the name of files in the set of Slices (Line 3). The splits
that fully contain or overlap with Slices will be chosen (Line 4-8).
We prepare a < split, slicesInSplit > pair for every chosen split
to filter unrelated Slices in split (Line 9-12). The sliceInSplit is
ordered by start offset of every Slice.

Algorithm 4 Split Filter
1: chosenSplit = ϕ;
2: sliceSet = readFromTmpFile();
3: allSplit = getSplitsFromSliceSet(sliceSet);
4: for split in allSplit do
5: if split

∩
sliceSet ̸= ϕ then

6: chosenSplit = chosenSplit
∪

split
7: end if
8: end for
9: for split in chosenSplit do

10: slicesInSplit = getRelatedSlices(sliceSet);
11: KV Store.put(split, slicesInSplit);
12: end for
13: return chosenSplit;

In the third step, we implement a RecordReader that can skip
unrelated Slices in a split. At the initialization of the RecordReader,
it gets a Slice list from the key-value store for the split it is process-
ing. When the mapper invokes the next function in the Record-
Reader, we only need to read the records in each Slice and skip the
margin between adjacent Slices.

The processing of the query in Listing 2 is shown in Figure 7.
In step 1, the query region is Q : {(A,B)|5 <= A < 12, 12 <=
B < 16} (highlighted in green), the inner region is I : {(A,B)|7 ≤
A < 10, 13 ≤ B < 15} (highlighted in red). Because the GFU is
the smallest reading unit for our index, the region that needs to be
read is R : {(A,B)|4 ≤ A < 13, 11 ≤ B < 17}. Consequently,
the boundary region is R−I . As the query is an aggregation query,
we can get a sub result from I. Then we get the location informa-
tion of the Slices from the key-value store by GFUKeys located in
boundary region. In step 2, we use the Slice location information to
filter splits, then we create a Slice list for every chosen split. In our



FileName Start End 

filename 18 18 

filename 63 63 

filename 72 72 

 

Split ID List<Start,End> 

filename:0 18,18,63,63,72,72 

 

GFUKey GFUValue 

header location 

Sum(C) FileName Start End 

1_13 0.1 filename 0 0 

4_17 0.5 filename 9 9 

7_11 1.2 filename 18 18 

1_11 0.5 filename 27 27 

7_13 1.0 filename 36 45 

1_17 0.9 filename 54 54 

10_11 0.3 filename 63 63 

10_15 1.3 filename 72 72 

 

 

Figure 7: DGFIndex Query Example

example, we only have one split, the Slice list means we just need
to read these regions in the split < filename : 0 >:[18-18],[63-
63] and [72-72]. Other regions can be skipped. In Step 3, we can
filter unrelated Slices based on the Slice list in Step 2.

A Slice may stretch across two splits. In this case, we divide the
Slice into two parts: one is in previous split, another is in the ad-
jacent split. The two Slices are processed by different mappers. In
our implementation, DGFIndex is transparent from the user, Hive
will automatically use a DGFIndex when processing MDRQs.

5. EXPERIMENTS AND RESULTS
In this section, we evaluate the DGFIndex and compare it with

the existing indexes in Hive. Furtermore, we compare DGFIndex
with HadoopDB as a comparison with parallel databases [10]. Our
experiments mainly focus on three aspects: (1) the size of index,
(2) the index construction time, and (3) the query performance.

5.1 Cluster Setup
We conduct experiments on a cluster of 29 virtual nodes. One

node is master for Hadoop and HBase, and the remaining 28 nodes
are workers. Each node has 8 virtual cores, 8GB memory, and
300GB disk. All nodes run CentOS 6.5, Java 1.6.0 45 64bit, Hadoop-
1.2.1 and HBase-0.94.13 as the key-value store. DGFIndex is im-
plemented based on Hive-0.10.0. Every workers in Hadoop is con-
figured with up to 5 mappers and 3 reducers. The replication fac-
tor is set to 2 in HDFS. The block size is 64MB default. The
mapred.task.io.sort.mb is set 512Mb to achieve better performance.
Other configurations in Hadoop, HBase and Hive are default. For
HadoopDB, we install it based on the instructions on [3]. We use
PostgreSQL 8.4.20 as the storage layer and above Hadoop as the
computation layer. Each experiments is run three times and we
report the average result.

5.2 DataSet and Query
In our experiments, we use two datasets to verify the efficiency of

DGFIndex on processing of MDRQ. The first dataset is the lineitem
table from TPC-H ( 4.1 billion, about 518GB in TextFile format,
about 468GB in RCFile format, both no compression), we use it as
a general case. Another dataset is real world meter data ( 11 bil-
lion records, about 1TB in TextFile format, about 890GB in RCFile
format, both no compression). This dataset is a kind meter data of
a month. The table comprises of 17 fields, which contains userId,
regionId( the region where the user lives), the number of how much

power consumed, and other metrics, for example positive active to-
tal electricity with different rates etc. These fields is not related to
our queries in experiments. The number of distinct value in userId,
regionId and time is 14 million, 11 and 30 respectively. In real
world dataset, the records that have same time are stored together,
which is obey the rules of meter data. In addition, the real world
data set also contain a user’s information table which is a kind of
archive data and is about 2GB. This table will be used to join with
meter data table.

We choose some real ad-hoc queries from Zhejiang Grid for our
experiments, these queries have similar predicate with the SQLs in
stored procedures. These chosen queries mainly focus on userId,
regionId, and time. The detailed query forms are list in following
parts. In each kind of query, we change the selectivity: point query,
5% and 12%. In our experiments, we suppose that there is no par-
titions in the tables, if there is, we can assume that our data set is in
one partition among these partitions.

For HadoopDB, we use its GlobalHasher to partition the meter
data into 28 partitions based on the userId. Each node retrieves a
38 GB partition from HDFS. Then we use its LocalHasher to parti-
tion the data into 38 chunks based on userId, 1GB each. All chunks
are bulk-loaded into separate databases in PostgreSQL. We create
a multi-column index on the userId, regionId and time for each me-
terdata table. The user table is also partitioned into 28 partitions
based on userId. Each node retrieves a 83 MB partition and puts it
to all the databases of current node. Since the SMS in HadoopDB
only supports specific queries, we extend the MapReduce-based
query code in HadoopDB to perform the queries in our experi-
ments.

5.3 Real World Data Set

5.3.1 Index Size and Construction Time
For indexes in Hive, we only compare DGFIndex with Com-

pact Index, since Compact index is the basis of Aggregate Index
and Bitmap Index. For now, our DGFIndex only supports TextFile
table. So we use TextFile table as the base table of DGFIndex.
However, it is easy to expend DGFIndex to support other file for-
mats. For the Compact Index, RCFile-based Compact Index will
lead to smaller index table size, which will improve the query per-
formance. So, in our experiments, we choose RCFile format table
as the base table for the Compact Index.

In an initial experiment, we created a 3-dimensional (userId, re-
gionId, and time) Compact Index for the RCFile table. The size
of index table was 821GB, which is almost same with base ta-
ble. As Hive first scans index table before processing query, the
3-dimensional Compact Index will not improve query performance.
So, we only created a 2-dimensional index (regionid and time, which
have few distinct values, 11 and 30, respectively). On the other
hand, our DGFIndex can easily handle this case. So, we create
3-dimensional DGFIndex in following experiments. Because the
number of distinct value in regionId and time is small, we fix
the interval size for these: 1 and 1 day respectively. For dimen-
sion userId, we change the interval size, as follow, to evaluate the
influence of different interval size on index size and query perfor-
mance. (i) Large: split dimension userId equally to 100 inter-
vals with large interval size. (ii) Medium: split dimension userId
equally to 1000 intervals with medium interval size. (iii) Small:
split dimension userId equally to 10000 intervals with small inter-
val size. What’s more, we pre-compute sum(powerConsumed)
when building DGFIndex. This information will be used in Section
5.3.2.



Table 2: Index Size and Construction Time
Index Table Dimension Size Time
Type Type Number (s)

Compact RCFile 3 821GB 23350
Compact RCFile 2 7MB 1884
DGF − L TextF ile 3 0.94MB 25816
DGF −M TextF ile 3 3MB 25632
DGF − S TextF ile 3 13MB 26027

In Table 2, we can see that in the 3-dimensional case, the con-
struction of DGFIndex takes longer time than the construction of
the Compact Index, the reason is the base table needs to be re-
organized by shuffling all data to reducer via network and pre-
computation CPU cost. However, the size of DGFIndex is much
smaller than 3-dimensional Compact Index , and almost equal or
smaller than 2-dimensional Compact Index. In addition, as the in-
terval size decreases, the number of intervals in userId becomes
larger, and the number of GFU also becomes larger, which leads to
more < GFUKey,GFUV alue > pairs, thus bigger DGFIndex
size. In the 2-dimensional case, the size of Compact Index is much
smaller than 3-dimensional case. Because the number of distinct
value in regionId and time is very small. The combinations of
the two dimensions is much smaller than three dimensions. But
decreasing the number of index dimensions will decrease the accu-
racy of index.

5.3.2 Aggregation Query
In this part, we will demonstrate the efficiency of pre-computing

in DGFIndex. We choose a query as shown in Listing 4. Figures 8,
9, and 10 show the cost time of this query in different selectivities.
The upper part of the first two columns in the figures is the time
used to read the index and other time(like HiveQL parsing time
and launching task time). The lower part is the time used to read
the data after filtered by the index. The third column is the cost time
of HadoopDB. In HadoopDB, the query in Listing 4 is pushed into
all PostgreSQL databases, and then we use a MapReduce job to
collect the results. Table 3 shows how many records needed to read
after filtered by DGFIndex and Compact Index. We do not show
the number for HadoopDB, because it is not easy to get the number
out of PostgreSQL after filtering by the index. The accurate in the
table means the accurate number of records specified by predicate.

The ScanTable-based time for this kind query is about 1950s.
From the result, we can see that Compact Index improves the per-
formance about 26.6, 2.5, 1.7 times over scanning the whole ta-
ble in different selectivity. In large interval size case, DGFIndex
improves the performance about 66.9, 65, 65.5 times over scan-
ning the whole table. In medium interval size case, it improves the
performance 67, 59.9, 63.9 times. In small interval size case, it
improves the performance 78.1, 54.6, 46.2 times over scaning the
whole table. The number of HadoopDB is 32.2, 2.6, 1.3 respec-
tively. What’s more, because of pre-computing, the performance of
DGFIndex on aggregation query processing nearly does not be in-
fluenced by the query selectivity. HadoopDB has the almost same
performance with Compact Index on processing aggregation query.
DGFIndex is almost 2-50 times faster than the Compact Index and
HadoopDB. We also find that HadoopDB has some performance
degradation with the selectivity increasing compared with Compact
Index. The reason is that when PostgreSQL processes multiple con-
current queries, it will lead to resources competition, and the low
batch reading performance of RDBMS is another reason.

Because we pre-compute sum(powerConsumed) when con-
structing DGFIndex, Hive only reads the data located in the bound-

Table 3: Records Number for Aggregation Query
Index Type Point 5% 12%
Compact 169, 395, 953 4, 756, 501, 768 6, 586, 886, 752
DGF − L 4, 347, 200 67, 678 100, 386
DGF −M 4, 258, 358 20, 280 31, 215
DGF − S 2, 291, 718 16, 122 23, 712
Accurate 26 569, 186, 384 1, 354, 351, 336

Table 4: Records Number for Group By Query
Index Type Point 5% 12%
Compact 169, 395, 953 4, 756, 501, 768 6, 586, 886, 752
DGF − L 4, 347, 200 681, 321, 681 1, 433, 931, 728
DGF −M 4, 258, 358 641, 128, 331 1, 401, 070, 456
DGF − S 2, 291, 718 572, 231, 864 1, 367, 754, 156
Accurate 26 569, 186, 384 1, 354, 351, 336

ary region. From Table 3, we can see that with the decrease of
interval size, the size of GFU also decrease, that is, the accuracy
of DGFIndex increases, so Hive needs to read less data. In point
query case, there is no inner GFU , so Hive needs to read all data
located in the GFU . Because Compact Index can not filter unre-
lated data in each splits, Hive will read the whole split, which leads
to more data reading.

SELECT sum(powerConsumed)
FROM meterdata
WHERE regionId>r1 and regionId<r2

and userId>u1 and userId<u2
and time>t1 and time<t2;

Listing 4: Aggregation Query

5.3.3 GroupBy Query and Join Query
In this part, we evaluate the performance of DGFIndex on pro-

cessing non-aggregation query, this means that DGFIndex can not
use pre-computed information. We use a Group By query like
Listing 5 and a Join query like Listing 6. For HadoopDB, we ex-
tend its aggregation task code and join task code to perfom the two
queries. The cost time of Group By query is shown in Figures
11,12, and 13 and the cost time of Join query is shown in Figures
14, 15, and 16. Table 4 shows the number of records needed to read
of Group By query and Join query after they are filtered by the
index. The number is same for both query, since their predicate is
the same.

In Group By query case, the ScanTable-based time is about
1900s. In Join query case, the time is about 1930s. The Com-
pact Index improves performance 1.2-31 times over scanning the
whole table in both cases. HadoopDB improves performance 0.8-
35.3 times over scanning the whole table. On other hand, the num-
ber of DGFIndex is 2.1-75.8 times. From the result, we can see
that DGFIndex is about 2-63 times faster than Compact Index and
2.6-94 times faster than HadoopDB. From Figure 12,13, we can see
that the time of reading index becomes longer with the decreasing
of interval size. Because when the interval size becomes smaller,
more GFUs will be located in query region. The index handler
needs to get more GFUValue from HBase. However, storing index
in key-value store decreases index reading time. From Figure 13
and 16, we can see that Compact Index and HadoopDB’s perfor-
mance is almost equal or worse than ScanTable-based style when
processing high selectivity query. The reason for Compact Index is
the inaccuracy of two dimensional index leads to reading almost all
splits. The reason for HadoopDB is resources competition and low
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Figure 8: Aggregate Query Time For
Point Query
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Figure 9: Aggregate Query Time For
5% Selectivity
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Figure 10: Aggregate Query Time For
12% Selectivity
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Figure 11: Group By Query Time For
Point Query
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Figure 12: Group By Query Time For
5% Selectivity
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Figure 13: Group By Query Time For
12% Selectivity
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Figure 14: Join Query Time For Point
Query
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Figure 15: Join Query Time For 5% Se-
lectivity
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Figure 16: Join Query Time For 12%
Selectivity

batch reading speed. However, for DGFIndex, since it can accu-
rately read related data, thus it can maintain effectiveness for high
selectivity query.

As shown in Table 4, as the interval sizes increase, more data
is located in one GFU . So a DGFIndex with the large interval
size needs to read more data than a DGFIndex with small interval
size. Which leads to some performance degradation, especially for
high selectivity query. However, since DGFIdex can filter unre-
lated slices when reading each split, the amount of data read by
DGFIndex is much smaller than in the case of Compact Index,
which improves Hive’s performance dramatically.

SELECT time,sum(powerConsumed)
FROM meterdata
WHERE regionId>r1 and regionId<r2

and userId>u1 and userId<u2
and time>t1 and time<t2

GROUP BY time;

Listing 5: Aggregation Query

INSERT OVERWRITE DIRECORY ’/tmp/result’
SELECT t2.userName,t1.powerConsumed
FROM meterdata t1
JOIN userInfo t2
ON t1.userId=t2.userId
WHERE t1.regionId>r1 AND t1.regionId<r2

AND t1.userId>u1 AND t1.userId<u2
AND t1.time>t1 AND t1.time<t2;

Listing 6: Join Query

5.3.4 Partial Specified Query
In practice, the number of dimensions in the predicate clause

may be more or less than the indexed dimensions. If the number
is more than indexed dimensions, DGFIndex just uses the indexed
dimensions in the predicate to filter unrelated data; If the number
is less than indexed dimensions, DGFIndex gets the minimum and
maximum value of the missing dimension from HBase to comple-
ment the predicate. This part evaluates the second case. Because
the number of userId values is the largest among the three index
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Figure 17: Partial Query Time

dimensions. We delete the userId range condition from predicate,
and choose a query as shown in Listing 7. The result is shown in
Figure 17. From the result we can see that DGFIndex is 2-4.6 times
faster than Compact Index.

SELECT SUM(powerConsumed)
FROM meterdata
WHERE regionId=11

AND time=’2012-12-30’;

Listing 7: Partital Query

5.4 TPC­H Data Set
In this part, we want to demonstrate the efficiency of DGFIndex

for general case, not only for meter data. In this experiment, we use
the Q6 in TPC-H as our query. We create 2-dimensional(l discount
and l quantity, which have few distinct value) and 3-dimensional
Compact Index for lineitem table. For DGFIndex, we set the inter-
val size of l discount, l quantity and l shipdate to 0.01, 1.0 and 100
days respectively. The index size and constructing time are showed
in Table 5. The query performance is showed in Figure 18. Table 6
shows how many records needed to read after filtered by index.

The ScanTable-based time for this query is 632s. In this case,
2-dimensional and 3-dimensioinal Compact Index both are slower
than scanning the whole table. Because Compact Index does not
filter any split. DGFIndex is 25 times faster than Compact Index.
The index size and the number of data needed read of DGFindex is
much smaller than Compact Index. From the result, we can see that
the performance of Compact Index is much worse than real world
data set. The difference between real world data set and TPC-H
data set is that the real world data set actually is sorted by time,
however, in TPC-H data set, the records are evenly scattered in
data files. Because Compact Index does not reorganize data, it can
not improve query performance on this kind of data.

Table 5: Index Size and Construction Time for TPC-H
Index Table Dimension Size Time
Type Type Number (s)

Compact RCFile 3 189GB 7367
Compact RCFile 2 637MB 991

DGFIndex TextF ile 3 4.3MB 10997

Table 6: Records Number for TPC-H Workload
Index Type Record Number
Whole Table 4, 095, 002, 340
Compact− 3 4, 095, 002, 340
Compact− 2 4, 095, 002, 340
DGFIndex 85, 430, 966
Accurate 77, 955, 077
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Figure 18: TPC-H Workload Query Time

6. EXPERIENCE ABOUT HIVE INDEX
In this section, we will report some findings and some practical

experience about performance improvement of Hive at the aspect
of index. For now, the existing indexes in Hive are not practical and
hard to use, as there is limited documentation and usage examples.
Without reading the source code of Hive to get more information
about the indexes, they are not usable. The Compact Index is the
basis of other indexes. The number of records it stores is decided by
the number of combinations of indexed dimensions and the number
of data files. The performance of Compact Index is dependent of
the size of the index table and the distribution of the values of in-
dexed dimensions. If the index dimensions have few distinct values
and the data file of the table is sorted by the indexed dimension, a
good query performance improvement can be achieved using Com-
pact Index. On the other hand, if the indexed dimension has many
distinct values and they are evenly distributed in the data files, no
performance improvement can be achieved with Compact Index.
On the contrary, the performance will be worse than scanning the
whole table. The idea of the technique of the Aggregate Index is
good, but in practice, there are very few use case that can meet its
restrictions.

In industry, the most practical method to improve query perfor-
mance in Hive currently is partition. Partition reorganizes data into
different directories based on partition dimension. The best way
to improve Hive performance is combining partition with Com-
pact Index. However, the user need to make sure that the index
dimensions do not have too many distinct value and are not evenly
distributed.

7. RELATED WORK
As mentioned above, the existing indexes in Hive, Compact In-

dex, Bitmap Index and Aggregate Index, are closely related to our
DGFIndex. However, they are not well fitted to process multidi-
mensional range queries. [10] combines MapReduce and RDBMS,
and uses the indexes in RDBMS to filter unrelated data in every
worker. But the data loading speed is lower than HDFS, and its
multiple databases storage mode easily leads to serious resource
competition, especially for high selectivity query.

Current various parallel databases have been applied for many
companies, such as Greenplum, Teradata, Aster Data, Netezza,
Datallegro, Dataupia, Vertica, ParAccel, Neoview, DB2(via the
Database Partitioning Feature), and Oracle(via Exadata). But these
systems have low data loading performance and the software li-
cense is very expensive. What’s more, they usually need com-
plex configuration parameters tuning and lots of maintenance ef-
forts[23]. Our objective in this paper is to provide a scalable and
cost effective solution for the big meter data problem in Zhejiang



Grid, the solution’s performance can be comparable or even better
than parallel database, but with much low budget.

In the context of index on HDFS, [20] proposes a kind of one-
dimensional range index for sorted file on HDFS. The sorted file
is divided into some equal-size pages. It creates one index entry
which comprises of the start, end value and offset for every page.
[13] proposes two kinds of indexes, Trojan index and Trojan join
index, to filter unrelated splits and improve the performance of join
tasks respectively. In Trojan index, it stores the first key, last key
and records number for every split. [16] stores the range informa-
tion for every numerical and date field dimensions in a split, and
creates a inverted index for the string type dimension. Since these
values are rarely changing, it create a materialized view to store
them in a separate file. [21] creates LZO block level full-text in-
verted index for data on HDFS to accelerate selection operations
that contains free-text filters. Both, [20] and [13] mainly focus on
one-dimensional index and they need to sort data file based on in-
dex dimension. The primary purpose of [20], [13], and [16] is fil-
tering unrelated splits. They can not filter unrelated records in a
split. [21] can not process multidimensional range query. In con-
trast, DGFIndex can process multidimensional query efficiently,
and does not need to sort data files based on index dimensions. It
only puts these records in the same GFU together in a file. More-
over, DGFIndex can filter unrelated Slices in a split.

In the context of spatial database on Hadoop, Spatial Hadoop[15]
proposes a two level multidimensional index on Hadoop. It first
partitions data using Grid File, R-Tree or R+-Tree into equal-size
block(64MB), second creates local index for each block, the local
index is stored as a file on HDFS, third it create global index for
all block, the global index is stored in master’s memory. Spatial
Hadoop is mainly for spatial data types, such as Point, Rectangle
and Polygon. Hadoop-Gis[11] also proposes a two level spatial in-
dex on Hadoop. It splits data with grid partition into small size
tiles, which is much smaller than 64MB. Then a global index is
created to stored the MBRs of these tiles, it is stored in the memory
of master. The local index of each tile is created on demand based
on the query type. Both indexes are applied in spatial applications,
which is much different with our index, our DGFIndex is for im-
proving the traditional applications. Another difference is that our
DGFIndex is organized as one level index, which is simpler and
easier to maintenance than the both above. The last difference is
that we combine pre-aggregated technique with Grid File, which
makes aggregation query processing more effective.

8. CONCLUSION AND FUTURE WORK
In this paper, we share the system migration experience from

traditional RDBMS to Hadoop based system. To improve
Hadoop/Hive’s performance on smart meter big data analysis, we
propose a multidimensional range index named DGFIndex. By
dividing the data space into some GFUs, DGFIndex only stores
the information of GFU rather than the combinations of index di-
mensions. This method reduces the index size dramatically. With
GFU -based pre-computing, DGFIndex enhances greatly the mul-
tidimensional aggregation processing ability of Hive. DGFIndex
first filters splits with Slice location information, then skips unre-
lated Slice in each split. By doing this, DGFIndex reduces greatly
the number of data need to read and improve the performance of
Hive. Our experiments on real world data set and TPC-H data set
demonstrate that DGFIndex not only improve the performance of
Hive on meter data, but also is applicable to general data set. In
future work, we will work on an algorithm to find the best splitting
policy for DGFIndex based on the distribution of the meter data

and the query history. The optimal placement of Slices will also
be our next step research problem.
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