
Tilmann Rabl*, Jonas Traub, Asterios Katsifodimos, and Volker Markl

Apache Flink in Current Research
Abstract: Recent trends in data collection and the de-
creasing prices of storage result in constantly growing
amounts of analyzable data. These masses of data can-
not easily be processed by traditional database systems
as these do not allow for a sufficient degree of scalability.
Programs especially designed for parallel data analysis
on large-scale distributed systems are required. Develop-
ing such programs on clusters of commodity hardware is
a complex challenge for even the most experienced sys-
tem developers. Frameworks such as Apache Hadoop are
scalable, but – when compared to SQL – extremely hard
to program. The open-source platform Apache Flink is a
link between conventional database systems and big data
analysis frameworks. Flink is based on a fault tolerant
runtime for data stream processing, which manages the
distribution of data as well as communications within the
cluster. A high diversity of use cases can be supported
through various interfaces that allow for the implementa-
tion of data analysis processes. In this paper, we present
an overview of Apache Flink as well as some current re-
search activities on top of the Apache Flink ecosystem.

Keywords: Apache Flink, BBDC

ACM CCS: Information systems - Database manage-
ment system engines - Parallel and distributed DBMSs
- MapReduce-based systems

1 Introduction
The amount of accessible data is growing rapidly due to
ever decreasing costs in data storage, cloud-storage, and
the intensified usage of the Internet. The general value
of data analysis is out of question, yet data evaluation
poses a huge challenge. Conventional database systems
are no longer able to deal with such enormous amounts
of data. Dynamic or missing structures in the data add
to the problem.

The Stratosphere [4] research project aims at building
a next generation big data analysis platform, which will
make it possible to analyze massive amounts of data in
a manageable and declarative way. In 2014 Stratosphere

*Corresponding Author: Tilmann Rabl, Jonas Traub, Asterios
Katsifodimos, Volker Markl: Technische Universität Berlin, FG
DIMA

• Declarativity
• Query optimization
• Robust out-of-core

• Scalability
• User-defined

functions
• Complex data types
• Schema on read

• Iterations
• Advanced

Dataflows
• Native streaming
• General APIs

Database Technology MapReduce Technology 

Flink Concepts

Fig. 1. Sources of technological concepts of the Apache Flink
Platform

was open-sourced by the name Flink1 as an Apache Incu-
bator project. It graduated to Apache Top Level project
in the same year.

In comparison with other distributed data analysis
systems, Flink offers the user a reduced level of complex-
ity through the integration of traditional database con-
cepts such as declarative query languages and automatic
query optimization. At the same time Flink allows for
schema on read2. It further allows for user-defined func-
tions and is compatible with Apache Hadoop 3. The plat-
form offers a very high level of scalability. It was tested
on clusters with several hundred nodes, on Amazon’s
EC2, and on Google’s Compute Engine. Besides using
concepts of existing database and MapReduce technolo-
gies, Apache Flink introduces additional concepts such
advanced dataflows and native iterations. This is depicted
in Figure 1.

The architecture of the Flink platform is described in
Section 2. Libraries, interfaces, and a programming exam-
ple are presented in Section 3. Section 4 addresses special
features within the data stream analysis of Apache Flink
as compared to other platforms. Section 5, presents sev-
eral running research projects that use Apache Flink as a
basis. We present related work in Section 6, before con-
cluding in Section 7.

1 http://flink.apache.org
2 With schema-on-read data are stored in their original format
and without the definition of a data base schema. It is only on
reading that the data will be transformed into a query specific
schema. This allows for a high level of flexibility
3 http://hadoop.apache.org

http://flink.apache.org
http://hadoop.apache.org


2 Rabl, Traub, Kastsifodimos, Markl, Apache Flink in Current Research

Fig. 2. Architecture and components of the Apache Flink plat-
form

2 Architecture
Figure 2 gives an overview of the Apache Flink architec-
ture. The foundation of Flink is a unified runtime envi-
ronment in which all programs are executed. Programs
in Flink are structured as directed graphs (JobGraphs)
of parallelized operations that can further contain itera-
tions [12]. A JobGraph consists of nodes and edges. There
are two classes of nodes: (stateful) operators, and (logi-
cal) intermediate results (IRs). When running a program
in Flink, operators are translated into various parallel
entities, which consequently process partitions of inter-
mediate results (or input files), offering data parallelism.
Unlike Hadoop, programs in Flink are not divided into in-
dividual phases that are executed sequentially (Map and
Reduce). Instead all operations are executed in parallel.
The results of an operator are then directly forwarded
to following operator to be processed, which results in
a pipelined execution. Flink programs written using one
of the many APIs, as described in the next section, are
translated internally into abstract data flow programs.
These are then transformed into execution plans using
logical and physical cost-based optimization. These can
then be executed in the engine. The scheduler decides on
the operator placement and tries to exploit data locality
where possible.

Flink provides a distributed runtime environment for
clusters and also a local runtime environment. Programs
can, therefore, be run and debugged right in a local devel-
opment environment easing development. The distributed
engine adapts the execution plan to the cluster environ-
ment and, thus, can run different plans based on the
environment and data distribution. Flink is compatible
with a number of cluster management and storage solu-

tions, such as Apache Tez4, Apache Kafka5 [18], Apache
HDFS3 [21], and Apache Hadoop YARN3 [23].

Stream Builder and Common API translate between
the runtime environment and the interfaces (API) by
transforming directed graphs of logical operations into
generic data stream programs that are executed in the
runtime environment. The automatic optimization of
data flow programs is included in this process. The in-
tegrated optimizer for example chooses the best concrete
join-algorithm for each respective used case, with the user
only specifying an abstract join operation.

The following overview shows the upper layer of the
Flink architecture. It consists of a wide spectrum of li-
braries and programming interfaces.

3 Libraries and Interfaces
Apache Flink users can specify their queries in various
programming languages. A Scala and a Java API are
available for the analysis of data streams and batch pro-
cessing respectively. Batch data can further be processed
via a Python API. All APIs offer the programmer generic
operators such as Join, Cross, Map, Reduce, and Filter.
In this Flink differs from Hadoop MapReduce, which only
allows for complex operators to be implemented as a se-
quence of map and reduce phases. Furthermore, users can
specify arbitrary user-defined functions. Listing 1 shows
a word count implementation with the Scala Stream Pro-
cessing API. Analogous to this example an implementa-
tion to batch process is possible with the omission of the
window specification.

1 case class Word (word: String, frequency: Int)
2 val lines: DataStream[String]
3 = env.fromSocketStream(...)
4 lines.flatMap{line => line.split(" ")}
5 .map { (_, 1) }
6 .keyBy(0)
7 .timeWindow(Time.of(5, TimeUnit.SECONDS))
8 .sum(1)

Listing 1. Word count implementation using Apache Flink’s
Scala stream processing API.

In the first line a tuple consisting of a string and
an integer is defined. Line 2 indicates a Socket Stream,
which reads a text data stream line by line. In Line 4,

4 http://tez.apache.org
5 http://kafka.apache.org

http://tez.apache.org
http://kafka.apache.org


Rabl, Traub, Kastsifodimos, Markl, Apache Flink in Current Research 3

a FlatMap-Operator is applied, which obtains lines as
input, divides these by blank spaces, and converts the
resulting single words into the previously defined tuple
format with the word as string and 1 as numeric value.
Since this is a data stream query, a window is specified.
This window is a sliding window with a duration of five
seconds. Finally the words are grouped and the numeric
values are added up within the various groups. The print
method outputs the result on the console.

In addition to its classical interfaces the FlinkML li-
brary offers a number of algorithms and data analysis
pipelines for machine learning. Gelly enables graph analy-
sis with Flink. The Table API allows for declarative spec-
ifications of queries similar to SQL. It is available as Java
and Scala version. Listing 2 shows a word count imple-
mentation with the Java Table API for batch processing.

1 DataSet<Word> input
2 = env.fromElements(new Word("Hello",1),
3 new Word("Bye",1),new Word("Hello",1));
4 Table table = tableEnv.fromDataSet(input)
5 .groupBy("word")
6 .select("word.count as count, word");
7 tableEnv.toDataSet(table, Word.class).print();

Listing 2. A word count implementation with the Java Table
API for batch processing

Initially the input is explicitly created. Line 4 first
converts the DataSet to a table to then group it accord-
ing to the attribute word. Just like in SQL the select com-
mand chooses the word as well as the sums of numerators.
The result table is finally converted back into a DataSet
and printed.

4 Stream Processing on Flink
Data stream processing is significantly different form
batch processing: programs have long (theoretically in-
finite) run times, they continually consume data of input
streams and in return produce output streams. Aggrega-
tions can, however, only be calculated for closed blocks of
data. In data stream programs these are, therefore, pre-
ceded by a discretization, which divides a data stream
into closed, potentially overlapping windows. The aggre-
gations proceed window by window.

Many data analysis platforms such as Spark are, in
their core, batch-processing systems. This binds them to
limitations resulting from micro-batching techniques [26].
Micro-batching interprets data streams as a sequence of
data blocks of fixed length (in time) that are processed

in separate batches. In order to calculate an overall result
for windows, the sizes of all windows have to be multiples
of the block size. Respectively, micro-batching enables
stream processing on top of batch processing platforms
only for a limited subset of use cases, where this assump-
tion holds. Unfortunately, micro-batching introduces an
additional latency, since the processing of a block can
only start once the block has arrived completely. Another
problem of this approach is the limited applicability for
state handling and pattern detection. If a pattern spans
over multiple blocks - thus, multiple batch-processing jobs
- it can hardly be detected, since there is no lasting oper-
ator state, which would allow to remember the begin of
a pattern from a previous block, when the next block is
processed.

4.1 Pipelined execution

In contrast to micro-batching, Apache Flink implements
a pipelined execution engine, which overcomes the lim-
itations mentioned above. In Flink, the whole operator
graph is deployed concurrently in the cluster and once an
operator emits a tuple, that tuple can be immediately for-
warded to the next consumer operator. Whenever a tuple
arrives at the data source, it is directly processed without
a need to wait for any complete block.

The pipelined execution engine also allows Flink to
provide highly expressive means of window discretization
which are independent from any minimal granularity such
as a micro-batching block size. Similar to the Dataflow
Model [3], windows in Flink are represented by buckets
in order to allow out of order processing of arriving data
items. An assigner specifies to which buckets (respec-
tively windows) arriving tuples belong. Triggers specify
when to execute an aggregation function on a bucket and
to return a result. Evictors specify when to remove data-
items from the buckets. All three mentioned components
(trigger, eviction, assigner) can be implemented by the
user, which provides great flexibility going beyond the
predefined implementations. Moreover, Flink provides a
Complex Event Processing library, which allows to detect
complex event patterns at low latency and with small im-
plementation effort.

4.2 Flink’s Notion of Time

Flink distinguishes (both at the API and at the imple-
mentation level) between different two notions of time:



4 Rabl, Traub, Kastsifodimos, Markl, Apache Flink in Current Research

1. Event time is the time that an event happened (e.g.,
the time that a sensor emitted a signal, or the time
that a person tapped on their smartphone). Event
time is defined by the user and typically embedded
in the data records themselves as a timestamp.

2. Processing time is the wall-clock time of the machine
that is processing the data.

In distributed systems, there is an arbitrary lag between
event time and processing time [3]. To compensate for
arbitrary delays, Flink and other streaming systems that
offer event time functionality rely on a notion of ”wa-
termarks” or control events [2]. Flink programs that are
based on processing time rely on the machine clocks and
hence a less reliable notion of time, but exhibit the low
latency. Programs that are based on event time provide
reliable semantics, but may exhibit latency due to event
time-processing time lag.

4.3 State and Fault Tolerance.

Operators in Flink can be stateful. An asynchronous
snapshot algorithm [7] ensures that even in the case of
an error every tuple is represented only once within the
operator status and will be processed accordingly.

To achieve this behavior, Flink injects markers in the
stream which flow through the operator graph alongside
the payload data. An operator backups its state whenever
it processes a marker. Thus, once a marker reaches a data
sink, one can be sure that all data up to this marker was
successfully processed. In case of a failure, the operator
states are reset to the latest complete checkpoint, mean-
ing the state saved for the last marker that reached the
data sink.

A major advantage of this technique is that no paus-
ing of the full streaming program is required at any time
to backup a global state. Each operator backups its state
independently while other operators can continue to pro-
cess data. Since not all operators execute their state
backup at the same time, as they would in a global state
backup, the utilization of the I/O bandwith is spread over
time avoiding critical load peaks.

All together, Flink offers a unique combination of
batch processing, native data stream processing with-
out the limits of micro-batching, stateful operators, ex-
pressive APIs, exactly-once processing guaranties, and
fault tolerance mechanisms. With a lower latency, Flink
achieves a higher degree of expressiveness than micro-

batch-dependent systems and avoids the complexity of
Lambda-architectures.

4.4 Comparison to Other Systems

Apache Hadoop is by now the most popular open source
system for large-scale data analysis that is based on
MapReduce [9]. Moreover, Dryad [14], a project at
Microsoft, introduced user-defined functions in general
DAG-based dataflows. Apache Tez [20] implements the
ideas Dryad in an open source project. MPP databases
[10], and recent open-source implementations [1, 17]
moslty implement SQL variants. Very similar to Flink,
Apache Spark [25] implements a DAG-based processing
framework, provides an SQL optimizer, driver-based iter-
ations, and treats stream computations as micro-batches.
In contrast, Flink is the only system that i) supports
optimizations of DAG programs which go beyond SQL
queries, ii) performs iterative processing natively, iii) per-
forms stream processing natively enabling more complex
use cases than micro-batches.

Newer open source streaming systems that scale out,
such as Apache Storm and Apache Samza provide low
level APIs and offer only at-least-once and at-most-once
guarantees. MillWheel [2], provides exactly-once guaran-
tees with low latency and powers Google Dataflow [3]. To
the best of our knowledge, Flink is the only open-source
streaming system that: i) offers high level program-
ming APIs, while it ii) provides state management with
exactly-once guarantees and iii) achieves high through-
put and low latency, serving both batch and streaming
computations efficiently.

5 Flink-related Research Projects
In this section, several research projects that have been
proposed around the Apache Flink system are presented.
The presentation focuses on the applications and the tech-
nological advances that are defined in the projects.

5.1 Berlin Big Data Center

The Berlin Big Data Center (BBDC)6 is a competence
center for big data funded by the German Federal Min-
istry of Education and Research. Its goal is to enable

6 http://www.bbdc.berlin

http://www.bbdc.berlin


Rabl, Traub, Kastsifodimos, Markl, Apache Flink in Current Research 5

large-scale data analysis without requiring deep under-
standing of distributed systems. The reason for this is
the talent gap in data science, where there are more pro-
fessionals trained on doing data analysis than profession-
als trained on large-scale distributed systems and only a
small intersection of both groups that understand both.
To fill this gap, the principal goal of the BBDC is to
develop declarative ways of doing data analysis and ma-
chine learning and, thus, empowering data scientists with
limited or no background in systems programming to do
large-scale data analysis. To this end, four concrete use
cases that cover a broad range of data analysis tasks
are addressed: video mining, text analytics, information-
based medicine, and material science. While each of these
use cases uses special methods and algorithms for data
analysis, each poses a big data challenge. Even though the
processing of the data itself needs to be fast and scalable,
the specification and adaption of data analysis programs
requires to be fast as well to ensure overall efficiency. In
Figure 3, the sources of latency in an end-to-end itera-
tive data analysis pipeline are shown. It can be seen that
data scientists efficiency, i.e., the human latencies, are a
dominant factor on the critical path of data analysis. Un-
like system latency, which can be improved by building
scalable systems and using stronger hardware, human la-
tency can be improved by making data analysis systems
and tools available to a larger group of people, interactive,
and easy to use.

The BBDC aims at building declarative languages
and libraries for machine learning on big data systems
and specifically Apache Flink. Furthermore, new ways of
debugging, fault tolerance, and parallelization of big data
analysis programs are researched. Finally, new network
and file system models are incorporated to improve per-
formance.

5.2 Proteus

Proteus7 is a research project funded by the European
Union, which aims at using Apache Flink for scalable on-
line machine learning for predictive analytics and real-
time interactive visualization in the area of smart indus-
tries, a.k.a., Industry 4.0. As a concrete use case steel
manufacturing is used. Defects introduced in early pro-
cesses of steel production have a great economic impact
due to the costs of posterior transformations prior to de-
tecting the defect. The sooner defects are detected, the

7 http://www.proteus-bigdata.com/

sooner the process can be modified in order to stop pro-
ducing defective subsequent coils and reassign new quality
grade to already produced material.

A key phase of the steel production is performed in
the hot strip mill. A hot strip mill is an installation where
steel is transformed from slabs to coils after heating the
material and then laminating it through rolls at high
pressure and high temperature while keeping the steel
under controlled tension, and finally cooling under in a
pre-programmed cooling curve by using water showers in
a continuous process. All processes are monitored using
real-time sensors that produce extremely large and di-
verse structured and unstructured data streams. In this
phase, it is necessary to deal with a continuous learning
process as steel composition varies continuously, and so
does its mechanical behavior. There are different types
of steels and most of steel grades produced in 2015 did
not exist five years earlier. Another problem that should
be faced is the lack of data due to sensor malfunction.
To address these challenges, new scalable online machine
learning techniques have to be defined, implemented, and
validated in an actual industrial scenario like this. Visu-
alization methods for understanding the process are also
needed. By relying on visual interactive interfaces, a bet-
ter perception of the data and the analysis outcome will
be enhanced. A clearly identified gap in the process exe-
cuted in hot strip mill is to use data and quality parame-
ters to understand the impact of different process param-
eters on dimensional defects. These will help to signal
defects in real-time, while coils are still under produc-
tion. By using appropriate massive online analysis tech-
niques for mining the big data streams generated during
the process, it is expected to achieve a reduction of 20%
of defections coils and reducing rejected material by 15%.

One of the main contributions of Proteus is to develop
innovative data analytics algorithms for massive online
data to deal with various data engineering tasks, from
mining knowledge to learning from data streams. The
project in particular investigates and develops a novel li-
brary on top of Flink that entails real-time analytics algo-
rithms. Through the use of an optimized implementation
of combined batch and streaming processing and build-
ing around this later scalable real time distributed online
data analytics algorithms will be developed. A range of
strategies is investigated in Proteus including pattern dis-
covery, event detection, anomalies and novelty detection
from streaming data.

http://www.proteus-bigdata.com/


6 Rabl, Traub, Kastsifodimos, Markl, Apache Flink in Current Research

Formulate 
the Problem

Select Data 
Sources

Prepare 
Data

Select Data 
Analysis

Implement
Analysis Run Analysis Evaluate

Results
Report 
Results

Human 
Latency

System 
Latency

Fig. 3. Human Latency in Big Data Analysis

5.3 Streamline

Today’s big data analytics systems cater to either ”data
at rest” or ”data in motion.” As a result, enterprises
are left to devise costly strategies to support and in-
tegrate disparate systems. To alleviate this burden, the
STREAMLINE project8, aims to reduce complexity, en-
able faster results, and reduce cost by supporting anal-
ysis on ”big data at rest” and ”fast data in motion” in
a single system. STREAMLINE research and innovation
actions include carrying out research in the areas of dis-
tributed systems, data management, and machine learn-
ing, with the key goal to arrive at sustainable innovation
by technology transfer to an established and growing open
source project. STREAMLINE targets four reactive and
proactive analytics applications: customer retention, per-
sonalized recommendation, targeted advertisement, and
multilingual Web processing.

More and more businesses require online prediction
that goes beyond highly reactive systems management.
Instead, they want to enable proactive event management
and facilitate context-based recommendations and user
profiling. Typical current setups handle data in batches
from multiple origins, which cannot be extended trivially
to allow for real-time exploration of heterogeneous, high-
velocity data from various sources. Usually, data driven
businesses all suffer from a heterogeneity of tools, all serv-
ing only small parts of their business needs, and all re-
quiring high level expertise in the given programming
paradigm that makes existing tools out of reach for their
business. Contextualization promises to significantly in-
crease the relevance of data analytics for a large number
of businesses. However, currently, it remains hard to im-
plement due to limits in streaming processing techniques.

The main STREAMLINE concept is the significant
reduction of system and human latencies in big data ana-
lytics. Present big data deployments and tools could not
yet overcome the system latency when combining huge
data collections at rest with fast data in motion, resulting

8 https://streamline.sics.se/

in very slow response to fresh data. Existing technologies
for combing data streams and big data at rest are very
complex and difficult to use, and most companies cannot
find the expertise to solve their big data analysis needs,
causing human latency in their business operations. The
separation of offline and online processing on the opti-
mization and application library / domain specific lan-
guage level is the key issue, as data streams (real-time
content) and data sets (historic content) are handled dif-
ferently in the system and there are no means of interact-
ing between them, which makes it very difficult, even for
experienced professionals, to implement their application
needs.

STREAMLINE aims at solving this issue for four
concrete business cases: User modeling in quadruple play
services (landline, mobile phone, internet, IPTV), recom-
mendation generation in online video and music stream-
ing, online analytics in mobile games, and web-scale data
extraction.

5.4 Gradoop

Data integration in large-scale data warehouses often re-
quires a considerable amount of manual interaction es-
pecially in transformation phase. This overhead can be
reduced using graph-based approaches [19]. To this end,
the Flink-based graph data management and analysis
framework Gradoop9 was developed at the ScaDS cen-
ter [15, 16]. Gradoop is a general graph data processing
engine that is based on existing big data technology, such
as HDFS, Hadoop, HBase, and Flink. However, besides
generic operators for graph processing, Gradoop allows
for the analysis of sets of graphs and, for example, en-
ables pattern analysis within sets of graphs. This makes
it possible to build processing pipelines for data integra-
tion and analysis in data warehouses. Due to the graph
model, new dependencies and relations can be detected.

9 http://www.gradoop.org/

https://streamline.sics.se/
http://www.gradoop.org/


Rabl, Traub, Kastsifodimos, Markl, Apache Flink in Current Research 7

This and other processes can be automated using a work-
flow language.

5.5 Emma

Current data-parallel analysis languages and APIs like
the one of Flink, suffer from a lack of declarativity or
expressiveness to capture the complexity of today’s data-
parallel analysis requirements. Emma [5] strives to over-
come these limitations by proposing a language for scal-
able data analytics deeply embedded in Scala. Emma’s
approach argues that usability can be improved by re-
ducing the amount of low-level parallelism constructs ex-
posed to the programmer by platforms such as Flink,
Spark, and Hadoop. Emma proposes a simplified paral-
lel collection processing API that provides proper sup-
port for nesting and alleviates the need of certain second-
order primitives through comprehensions – a declara-
tive syntax akin to SQL. Emma’s compiler is based
on a metaprogramming pipeline that performs algebraic
rewrites and physical optimizations which allow target-
ing parallel dataflow engines like Spark and Flink with
competitive performance to hand-tuned low-level code.

The Emma project, currently focuses on an optimizer
that can propagate interesting properties across different
dataflows and generate the dataflows just in time. More-
over, a linear algebra API is specified and formal exten-
sions that allow to mix the use of data bags, comprehen-
sions, matrices, and vectors are investigated.

6 Research Results
Flink is the result as well as the foundation of a vari-
ety research projects. The most important publications
are listed in the following. Warnecke et al. present the
Nephele runtime environment [24], on which Flink’s run-
time was originally based. Battré et al. complement it
with the PACTModel [6], an extension of MapReduce [9].
Alexandrov et al. offer a detailed description of the
Stratosphere platform [4]. Hueske et al. consider the opti-
mization of user-defined/ custom functions [13]. Ewen et
al. introduce the native support of iterations [12]. Current
projects consider fault tolerance [11]. Spangenberg et al.
compare the performances of Flink and Spark for various
algorithms [22]. A recent analysis by Yahoo! compares the
performance of Flink, Storm, and Spark [8].

7 Conclusion
Flink simplifies the parallel analysis of large amounts of
data by using traditional database techniques such as
automatic optimization and declarative query languages.
Expressive, intuitive APIs allow for batch as well as data
stream processing. Flink is scalable and versatile due to it
high compatibility. Operators are processed in a pipeline,
parallel, and free of limitations caused by micro-batching
techniques.

Several active research projects use the Apache Flink
platform to build next generation big data analysis
methodologies. In this paper, we presented the Berlin Big
Data Center, Proteus, Streamline, Gradoop, and EMMA,
all of which use or extend Flink.

Acknowledgment: This work has been supported
through grants by the German Ministry for Education
and Research as Berlin Big Data Center BBDC (funding
mark 01IS14013A) as well as by the DFG research group
Stratosphere (FOR 1306) and also through grants by the
European Union’s Horizon 2020 research and innovation
program under grant agreement 687691 for Proteus and
688191 for Streamline.

References
[1] Apache Drill project. https://drill.apache.org/.
[2] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haber-

man, R. Lax, S. McVeety, D. Mills, P. Nordstrom, and
S. Whittle. Millwheel: fault-tolerant stream processing
at internet scale. Proceedings of the VLDB Endowment,
6(11):1033–1044, 2013.

[3] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J.
Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills,
F. Perry, E. Schmidt, et al. The dataflow model: a prac-
tical approach to balancing correctness, latency, and cost
in massive-scale, unbounded, out-of-order data processing.
Proceedings of the VLDB Endowment, 8(12):1792–1803,
2015.

[4] A. Alexandrov, R. Bergmann, S. Ewen, J. C. Freytag,
F. Hueske, A. Heise, and D. Warneke. The stratosphere
platform for big data analytics. The VLDB Journal—The
International Journal on Very Large Data Bases, 23(6):939–
964, 2014.

[5] A. Alexandrov, A. Kunft, A. Katsifodimos, F. Schüler,
L. Thamsen, O. Kao, and V. Markl. Implicit parallelism
through deep language embedding. In ACM, editor, Pro-
ceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, pages 47–61, 2015.

[6] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and
D. Warneke. Nephele/pacts: a programming model and
execution framework for web-scale analytical processing. In

https://drill.apache.org/


8 Rabl, Traub, Kastsifodimos, Markl, Apache Flink in Current Research

ACM, editor, Proceedings of the 1st ACM symposium on
Cloud computing, pages 119–130, 2010.

[7] P. Carbone, G. Fóra, S. Ewen, S. Haridi, and K. Tzoumas.
Lightweight asynchronous snapshots for distributed
dataflows. arXiv preprint arXiv:1506.08603, 2015.

[8] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves,
M. Holderbaugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng,
and P. Poulosky. Benchmarking streaming computation
engines at yahoo! online, Dec 2015. http://yahooeng.
tumblr.com/post/135321837876/benchmarking-streaming-
computation-engines-at.

[9] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. Commun. ACM, 2008.

[10] D. J. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker,
H.-I. Hsiao, R. Rasmussen, et al. The gamma database
machine project. Knowledge and Data Engineering, IEEE
Transactions on, 2(1):44–62, 1990.

[11] S. Dudoladov, C. Xu, S. Schelter, A. Katsifodimos, S. Ewen,
K. Tzoumas, and V. Markl. Optimistic recovery for itera-
tive dataflows in action. In ACM, editor, Proceedings of the
2015 ACM SIGMOD International Conference on Manage-
ment of Data, pages 1439–1443, 2015.

[12] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl. Spin-
ning fast iterative data flows. Proceedings of the VLDB
Endowment, 5(11):1268–1279, 2012.

[13] F. Hueske, M. Peters, M. J. Sax, A. Rheinländer,
R. Bergmann, A. Krettek, and K. Tzoumas. Opening the
black boxes in data flow optimization. Proceedings of the
VLDB Endowment, 5(11):1256–1267, 2012.

[14] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from sequential
building blocks. In ACM SIGOPS Operating Systems Re-
view, volume 41, pages 59–72. ACM, 2007.

[15] M. Junghanns, A. Petermann, K. Gomez, and E. Rahm.
Gradoop: Scalable graph data management and analytics
with hadoop. Technical Report 2015-06, 2015.

[16] M. Junghanns, A. Petermann, N. Teichmann, K. Gomez,
and E. Rahm. Analyzing extended property graphs with
apache flink. In Proceedings of the 2016 SIGMOD Work-
shop on Network Data Analytics (NDA), 2016.

[17] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky,
C. Ching, A. Choi, J. Erickson, M. Grund, D. Hecht, M. Ja-
cobs, et al. Impala: A modern, open-source sql engine for
hadoop. In Proceedings of the Conference on Innovative
Data Systems Research (CIDR’15), 2015.

[18] J. Kreps, N. Narkhede, and J. Rao. Kafka: A distributed
messaging system for log processing. In In Proceedings of
the NetDB, pages 1–7, 2011.

[19] A. Petermann, M. Junghanns, R. Müller, and E. Rahm.
Graph-based data integration and business intelligence with
biiig. Proceedings of the VLDB Endowment, 7(13):1577–
1580, 2014.

[20] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy,
and C. Curino. Apache tez: A unifying framework for mod-
eling and building data processing applications. In Proceed-
ings of the 2015 ACM SIGMOD International Conference on
Management of Data, pages 1357–1369. ACM, 2015.

[21] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
hadoop distributed file system. In IEEE, editor, IEEE 26th

Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–10, 2010.

[22] N. Spangenberg, M. Roth, and B. Franczyk. Evaluating
new approaches of big data analytics frameworks. In S. I.
Publishing, editor, Business Information Systems, pages 28–
37, 2015.

[23] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, and E. Baldeschwieler. Apache hadoop
yarn: Yet another resource negotiator. In ACM, editor, Pro-
ceedings of the 4th annual Symposium on Cloud Computing,
page 5, 2013.

[24] D. Warneke and O. Kao. Nephele: efficient parallel data
processing in the cloud. In ACM, editor, Proceedings of
the 2nd Workshop on Many-Task Computing on Grids and
Supercomputers, page 8, 2009.

[25] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster Computing with Working Sets. In
E. M. Nahum and D. Xu, editors, HotCloud. USENIX, 2010.

[26] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica. Dis-
cretized streams: an efficient and fault-tolerant model for
stream processing on large clusters. In U. Association, ed-
itor, Proceedings of the 4th USENIX Conference on Hot
Topics in Cloud Ccomputing, page 10, 2012.

List of contributors
Tilmann Rabl
TU Berlin, DIMA, Einsteinufer 17, 10587
Berlin
rabl@tu-berlin.de

Tilmann Rabl is a senior researcher at the Database Systems and
Information Management (DIMA) group at TU Berlin and at
the German Research Center for Artificial Intelligence (DFKI).
At DIMA he is research director and technical coordinator of the
Berlin Big Data Center (BBDC). Tilmann Rabl is also cofounder
of the startup bankmark.

Jonas Traub
TU Berlin, DIMA, Einsteinufer 17, 10587
Berlin
jonas.traub@tu-berlin.de

Jonas Traub is a research associate and PhD student at the
Database Systems and Information Management group at TU
Berlin. In his research he focuses on real-time processing of sensor

http://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
http://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
http://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at


Rabl, Traub, Kastsifodimos, Markl, Apache Flink in Current Research 9

data in the Internet of Things. Prior to that, Jonas Traub worked
several years at IBM and as an independent consultant.

Asterios Katsifodimos
TU Berlin, DIMA, Einsteinufer 17, 10587
Berlin
asterios.katsifodimos@tu-berlin.de

Asterios Katsifodimos is a senior researcher at the Database Sys-
tems and Information Management (DIMA) group at TU Berlin
and at the German Research Center for Artificial Intelligence
(DFKI). He received his PhD from INRIA Saclay and Universite
Paris-Sud.

Volker Markl
TU Berlin, DIMA, Einsteinufer 17, 10587
Berlin
prof@dima.tu-berlin.de

Volker Markl is a Full Professor and Chair of the DIMA Group
at TU Berlin and an Adjunct Full Professor at the University of
Toronto. He is Director of the Intelligent Analytics for Massive
Data Research Group at DFKI and Director of the Berlin Big
Data Center.


	Apache Flink in Current Research
	1 Introduction
	2 Architecture
	3 Libraries and Interfaces
	4 Stream Processing on Flink
	4.1 Pipelined execution
	4.2 Flink's Notion of Time
	4.3 State and Fault Tolerance.
	4.4 Comparison to Other Systems

	5 Flink-related Research Projects
	5.1 Berlin Big Data Center
	5.2 Proteus
	5.3 Streamline
	5.4 Gradoop
	5.5 Emma

	6 Research Results
	7 Conclusion


