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ABSTRACT
In the last decade, many distributed stream processing en-
gines (SPEs) were developed to perform continuous queries
on massive online data. The central design principle of these
engines is to handle queries that potentially run forever on
data streams with a query-at-a-time model, i.e., each query
is optimized and executed separately. In many real appli-
cations, streams are not only processed with long-running
queries, but also thousands of short-running ad-hoc queries.
To support this e�ciently, it is essential to share resources
and computation for stream ad-hoc queries in a multi-user
environment.

The goal of this paper is to bridge the gap between stream
processing and ad-hoc queries in SPEs by sharing compu-
tation and resources. We de�ne three main requirements
for ad-hoc shared stream processing: (1) Integration: Ad-hoc
query processing should be a composable layer which can
extend stream operators, such as join, aggregation, and win-
dow operators; (2) Consistency: Ad-hoc query creation and
deletion must be performed in a consistent manner and en-
sure exactly-once semantics and correctness; (3) Performance:
In contrast to state-of-the-art SPEs, ad-hoc SPE should not
only maximize data throughput but also query throughout
via incremental computation and resource sharing.

Based on these requirements, we have developed AStream,
an ad-hoc, shared computation stream processing framework.
To the best of our knowledge, AStream is the �rst system
that supports distributed ad-hoc stream processing. AStream
is built on top of Apache Flink. Our experiments show that
AStream shows comparable results to Flink for single query
deployments and outperforms it in orders of magnitude with
multiple queries.
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1 INTRODUCTION
Several open source distributed SPEs, such as Apache Spark
Streaming [54], Apache Storm [46], Apache Flink [11], and
Apache Apex [1], were developed to cope with high-speed
data streams from IoT, social media, and Web applications.
Large companies with hundreds of developers use SPEs in
their production environment. Developers in the produc-
tion environment create long-running stream queries for
continuous monitoring or reporting and short-living stream
queries for testing queries on live streams. The best practice
today is to fork the input stream using a message bus like
Apache Kafka [51] while adding additional resources for per-
forming new queries [40]. Hundreds of developers, creating
thousands of ad-hoc queries, make this a challenging and
ine�cient setup.

1.1 Motivating Example
A typical example for stream processing setups are online
services such as games. Online gaming today is often cloud-
based to satisfy varying user demands. Gaming companies
have to provide a smooth gaming experience to ensure cus-
tomer satisfaction for millions of concurrent users. Accord-
ing to Tencent [2], the company which owns the most played
online game - PUBG, more than half of the company’s em-
ployees, around 23 thousand, work in research departments:
such as marketing, business risk, continuity risk, investment,
development, and testing. These researchers create many
ad-hoc stream queries to analyze the most relevant streams
in the company.

Figure 1 shows a sample use-case of ad-hoc stream queries.
In this example, there are two input streams: 1) a stream of
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Figure 1: Ad-hoc streaming queries usecase for online
gaming scenarios

advertisements, presented to players during the game, and 2)
a purchases stream, which contains purchases of game packs.
There are three queries in the �gure, the marketing team in
Europe submits a short-living query, Q1, and after getting
enough information, the query is shut down. The psychology
team initiates a long-living query Q2 to monitor the behavior
of users under 18. Query Q3 is a session-based query created
and deleted by the system to monitor the loyalty of the pro-
level users. It is common to hire pro-level players to tester
position, as they can reveal bugs in a game more easily.

1.2 Ad-hoc Stream Requirements
We identify three main requirements for ad-hoc stream query
processing.

1. Integration: SPEs should integrate ad-hoc query sup-
port by extending stateful operators, such as window oper-
ators with di�erent types and con�gurations, aggregation,
join, and stateless operators, such as �lters. This enables
users to issue ad-hoc queries while pro�ting from built-in
features of SPEs, such as out-of-order stream processing,
event-time processing, and fault tolerance.

2. Consistency: An ad-hoc SPE executes multiple queries
and serves multiple users or tenants. When removing exist-
ing queries and adding new queries to the system work-
load, an ad-hoc SPE must handle old and new queries in
a consistent way, ensuring exactly-once semantics and the
correctness of the results.

3. Performance: State-of-the-art distributed SPEs focus
on maximizing the data throughput and minimizing the la-
tency. Several well-known stream benchmarks, such as the
Yahoo streaming benchmark [13], StreamBench [30], and

Nexmark [48] test systems based on these metrics. Ad-hoc
SPEs, in addition to the performance metrics above, need
to sustain a high query throughput. The performance of
such systems is boosted not only by incremental computa-
tion and resource sharing, but also by avoiding redundant
computation.

1.3 AStream
We propose AStream, an ad-hoc shared-computation stream
processing framework, which can handle hundreds of ad-hoc
stream queries. We design AStream based on the require-
ments mentioned above: (1) AStream extends a wide set of
components of an existing SPE, Apache Flink, but it is not
tightly coupled with it. AStream supports a wide set of use-
cases, windowed joins, windowed aggregations, selections,
with ad-hoc query support. (2) AStream provides consistent
query deletion and creation, and ensures the correctness for
all running queries in the presence of ad-hoc queries; (3) Our
experiments show that AStream achieves a throughput in
order of hundreds of query creations per second and is able
to execute in the order of thousands of concurrently running
queries. AStream achieves this level of performance through
a set of incremental computations and optimizations.

1.4 Sharing Limitations in State-of-the-Art
Data Processing Systems

Workload sharing is a well-studied topic in the context of
batch data processing systems. SharedDB [16] is one repre-
sentative example for such systems. SharedDB batches user
queries, creates a global query plan, and shares computa-
tion across them. We adopt some ideas from SharedDB, such
as tagging tuples with query IDs to identify di�erent sub-
sets of (possibly computed) relations. If all stream queries
are created when the system is deployed and run in�nitely,
meaning no ad-hocness, then this approach perfectly �ts
for streaming scenarios. In the presence of ad-hoc queries,
however, query sharing happens among queries running on
fundamentally di�erent subsets of the data sets, determined
by the creation and deletion times of each query.
Also, AStream is able to handle out-of-order stream data

and to exploit and share windows of di�erent types and con-
�guration. AStream extends ideas from window panes [27],
dynamically divides segments of time into discrete partitions
at runtime, and shares overlapping parts among di�erent
queries.

We also take into consideration that aggressive work shar-
ing among concurrent queries does not always lead to perfor-
mance improvements [23]. Therefore, we compute overlap-
ping parts of a window via dynamic programming and share
if possible. Lastly, AStream is fault tolerant, all changes to
query sets are deterministically replayable, which requires



that metadata modi�cations are deterministically woven into
the streams.

1.5 Contributions and Paper Organization
The main contributions of our paper are as follows: (1) We
present AStream, the �rst distributed ad-hoc stream process-
ing framework. AStream is fully functional and supports a
wide range of ad-hoc stream queries on shared data streams;
(2) We provide exactly-once semantics and consistent query
creation and deletion for ad-hoc queries; (3) We conduct
an extensive experimental analysis. AStream shows com-
parable results to Flink in a single-query deployment and
outperforms Flink by orders of magnitude in multi-query
deployments.

The rest of the paper is organized as follows. Section 2 de-
scribes the system overview. We introduce implementation
details in Section 3. Section 4 shows experimental evaluation.
In Section 5 we discuss possible integration of AStream com-
ponents to other SPEs. We discuss related work in Section 6
and conclude in Section 7.

2 SYSTEM OVERVIEW
In this section, we describe the architecture of AStream and
elaborate on our data models. Figure 2 shows the general
architecture of AStream. There are four main components.
The shared session accepts queries from users and submits
them to the job manager. The shared selection, aggregation,
and join operators process queries in a shared manner. Finally,
the router sends tuples to their associated query sinks. Our
solution supports query sharing for i) selection, ii)windowed
join, iii) windowed aggregation, and i�) their combination.
The main assumption in this work is that operators can be
shared as long as they have common upstream operators
and common partitioning keys.

AStream is a framework, which can be integrated to exist-
ing SPEs as a separate layer. AStream exploits all the neces-
sary components from an underlying SPE, such as optimizer,
scheduler, network layer, and code generators.

2.1 Data Model
In the following subsection, we describe the data model of
AStream.

2.1.1 �ery-set. AStream extends SharedDB’s data model.
To each tuple, we add the set of query IDs, that are potentially
interested in a tuple, as an additional column. We call this
column query-set. We assume a total numbering of queries
in a query-set. We encode queries in a query-set with a bitset
data structure. For example, a query-set 0010 means that the
tuple is relevant only for the query with index 3 (Q3).

We compute the intersection of two query-sets through a
bitwise AND operation. For any two tuples, we perform a

join or aggregation if the tuples share at least one query. This
way, we avoid redundant computation. Consider tuples t1,
t2, t3, and t4 in Figure 3a. The bitwise AND of the query-sets
of t2 and t3 returns zero, i.e., they do not share any query.
However, t4 shares Q1 with t2 and t1, and Q2 with t3.

2.1.2 Changelog. The above datamodel workswell if stream
queries are de�ned at compile time and run forever. How-
ever, for ad-hoc scenarios, this data model is not enough. For
example, when the workload change occurs at time T2 in Fig-
ure 3, we observe that queries and query-sets before T2 and
after T2 are di�erent. In order to perform bitwise operations,
we need a consistent query index in all query-sets so that
any bitwise operations of tuples, created at di�erent times, is
correct. One way to ful�ll this requirement is to assign a new
index to each new query. We demonstrate this append-only
approach in Figure 3b. Because Q2 is deleted, its position is
permanently zero. So, the new position, 3rd position in the
query-set, is assigned to the new query, Q3. The problem of
this approach is that it leads to big and sparse query-sets.
AStream reuses bits of deleted queries for newly created

queries in order to keep the changelog-set as compact as pos-
sible. If there is no deleted query, we allocate a new position
for a new query. We use a changelog, a special data struc-
ture consisting of i) query deletion and creations meta-data
and ii) a changelog-set, a bitset encoding the associated
query deletions and creations. A bit in a changelog-set is set
if a query in the respective position remains unchanged. A
bit in the changelog-set is unset if a query is deleted or a
new query is placed in the respective position. For example,
in Figure 3c Q2 is deleted and Q3 is created. Because the
index of Q2 is empty, Q3 is placed in this position. The asso-
ciated changelog-set, 10, indicates that the �rst position in
the query-set remains unchanged, but the second position is
replaced with another query. Also, Figure 4b demonstrates
the changelog-sets of the workload shown in Figure 4a. At
time T5 in Figure 4a, there are two new queries (Q6 and Q7)
and one deleted query (Q3). AStream allocates the index of
the deleted query to Q6 and provide a new position for Q7.

By default, we use a changelog-set to indicate query changel-
ogs between two adjacent time slots. For example, changelog-
set 100 at time T2 in Figure 4b indicates the query changelog
with respect to time slot T1. However, for some operations,
we need to perform computations between non-adjacent
time slots, such as T3 and T1.

Changelog-set in Ti with respect to Tj is a bitwise AND of
all changelog-sets generated between Ti and Tj. For example,
in Figure 4c for each time slot we compute their changelog-
sets with respect to all previous time slots.

Equation 1 shows the dynamic programming technique to
calculate CL-set[i][j], the changelog-set of time slot i , with
respect to time slot j. If i is equal to j (same slot from two
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Figure 3: AStream and naive data model. At time T1
two new queries are submitted (Q1+, Q2+). At time T2,
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di�erent streams), then there is no changelog, or 1. If i is
greater than j , changelog-set is the bitwise AND of all slices
from i to j.

CL-set[i][j] =
8>>><
>>>:

1 if i == j

CL-set[i � 1][j] & CL-set[i] if i > j

CL-set[j][i] else
(1)

We use changelog-sets to ensure consistency and correct-
ness in any operation among tuples. Also, we avoid redun-
dant computation by �nding only overlapping queries among
di�erent time slots. If two time slots share queries, mean-
ing changelog-set is non-zero, then we �lter tuples by per-
forming bitwise AND between tuples’ query-sets and the
changelog-set. For example, assume that we perform a join
operation between the tuples created before T2 and after T2,
as shown in Figure 3a. t5 is �ltered, because the bitwise AND
of the t5 query-set, 01, and the changelog-set, 10, is zero. As
another example, joining t7 and t4 would result in the tuple

with query-set 10 (10&11&11), meaning the resulting tuple
matches Q1.

3 IMPLEMENTATION DETAILS
In this section, we �rst explain the implementation of ad-hoc
operators (Section 3.1) and optimization techniques adopted
by AStream (Section 3.2). We elaborate on fault tolerance in
Section 3.3 and quality of service (QoS) features in Section
3.4.

3.1 Ad-hoc Operators
Each operator in AStream keeps a list of active queries. Once
active queries are updated via changelog, operators change
their computation logic accordingly.

3.1.1 Shared session. The shared session is a client module of
AStream. The shared session batches user query requests and
generates a changelog. A changelog is generated for every
batch-size (number of user requests) or once the maximum
timeout is reached. If there is no user request, no changelog
is generated.

3.1.2 Shared selection. The shared selection operator com-
putes the query-set for each tuple and appends the resulting
query-set to the tuple as a separate column. The shared se-
lection maintains the set of active queries. It updates the set
once it receives a changelog.

3.1.3 Window slicing. AStream supports time- and session-
based windows with di�erent characteristics (e.g., length,
slide, gap). For queries involving window operators, such
as windowed aggregation and windowed join, AStream di-
vides overlapping windows into disjoint slices. It performs
operations among overlapping slices once and reuses the
result for multiple queries. The lengths of slices in Figure 4e
are determined at runtime based on the created and deleted
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performs join operation (Figure 4f) with dynamically
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x-axis.

queries shown in Figure 4d. Once a query changelog arrives,
its changelog-set is assigned to the corresponding window
slice. Also, the set of running queries inside the shared join
operator gets updated.

3.1.4 Shared join. AStream executes join operations incre-
mentally by joining slices and combining intermediate re-
sults. It joins overlapping slices once and reuses the interme-
diate results. For each slice, AStream keeps a computation
history. Based on this information, it avoids unnecessary
computation among slices and performs delta query process-
ing. Consider the join operation in Figure 4f. At time T3,
Q2 triggers and join results are emitted. At time T4, Q1 is
evaluated. Note that AStream avoids joining already joined
slices (slice-2 Z slice-2). Also, the �rst slice is deleted, as
it is no longer needed. Similarly, at time T5, AStream joins
slices once and reuses them for multiple overlapping query
windows (Q4, Q5, Q6, Q7).

We join two slices as follows. We group tuples in each slice
by their query-sets. First, we check the query-set groups, e.g.,
G1 in slice 1 and G2 in slice 2. We join tuples residing in G1
and G2, if group IDs, which are query-sets, share at least
one query. For example, if G1=010 and G2=⇤0⇤, then tuples
residing in these groups are never joined.
Grouping tuples inside slices enables sharing tuples on-

the-�y. The disadvantage of this method is that the number
of possible tuple groups increases exponentially with the
number of queries. In early experiments, we noticed that for
more than ten concurrent queries, storing tuples as a list is
more e�cient than storing them inside groups.
For switching between a group and a list data structure,

we use the following heuristic. As the number of queries
increases, we monitor the average size of tuple groups inside
slices. If the average is less than two, meaning most of the
tuple groups contain only a single tuple, then we switch to a
list data structure.

3.1.5 Shared aggregation. The shared aggregation works
similar to the shared join. One di�erence is that the shared
join is a binary stream operator (has two input streams), but
the shared aggregation is a unary stream operator. Another
di�erence is that the output of the shared join operator can
be shared with other downstream join operators (shared n-
ary joins); however, for shared aggregations, it is not possible
to share the output with downstream operators.
In a shared aggregation, each window slice keeps inter-

mediate aggregation results for all active queries. Instead of
materializing input tuples, we update the query intermediate
aggregation results for each new tuple. Then, we discard
the tuple. For example, a tuple with the query code 101 is
aggregated with the Q1 and Q3 intermediate aggregation
results and discarded afterward. Aggregation between two
di�erent slices is also performed in a similar way.



3.1.6 Router. The router is another component of AStream.
The routing information for each tuple is encoded in its
query-set. The router sends each tuple to either query output
channels or to downstream operators.

3.2 Optimizations
AStream uses several optimizations to speed up query pro-
cessing.

3.2.1 Incremental query processing. Incremental query pro-
cessing is a core feature of AStream. As shown in Sections
3.1.4 and 3.1.5, AStream computes both ad-hoc stream aggre-
gations and joins in an incremental manner.

3.2.2 Data copy and shu�ling. AStream avoids data copy in
all its components except in the router. A router avoids data
copy if the downstream operator is a shared join or aggrega-
tion operator. It performs data copy only if the downstream
operator is a sink operator, in which the router has to ship
results to di�erent query channels.

AStream also avoids redundant data shu�ing by encoding
a query-set for each tuple. When running a single query, this
has some performance overhead, but for multiple queries, the
overhead is outweighed by the performance improvements.
The shared aggregation and join operators avoid data copy
inside slices. Each tuple is saved only once inside a slice.

3.2.3 Memory e�icient dynamic slice data structure. The
shared join operator adapts the data structure based on the
workload. If the number of active queries exceeds a threshold,
the shared session sends a marker to downstream operators.
Once themarker is received, the shared join operator changes
the data structure of all slices and resumes its computation.

3.3 Exactly-Once Semantics
Exactly-once semantics for SPEs ensure that every input
tuple is only processed once, even under failures. Opera-
tors in AStream are exactly-once, as long as the underly-
ing distributed streaming architecture supports exactly-once
semantics, as systems like Kafka-streams [42], Spark Struc-
tured Streaming [5], and Apache Flink [11] do. AStream
requires that both tuples and changelog markers and the
state of shared operators are deterministically reproducible
by logging the input stream and checkpointing [10].
AStream is deterministic because all its distributed com-

ponents are deterministic and they are based on event-time
semantics. Event-time is the time at which an event was pro-
duced; e.g., the time an ad is clicked (for tuples) or the time
a query is deleted (for changelogs). Event-time semantics
ensure correctness on out-of-order events or during replays
of data because the notion of time depends on the data, not
on the system clock. In event-time stream processing, tuples
are assigned to windows based on their event-time [4, 28].

In the case of a failure, a replayed event is assigned to the
same window ID, as the window ID computation is also de-
terministic [4, 28]. Our slicing technique (Figure 4e) is also
deterministic. The length of slices depends on changelogs.
The changelogs also use event-time, which is the time at
which query changes were performed by users.

3.4 QoS
Controlling the performance impact of a new query on exist-
ing queries is essential to ensure the quality of service in a
multi-query environment. In ad-hoc stream workloads, QoS
should be ensured in many ways, such as individual query
throughput, overall query throughput, data throughput, data
latency, and query deployment latency. For example, for data
latency, we extend the latency metric implementation of
Flink [3]. To be more speci�c, in the sink operator of every
query, we periodically select a random tuple and measure
the end-to-end latency. The latency results are collected in
the job manager. Also, we show in our experiments (Sec-
tion 4.8) the impact of newly created or deleted queries on
existing queries. AStream is capable of providing the above-
mentioned metrics to an external component. If measure-
ments for a particular metric are beyond acceptable bound-
aries, new resources can be added; however, elastic scaling
is out of the scope of this paper.

4 EXPERIMENTS
4.1 Experimental Design
To evaluate AStream, we simulate a multi-tenant environ-
ment with ad-hoc queries. We use a parallel and distributed
driver and conduct experiments with two systems under test
(SUT): Apache Flink [11] (v 1.5.2) and AStream, which we
implement on top of Flink.
As shown in Figure 5, our driver maintains two FIFO

queues. One queue stores user requests, i.e., query creation
or query deletions. Periodically, the driver pops user requests
from the FIFO queue, sends them to a SUT, and waits for
the acknowledge message (ACK) from the SUT. The driver
submits the next set of user requests to the SUT if the SUT
ACKs the previous batch. This way, we implement a back-
pressure mechanism for user query requests. The longer the
user request stays in the queue, the higher is its deployment
latency.
Another queue stores input tuples. Data generators gen-

erate tuples and put them into the queue. The driver pulls
tuples from the queue and sends them to the SUT. The longer
the tuple stays in the queue, the higher is its event-time la-
tency. Event-time latency is the duration between the tuple’s
event-time and the tuple’s emission time from SUT.
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4.2 Generators
4.2.1 Data generation. Each generated input tuple has 6
�elds: a ke� �eld and an array of size 5, named f ields . Each
subsequent tuple is generated with key in the form ke� 
ke�++ % ke�max . This way, we balance the data distribution
among di�erent partitions. The other �elds are generated in
a random manner, f ields[i] random(0, f ieldsmax ).

4.2.2 Selection predicate generation. To generate a selection
predicate, we select a random f ield of a tuple (f ield[i]),
generate a random number (VAL), select a random binary
operator: <, >, ==, , or � (oi ), and combine them to a
selection predicate (oi (f ield[i], VAL)).

4.2.3 Join and aggregation query generation. The join and
aggregation query generation consists of two parts: selection
predicate generation (see above) and window generation.

1 SELECT *

2 FROM A, B [RANGE [VAL1]] [SLICE [VAL2]]

3 WHERE A.KEY = B.KEY AND
4 A.[VAL5] [=|>|<|>=|<=] [VAL3] AND
5 B.[VAL6] [=|>|<|>=|<=] [VAL4]

Figure 7: Join query template. VALn is a random num-
ber, VAL5 and VAL6 are less than | f ields |=5

1 SELECT SUM(A.FIELD1)
2 FROM A [RANGE [VAL1]] [SLICE [VAL2]]

3 WHERE A.[VAL4] [=|>|<|>=|<=] [VAL3]

4 GROUPBY A.KEY

Figure 8: Aggregation query template. VALn is a ran-
dom number, VAL4 is less than | f ields |=5

We generate window length as random(1, windowmax ) and
slide as random(1, length). For session windows, window
length and slide are not needed. Figures 7 and 8 show the
query templates for join and aggregation queries. Line 4-5
in Figure 7 and Line 3 in Figure 8 show selection predicates.
For join queries, both input streams have di�erent selection
predicates.

4.3 Metrics
Basic metrics to evaluate SPEs are event-time latency and
sustainable throughput [24]. In addition to these, we propose
several metrics for ad-hoc streaming environments. Query
deployment latency is the time duration between a user
request to create or delete a query and the actual query
start time. For data throughput evaluations, there are two
main metrics to consider. Slowest data throughput is the
minimum sustainable throughput among active streaming
queries in an ad-hoc environment. This metric is useful for
a service or cloud owner, to ensure minimum QoS require-
ments.Overall data throughput is the sum of throughputs
of all active queries. Query throughput is the highest load
of query tra�c (query deletion and creation) a system can
handle with sustainable query deployment latency and input
throughput.

4.4 Setup
We conduct experiments in 4- and 8-node cluster con�gura-
tions. Each node has 16-core Intel Xeon CPU (E5620 2.40GHz)
and 48 GB main memory. The data generator generates data
with 1000 distinct keys with a uniform distribution. If a SUT
throws an exception or error while stopping or starting a
streaming job or processing submitted queries in an ad-hoc



manner (possibly with high frequency), then we consider
this as a failure, meaning the SUT cannot sustain the given
workload. We repeat our experiments three times and let it
run for thousand seconds. For a changelog generation, we
tried several combinations of batch-size and maximum time-
out con�gurations. We con�gure the batch-size to be one
hundred and maximum timeout to be one second, as these
con�gurations are the most suitable for our workloads.

4.4.1 Workloads. In Figure 6, we show two workload sce-
narios to evaluate AStream. The main characteristics of the
�rst workload scenario (SC1) are i) many users, which leads
to many parallel queries, ii) few queries that are stopped or
changed, resulting in mostly long-running streaming jobs,
and iii) no new ad-hoc queries after some time. The main
characteristics of the second workload scenario (SC2) are i)
high query throughput, i.e., many queries are created or
deleted ii) low query parallelism, and iii) short-running
queries.

4.5 Workload Scenario 1
Figure 9 shows data throughput for SC1, 4- and 8-node cluster
con�gurations. n q/s m qp indicates n queries per second
until m active queries. For a single-query deployment in
Figure 9a, Flink outperforms AStream. Although query-set
generation and bitset operations come with a cost, AStream
single-query deployment still has a comparable performance
to Flink. Flink cannot sustain ad-hoc workloads in Figure 9.
In each run, it either throws an exception or exhibits very
high latency.

In Figure 9b there is a sharp increase in the overall through-
put of served queries. AStream achieves a better throughput
with more ad-hoc queries. However, this performance in-
crease comes with a cost. In Figure 9a we see that there is a
decrease in the slowest throughput because the number of
served queries increase from one query to thousand queries.
After the initial decrease in Figure 9a, we observe that

the throughput decrease remains steady. The main reason is
that, as the number of queries increases, the probability of
sharing a tuple among di�erent queries also increases. As a
result, the slowest data throughput decreases less with more
queries.

We observe several di�erences between join and aggrega-
tion query performances in Figure 9. First, data throughput
for join queries is less than for aggregation queries, because
joins are computationally more expensive than aggregation
in our setup. Second, the performance gap between Flink
and AStream is larger for aggregation queries than for join
queries. The main reason is that Flink has a built-in sup-
port for on-the-�y and incremental aggregation. In contrast,
windowed join queries in Flink lack those features.
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Figure 9: Slowest and overall data throughputs for SC1,
4- and 8-node cluster con�gurations. n q/s m qp indi-
cates n queries per second untilm query parallelism
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Figure 10: Query deployment latency, one query per
second, up to 20 queries

Figure 11 shows the query deployment latency for SC1.
Changelog batch-size also has a contribution to the overall
latency. For example, 1 q/s, 20 qp has more query deployment



Figure 11: Ad-hoc query deployment latencies for SC1

latency than 100q/s, 1000qp, as the former has 20 ( 201 ) di�er-
ent query changelog generations, while the latter contains
10 ( 1000100 ) di�erent query changelog generations.

Figure 10 shows query deployment latency for SC1 (1 q/s,
20 qp). Because Flink cannot sustain this workload, query de-
ployment latency keeps increasing, which is why we do not
show this case in Figure 9. The longer the query stays in the
queue waiting for ACK, the higher is its deployment latency.
For example, the sum of all query deployment latencies for
Flink is 910 seconds. In general, query deployment latency
is already high and will be a bottleneck in a multi-tenant
environment.

In Figure 10 AStream initially exhibits high query deploy-
ment latency, because the �rst query deployment also in-
volves the physical deployment of operators to the cluster
nodes, which is time-consuming. Even for batch ad-hoc data
processing systems with a dedicated scheduler and optimizer,
such as DataPath [7], the �rst deployment of physical oper-
ators is time-consuming. AStream avoids deploying a new
streaming topology for each query. Instead, it creates and
deletes user queries on-the-�y without a�ecting the running
topology.
Figure 12 presents the average event-time latency for

streaming tuples. We note that event-time latency for shared
aggregation queries is lower than shared join queries because
joins are computationally more expensive than aggregations.
Throughout our experiments, we observed Flink’s event-time
latency for ad-hoc workloads to be higher than eight sec-
onds. As experiments continued, the latency kept increasing,
which means the system cannot sustain the given workload.

In Figure 12, we notice that event-time latency increases
for higher query parallelism for AStream. However, the given
latency measurements for AStream are sustainable. Also, the
measurements do not exhibit continuous backpressure.

Figure 12: Average event-time latency for SC1

Figure 13: Average event-time latency for SC2. nq/ms
means n queries are submitted and stopped every m
seconds.

4.6 Workload Scenario 2
As explained above, SC2 features a more �uctuating work-
load than SC1. In this case, a robust data processing is needed
to sustain possible churn in the workload.
Figure 13 shows the average event-time latency for SC2.

We notice that event-time latency in SC2 is lower than SC1
(Figure 12). The reason is that in SC2 the query workload is
highly changing, but does not increase continuously. So, the
majority of the queries running in SC2 are short-running
queries.

Figure 14 shows data throughput for SC2. nq/ms indicates
n queries are submitted and stopped everym seconds. Al-
though SC2 exhibits high query �uctuations, the slowest data
throughput in SC2 is higher than the one in SC1 (Figure 9),
which means that AStream works better in more �uctuating
workloads. The main reason is that the workload in SC2 is
more �uctuating, queries are short-running, and constantly
changing; as a result, i) the overall number of active queries



(a) Data throughput of the slowest query

(b) Overall data throughput

Figure 14: Input data throughput for SC2

Figure 15: Ad-hoc query deployment latency for SC2

is less than in SC1 and ii) bitset size is less than in SC1. In our
experiments, we observe that Flink cannot sustain ad-hoc
workloads. For example, for the setup 10q/10s, the input data
throughput of AStream was at least 10⇥ higher than Flink’s,
before we stopped the experiment.

Figure 16: Slowest data throughput (upper), event-
time latency (middle), and query count graphs (bot-
tom) for complex ad-hoc queries, with the same x axis
values

Figure 15 shows the ad-hoc query deployment latency for
SC2. We run this experiment for thousand seconds. When
we compare the query deployment latency of SC1 and SC2,
the latter is signi�cantly higher. The reason is that in SC2,
we continuously create and delete queries, while in SC1 we
create queries up to prede�ned query parallelism. Contin-
uously creating and deleting queries results in continuous
query changelog generation.

4.7 Complex Queries
In this section, we conduct experimentswith complex queries,
consisting of multiple joins and an aggregation. We generate



complex queries by randomly pipelining a selection predi-
cate, n-ary windowed joins, where 1  n  5, and a win-
dowed aggregation operator. Any complex query involves at
least one selection predicate, one windowed join query, and
one windowed aggregation query.
Figure 16 shows the input data throughput (upper), in-

put latency (middle), and query count graphs (bottom) for
complex concurrent queries. We test three cases in this exper-
iment. First, we perform a sharp query throughput increase
at timestamps 50 and 200. Second, we gradually decrease
query throughput and gradually increase, from time 410 to
1140. Third, we �uctuate query throughput after time 1200.

When we increase query throughput sharply, we notice
that the input data latency stays relatively stable. The rea-
son is that we adopt shared streaming operators and do not
change the query execution plan, which would cause high
latencies. The slowest data throughput drops as we increase
query throughput. Also, we notice that in case of �uctua-
tions in query throughput, both slowest data throughput and
event-time latency remains stable.

4.8 Sharing overhead
Figure 17 shows slowest data throughput for di�erent query
parallelism. Similar to Figure 9, we note that slowest through-
put decreases as query parallelism increases. As the number
of queries increases, sharing a tuple among di�erent queries
is more probable; as a result, the slope of the �gure decreases
slowly with increasing query parallelism.
Adding ad-hoc support to a SPE incurs an overhead. We

measure this overhead by comparing AStream with Flink.
In our experiments, we see that Flink cannot sustain ad-hoc
workloads. Conducting ad-hoc experiments with Flink re-
sulted either in an exception or in ever-increasing latency.
The main reason is that Flink is not designed for ad-hoc
workloads. Therefore, we can only see the overhead of shar-
ing between AStream and original Flink in a single query
setup. As shown in Figure 9 AStream throughput is 9 % less
than Flink’s throughput in the worst case (from 2.15M/sec to
1.95M/sec, windowed aggregation, 8 nodes) because of the
sharing overhead.

We also measure the individual cost of AStream’s compo-
nents. The cost mainly involves generating query-sets, bitset
operations, and data copy in the router to ship resulting
tuples to di�erent query channels. Figure 18a shows an over-
head proportion of AStream components in SC1. With low
query-parallelism, the proportion is roughly equal. As the
number of concurrent queries increases, data copy becomes
a dominant overhead. Data copy in the router operator is in-
evitable as AStream has to send resulting tuples to physically
di�erent query channels. Figure 18b shows the overhead of
AStream (sum of its components). We can see that with more
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Figure 17: Input data throughput for di�erent query
parallelism in SC1

queries, the overhead of AStream is below 2%. The main
reason is that with more queries the probability of sharing
increases.
Figure 19 shows the e�ect of executing of ad-hoc join

queries to the performance of existing ones. We perform
experiments in a 4-node cluster. We observe that with many
running queries, adding ad-hoc queries does not a�ect their
performance much in both scenarios (SC1 and SC2). Also,
with a small number of running queries, SC1 is more sus-
ceptible to performance decrease than SC2. The main reason
is that in SC1 long-running queries are created. In SC2, on
the other hand, queries are created and deleted periodically.
As a result, the overall number of queries and the size of
query-sets is less in SC2.
Figure 20 shows the scalability of AStream queries with

di�erent cluster con�gurations. In this experiment, we keep
the data throughput constant for all cluster con�gurations.
We can see that the number of ad-hoc queries scales with
more nodes. We also observe that SC2 scales better than
SC1. The main reason is, as mentioned above, in SC2 queries
are periodically created and removed, which results in less
number of active queries and less bitwise operations.

4.9 Discussion
AStream supports high data and query throughput within
regular event-time and deployment latency boundaries. With
thousand concurrent queries, AStream achieves more than
70 millions tuples per second data throughput (Figure 9). Our
baseline, Apache Flink is not able to run twenty concurrent
queries.
AStream also supports high query throughput. In SC1

AStream is able to start hundred queries in a single changelog
and in SC2 it is able to start 50 queries and delete 50 queries
in a single changelog.
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Figure 19: E�ect of new ad-hoc join queries on exist-
ing long-running queries. x-axis shows the number of
long-running queries and the workload scenario

AStream processes 70 millions tuples per second (Figure 9,
100q/s 1000qp) with 1.2 second average event-time latency
(Figure 12). For SC2, it handles �uctuating ad-hoc queries
(creating and deleting 50 queries per 10 seconds) in less than
one second event-time latency.

In our experiments, we see that the deployment latency is a
major bottleneck for Flink (Figure 11). AStream, however, has
a very low deployment latency, in the order of milliseconds
per query.
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Figure 20: Scalability with the number of queries

Integrating AStream has some overhead, which is already
outweighed by the e�ciency improvement with two concur-
rent queries. The overhead for a single query is in the order
of 10% in the worst case.

5 INTEGRATION
All AStream components can be integrated into an SPE by
extending its components. The shared session is an extension
of a remote client module, which accepts user requests and
executes the requests in a remote cluster. We modify this
module to generate the changelog data structure for handling
user requests. The shared selection and router are mapper op-
erators with a state. The state is updated for every changelog.
We implement window operators by customizing triggers,
evictors, and window functions [15] to be dynamic and up-
datable at runtime. Any SPE providing low-level window
APIs can integrate shared windowed join and aggregation
operators.

We build our prototype of AStream on top of Apache Flink;
however, our design is not tightly coupled with the underly-
ing SPE. Below, we brie�y sketch possible integrations with
Trill [12] and Spark Structured Streaming [5]. Unlike previ-
ous work, such as DataPath [7], which is a complete system
with dedicated query optimizer and scheduler, AStream is
a framework that can be used with di�erent SPEs to enable
ad-hoc query processing.
Because AStream is a pluggable component of an under-

lying SPE, it also supports optimizations for data represen-
tation and code generation. For example, Trill uses stream-
ing batched-columnar data representation with a new dy-
namic compilation-based system architecture [12]. To sup-
port hybrid-columnar processing with AStream, one can
integrate query-set �eld as a separate column in Trill’s hy-
brid columnar data representation or merge the �eld with
the key �eld into the single �eld. Trill’s stateful operators can
integrate AStream. AStream ensures consistency and cor-
rectness; however, the underlying processing semantics, e.g.,
grouping or join algorithms, can be performed by another



component of an underlying SPE. To integrate changelogs,
Trill’s punctuation data structure can be extended to include
additional query meta-data.
Spark Structured Streaming [5] is an example of a dis-

tributed SPE with highly optimized code generation using
the catalyst optimizer [6]. In the continuous processingmode,
one can adopt a very similar implementation that we used in
Flink. In the mini-batch processing mode, Spark Structured
Streaming adopts bulk-synchronous-processing semantics,
handling batch-size dynamically at runtime. In this setup, all
workers can be informed about changelogs at the synchro-
nization phase to use AStream components.

6 RELATED WORK
Below, we explore several research directions in database
management and stream processing related to our work and
discuss the similarities and di�erences.

6.1 Query-at-a-Time Processing
Query-at-a-time SPEs feature mature and widely accepted
optimizers [6, 20]. These systems inherit methods adopted in
traditional relational query optimization [36, 43]. However,
traditional query optimizers lack optimizing ad-hoc queries
submitted in real time, as the solution space is non-convex
and the complexity of query optimization in many cases is
exponential [17]. AStream adopts shared operators which
can handle multiple user queries and share them if necessary.
Thus, we avoid the optimization and deployment cost of
queries created and deleted in runtime.

6.2 Stream Multi-Query Optimization
Multi-query optimization is one of the fundamental methods
to share computation among queries [44]. One drawback
of this method is its worst-case complexity (NP-hard) [14].
As the number of stream queries increases, �nding shared
parts among queries becomes costly. Another drawback of
traditional multi-query optimization is that all queries should
be known at compile time. Also, multi-query optimization
has limited ability to share queries with blackbox selection
predicates, such as with user-de�ned functions.
Seshadri et al. show the potential limitations of stream-

ing multi-query optimization in a distributed streaming en-
vironment [45]. Hong et al. propose rule-based streaming
multi-query optimization [21]. Dobra et al. adopt sketch-
based techniques to �nd approximate results for streaming
multi-query optimization [14].
The above work assumes prior knowledge (at compile

time) of streaming queries and adopts optimizers that are
not able to react to ad-hoc queries at runtime. AStream, on
the other hand, has no prior knowledge about a workload
and can react to ad-hoc queries.

6.3 Adaptive Query Optimization
Adaptive query optimization is another method to handle
e�cient execution of multiple streaming queries. Although
this methodology might work for a small number of input
queries, with high concurrent workloads re-optimization is
a limiting factor.
Madden et al. develop an adaptive stream query sharing

system [31]. The system works on a single node and is built
on top of Eddies [8]. Ives et al. propose an adaptive query
processing framework which adjusts processing based on
I/O delays and data �ow rates, and shares the data across
multiple queries [22]. Raman et al. propose STeM, a shared
materialization point for join queries [38].
Unlike the work above, AStream is not limited to binary

joins but also supports n-way joins, aggregation, selection
predicates, and their combination. Moreover, AStream is
designed to be executed in a distributed environment.

Drizzle is a distributed, fast, and adaptable stream process-
ing framework [50]. It adopts the bulk-synchronous process-
ing model. Chi is �exible stream processing framework built
for tuple-at-a-time systems [32]. By design, these systems as-
sume that workload and cluster properties change rarely, as
changing the query execution plan is costly. AStream, how-
ever, supports highly �uctuating workloads and performs
query creation and deletion on-the-�y, without stopping the
topology.

6.4 Batch ad-hoc Query Processing
Systems

SharedDB [16] proposes query sharing for OLTP, OLAP,
and mixed workloads via shared operators. QPipe, adopts
on-demand simultaneous pipelining, dynamically sharing
an operator’s output simultaneously to parent nodes [19].
AStream is conceptually similar to SharedDB, as it also uses
shared operators. Psaroudakis et al. compare the two main
query sharing approaches: simultaneous pipelining, such as
QPipe, and global query plan, such as SharedDB [37].
CJoin [9] and DataPath [7] propose a join operator that

supports concurrent queries in data warehouses. MQJoin
e�ciently uses main memory bandwidth and multi-core
architectures and minimizes redundant work across concur-
rent join queries [33, 34]. Tell has a shared-data architecture,
which decouples transactional query processing and data
storage into two layers to enable elasticity and workload
�exibility [29].
To support multiple queries, scan sharing is a common

technique. For example, Blink [39] and Crescando [49] share
disk and memory bandwidth. Similarly, CoScan performs
cooperative scan sharing in the cloud merging pig programs
from multiple users at runtime [53]. Also, MonetDB [55]



and DB2 UDB [26] perform cooperative scans and maximize
bu�er-pool utilization across queries.
BatchDB adopts similar batching ideas with Crescando

and SharedDB [35]. However, BatchDB isolates batching of
OLAP queries from the updates propagated by the primary
OLTP replica. OLTPShare specializes in sharing concurrent
OLTP workloads [41].
Although there are some similarities between AStream

and batch ad-hoc query processing systems, such as bitsets
(CJoin, DataPath, SharedDB, MQJoin), common upstream
operators and common partitioning key (SharedDB and Dat-
aPath), query batching (SharedDB, BatchDB, OLTPShare), re-
dundant computation �ltering (MQJoin), scan sharing (Cres-
cando, Blink, MonetDB, DB2 UDB), supporting complex
queries with high consistency (Tell), and high throughput
concurrent query processing (MQJoin), there are also concep-
tual di�erences. One di�erence between ad-hoc streaming
and ad-hoc batch query processing is that the former features
windows with di�erent con�gurations. Also, ad-hoc batch
data processing systems feature only ad-hoc query creation.
AStream supports ad-hoc query creation and deletion in a
consistent manner. Finally, AStream also adopts techniques
to avoid redundant computation among queries.

6.5 Streaming query sharing
Wang et. al propose sharing windowed join operators for
CPU intensive and memory-intensive workloads [52]. The
approach assumes that all input queries are known at com-
pile time. Our approach, on the other hand, supports query
creation and deletion in an ad-hoc manner. Hammad et al.
propose shared join operator for multiple streaming queries
[18]. Similar to the previous work, in this work, the main
assumption is that input queries are known at compile time.
Another limitation is that this work adopts selection pull-up
approach, which might result in i) high bookkeeping cost
of resulting joined tuples and ii) intensive consumption of
CPU and memory.
Krishnamurthy et al. propose on-the-�y query sharing

technique for windowed aggregation queries [25]. The au-
thors partition tuples into fragments and perform incremen-
tal aggregation. Traub et.al propose general stream aggrega-
tion computation which automatically adapts to workload
characteristics [47]. Although we also adopt a similar tech-
niques to compute results incrementally, our solution is not
limited to windowed aggregations. AStream supports win-
dowed queries consisting of selection, aggregation, join, and
their combinations.

Li et. al propose window ID representation of events and
panes [28], and sharing computation among panes [27]. The
core di�erence between panes and AStream window sharing
technique is that the former computes overlapping parts of

a window in compile-time, while the latter computes them
in runtime based on ad-hoc queries and their corresponding
windows.

7 CONCLUSION
In this paper, we present AStream, the �rst distributed SPE
for ad-hoc stream workloads. We show that current state-of-
the-art SPEs are not able to process ad-hoc stream workloads.
We observe in our experiments that not only data latency and
throughput, but also query deployment latency and through-
put are bottlenecks.

AStream is a layer on top of Flink, which extends existing
SPE components and supports the majority of streaming
use-cases. AStream ensures easy integration, correctness,
consistency, and high performance (query and data through-
put) in ad-hoc query workloads.
In future work, we plan to extend AStream with a cost-

based optimizer and adaptive query processing techniques.
Based on sharing statistics among queries collected at run-
time, a more optimal query plan can be generated by group-
ing similar queries.
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