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ABSTRACT
Many business applications benefit from fast analysis of online
data streams. Modern stream processing engines (SPEs) provide
complex window types and user-defined aggregation functions to
analyze streams. While SPEs run in central data centers, wireless
sensors networks (WSNs) perform distributed aggregations close
to the data sources, which is beneficial especially in modern IoT
setups. However, WSNs support only basic aggregations and win-
dows. To bridge the gap between complex central aggregations
and simple distributed analysis, we propose Disco, a distributed
complex window aggregation approach. Disco processes complex
window types on multiple independent nodes while efficiently
aggregating incoming data streams. Our evaluation shows that
Disco’s throughput scales linearly with the number of nodes
and that Disco already outperforms a centralized solution in a
two-node setup. Furthermore, Disco reduces the network cost
significantly compared to the centralized approach. Disco’s tree-
like topology handles thousands of nodes per level and scales to
support future data-intensive streaming applications.

1 INTRODUCTION
Modern business use-cases often require the analysis of high-
volume data streams. To efficiently process such large amounts of
data, stream processing engines (SPEs) provide complex windows
and aggregations. But to perform these complex aggregations,
state-of-the-art SPEs such as Apache Flink [2], Apache Spark
Streaming [16], and Apache Storm [12] require the data to be
collected in a single data center. Current research approaches
to improve the performance of window aggregation, such as
Scotty [13, 14], Cutty [3], and Pairs [7] also require data to be cen-
trally available. However, efficiently analyzing an ever-increasing
data volume requires streams to be processed on multiple nodes
as the central collection of data quickly becomes a limiting factor
in processing latency and network cost [17]. While SPEs require
data to be available centrally, wireless sensor networks (WSN)
perform aggregations on multiple nodes close to the data sources.
WSNs drastically reduce the network costs by actively leveraging
the distribution of incoming data streams. However, previous
work on WSNs, such as TAG [10] or Cougar [15], provides only
simple aggregation operations on basic window types.

To bridge the gap between complex central aggregation in
SPEs and distributed basic aggregation in WSNs, we propose
Disco, a distributed complexwindow aggregation approach.While
SPEs processes incoming data in one central stream, Disco lever-
ages the distribution of incoming data streams to perform dis-
tributed window creation and aggregations closer to the sources.
We propose multiple strategies to efficiently merge distributed
windows and their respective aggregates. With this approach,
we benefit from both the reduced network cost of WSNs and the
complex analysis of SPEs.
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In this paper, we make the following contributions: 1.) We pro-
pose Disco, an approach for distributed complex window aggre-
gation that does not require raw data collection on single nodes.
2.) We introduce window merging strategies to distribute the
processing of common window types while maintaining correct
aggregation semantics. 3.) We evaluate Disco and show that the
throughput of our approach scales linearly with the number of
nodes as well as reduces the network cost drastically compared
to state-of-the-art central window aggregation techniques.

The rest of the paper is structured as follows. In Section 2,
we present the foundations of window aggregation that Disco is
built upon. In Section 3, we present our distributed aggregation
approach for arbitrary window types and aggregation functions.
Before concluding, we present our evaluation of these distributed
aggregation concepts implemented in our prototype in Section 4.

2 BACKGROUND
In this section, we present the background of distributed window
aggregation. We first present the two window types on which we
build, as well as two classes of aggregation functions. We then
introduce stream slicing for efficient window aggregations.

Window Types. For this work, we distinguish between two
types of windows, context-free and context-awarewindows [9, 14].
In this case, context refers to the state that is required to calculate
the start- and end-bounds of all the windows up to time t .

Context-free (CF) windows do not require any state and their
bounds can be computed statically. For a time t , all window
bounds can be computed without processing a single event. Ex-
amples of CF windows are tumbling and sliding windows [1, 9].

Context-aware (CA) windows require some kind of state to
determine thewindow bounds, i.e., thewindowing function needs
to see either previous or future events to know when a window
ends. An example of a CA window is a session window [1]. The
windowing function needs to see future events after t in order to
know that a session has terminated at t .

Aggregation Functions. For distributed aggregation, we dis-
tinguish between two classes of aggregation functions, decom-
posable and holistic (or non-decomposable) [4, 5]. Decomposable
functions are aggregations for which the aggregation can be
performed on subsets of the data and merged afterwards, e.g.,
sum{1, 2, 3, 4} = sum{1, 2} + sum{3, 4}. We call the aggregation
values on subsets of the data partial aggregates. Other examples
of decomposable functions are avg, count, and max.

Holistic functions are all functions that are not decomposable,
i.e., they require all values to perform the correct aggregation.
There is no partial aggregation state for these functions. Examples
of holistic functions are median and quantiles.

Stream Slicing. In Disco, we apply general stream slicing [14]
to efficiently aggregate windows. Stream slicing divides windows
into non-overlapping slices. The slices then store either i) a run-
ning, partial aggregate or ii) the individual events, depending
on the aggregation function. The final aggregation result is com-
puted from the individual slices that fall in the window’s range.
For commutative, decomposable aggregations only partial ag-
gregates are needed, leading to a large memory reduction [14].



Figure 1: Disco’s Architecture.
Each event belongs to exactly one slice, thus avoiding redundant
storage and computation compared to other windowing tech-
niques such as Buckets [9]. Also, slices represent logical event
groups that can be transferred between nodes more efficiently
than individual events. We refer to previous work [8, 14] for a
detailed description of stream slicing and its advantages.

3 THE DISCO APPROACH
Efficiently aggregatingwindowed streaming data is a core task for
modern SPEs. State-of-the-art window aggregation techniques re-
quire data to be available centrally on a single node. We introduce
Disco, an approach for distributed window aggregation, which
overcomes the central collection of raw events. Disco processes
the incoming streams independently of each other and creates
independent windows and aggregations onmultiple nodes. These
windowed aggregations are then merged to produce the final
aggregation result. Disco’s components communicate in a tree-
like structure, in which leaf nodes (called child nodes in Disco)
create independent windows and inner nodes (called intermediate
nodes) merge them. This independence allows Disco to scale by
adding new child nodes to process more events and by adding
intermediate nodes to process more child nodes.

In the remainder of this section, we provide an architecture
overview of Disco (Section 3.1) followed by a detailed descrip-
tion of Disco’s window merging strategies (Section 3.2) and its
distributed computation of aggregation functions (Section 3.3).

3.1 Architecture
We show Disco’s architecture in Figure 1. Disco consists of three
main components, the root node, the intermediate nodes, and the
child nodes. These individual components communicate in a tree-
like structure, where each node, except the root, communicates
with exactly one parent node and each node can have many
children, limited only by its network and processing power. Each
event stream connects to one child node, which in turn receives
the raw events. The Window Creator on each child node creates
slices and windows according to user-specified queries 1 . The
child nodes then pass on partial aggregates for each window to
their parent. On the intermediate nodes, a Window Merger then
merges incoming windows according to the strategies presented
in Section 3.2 2 . On the root node, the Root Window Merger
finally merges all partial windows 3 and performs the final
aggregation to retrieve the result for a given window 4 . As
the nodes process events and windows independently, there can
be an arbitrary number of child nodes and intermediate levels,
depending on the scale that the system requires.

Our implementation relies on the Scotty library1 [14] for the
window and slice creation step 1 . Because Scotty requires data

1https://github.com/TU-Berlin-DIMA/scotty-window-processor

Figure 2: No merging for unique windows.

to be available centrally, we extend its windowing concepts to
support distributed windows.

3.2 Distributed Window Merging
Depending on the window characteristics (i.e., type and measure),
Disco selects the appropriate window creation and merging strat-
egy. In particular, Disco differentiates between the two window
types: context-free and context-aware (as described in Section 2).
Disco processes incoming event streams and resulting windows
independently on child nodes. In order to create the correct global
window result over all streams, Disco merges the individual win-
dows. To this end, Disco has to determine which partial windows
belong to the same global window. We present three merging
strategies for distributed window aggregation in Disco, i) unique
windowmerging, ii) context-free merging, and iii) context-aware
merging. For our explanation, we assume there are k independent
child nodes producing windows and one Root Window Merger
that merges the windows to produce a global result.

Window Merging Operations. In order to perform distrib-
uted aggregations, we use the three operations: lift, combine, and
lower to model our aggregation functions [11]. lift converts a
single input value x to an aggregation into a partial aggregate, e.g.,
x = 5 → ⟨sum: 5, count: 1⟩ for avg. combine merges two partial
aggregates into a new partial aggregate, e.g., ⟨5, 1⟩ ⊕ ⟨7, 2⟩ →

⟨12, 3⟩. lower converts the partial aggregate to the final result,
e.g., ⟨12, 3⟩ → 12/3 = 4.

To merge multiple windows, we extend the slice-merge opera-
tion [14] for windows. The window-merge operation ⊎ takes two
windowsw1 andw2 and creates a new windoww with a merged
aggregate state (w .state = combine(w1.state,w2.state)), as well
as the according bounds (w .start = min(w1.start,w2.start)) ∧
w .end =max(w1.end,w2.end).

Unique Window Merging. The first merging strategy that
Disco uses is based on unique windows. A unique window is
a window for which data is present in only one stream. With
no matching data, there are no further windows to merge the
unique window with. This strategy is applicable to queries where
there are no overlapping keys on different nodes and the query
is defined on individual keys only. We show this in Figure 2.
A Window Merger that receives a unique window w , emits w
unchanged and the Root Window Merger calls lower(w .state)
to retrieve the final aggregation result. For unique windows,
we benefit from a distributed aggregation compared to central
processing, as we do not need to transfer raw data to the root
node and we distribute the aggregation cost across all child nodes.
An example for a uniquewindow is a smart home setting inwhich
we calculate the average temperature per house.

Context-FreeWindowMerging.Disco determines towhich
global window a partial context-free window belongs by its
start and end bounds. As the bounds are statically computed
and require no context, they are identical on all nodes. Thus,
equivalent partial windows have equal start and end bounds. We
show this for a sliding window on two nodes in Figure 3. For
each global window w with w .start = x and w .end = y, we
collect the k matching partial windows out of all windowsW ,
{wi ∈ W | wi .start = x ∧wi .end = y} and merge them into a

https://github.com/TU-Berlin-DIMA/scotty-window-processor


Figure 3: Merging distributed context-free windows.

new global result window w = w1 ⊎w2 ⊎ ... ⊎wk . The global
result is then calculated by calling lower(w .state) in the Root
Window Merger. An example of a context-free window is a smart
home setting in which we calculate the average temperature of
all houses for the last hour.

Context-AwareWindowMerging.Unlike context-freewin-
dows, the creation of context-aware windows cannot generally be
distributed. As CA windows require some form of context, Disco
cannot make assumptions about whether this context needs to be
viewed centrally or can be viewed independently. If the window
requires a global view of the context, we cannot create windows
independently on multiple nodes. An example of such a global
view is a count-based window, which uses a global event count
to compute the window bounds.

However, certain CA windows, such as session windows, can
benefit from a distributed aggregation. Session windows termi-
nate if the event stream contains a period of inactivity (gap).
In Disco, we define a period of inactivity across all distributed
streams as a global window gap. A timestamp t is active in the
set of all windowsW if ∃w ∈ W : w .start < t ∧ w .end > t .
A timestamp t is thus inactive if it is not active, i.e., there are
no windows spanning across t . A period of inactivity is bound
by two timestamps tstar t and tend between which there are
no active timestamps. Disco leverages this knowledge to merge
session windows in a distributed manner. Session windows are
created independently on child nodes and the Window Merger
then checks if there is an overlap between received windows.
If an incoming window win overlaps with an existing window
wex , it is merged to produce a new windowwnew = wex ∪win
in their place. Two windows overlap if, and only ifwold .start ≤
wnew .end + дap ∧ wnew .start ≤ wold .end + дap. For session
windows, an overlap between two windows needs to take the
session gap into account as events within the gap would cause
the session to continue in a global stream. An arriving window
can merge multiple windows, e.g., if it is a very long window or
it closes the gap between two currently non-overlapping win-
dows. We show this in Figure 4, where window #1b combines
the windows #1a and #1c because it overlaps with both of them.
An example for a context-aware window is a smart home setting
in which we calculate the average temperature of certain houses
as long as they are actively heating.

3.3 Distributed Window Aggregation
While the window type generally decides whether a window
is computed centrally or distributed, the class of aggregation
function determines which data needs to be transferred between
nodes. For decomposable functions (e.g., sum, avg, count), Disco
transfers partial aggregate values. The partial aggregates are then
merged by the window merger.

As holistic functions require all data for a correct aggregation,
Disco needs to transfer all events to the root. However, Disco does
not send individual events but slices. For holistic functions, the

Figure 4: Merging distributed context-aware windows.

slices contain the raw events and Disco uses these slices to send
logical event groups between nodes. As each slice is immutable
and uniquely identifiable, Disco sends it only once, regardless of
howmany windows it appears in. As all holistic functions require
central processing, the root node is the only node that needs to
store slices to performs aggregations on the events. Intermediate
nodes do not process the data in the slices and thus, do not need
to store the slices. Intermediate nodes only keep track of which
slices they have sent to avoid duplicate transmission.

In summary, local and context-free windows can generally
be distributed, while context-aware windows require certain
data characteristics for distribution. If a window or aggregation
function requires a global ordering of events (e.g., count-based
windows), Disco cannot distribute the window creation across
multiple nodes but requires central processing. For holistic ag-
gregations, Disco transfers slices between nodes and for decom-
posable functions, it sends only partial aggregate values.

4 EVALUATION
In this section, we experimentally evaluate Disco’s scalability
(Section 4.1) and its network efficiency (Section 4.2). We choose
avg and median as representative decomposable respectively
holistic aggregation functions, as they show similar character-
istics to other functions of the same group. We execute our ex-
periments on a cluster consisting of 20 nodes. Each node has an
AMD Opteron 6128 @ 2.0 GHz with 16 physical cores and 32 GB
of RAM. All nodes are running Ubuntu 18.04.3 LTS, OpenJDK
12.0.2 64 bit, and are connected via Gigabit LAN. Furthermore,
Disco and our experiments are available on GitHub2.

4.1 Scalability
In this experiment, we compare the scalability of Disco’s dis-
tributed window aggregations to a centralized implementation.

Workload.We evaluate the throughput of a one-second tum-
bling window query for a decomposable as well as a holistic
aggregate function. We define throughput as sustainable if the
system can handle incoming events without an ever-increasing
backlog at the sender [6]. In the centralized implementation, the
child nodes forward the raw events without processing.

Results. In Figure 5, we observe that Disco scales nearly lin-
early with the number of child nodes for both aggregation types.
For decomposable aggregation functions (e.g., avg in Figure 5a),
each child node can process around onemillion events per second.
In the centralized approach, the root node becomes the bottle-
neck, as it processes all raw data centrally. As a consequence, it
is limited by the single node performance (∼1 million events/s).
In contrast, Disco’s root node receives only one partial window
per second per child node instead of all raw events. Thus, Disco
allows for linear scaling as the majority of the window aggrega-
tions is processed independently across all child nodes.

Furthermore, Disco provides scalability for holistic window
aggregation functions (e.g., median in Figure 5b). Overall, the
median aggregation performs significantly worse than the avg
aggregation as it requires the centralized accumulation of all
2https://github.com/hpides/disco
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Figure 5: Scalability of different aggregations in Disco.

events at the root node. As a consequence, the centralized ap-
proach is limited to a throughput of 0.025 million events/s. In
contrast, Disco also performs window creation and merging of
holistic states on multiple nodes in parallel. Thus, the root node
only receives up to eight windows per second in this experiment.
Consequently, Disco is able to scale nearly linearly for the holistic
median function as the final median calculation on the root does
not become a bottleneck for Disco.

Further scalability experiments show that the root node can
process thousands of holistic and tens of thousands of decompos-
able windows per second before it becomes a bottleneck. Thus,
Disco scales to support thousands of child nodes.

Summary. In this experiment, we showed that Disco scales
linearly with the number of nodes for both decomposable as well
as holistic aggregation functions. Even for functions that require
central aggregation but can be windowed independently, Disco
outperform centralized approaches significantly.

4.2 Network Cost
In this experiment, we evaluate the overall network costs of
distributed and centralized aggregations.

Workload. We scale the height of the network topology to
evaluate the network impact of the number of hops between
child nodes and the root. We measure the total bytes sent for a
one-second tumbling window query on 100 million events.

Results. Overall, we observe in Figure 6 that Disco has a sig-
nificantly lower network footprint compared to a centralized
approach. For decomposable distributed aggregations, the net-
work consumption of the central approach scales linearly with
the height of the network tree (see Figure 6a). In contrast, the
network consumption of Disco stays nearly constant. Disco is
independent of the height of the network topology, as all raw
events are sent exactly once from a sensor to a child node. Beyond
that, the intermediate nodes only exchange one partial aggregate
and some windowmetadata per second. This causes an additional
network traffic of only 1 MB per node level. As a consequence, a
network height of five levels causes up to 6x less network traffic
(2GB) compared to the centralized approach (12GB).

For holistic aggregations (see Figure 6b), Disco needs to send
all raw events to the root node. Already for a tree of height two,
we observe that Disco sends fifty percent more data than for de-
composable aggregations. However, by sending events as groups
of slices instead of individually, we avoid the additional TCP over-
head of a purely centralized approach. While all single events
are sent at each level for a centralized approach, slices become
the smallest message unit in the distributed approach. In this
scenario, we can save 50% per level compared to the centralized
approach, which has a large effect once the tree becomes signifi-
cantly deep. For five levels, we send only 7.5 GB of distributed
slice data compared to 12.4 GB centralized single events.
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Figure 6: Network cost for different aggregations in Disco.
Summary. Sending raw events is the dominant factor of the

network cost. In Disco, we avoid sending individual events be-
tween nodes, which results in a high reduction of network traffic.
For decomposable functions, Disco completely avoids sending in-
dividual events, which drastically reduces the network load. Even
for holistic functions, we reduce TCP overhead by combining
and sending events in slices.

5 CONCLUSION
In this paper, we present Disco, a distributed complex window
aggregation approach. Disco combines the distributed data aggre-
gation concepts from wireless sensor networks with the complex
windowing and aggregation semantics from modern stream pro-
cessing engines. This allows us to reduce network traffic while
providing efficient aggregations on arbitrary windows. Our eval-
uation shows that Disco’s throughput scales linearly and that
Disco significantly reduces network costs compared to a central-
ized approach. With the ever increasing number of sensors in the
IoT, Disco lays a foundation for efficient, application transparent,
distributed stream processing.
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