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ABSTRACT
Scale-out stream processing engines (SPEs) are powering

large big data applications on high velocity data streams.

Industrial setups require SPEs to sustain outages, varying

data rates, and low-latency processing. SPEs need to transpar-

ently reconfigure stateful queries during runtime. However,

state-of-the-art SPEs are not ready yet to handle on-the-

fly reconfigurations of queries with terabytes of state due

to three problems. These are network overhead for state

migration, consistency, and overhead on data processing.

In this paper, we propose Rhino, a library for efficient re-

configurations of running queries in the presence of very

large distributed state. Rhino provides a handover protocol

and a state migration protocol to consistently and efficiently

migrate stream processing among servers. Overall, our eval-

uation shows that Rhino scales with state sizes of up to TBs,

reconfigures a running query 15 times faster than the state-

of-the-art, and reduces latency by three orders of magnitude

upon a reconfiguration.
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1 INTRODUCTION
Over the past years, increasingly complex analytical que-

ries on real-time data have made Stream Processing Engines
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(SPEs) an important component in the big data toolchain.

SPEs power stateful analytics behind popular multimedia

services, online marketplaces, cloud providers, and mobile

games. These services deploy SPEs to implement a wide

range of use-cases, e.g., fraud detection, content recommen-

dation, and user profiling [5, 23, 27, 34, 35, 38, 41]. Further-

more, cloud providers offer fully-managed SPEs to customers,

which hide operational details [1, 2]. State in these applica-

tions scales with the number of users, events, and queries

and can reach terabyte sizes [27]. These state sizes originate

from intermediate results of large temporal aggregations or

joins. We consider state as very large when it exceeds the

aggregated main-memory available to the SPE.

To run applications, SPEs have to support continuous state-

ful stream processing under diverse conditions, e.g., fluctu-

ating data rates and low latency. To handle varying data

rates and volumes, modern SPEs scale out stateful query

processing [39]. Furthermore, SPEs have to transparently

handle faults and adjust their processing capabilities, regard-

less of failures or data rates fluctuatations. To this end, they

offer runtime optimizations for running query execution

plans (QEPs), resource elasticity, and fault tolerance through

QEP reconfigurations [5, 6, 19, 30, 35, 39, 45, 47, 49]. State

management is necessary to enable fault-tolerance, operator

rescaling, and query re-optimization, e.g., load balancing.

Therefore, scale-out SPEs require efficient state management

and on-the-fly reconfiguration of running queries to quickly

react to spikes in the data rate or failures.

The reconfiguration of running stateful queries in the

presence of very large operator state brings a multifaceted

challenge. First, network overhead: a reconfiguration involves
state migration between workers over a network, which re-

sults in more resource utilization and latency proportional to

state size. As a result, this migration overhead increases the

end-to-end latency of query processing. Second, consistency:
a reconfiguration has to guarantee exactly-once processing

semantics through consistent state management and record

routing. A reconfiguration must thus alter a running QEP

without affecting result correctness. Third, processing over-
head: a reconfiguration must have minimal impact on per-

formance of query processing. An SPE must continuously

https://doi.org/10.1145/3318464.3389723
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and robustly process stream records as if no reconfiguration

ever occurred.

Today, several industrial and research solutions provide

state migration. However, these solutions restrict their scope

to small state sizes or offer limited on-the-fly reconfigura-

tions. Apache Flink [3, 5], Apache Spark [46, 47], and Apache

Samza [35], enable consistency but at the expense of perfor-

mance and network throughput. They support large, con-

sistent operator state but they restart a running query for

reconfiguration [5, 35, 47]. Research prototypes, e.g., Chi [30],

ChronoStream [45], FUGU [19], Megaphone [21], SDG [15],

and SEEP [6] address consistency and performance but not

network overhead. They enable fine-grained reconfiguration

but support smaller state sizes (i.e., tens of gigabytes).

In this paper, we show that representatives of the above

systems, i.e., Flink and Megaphone, do not cope well with

large state sizes and QEP reconfigurations. Although the

above systems support stateful processing, they fall short in

providing efficient large state migration to enable on-the-fly

QEP reconfigurations.

To bridge the gap between stateful stream processing and

operational efficiency via on-the-fly QEP reconfigurations

and state migration, we propose Rhino. Rhino is a library for

efficient management of very large distributed state compati-

ble with SPEs based on the streaming dataflow paradigm [2].

Rhino enables on-the-fly reconfiguration of a running

query to provide resource elasticity, fault tolerance, and

runtime query optimizations (e.g., load balancing) in the

presence of very large distributed state. To the best of our

knowledge, Rhino is the first system to specifically address

migration of large state. Although state-of-the-art systems

provide fine-grained state migration, Rhino is optimized for

reconfiguration of running queries that maintain large ope-

rator state. In particular, Rhino proactively migrates state

so that a potential reconfiguration requires minimal state

transfer. Rhino applies a state-centric, proactive replication

protocol to asynchronously replicate the state of a running

operator on a set of SPE workers through incremental check-

points. Furthermore, Rhino applies a handover protocol that

smoothly migrates processing and state of a running opera-

tor among workers. This does not halt query execution and

guarantees exactly-once processing. In contrast to state-of-

the-art SPEs, our protocols are tailored for resource elasticity,

fault tolerance, and runtime query optimizations.

In our evaluation, Rhino reduces reconfiguration time due

to state migration by 50x compared to Flink and 15x com-

pared to Megaphone, as shown in Figure 1. Furthermore,

Rhino shows a reduction in processing latency by three or-

ders of magnitude for a reconfiguration with large state

migration. We show that Rhino does not introduce overhead

on query processing, even when state is small. Finally, we

show that Rhino can handle state migration in a multi-query

scenario with a reduction in reconfiguration time by one

order of magnitude. Overall, Rhino solves the multifaceted

challenge of on-the-fly reconfiguration involving large (and

small) stateful operators.

In this paper, we make the following contributions:

• We introduce the full system design of Rhino and the

rationale behind our architectural choices.

• Wedevise two protocols for proactive large statemigra-

tion and on-the-fly reconfiguration of running queries.

We design these protocols to specifically handle mi-

grations of large operator state. To this end, Rhino

proactively migrates state to reduce the amount of

state to move upon a reconfiguration.

• With Rhino, we enable resource elasticity, fault toler-

ance, and runtime re-optimizations in the presence of

very large distributed state. Rhino’s state migration is

tailored to support these three features.

• Using the NEXMark benchmark suite [40] as repre-

sentative workload, we validate our system design at

terabyte scale against state-of-the-art SPEs.

We structure the remainder of this paper as follows. In

§ 2, we provide background knowledge. We describe the

system design of Rhino in § 3 and its replication and handover

protocols in § 4. We evaluate Rhino in § 5 and provide an

overview of related work in § 6. Finally, we summarize our

work in § 7.

2 BACKGROUND
In this section, we introduce the concepts of stateful stream
processing (see § 2.1) and state management (see § 2.2) as the
underlying foundation of our work.

2.1 Stateful Stream Processing
Modern scale-out SPEs leverage the dataflow execution mo-

del [8] to run continuous queries. This system design enables

the execution of queries on a cluster of servers. A query

consists of stateful and stateless operators [1, 2]. A QEP

is represented as a weakly-connected graph with special

vertices called source and sink operators. Sources allow for

stream data ingestion, whereas sinks output results to exter-

nal systems. To process data, users define transformations

through higher-order functions and first-order functions

(UDFs). Operators and UDFs support internal, mutable state

(e.g., windows, counters, and ML models).

In the rest of this paper, we follow the definitions in-

troduced by Fernandez et al. [6] to model streaming pro-

cessing. In this model, a query is a set of logical operators.

Each logical operator o consists of po physical instances

o1, . . . ,oi , . . . ,opo . A stream represents an infinite set of re-

cords r = (k, t,a), where k ∈ K is a partitioning key, K is
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the key space, t is a strictly monotonically increasing times-

tamp, and a is a set of attributes. An operator produces and

consumes n andm streams, respectively.

To execute a query, an SPE maps the parallel instances of

operators to a set of worker servers. Each operator has its

producer operators (upstream) and its consumer operators

(downstream). A parallel instance receives records from up-

stream operators through channels according to an exchange

pattern, e.g., hash-partitioning. An inter-operator channel is

durable, bounded, and guarantees FIFO delivery. A channel

contains fixed-sized buffers, which store records of variable

size and control events, e.g., watermarks [2]. A channel im-

poses a total order on its records and control events based on

their timestamp, however, instances with multiple channels

are non-deterministic. As a result, there exists a partial order

among records consumed by an instance.

A stateful operator o holds its state So , which is a mutable

data set of key-value pairs (k,v). To scale out, an SPE divides

So in disjoint partitions and assigns a partition Stoi to an

instance oi using k as partitioning key. With t , we denote
the timestamp of the last update of a state partition. A value

v of the state is an arbitrary data type. A parallel instance oi
processes every record in a buffer, reacts to control events,

emits records, and reads or updates its state Stoi .

2.2 State Management in SPEs
Today’s SPEs provide state management through two tech-

niques: state checkpointing and state migration.

2.2.1 State Checkpointing. State checkpointing enables an
SPE to consistently persist the state of each operator, recover

from failures, and reconfigure a running query.

Fernandez et al. propose a checkpointing approach [6, 7]

that stores operator state and in-flight records. This pro-

duces local checkpoints that are later used to reconfigure or

recover operators. In contrast, Carbone et al. [5] propose a

distributed protocol for global, epoch-consistent checkpoints.

It captures only operator state (by skipping in-flight records)

and does not halt query processing. This protocol divides

the execution of a stateful query into epochs. An epoch is a

set of consecutive records that the SPE processes in a time

frame. If query execution fails before completing the i + 1-th
epoch, the SPE rollbacks to the state of the i-th epoch.

The distributed protocol of Carbone et al. [5] assumes reli-

able data channels and FIFO delivery semantics. In addition,

it assumes upstream backups of ingested streams, i.e., sources

can consume records again from an external system. Finally,

it assumes checkpoints to be persisted on a distributed file

system for availability. The drawback of this protocol is the

full restart of a query upon a reconfiguration.
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Figure 1: Time spent to reconfigure the execution of
NBQ8.

2.2.2 State Migration. State migration enables the handover

of the processing and the state of a key partition of an op-

erator among workers [21]. This enables on-the-fly query

reconfiguration to support fault-tolerance, resource elastici-

ty, and runtime optimizations.

Megaphone is the latest approach to state migration [21].

Megaphone is a state migration technique built on Timely

Dataflow [31] that enables consistent reconfiguration of a

running query through fine-grained, fluid state migration.

Megaphone introduces two migrator operators for each mi-

gratable operator in a QEP to route records and state ac-

cording to a planned migration. It requires from an SPE: 1)

out-of-band progress tracking, i.e., operators need to observe

each other’s progress and 2) upstream operators need to ac-

cess downstream state. Its authors state that Megaphone can

be compatible with other SPEs but with some overhead.

3 SYSTEM DESIGN
In this section, we present the design of Rhino, a library that

integrates stateful stream processing with on-the-fly query

reconfiguration. First, we present a benchmark that shows

the shortcomings of current state management techniques

for migration of large operator states (see § 3.1). Second,

driven by our findings, we propose an architectural revision

for scale-out SPEs to handle large state in § 3.2. Finally, we

provide an overview of the protocols and components that

we use to implement this architectural change and build

Rhino (see § 3.3 to § 3.5).

3.1 Benchmark state migration techniques
With large state sizes in mind, we run a benchmark to assess

the stateful capabilities of modern scale-out SPEs. We se-

lect Flink as a representative, industrial-grade SPE due to its

wide adoption and its built-in support for state. We assume

a distributed file system (DFS) [18, 37, 43] to be commonly

deployed with scale-out SPEs for checkpoint storage [5, 35].

Furthermore, we choose Megaphone [21] as it is the most re-

cently proposed scale-out state migration technique. Chi [30]
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is another SPE that provides state migration, yet it is not

available for public access at the time of writing.

In Figure 1, we report the impact on processing latency

during a reconfiguration with varying state size (i.e., rang-

ing from 250 GB to 1 TB) and show results in Figure 1. We

observe that Flink requires a full query restart, which results

in a significant latency spike that hinders processing per-

formance. Our time breakdown, which we fully describe in

§ 5.2.1, indicates that Flink spends the majority of the time

in state materialization from a previous checkpoint prior

to resuming query processing. Upon a reconfiguration, a

parallel instance of a stateful operator retrieves in bulk its

new state from DFS. Every instance quickly retrieves its local

blocks (if any), yet the materialization of remote blocks en-

tails network transfer. As a result, state retrieval introduces

additional latency because every instance pulls its state from

multiple workers.

Although Megaphone provides fine-grained state migra-

tion, we find that it does not handle large state size. All its

executions in our benchmark with more than 500 GB of

state terminated with an out-of-memory error. By inspect-

ing its source code [20], we consider the lack of memory

management to support state migration as the main respon-

sible for this error. However, we observe that Megaphone

can successfully complete fine-grained state migrations, if

state fits main memory. Note that the introduction of a data

structure that supports out-of-core storage, e.g., a key value

store (KVS), would enable Megaphone to store larger-than-

memory state. However, this does not solve the problem of

large state migration as Megaphone migrates key-value pairs

in one batch.

3.2 Rhino
In the previous section, we show that current SPEs do not

properly support large operator state when reconfiguring

a running query. To fill this gap, we build Rhino to sup-

port large state and enable on-the-fly reconfiguration of

running queries by design. Rhino is thus tailored to provide

fine-grained fault-tolerance, resource elasticity, and runtime

optimizations, e.g., load balancing.

The design of Rhino focuses on efficient reconfigurations

and migration of large state. To this end, Rhino introduces

three key techniques. First, Rhino proactively migrates state

such that a reconfiguration requires minimal state transfer.

In contrast to the state-of-the-art, Rhino proactively and peri-

odically persists the state of an operator instance on exactly r
workers of the SPE. Rhino thus executes fast reconfiguration

(handover) from an origin instance to a target instance that

runs on one of the r workers. Second, to control the state size
to be migrated, Rhino asynchronously replicates incremental

checkpoints of the state. As a result, Rhino migrates only

the last incremental checkpoint of the state of an operator

upon a handover. In contrast, other systems transfer state

in bulk [5, 21]. Third, Rhino introduces consistent hashing

with virtual nodes to further partition the key partition of

an operator instance. In Rhino, virtual nodes are the finest

granularity of a reconfiguration.

3.3 Components Overview
Rhino introduces four components in an SPE, i.e., a Replica-
tion Manager (RM), a Handover Manager (HM), a distributed
runtime, and modifications to existing components.

Replication Manager. The replication manager runs on

the coordinator of the SPE and builds the replica groups

of each instance based on the bin-packing algorithm. After

that, the RM assigns replicas to workers. We implement this

component with less that 1K lines of code (loc).

Handover Manager. The handover manager serves as

the coordinator for in-flight reconfiguration with state trans-

fer. Based on a human or automatic decision-maker (e.g.,

Dhalion [17], DS2 [24]), our HM starts a reconfiguration.

After that, it monitors Rhino’s distributed runtime (see be-

low) for a successful and timely completion of the triggered

handover. We implement this component in about 1K loc.

Distributed Runtime. The distributed runtime runs on

theworkers of the SPE. This runtime uses our two application-

level protocols for handover and state-centric replication. We

implement this runtime with less than 5K loc.

Modifications.Besides introducing new components, Rhi-

no also extends stateful operators to 1) receive and broadcast

control events on their data channel, 2) buffer in-flight record

of specific data channels, 3) reconfigure inbound and out-

bound data channels, and 4) ingest checkpointed state for

one or more virtual nodes of an instance. In total, these mod-

ifications require about 2K loc in Flink.

3.4 Host System Requirements
We design Rhino as a library that can be deployed on top of

a scale-out SPE. However, the target SPE has to fulfill the

following requirements.

R1: Streaming dataflow paradigm. Our handover pro-

tocol requires the SPE to follow the streaming dataflow par-

adigm because Rhino relies on markers that flow along with

records from source operators. Common SPEs feature this

paradigm with two processing models: the record-at-a-time

model, adopted by SPEs such as Apache Flink and Apache

Samza [5, 35], and the bulk synchronous processing model,

adopted by SPEs such as Apache Spark Streaming [47]. With

a record-at-a-time model, Rhino can inject a marker in the

record flow at any point in time. In contrast, the bulk syn-

chronous processing model introduces coarse-grained syn-

chronization at the end of every micro-batch. Rhino could
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piggyback a handover on this synchronization barrier to

enable reconfigurations at the expense of increased latency.

R2: Consistent hashing with virtual nodes. Our han-
dover protocol requires techniques for fine-grained reconfig-

uration. A fine-grained reconfiguration requires fine-grained

state migration and record rerouting. To this end, Rhino uses

consistent hashing with virtual nodes [29] instead of tra-

ditional consistent hashing [12, 25]. This enables Rhino to

reassign state to instances and route records at a finer granu-

larity, upon a reconfiguration. Thus, Rhino further partitions

streams and state into a fixed number of virtual nodes, which

are the finest granularity of a reconfiguration.

R3: Mutable State. It is necessary for Rhino that each

operator supports local, mutable state along with distributed

checkpointing [5, 10]. In addition, Rhino requires read and

write access to the internal state of a parallel instance to up-

date it upon a handover. Embedded KVS, e.g., RocksDB [13]

and FASTER [9], provide mutable state compatible with

Rhino. We do not consider external KVS, e.g., Cassandra [29]

and Anna [44], as they would introduce extra synchroniza-

tion in a distributed environment.

In this paper, we select Apache Flink as host system to

deploy Rhino as it meets R1 and R3 (via RocksDB) by design

and requires minimal changes to meet R2. However, Rhino is

compatible with any SPE that fulfills the above requirements,

e.g., Apache Spark, Apache Storm, and Google Dataflow.

3.5 Benefits of Rhino
In this section, we show how current SPEs could benefit from

Rhino and its ability to reconfigure running queries at a fine

granularity and in different scenarios. In particular, Rhino

enables higher operational efficiency through fine-grained

load-balancing (see § 3.5.1), resource elasticity (see § 3.5.2),

and fault-tolerance (see § 3.5.3). Note that the handover pro-

tocol ensures that query execution preserves exactly-once

processing semantics during all operations.

3.5.1 Load balancing. Rhino enables fine-grained load bal-

ancing, which is missing in current SPEs [21, 33]. Load bal-

ancing is beneficial when the SPE detects that a physical

instance O is overwhelmed (e.g., due to data skewness) but

instance T is underloaded. In this case, the SPE requests

Rhino’s HM to migrate the processing and state of some vir-

tual nodes ofO toT , which runs on a worker that has a copy

of the state ofO . After that, the HM triggers a handover that

involves these virtual nodes. When the handover completes,

T takes over the processing of migrated virtual nodes of O .

3.5.2 Resource Elasticity. Rhino enables resource elasticity

for current SPEs and handles rescaling as a special case of

load balancing. To this end, Rhino moves some virtual nodes

of a running instance to a newly spawned instance. In parti-

cular, Rhino enables adding operator instances on an in-use

worker (i.e., vertical scaling) and deploys more instances on

newly provisioned workers (i.e., horizontal scaling).

Overall, Rhino follows a similar course of action for re-

source elasticity as for load balancing. Rhino definesO andT
as the origin and target instances, respectively. In the case of

vertical scaling, Rhino assumes that the SPE deploysT on an

in-use worker, which has a copy of the state ofO . In the case

of horizontal scaling, Rhino provisions a new worker, which

requires a bulk copy of the state. The cost of a bulk transfer is

mitigated by early provision of workers and parallel copies.

3.5.3 Fault Tolerance. Rhino enables fine-grained fault toler-
ance that results in faster recovery time (see Figure 1). Upon

the failure of O , the SPE requests the HM to migrate O on a

the workers that stores a copy of its state and can run a new

instance T . Thus, Rhino triggers a handover that instructs T
to start processing using the last checkpointed state of O . In

addition, the handover instructs upstream and downstream

operators to rewire their channels to connect to T .

4 THE PROTOCOLS
In this section, we describe Rhino’s protocols in detail. We

first introduce the handover protocol in § 4.1 and then the

replication protocol in § 4.2.

4.1 Handover Protocol
In this section, we define our handover protocol (see § 4.1.1),

its steps (see § 4.1.2), and correctness (see § 4.1.3).

4.1.1 Protocol Description. To enable fine-grained reconfi-

guration of a running query, our handover protocol defines

three aspects. First, it defines the concept of configuration

epochs for a running stateful query. Second, it defines how

to transition from one configuration epoch to the next. Third,

it defines what properties hold during a handover.

Configuration epoch. Our protocol discretizes the ex-
ecution of a query into configuration epochs of variable

length. A configuration epoch Ea,b is the non-overlapping

time interval betweens two consecutive reconfigurations

that occur at time a and b, respectively. An epoch is indepen-

dent from any windowing semantics or checkpoint epochs.

The first epoch begins with the deployment of a query. Dur-

ing an epoch, each instance processes records using fixed

parameters, i.e., assigned worker, input and output channels,

state partition, and assigned virtual nodes. The task of the

handover is to consistently reconfigure the parameters of a

running instance. This involves state migration as well as

channel rewiring. Furthermore, it triggers the transition to

the next epoch.
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Figure 2: Steps (left to right) of the Handover Protocol of Rhino.

Handover. A handover reconfigures a non-source opera-

tor of a running query at time t . This ends the epoch Ea,t and
starts Et ,b . As a result, records with timestamp in interval

[a, t] are processed with a configuration and records with

timestamp in [t,b] are processed with a new configuration.

A handover involves 1) the propagation of handover mark-

ers, 2) state migration, and 3) channel rewiring. A handover

marker (1) is a control event that flows from source operators

to the instances to reconfigure through all dataflow channels.

A handover marker carries the configuration update that

involves the origin and target instances and their upstream

and downstream instances. This is inspired by Chi’s idea

of embedding control messages in the dataflow to reconfi-

gure queries [30]. As soon as the origin instance receives

a marker on all its inbound channels, it migrates state (2)

to the target instance. When the target instance receives its

markers and the state from the origin instance, it takes over

processing. Channel rewiring (3) ensures that records are

consistently routed among upstream, downstream, origin,

and target instances.

Epoch alignment. To perform a consistent reconfigu-

ration at time t , we use handover markers to induce an

instance-local synchronization point. To this end, we use

an epoch alignment algorithm, similarly to the checkpoint-

ing approach of Carbone et al. [5]. Recall that an instance

nondetermistically polls records and control events from its

channels. Therefore, it is necessary to ensure a total order

among otherwise partially ordered records. When a marker

with timestamp t arrives at an instance from a channel, it

signals that no record older than t is to be expected from

that channel. Since newer records have to be processed with

the new configuration, the instance has to buffer upcom-

ing records on that channel to process them later. When

an instance receives all markers, no record older than t is
in-flight. As a result, the instance reaches its synchronization

point and the reconfiguration takes place. Target instances,

however, must wait for state migration to complete.

4.1.2 Protocol Steps. In this section, we define the steps of

our handover protocol. To do so, we first provide an example

and then a formal description of each step.

Example. The SPE requests Rhino to migrate the process-

ing of red records from origin instance O to target instance

T (see Figure 2). Instances O and T run on distinct workers.

To fulfill the SPE’s request, the HM triggers a handover and

source instances S1 and S2 inject a handover marker into

the dataflow 1 . When receiving a marker on a channel,

instances O and T buffer records further arriving on that

channel 2 . Upon receiving all markers, O migrates the red

state 3 . At the completion of the state transfer, O and T

acknowledge the HM 4 . Next, upstream instances S1 and

S2 send red records to T instead of O . Finally, instance O , T ,
D1, and D2 acknowledge the HM.

Step 1. Assume that running instances completed a check-

point at time t ′. Based on a policy, an SPE triggers a handover

at time t between the origin instance O and the target in-

stance T for a virtual node (kl ,kq]. The handover assumes

previously checkpointed state of O to be replicated on the

worker running T and that no checkpoint is in-flight.

Step 2. The protocol defines the following actions for an

operator instance, which we summarize in Figure 2.

1 Source operators injects a handover marker ht in their

outbound channels.

2 When an instance I receives ht on one of its inbound

channel, it buffers incoming records on that channel.

3 Upon receiving ht on all its inbound channel, I broad-
casts a handover marker on its outbound channels and

performs Step 3.

4 When T receives the checkpointed state for (kl ,kq], it
processes buffered records that arrived aftermt .

Step 3.According to its position (upstream or downstream)

with O and T , I reacts using one of the following routines.

First, if I is an upstream instance, it rewires the output chan-

nels for (kl ,kq] to send records to T . Second, if I is a down-
stream instance and T is a new instance, it rewires its in-

bound channels to process records from T . Third, if I is the
origin instance, it triggers a local checkpoint t , which Rhino

transfers to T , and releases unneeded resources. Fourth, if I
is the target instance, it loads checkpointed state of O and

then consumes buffered records. If origin instance has failed,

Rhino does not migrate state and relies on upstream backup
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to replay records, if necessary. Note that operators are aware

of an in-flight handover and ignore seen records based on

their timestamps. As a result, O processes records of (kl ,kq]
with a timestamp smaller than t , whereasT processes records

with a timestamp greater than t .
Step 4. As soon as an instance completes its steps, it ac-

knowledges the HM.When all instances successfully send an

acknowledgment, the HM marks the handover as completed.

Our handover protocol needs upstream backupwhen a fail-

ure occurs. The upstream backup can be a source operator or

windowed operator that keeps in-flight windows. They can

replay records from an external system or the window state.

In the latter case, downstream operators must acknowledge

when it is safe to delete the content of a window.

Note that the handover protocol is not fault-tolerant. A

failure that occurs during a handover may restart the pro-

tocol. We plan to make our protocol fault-tolerant as future

work, e.g., via fine-grained, upstream buffering of records.

4.1.3 Correctness guarantees. A handover between two in-

stances has the following correctness guarantees.

Theorem 1. Consider a handover that migrates the state

St−1 of the virtual node (kl ,kq] from O to T at timestamp

t . The protocol guarantees that: 1) T receives St−1 at t and
then processes records with keys in (kl ,kq] and timestamps

greater than t and 2) the handover completes in finite time.

Proof. Let t − 1 be the timestamp of the last processed

record and St−1 the state ofO and assume thatT has received

all previous incremental checkpoints from O . Recall that an

instance is aligned at time t if it has processed all records

bearing timestamps smaller than t . In our setting, the align-

ment at time t occurs when an instance receives the handover
marker ht on its channels and has no in-flight checkpoint.

The alignment at an upstream instance results in the routing

to T of records with keys in (kl ,kq] and timestamp greater

than t . Note that these records are not processed until the

handover on T occurs. The alignment at t on O results in a

incremental checkpoint of the state St−1, which is migrated

to T . The alignment of T occurs upon receiving markers on

its channels and the incremental checkpoint of St−1 from
O . Thus, T receives St−1 at time t and only then processes

recordswith keys in (kl ,kq] and timestamps greater than t (1).
State transfer, channel rewiring, and acknowledgment to co-

ordinator are deterministic operations. In addition, channels

are FIFO and durable, thus, they eventually deliver handover

markers to instances. As a result, a handover completes in

finite time (2).

4.2 Replication Protocol
In this section, we describe our state replication protocol and

how we use it to guarantee timely handovers between two

stateful instances.

SERVER #1

WORKER #1

DFS #1
SERVER #2

WORKER #2

DFS #2
SERVER #3

WORKER #3

DFS #3

INSTANCE DFS BLOCK RHINO REPLICA

(a) Block-centric.

SERVER #1

WORKER #1

SERVER #2

WORKER #2

SERVER #3

WORKER #3

(b) State-centric.

Figure 3: Block-centric vs. state-centric replication.
Black and red arrows indicate local and remote fetch-
ing, respectively.

4.2.1 Protocol description. Our state-centric replication pro-

tocol enables us to asynchronously replicate the local check-

pointed state (primary copy) of a parallel instance of an

operator on r workers of the SPE (secondary copies). It as-

sumes that the SPE periodically triggers global checkpoints.

Rhino replaces the block-centric replication of traditional

DFS with a state-centric protocol. The intuition behind our

protocol is that Rhino proactively migrates state of each

instance through incremental checkpoints to ensure that

a target instance during a handover has the latest copy of

its state. The protocol assumes each worker to have dedi-

cated storage units to locally fetch checkpointed state. This

allows the SPE upon a reconfiguration to spawn or reuse an

instance on a worker that already stores the state for this

instance. Traditional DFSs and disaggregated storage do not

guarantee this property as block placement is transparent

to client systems. As a result, the SPE must query the DFS

to retrieve necessary blocks. The retrieval is either local or

remote depending on the placement of each block.

In Figure 3, we show an example of configuration of block-

centric and state-centric replication. With block-centric repli-

cation, the state of each operator instance is split into mul-

tiple blocks, which are replicated on 3 servers. With state-

centric replication, the state of each operator instance is en-

tirely replicated on 2 servers. This improves replica fetching

upon a recovery.When server 1 fails, its stateful instances are

to resume on servers 2 and 3. With block-centric replication,

server 3 fetches B1 and B2 from server 2. With state-centric

replication, fetching is local.

4.2.2 Protocol phases. Our state-centric replication proto-

col consists of two phases. The first phase of the protocol

instructs how to build replica groups for each stateful in-

stance. A replica group is a chain of r workers, which owns
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the secondary copy of the state of a parallel instance, i.e., the

state of all virtual nodes. The second phase defines how to

perform asynchronous replication of a primary copy to its

replica group.
Phase 1: Protocol Setup. The RM configures the proto-

col at deployment-time of a query or upon any change in

a running QEP. Through a placement algorithm, e.g., bin

packing, the RM creates a replica group of r distinct work-
ers for each stateful instance. In this paper, we assume that

workers have equal capacities and use all available workers

for the replication of the global state. However, we leave the

investigation of other placement algorithms and heuristics

as future work. Overall, the RM assigns to every worker a

set of secondary copies to maintain.

Phase 2: Distributed Replica Transfer.Our distributed
replication runtime implements a state-centric replication

protocol that follows the primary/secondary replication pat-

tern [4, 36] with chain replication [42]. We choose chain

replication as it guarantees parallel replication with high

network throughput. In addition, we use credit-based flow

control [28] for application-level congestion control.

Each member of the chain asynchronously stores the re-

ceived data to disk and forwards the data to its successor in

the chain. As soon as the last worker in a chain stores the

copy of the checkpointed state to disk, it acknowledges its

predecessor in the chain, which does the same. When the

owner of the primary copy receives the acknowledgment,

it marks the checkpoint as completed and releases unneces-

sary resources. The replication of a checkpoint completes

successfully only if the runtime successfully acknowledges

all copies within a timeout. When the replication process is

completed, Rhino marks the checkpoint as completed.

4.2.3 Correctness guarantees. Our replication protocol strict-
ly follows the fault-model behind chain replication [42]. We

assume fail-stop workers that halt upon a failure, which

they report to replication manager (RM). Our protocol dis-

tinguishes two failures: 1) failure on a running operator and

2) failure on the replica group. If the primary owner fails,

the RM halts the replication for the failed operator and only

when it resolves the failure, the replication resumes. If a

worker in a replica group fails, the RM removes the failed

worker and replaces it with another worker.

5 EVALUATION
In this section, we experimentally validate the system design

of Rhino and compare it against three systems under test

(SUTs [32]): Apache Flink, Megaphone, and RhinoDFS (a

variant that uses HDFS for state migration). First, we describe

the setup of our evaluation in § 5.1. After that, we evaluate

state migration in the case of a virtual machine (VM) failure

in § 5.2. In § 5.3, we show the overhead that Rhino introduces

during query processing. Next, we evaluate vertical scaling

(§ 5.4.1) and load balancing (§ 5.4.2). Finally, we examine

our SUTs under varying data rates (§ 5.5) and sum up the

evaluation (§ 5.6).

5.1 Experiment Setup
In this section, we introduce our experimental setup (§ 5.1.1),

our workloads (§ 5.1.2), SUT configuration (§ 5.1.3), stream

generator (§ 5.1.4), and SUT interaction (§ 5.1.5).

5.1.1 Hardware and Software. In our experiments, we de-

ploy our SUTs on a mid-sized cluster that we rent on Google

Cloud Platform. The cluster consists of 16 n1-standard-16
virtual machines. Each VM is equipped with 16 2 Ghz Intel

Xeon (Skylake family) vcores, 64 GB of main memory, and

two local NVMe SSDs. These VMs run Debian 9 Cloud, use

the OpenJDK JVM (version 1.8), and are connected via a 2

Gbps/vcore virtual network switch.

In our evaluation, we use Apache Flink 1.6 as baseline and

Apache Kafka 0.11 as a reliable message broker that provides

upstream backup [22]. Apache Flink ships with RocksDB [13]

as out-of-core storage layer for state. Each stateful operator

instance in Apache Flink has its own instance of RocksDB.

We pair Flink with the Apache Hadoop Distributed File Sys-

tem (HDFS) version 2.7 as persistent checkpoint storage. Fi-

nally, we use the Megaphone implementation (rev: abadf42)
available online [20].

5.1.2 Workloads. We select the NEXMark benchmark suite

to experimentally validate our system design [40]. This suite

simulates a real-time auction platform with auction, bids,

and new user events. The NEXMark benchmark consists of

three logical streams, i.e., an auction stream, a bid stream,

and a new user event stream. Records are 206 (new user),

269 (auction), and 32 (bid) bytes large. Every record stores

an 8-bytes primary key and an 8-bytes creation timestamp.

The suite features stateless (e.g., projection and filtering) and

stateful (e.g., stream joins) queries.

We use query 5 (NBQ5) and query 8 (NBQ8) and we de-

fine a new query (NBQX) that consists of five sub-queries.

Based on the these queries, we define three workloads to

assess our SUTs. First, NBQ5 contains a window aggregation

with a window of 60 secs and 10 secs slide on the bid stream.

We select NBQ5 as it features small state sizes and a read-

modify-write state update pattern. Second, NBQ8 consists

of a tumbling window join on 12 hours in event time on

the auction and new user streams. We choose NBQ8 since

it reaches large state sizes due to its append state update

pattern. Third, NBQX contains multiple four session window

joins with 30, 60, 90, 120 minutes gap and a tumbling win-

dow join of four hours on the auction and bid stream. We

select NBQX as it contains multiple queries that alone have
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mid-sized state but result in large state size by running con-

currently. Furthermore, NBQX features append and deletion

update patterns.

5.1.3 SUT Configuration. We deploy Flink, Megaphone, Rhi-

noDFS, and Rhino on eight VMs, Kafka on four VMs, and our

data generator on four VMs. We use this configuration to

ensure that Kafka and our data generator have no throughput

limitations. We spawn HDFS instances on the same VMs

where the SUTs run. In addition, we reserve one VM to run

the coordinators of Flink and Rhino.

Flink and Rhino. To configure Flink (and Rhino), we

follow its configuration guidelines [16]. On each VM, we

allocate half cores for processing and the other half for net-

work and disk I/O. We allocate 55% of the OS memory to

Flink and Rhino, which they divide equally in on-heap and

off-heap memory. Flink and Rhino use the off-heap mem-

ory for buffer management and on-heap memory for data

processing. We assign the remaining memory to RocksDB

and the OS page cache. In addition, we assign one dedicated

SSD to Rhino’s replication runtime. Finally, we use 2
15
key

groups for consistent hashing and 4 virtual nodes for Rhino

as these values lead to best performance for our workloads.

Megaphone. We configure Megaphone to use half of the

cores for stream processing and the other half for network

transfer, following TimelyDataflow’s guidelines [20]. In addi-

tion, we configure Megaphone to use 2
15
bins to be compliant

to Rhino’s setup.

RocksDB. We configure RocksDB for SSD storage, fol-

lowing best practices [14]. To this end, we use fixed-sized

memtables (64 MB), bloom filters (for point lookup), and 64

MB as block size for string sorted tables.
HDFS. We configure HDFS for Flink and RhinoDFS with

a replication factor of two, i.e., each block is replicated to two

VMs. As a result, HDFS replicates the first copy of a state

block locally and the second block on a different VM. To

simulate this replication factor, we configure Rhino to store

a local copy (primary copy) and a remote copy (secondary

copy) of the state.

Kafka. We let Kafka use all SSDs, all cores, and 55 GB of

page cache on each VM, following best practices [11]. We

configure Kafka to batch records in buffers of 32 KB with a

maximum waiting time of 100 ms. We use three Kafka topics

with 32 partitions each to represent 32 new user, 32 bid, and

32 auction streams.

5.1.4 Stream Generator. We implement a stream generator

to produce three logical streams of new user, bid, and auc-

tion events. Our generator concurrently creates 32 physical

streams for each logical stream. To minimize JVM overhead,

we implement our generator by omitting managed object

allocation and garbage collection.

To assess the SUTs, we let our generator produce records

at the maximum sustainable throughput of all SUTs. The

maximum sustainable throughput is the maximum rate at

which an SPE can ingest a stream and output results at con-

stant, target latency [26]. To this end, we experimentally find

the sustainable throughput for each query. Thus, we config-

ure the generator to generate each stream at 128 MB/s for

NBQ5 (target latency 500 ms) and 8 MB/s for NBQ8 (target

latency 500 ms) and NBQX (target latency 5 s). Overall, we

deploy four generators with eight running threads each for a

total throughput of 4 GB/s (~135 M records/s) for NBQ5, 256

MB/s for (~500 K records/s) for NBQ8, and 256 MB/s (~3.45

M records/s) for NBQX. Primary keys (auction id, person id)

are generated randomly following uniform distribution.

Note that Megaphone does not support real-time data

ingestion via external systems as this results in increasing

latency. Therefore, Megaphone generates records on-demand

within its source operators.

5.1.5 SUT Interaction. Unless stated otherwise, we run our

SUTs in conjunction with Kafka and our own custom gen-

erator. We follow the methodology of Karimov et al. [26]

for end-to-end evaluation of SPEs. To this end, we decouple

the data generator, Kafka, and SPE. We denote the end-to-

end processing latency as the interval between the arrival

timestamp at the last operator in a pipeline and the creation

timestamp of the record. Our generator creates timestamped

records in event time and sends them to Kafka, which acts as

reliable message broker and replays streams when necessary.

We implement our queries in Flink and Rhino using built-

in operators. Each source runs with a degree of parallelism

(DOP) of 32 to fully use Kafka parallelism, i.e., one thread per

partition. We run the join and aggregation operators with

a DOP of 64 to fully use SUT parallelism. We instrument

the join and aggregation operators to measure processing

latency.We repeat each experimentmultiple times and report

mean, minimum, and 99-th percentile measurements.

5.2 Rhino for Fault Tolerance
In this set of experiments, we examine two important aspects

of an SPE. First, we evaluate the performance that a modern

SPE exhibits in restoring a query with large operator state

(see § 5.2.1). Second, we measure the impact of recovering

from a failure on processing latency (see § 5.2.2).

5.2.1 Recovery Time. In this experiment, we run a bench-

mark using NBQ8 to measure the time required for our SUTs

to recover from a failure with varying state sizes. Then, we

perform a time breakdown of the time spent in the recovery

process. Finally, we compare our results, which we summa-

rize in Table 1.
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State
Size SUT Scheduling State

Fetching
State

Loading

250 GB

Flink 2.2 ± 0.1 68.2 ± 5.7 1.3 ± 0.2

Rhino 2.8 ± 0.2 0.2 ± 0.1 1.3 ± 0.3

RhinoDFS 2.9 ± 0.2 10.7 ± 3.1 1.3 ± 0.1

Megaphone 46.3 ± 2.8

500 GB

Flink 2.5 ± 0.2 116.6 ± 4.9 1.8 ± 0.3

Rhino 3.1 ± 0.3 0.2 ± 0.1 1.3 ± 0.3

RhinoDFS 3.0 ± 0.3 18.9 ± 3.7 1.3 ± 0.5

Megaphone 74.8 ± 3.0

750 GB

Flink 2.6 ± 0.3 205.3 ± 5.2 1.3 ± 0.1

Rhino 3.0 ± 0.2 0.2 ± 0.1 1.5 ± 0.1

RhinoDFS 2.6 ± 0.1 36.1 ± 2.3 1.5 ± 0.2

Megaphone Out-of-Memory

1000 GB

Flink 2.4 ± 0.3 252.9 ± 5.9 1.5 ± 0.2

Rhino 3.0 ± 0.2 0.2 ± 0.1 1.5 ± 0.2

RhinoDFS 2.9 ± 0.3 62.7 ± 0.9 1.5 ± 0.1

Megaphone Out-of-Memory

Table 1: Time breakdown in seconds for state migra-
tion during a recovery.

Workload. For this experiment, NBQ8 runs until it reaches

the desired state size of 250 GB, 500 GB, 750 GB, and 1 TB.

Next, we terminate one VM and measure the time spent by

our SUTs to reconfigure the running query. Furthermore, we

configure the interval of incremental checkpointing to three

minutes for Flink and Rhino variants.

We distinguish three operations that comprise a recovery,

i.e., scheduling, state fetching, and state loading. Scheduling

is the time spent in triggering a reconfiguration . State fetch-

ing is the time spent in retrieving state from the location of

the previous checkpoint. State loading is the time spent in

loading checkpointed state into the state backend.

Result. The time-breakdown in Table 1 shows three as-

pects. First, we observe that the most expensive operation

for block-centric replication is state fetching for RhinoDFS

and Flink. This dominates the overall recovery process and

depends on the state size. In contrast, Rhino’s state-centric

replication reduces the state fetching overhead significantly.

Performance increases due to local state fetching, which

involves hard-linking instead of network transfer.

Second, scheduling and state loading have negligible im-

pact on the recovery duration. In particular, scheduling is

about 25% faster in Flink because Flink triggers a recovery im-

mediately. In contrast, Rhino starts a reconfiguration through

handovers that reach target instances based on their process-

ing speed. For Rhino and Flink, state loading in RocksDB only

needs to open the data files and process metadata files. After

the load, the state resides in the last level of the LSM-Tree

and is ready to be queried by the SPE.

Third, we observe that Megaphone does not support work-

loads withmore than 500 GB of state as it runs out of memory.

For state smaller than 500 GB, Megaphone spends the major-

ity of time to schedule migrations, serialize state into buffers,

write buffers on the network, deserialize buffers, and restore

state. Note that Megaphone overlaps the above operations on

a key basis, e.g., it schedules and migrates state of different

keys at the same time. Therefore, it was unfeasible for us to

break down its migration times.

Discussion. This experiment outlines that Rhino efficient-

ly recovers a query from a VM failure in a few seconds, even

in the presence of large operator state. This improvement

is due to local state fetching, which is only marginally im-

pacted by state size. In contrast, state fetching in Flink and

RhinoDFS entails network transfer and introduces latency

proportional to the state size. In particular, RhinoDFS is faster

than Flink because of fine-grained operator restart but does

not achieve low-latency. Instead, Flink fully restarts NBQ8,

which results in a 50x higher latency. In our setup, Mega-

phone does not reach all desired state sizes due to lack of

memory management for state-related operations. This pre-

vents Megaphone from supporting large state workloads.

In the cases where Megaphone can sustain a workload, its

state migration is up to 1.5x faster than Flink’s one. Overall,

Rhino improves recovery time by 50x compared to Flink, 15x

compared to Megaphone, and 11x compared to RhinoDFS.

Note that we run the same benchmark on NBQ5 and

all SUTs had comparable recovery time. This suggests that

Rhino’s design is beneficial if queries require large state.

5.2.2 Impact on Latency. In this experiment, we examine the

impact of state migration on the end-to-end processing la-

tency in Flink, Rhino, and RhinoDFS.We excludeMegaphone

in the following experiments as it provides state migration

but does not have mechanisms for fault-tolerance and re-

source elasticity. Therefore, the optimizations provided by

Megaphone are orthogonal to our work.

Workloads. In this experiment, we run NBQ8, NBQ5,

and NBQX on eight VMs. We terminate one VM after three

checkpoints and let each system recover from the failure.

Upon the failure, the overall state size of the last checkpoint

before the failure is approximately 190 GB (NBQ8), 26 MB

(NBQ5), and 180 GB (NBQX). After the failure, we let the

SUTs run for other three checkpoints and then we terminate

the execution. In Figure 4a, 4b, and 4c, we report our latency

measurements, which we sample every 200 K records.

Result. Figures 4a, 4b, and 4c shows that Rhino and Flink

can process stream events with low overhead at steady state.

For NBQ8 and NBQ5, the average latency for both systems

is stable around 100 ms (min: 2 ms, p99: 6.8 s). For NBQX,

the average latency is 5 s (min: 1 s, p99: 12 s). Note that the

higher max latencies are due to the synchronous phase of a

checkpoint, which pauses query processing.
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(a) Fault Tolerance NBQ8.
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(b) Fault Tolerance NBQ5.
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(c) Fault Tolerance NBQX.
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(d) Vertical Scaling NBQ8.
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(e) Vertical Scaling NBQ5.
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(f) Vertical Scaling NBQX.
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(g) Load Balancing NBQ8.
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(h) Load Balancing NBQ5.
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(i) Load Balancing NBQX.

Figure 4: End-to-end Processing Latency in ms (using log-scale) for our fault tolerance, vertical scaling, and load
balancing experiments. The vertical black bar represents the moment we trigger a reconfiguration.

Upon a VM failure, we observe that latency in Rhino is

not affected, whereas the latency of Flink increases up to

300 s. After recovery, Rhino’s variants do not exhibit any

impact on latency. In contrast, Flink accumulates up to 300

s of latency lag from the data generator and cannot resume

processing with sub-second latency after an outage.

Discussion. Overall, our evaluation confirms that Rhino’s

design choices result in a robust operational behavior. Rhino

handles a VM failure without increasing latency, whereas

Flink increases latency by three orders of magnitude.

The main reasons for Flink’s decreased performance is

three-fold. First, Flink needs to stop and restart the running

query, which takes a few seconds. Second, deployed operator

instances need to fetch state through HDFS prior to resuming

processing. Third, Flink needs to replay records from the

upstream backup, which negatively affects latency, whereas

Rhino buffers records internally.

Although latency in Rhino is stable after a handover, the

SPE is expected to provision a new worker to replace the

failed VM. Afterwards, Rhino can migrate again the opera-

tors to rebalance the cluster.

5.3 Overhead of Rhino
In this experiment, we evaluate the impact of state-centric

replication on query processing. To this end, we measure

latency and OS resource utilization with the SUTs running

below their saturation point, i.e., the generator rate is set

to maximum sustainable throughout. In Figure 4, we show

the processing latency of Rhino and Flink before and after

a handover takes place (i.e., indicated by the vertical black

line). As shown, the latency of query processing (on the left

of the black line) is negligibly affected by Rhino’s approach

in comparison to block replication of Flink and RhinoDFS.
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As a result, Rhino does not increase processing latency of a

query when there is no in-flight reconfiguration.

In Figure 5, we report aggregated CPU, memory, network,

and disk utilization of our cluster. Rhino and Flink use net-

work to read from Kafka and to perform data exchange and

state migration among VMs. They use disk to update state

stored in RocksDB and to migrate state among VMs. In con-

trast, Megaphone requires network for processing and mi-

grations but no disk. Before the reconfiguration, we observe

that Rhino and Flink have similar resource utilization during

query processing as they execute the same routines. We also

notice periodical peaks in all charts, which occur at every

checkpoint/replication. In contrast, CPUs usage in Mega-

phone is constant because of a fiber-based scheduler. Mega-

phone’s memory consumption increases over time since it

allocates memory on-demand from the OS.

During a replication, Rhino uses up to 30% network band-

width and 5% disk write bandwidth more than Flink. How-

ever, the higher utilization of network bandwidth results

in an up to 3.5x faster state transfer than Flink. Further-

more, Rhino requires 25% less CPU in comparison to Flink,

whereas memory consumption is the same. We do not ob-

serve spikes in network utilization for Megaphone as it mul-

tiplexes state migration with data exchange. After a reconfig-

uration, Rhino and Flink exhibit similar resource utilization.

However, Rhino resumes proactive migration after the re-

configuration (minute 23), while Flink is still resuming query

processing. To sum up, the experiment shows that proac-

tive state migration of Rhino does not negatively impact

processing latency.

5.4 Rhino for Resource Efficiency
In this section, we assess the performance of Rhino, Rhin-

oDFS, and Flink when they perform vertical scaling (see

§ 5.4.1) and load balancing (see § 5.4.2). We find that hori-

zontal scaling performs similarly to vertical scaling with a

slowdown proportional to the size of the state scheduled for

migration. Therefore, we omit its evaluation in this section.

5.4.1 Vertical Scaling. In this section, we evaluate the ver-

tical rescaling of NBQ8, NBQ5, and NBQX by adding extra

instances on running workers.

Workload. In this experiment, we run NBQ8, NBQ5, and

NBQX on eight VMs (max DOP is 64). We configure each

worker to not use full parallelism, i.e., the DOP of the state-

ful join and aggregation operators is 56 (seven instances

per VM). We set the checkpoint interval to two minutes to

avoid overhead due to continuous checkpointing. After three

checkpoints, we trigger a rescaling operation and switch to

full parallelism (64 instances, eight per VM). The overall state

size of the last checkpoint before rescaling is approximately

220 GB (NBQ8), 26 MB (NBQ5), and 170 GB (NBQX). After

rescaling, we let the SUTs run for three checkpoints and then

stop the execution. We collect latency measurements and

report them in Figure 4d, 4e, and 4f.

Result. Figures 4d, 4e, and 4f show that the average la-

tency for Rhino’s variants is stable. The SUTs can keep av-

erage latency of NBQ8 around 130 ms (min: 2 ms, p99: 11

s) for Rhino’s variant and 129 ms (min: 2 ms, p99: 9 s) for

Flink. In NBQ5, average latency is about 75 ms (min: 2 ms,

p99: 119 ms) for all SUTs. For NBQX, average is about 5 s

(min: 1 s, p99: 10 s) for all SUTs. As in previous experiment,

the high maximum latency is due to the synchronous phase

of a checkpoint and higher complexity of NBQX.

Upon rescaling in NBQ8, we observe that latency of Flink

increases up to 570 s, whereas RhinoDFS has a sudden spike

to 30 s. After scaling, processing latency for Rhino increases

to 146 ms in NBQ8. We observe that latency drops to 118 ms

after 120 s. In contrast, Flink accumulates ~10m of latency lag

from the data generator in NBQ8. NBQX has similar behavior

due to large state sizes. Finally, the execution of NBQ5 is

stable in all SUTs before and after the reconfiguration. Upon

rescaling, Flink exhibits a spike in latency of 1 s.

Discussion. Overall, this experiment confirms that Rhino

supports vertical rescaling without introducing excessive

latency on query processing among all queries. In contrast,

Flink induces an increased latency of up to three orders of

magnitude in NBQ8. This latency spike is significant in NBQ8

as Flink needs to restart a query and reshuffle state among

workers. In contrast, Rhino need to checkpoint and migrate

~32 GB of state among workers and have similar performance

in NBQ8 and NBQX. When state is small (NBQ5), Flink and

Rhino have similar performance because state migration is

not a bottleneck.

5.4.2 Load balancing. In this section, we examine how fast

Rhino and Megaphone can reconfigure NBQ8, NBQ5, and

NBQX to balance the load among stateful join instances. As

there is no implementation of load balancing in Flink, we

compare load balancing against vertical scaling.

Workload. In this experiment, we deploy NBQ8, NBQ5,

andNBQXon eight VMs.We follow the samemethodology of

the experiment in § 5.4.1. After three checkpoints, we trigger

a load balancing operation that moves half virtual nodes from

eight instances (one per VM) to other eight instances. We do

the same for Megaphone but do not trigger checkpoints.

Result.Our latencymeasurements in Figures 4g, 4h, and 4i

show that Rhino sustains large state stream processing with

an average latency of 110 ms in NBQ8. During a load ba-

lancing operation, we observe a latency increase of ~60 ms,

which Rhino mitigates in one minute. Afterwards, latency is

constant with minor fluctuations during checkpointing and

proactive state migration. In NBQ5, we observe that Rhino’s

rebalancing is highly effective such that latency decreases
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from 60 ms to 20 ms for some minutes. In contrast, the la-

tency of Flink reaches 500 ms for a few seconds after the

reconfiguration. In NBQX, we observe that Rhino does not

introduce latency after a rebalancing, which stays constant

at around 4 sec. Instead, Flink’s latency reaches 3.5 min after

the reconfiguration. During the reconfiguration of NBQ8 and

NBQX, the latency of Megaphone reaches 23.6 s and 10.2 s

for ~90 s, respectively.

Discussion. This experiment shows that Rhino supports

load balancing via migration of virtual nodes with mini-

mal impact on latency in NBQ8, NBQ5, NBQX. This exper-

iments shows that Megaphone’s migration affects latency

if migrated state is large, i.e., 27 GB. Overall, compared to

vertical scaling, our load balancing technique keeps latency

constant, whereas Flink shows an increment in latency by

three orders of magnitude.

5.5 Migration under varying data rates
In the following, we show how Rhino supports query pro-

cessing and state migration under varying data rates. We

select NBQ8 for this experiment as it results in larger state.

Workload.We use the same setup as in § 5.2.2 with the

following changes. We configure our data generator to pro-

duce records at varying speed. Each producer thread initially

generates data at 1 MB/s. Every 10 s, data rate increases by

0.5 MB/s until it reaches 8 MB/s (the max sustainable rate for

NBQ8). When this happens, data rate decreases by 0.5 MB/s

every 10 s, until it reaches 1 MB/s. This repeats throughout

the whole experiment. We let Rhino, RhinoDFS, and Flink

run until they reach approx. 150 GB of state. Then, we trigger

a reconfiguration to migrate 8 operators from one server to

the remaining 7 servers.

Result. Our latency measurements in Figure 6 show that

all SUTs can sustain stream processing under varying data

rates. Average latency for all SUTs is 205 ms (min: 9 ms, p99:

826 ms). Upon the reconfiguration, the latency of Rhino

and RhinoDFS remains constant, whereas the latency of

Flink reaches 225 s. After 2 minutes from the reconfiguration,

minimum latency of Flink goes down to 20 ms.

Discussion. Overall, this experiment confirms that Rhino

also supports reconfiguration in the presence of fluctuating

data rates. We also show that Rhino and Flink are resistant

to varying data rates during query processing. However,

latency in Rhino is not affected during a reconfiguration,

whereas Flink accumulates latency up to 225 s.

5.6 Discussion
The key insights of our evaluation are four-fold. First, we

show that Rhino and RhinoDFS can perform a reconfigu-

ration to provide fault-tolerance, vertical scaling, and load

balancing with minimal impact on processing latency. When

state is large, Rhino achieves up to three orders of magnitude

lower latency compared to Flink and two compared to Mega-

phone. In contrast, if the state size is small, Rhino performs

similarly to baseline. Second, we show that Rhino’s state mi-

gration protocol is beneficial when operator state reaches TB

sizes. In particular, Rhino reconfigures a query after a failure

50x faster than Flink, 15x faster than Megaphone, and 11x

faster than RhinoDFS. Third, we show that Rhino has minor

overhead on OS resources and stream processing. In particu-

lar, Rhino uses 30% more network bandwidth than baseline

but achieves up to 3.5x faster state transfer. However, we

expect our replication runtime to become a bottleneck if an

incremental checkpoint to migrate is large, e.g, above 50 GB

per instance. We leave investigating this issue as future work,

e.g., using adaptive checkpoint scheduling. Fourth, we show

that Rhino migrates state and reconfigures a query under

fluctuating data rates with no overhead. Overall, our evalua-

tion shows that Rhino enables on-the-fly reconfigurations

of running queries in the presence of large operator state on

common workloads.

6 RELATEDWORK
In the following, we group and describe related work, which

we did not fully cover in previous sections.

Fernandez et al. propose SEEP [6] and SDG [7] to address

the problem of scaling up and recovering stateful operators

in cloud environments. Their experiments target operators

with state size up to 200 GB and confirm that larger state

leads to higher recovery time. Both approaches are based

on migration of checkpointed state, which captures also

in-flight records. SEEP stores checkpoints at upstream oper-

ators, which may become overwhelmed. SDG improves on

SEEP by using incremental, per-operator checkpoints that

are persisted tom workers. However, SDG does not control

where an operator is resumed, which leads to state transfer

and network overhead. In this paper, we explicitly address

these shortcomings to provide low reconfiguration time for

queries with very large operator state. To this end, we target

large state migration (up to 1 TB) by proactively migrating

state to workers where a reconfiguration will take place.

Mai et al. [30] propose Chi to enable user-defined recon-

figuration of running queries. Their key idea is the use of

control events in the dataflow to trigger a reconfiguration,

which reduces latency by 60% on queries with small state.

Rhino uses a similar approach, i.e., control events, but it dif-

fers from Chi in the following aspects. First, user-defined

reconfigurations are orthogonal to Rhino as it supports recon-

figuration to transparently provide fault-tolerance, resource

elasticity, and load balancing. Second, Chi reactivelymigrates

state in bulk upon a user-defined reconfiguration, which

leads to migration time proportional to state size. In contrast,
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Figure 5: Comparison of resource utilization of Apache Flink and Rhino for NBQ8. The black line indicated when
we perform a reconfiguration.
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Figure 6: End-to-end latency of NBQ8 under varying
data rate.

Rhino proactively and incrementally migrates state to pro-

vide timely reconfigurations. Finally, a state migration for a

logical operator in Chi affects all its physical instances. As a

result, all running instances send state to a newly spawned

instance. Instead, Rhino migrates state through virtual nodes

at a finer granularity to involve the least number of instances.

Megaphone [21] is a system that provides online, fine-

grained reconfigurations for SPEs with out-of-band tracking

of progress, e.g., Timely Dataflow [31] and MillWheel [1].

There are four key differences that make our contribution

different than Megaphone. First, Megaphone and Rhino have

different scope. Megaphone enables programmable state mi-

grations in the query DSL, whereas Rhino provides transpar-

ent fault-tolerance, resource elasticity, and load balancing via

state migration. Second, Megaphone migrates state in bulk

and in reaction to user request, whereas Rhino proactively

migrates state to reduce reconfiguration time. In particular,

Rhino explicitly targets large state migration, while Mega-

phone handles migration as long as state fits in memory.

Third, Megaphone requires out-of-band tracking of progress,

i.e., operators must observe each other’s progress. More-

over, downstream operators must expose their state to their

upstream to perform state migration. While Timely Dataflow

provides these features out-of-the-box, other SPEs need costly

synchronization and communication techniques to fullfil

Megaphone’s requirements. In contrast, Rhino has an inter-

nal progress tracking mechanism based on control events

that only requires an SPE to follow the streaming dataflow

paradigm. Furthermore, Rhino has its own migration pro-

tocol, which does not require operators to expose state. As

a result, Rhino’s protocols could run on Timely Dataflow.

Finally, Megaphone and Rhino use different migration pro-

tocols. Megaphone uses two migrator operators for every

migratable operator. This could lead to scalability issues on

larger queries. Instead, Rhino multiplexes state migration of

every operator through its distributed runtime.

Dhalion [17] andDS2 [24] aremonitoring tools that trigger

scaling decisions. Their contributions are orthogonal to ours

as Rhino provides a mechanism to reconfigure a running

SPE. We envision an SPE, a monitoring tool, and Rhino that

cooperatively handle anomalous operational events to ensure

robust stream processing.

7 CONCLUSION
In this paper, we present Rhino, a system library that en-

ables fine-grained fault-tolerance, resource elasticity, and

runtime optimizations in the presence of large distributed

state. Through proactive state migration, Rhino removes the

bottleneck induced by state transfer upon a reconfiguration.

We plan to incorporate Rhino in our new data processing

platform NebulaStream [48].

We evaluate our design choices on a common benchmark

suite and compare two variants of Rhino against Flink and

Megaphone. Rhino is 50x faster than Flink, 15x faster than

Megaphone, and 11x faster than RhinoDFS in reconfiguring

a query. Moreover, Rhino shows a reduction in processing

latency by up to three orders of magnitude after a reconfigu-

ration. With Rhino, we enable robust stream processing for

queries with very large distributed operator state, regardless

of failures or fluctuations in the data rate.
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