Evaluating In-Memory Hash Joins on Persistent Memory

Tobias Maltenberger®, Till Lehmann*, Lawrence Benson, Tilmann Rabl
{tobias.maltenberger,till.lehmann}@student.hpi.de,{lawrence.benson, tilmann.rabl}@hpi.de
Hasso Plattner Institute, University of Potsdam

ABSTRACT

Steady advances in processor and memory technologies have
driven continuous tuning and redesigning of in-memory hash
joins for decades. Over the years, research has shown advantages
of both hardware-conscious radix joins and hardware-oblivious
hash joins for different workloads. In this paper, we evaluate both
join types on persistent memory (PMem) as an emerging mem-
ory technology offering close-to-DRAM speed at significantly
higher capacities. We study the no partitioning join (NPO) and
the parallel radix join (PRO) in PMem and analyze how their
performance differs from DRAM-based execution. Our results
show that the PRO is always at least as fast as the NPO in DRAM.
However, in PMem, the NPO outperforms the PRO by up to 1.7x.
Based on our findings, we provide an outlook into crucial design
choices for PMem-optimized hash join implementations.

1 INTRODUCTION

Modern in-memory database systems heavily utilize hash joins.
The interplay of state-of-the-art hardware features and database
workloads serves as a broad research field for tuning parameters
and (re-)designing hash join algorithms. Over the past decades,
fundamental shifts in processor and storage technology regularly
challenged researchers to revisit the search for the optimal hash
join implementation [1, 4, 5, 9, 12, 15-17, 22, 22, 23, 27, 30]. In
general, there are two types of hash joins: hardware-conscious
algorithms and hardware-oblivious approaches. While hardware-
conscious hash joins entail a platform-specific partition phase
to reduce the number of cache and translation lookaside buffer
(TLB) misses [4, 5, 27], the less complex hardware-oblivious ap-
proaches come entirely without a partition phase [9]. Some re-
searchers claim that hardware-conscious hash joins are superior
to hardware-oblivious ones in terms of performance [5, 28, 31].
Others show that in a real-world database system, hardware-
conscious hash joins outperform their non-partitioned hardware-
oblivious counterparts only for a few workloads [7].

Common to the majority of published in-memory hash joins
is that they operate exclusively in DRAM. Yet, persistent mem-
ory (PMem) promises higher capacity at lower cost and Byte-
addressability at close-to-DRAM performance [14, 35, 36, 38]. In-
tel Optane DC Persistent Memory Modules (Optane DC PMM) is
the first commercially available PMem technology [20]. Since the
type of I/O operation, access size, access pattern, and the number
of threads heavily impact Intel Optane DC PMM’s performance,
best practices for its usage have been established [8, 13, 36, 38].
Researchers proposed various PMem-based index structures [2,
11, 24], hash maps [25, 26], and database components [3, 34, 37].
Consequently, PMem might be a cheaper alternative or extension
to DRAM for efficient in-memory hash joins as well.

“Both authors contributed equally.

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-086-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

shared one hash table
hash table per partition s
2
R R it hg”E“ Wn)
1 A ey e L
M gln o 48
g [hu ki o {5 117 3
oy bt 4E§ =l
ral-hy he-[sS4
N
Tpass1 pass2 Tpassz pass1
@ build () probe (@ partition (@ build (3) probe (D) partition
Figure 1: No Figure 2: Parallel radix join
partitioning join

In this paper, we adapt two in-memory hash joins by Balkesen
et al. to PMem: the optimized hardware-oblivious no partitioning
join (NPO) and the optimized hardware-conscious parallel radix
join (PRO) [5]. We choose these baselines as they are widely
used and clearly show the differences between their concepts in
DRAM and PMem, making our results applicable to variations of
both algorithms. For both hash joins, we evaluate three different
variants via embedded performance counters. First, DRAM-only,
where all data resides in DRAM. Second, PMem-only, where both
input relations and the hash tables are stored in PMem. Third,
PMem-relations, where the two relations are located in PMem,
but the (partitioned) hash tables reside in DRAM.

We show that the number of writes is the deciding factor of
both joins’ overall performance in PMem. The NPO outperforms
the PRO by 1.7X in PMem due to fewer writes. In DRAM, the PRO
outperforms the NPO, as DRAM-writes perform significantly bet-
ter. Our measurements reveal the NPO’s and PRO’s PMem-only
variant to be 3.3-6.0X and 5.5X slower than their DRAM-only
counterpart. However, the hash joins’ PMem-relations variants,
where PMem is used as read-only memory for the two input re-
lations, reach competitive performance to the DRAM-only mode.
Their performance is slower by only 1.1x for the NPO and 1.4x
for the PRO. Guided by our experimental analysis, we outline
crucial design goals for future PMem-aware hash joins.

With this paper, we make the following contributions. First,
we adapt two in-memory hash join implementations by Balkesen
et al. - the optimized no partitioning join (NPO) and the parallel
radix join (PRO) - to PMem. Second, we evaluate both algorithms
in DRAM and PMem. Third, we provide insights into key design
choices for PMem-aware hash join implementations.

2 IN-MEMORY HASH JOINS

There are two classes of in-memory hash joins: hardware-oblivious
implementations that are independent of the platform charac-
teristics and hardware-conscious approaches that exploit certain
platform features via tunable performance knobs [6]. Balkesen
et al. analyze whether hardware-oblivious hash joins are com-
petitive to fine-tuned alternatives on modern hardware with
prefetching and out-of-order execution [5]. We evaluate whether
the authors’ findings hold when working in PMem by analyzing
the no partitioning join and the parallel radix join.

No Partitioning Join. Blanas et al. propose the no partition-
ing join as a parallel adaptation of the canonical hash join (see
Figure 1) [9]. It is independent of platform-specific parameters

and operates without data partitioning. Besides, it splits both re-
lations, R and S, across multiple threads into equal-sized portions.
During the build phase, the threads populate a shared hash table
from R and synchronize via a barrier (D). In the probe phase, the
worker threads find join partners for their portion of S in the
hash table that they access in a read-only fashion (2).

Parallel Radix Join. Cache misses through random memory
lookups are a major drawback of hardware-oblivious joins [10].
Shatdal et al. find that partitioning the hash table into small cache-
sized chunks reduces cache misses [33]. The authors’ partitioned
hash join divides the input relations R and S with |R| < |S| into
partitions 7; and s; using hash partitioning. In the build phase, it
creates a separate hash table for each r; partition that fits into
the CPU cache. In the probe phase, it scans each s; partition and
probes the hash table for matching tuples. Since the partitions
reside in different virtual memory pages, the hash join algorithm
suffers from a large number of TLB misses [5].

Manegold et al. [27] propose the in-memory radix join, as
depicted in Figure 2. In the partition phase, it partitions the two
input relations R and S through a two-phase radix partitioning
with the hash functions k1 1 and hy 2, respectively (D). After that,
the radix join builds the hash table over all r; partitions of R (2). In
the probe phase, it scans all s; partitions of S and probes the corre-
sponding r; hash tables to obtain the join matches. Consequently,
the radix join does log(|R|) passes over the input relations R
and S as the maximum fan-out of each pass is limited by the
CPU’s number of TLB entries. Another configuration parameter
is the partition size. It should roughly align with the CPU’s cache
size [5]. Kim et al. propose the parallel radix join as an extension
for multi-core systems where the relations R and S are divided
into chunks and processed by individual threads [23].

3 PERSISTENT MEMORY

PMem is an emerging class of memory devices bridging the gap
between DRAM and flash storage. It provides Byte-addressable
random access and data persistence. PMem’s bandwidth and
latency characteristics are comparable to DRAM’s, while its ca-
pacity is closer to that of flash-based devices. Intel Optane DC
PMM DIMMs are available with larger capacities than DRAM
DIMMs and lower cost per GiB [18]. We use the terms PMem
and Intel Optane DC PMM interchangeably.

The CPU communicates with PMem via an integrated memory
controller at 64 Byte cache line granularity. However, Intel Op-
tane DC PMM DIMMs have an internal granularity of 256 Byte,
causing read and write amplification for smaller access sizes. To
mitigate this, the DIMMs contain write-combining buffers that
buffer adjacent writes before flushing them [36]. In Table 1, we
show the peak bandwidth and latency for random data access of
DRAM and PMem. We observe that random read access in PMem
has a 2.4X higher latency than in DRAM due to slower media
access. The latency of random writes is 5.3x higher in PMem
than in DRAM. Consequently, algorithms should aim for writing
sequentially into PMem. PMem achieves 40% for reads and 19%
for write operations of DRAM’s peak bandwidth.

Table 1: Peak bandwidth and latency

READ WRITE

Bandwidth Latency Bandwidth Latency

DRAM 100 GiB/s 190 ns
PMem 40 GiB/s 450 ns

70 GiB/s 170 ns
13 GiB/s 900 ns

4 EXPERIMENTAL SETUP

In this section, we outline the implementations as well as work-
load and platform configurations for our evaluation.
Implementations. We adapt Balkesen et al.’s NPO (hardware-
oblivious) and PRO (hardware-conscious) to PMem [5].
DRAM:-only. The DRAM-only implementation is the original
implementation by Balkesen et al. and serves as a baseline. We
generate both input relations R and S randomly and store them
together with all auxiliary data structures in DRAM.
PMem-only. In the PMem-only variant, both input relations R
and S as well as the temporary data structures reside in PMem.
We replace all dynamic memory allocations with calls to a custom
PMem allocator. Our PMem allocator initially reserves consecu-
tive PMem space and returns pointers to PMem chunks of the
requested size. Only a negligible constant overhead of < 5 MiB
stack space resides in DRAM regardless of the workload.
PMem-relations. The PMem-relations variant represents a trade-
off between the DRAM-only and the PMem-only variants. It har-
nesses the limited, but fast DRAM for the hash joins’ probing
tables and the large but slower PMem for the input relations
R and S. Since all random writes during radix partitioning or
probing the hash tables are targeted to DRAM, PMem is used in
a read-only fashion. The PMem-relations variant represents a
database system where data resides persistently in PMem, but
query processing happens in DRAM. The overall storage capacity
of the (in-memory) database system can exceed DRAM capacity
while maintaining a reasonable read bandwidth to the data.
Workload Configuration. We use the workload by Blanas
et al. [9]. It entails a column-oriented storage model with (key,
payload) tuples, where key and value are each 8 Byte. The build
relation R contains 16 x 220 (~ 16M, 256 MiB) tuples. The probe
relation S contains 256 x 22° (~ 268M, 4096 MiB) tuples. The
uniformly distributed keys of R and S follow a foreign key rela-
tionship - every tuple in S has exactly one join partner in R.
System Configuration. We benchmark both hash joins on a
system with an Intel Xeon Gold 5220S CPU featuring 18 cores
at 2.7 GHz. The CPU’s L1, L2, and L3 cache sizes are 1.1 MiB,
18 MiB, and 24.75 MiB. The CPU comes with L1 TLBs (32 entries)
and a shared L2 TLB (1536 entries), utilizing 2 MiB pages. The
system has 6x 128 GiB Intel Optane DC PMM 100 Series DIMMs
and 6x 16 GiB DDR4 DRAM DIMMs. PMem is interleaved and
used in App Direct mode. The system runs on Ubuntu 20.04
LTS. We compile with g++ 9.3.0 and the -03 optimization level.
We instrument our implementations with the Intel Performance
Counter Monitor [21]. Besides, we conduct three runs for each
experiment and show the arithmetic mean of the results.

5 EXPERIMENTAL EVALUATION

In this section, we analyze the NPO and the PRO in their DRAM-
based and PMem-based implementations. Figure 3 shows the
algorithms’ runtimes. We see that PMem-only variants perform
worse than the DRAM-based ones due to PMem’s decreased
read/write bandwidth. For the PMem-relations variant, we see
that it is slower in single-threaded execution but almost as fast
as DRAM-based variants in multi-threaded execution given the
favorable scaling of sequential PMem read access. In DRAM,
NPO and PRO perform very similarly. When moving to PMem,
the PRO performs considerably worse than the NPO because of
increased write access to PMem during partitioning. Due to the
different performance characteristics of reads and writes, DRAM
optimizations for joins cannot be applied to PMem directly.

I DRAM-only I PMem-only PMem-rel.

20 17.0

= 14.8
215
5}
E w0
=
E
& 5

0

NPO, NPO, PRO, PRO,
1 Thread 18 Threads 1 Thread 18 Threads

Number of threads

Figure 3: Comparison of the runtime between single and
multi-threaded variants of NPO and PRO

5.1 Memory Access

In Figure 4, we study memory access patterns. Comparing the
amount of data read to and written from the memory controller
by the NPO (see Figure 4a), we observe that memory access is
dominated by read operations. The absence of write accesses is
why the NPO outperforms the PRO in PMem. Write operations
to PMem have significantly lower bandwidth and higher latency
than to DRAM. The NPO performs write operations only for the
smaller relation — to create the probing table. Since the size of
both input relations differs by a factor of 16, the probing phase’s
read operations dominate the overall runtime.

In contrast, the PRO needs to perform multi-pass partitioning
for both relations before joining them, writing the relations to
PMem twice. In Figure 4b, we see that the PRO writes almost
10 GiB to the memory controller during the partition phase while
the NPO writes less than 1.5 GiB. The additional data written to
the memory controller is the bottleneck of the PRO.

The memory access pattern of the PMem-relations variant
differs only slightly from that of the DRAM-only implementa-
tion. Figure 4 reveals that no data is written to PMem since it
is used in read-only mode. Sequentially reading both input rela-
tions from PMem in the NPO accounts for only 15% of all read
operations, limiting the impact of PMem’s lower bandwidth and
higher latency on the overall execution time. However, during
the PRO’s first partitioning pass, the relations are read twice
— once for calculating the histogram and once for partitioning
the data. Consequently, the amount of data read from PMem is
doubled. In the PMem-relations implementation of the PRO, 35%
of read accesses are served from PMem, which leads to a 40%
increase in the overall runtime compared to DRAM.

In conclusion, for the sequential read operations of both in-
memory hash join algorithms, PMem performs close to DRAM.
However, when writing during the hash joins, PMem performs
worse due to its asymmetric bandwidth characteristics (see Ta-
ble 1). While DRAM’s bandwidth is 2.5% higher than PMem’s for
read accesses, it is 5.5x higher for write operations.

M Build | DRAM Probe | DRAM I Part. | DRAM Join | DRAM
M Build | PMem Probe | PMem I Part. | PMem Join | PMem
— 40 — 40
f =]
9 301 9 30
2201 220
£ g
g 101 g0
= = B o1 2,
DRAM- PMem- PMem- DRAM- PMem- PMem-
only only rel. only only rel.
Variant [reads, writes] Variant [reads, writes]
(a) NPO (b) PRO

Figure 4: Amount of data read from and written to the
memory controller

—e— DRAM-only === PMem-only PMem-rel.

12 4 8 16 18 1é /1 ;S 1‘6 1‘8
Number of threads Number of threads
(a) NPO (b) PRO
Figure 5: Speedup achieved through multi-threading
compared to single-threaded executions

5.2 Thread Scalability

In Figure 5, we study the thread scaling behavior of both hash
joins. All NPO implementations achieve a noticeable speedup
by utilizing multiple threads (see Figure 5a). With 18 threads,
the PMem-relations variant achieves the highest speedup of
9.3%, considerably reducing the performance gap between the
DRAM-only and PMem-relations implementations compared to
the single-threaded execution. In the single-threaded execution,
the PMem-relations variant takes 38% more time than the DRAM-
only version. With 18 threads, the remaining runtime overhead
of the PMem-relations variants decreases to only 6%.

During the single-threaded execution, the performance is
bound by the bandwidth of sequential reads from PMem. Since
sequential PMem reads scale better than random DRAM writes,
the bottleneck shifts towards the bandwidth of random writes to
DRAM when utilizing more threads. Since the bottleneck of the
DRAM-only variant is the same, their runtimes converge.

The NPO’s PMem-only variant has a lower peak speedup
of 6.3x than its DRAM-only variant at 7.2X, leading to a higher
performance gap when utilizing the entire CPU’s compute power.
Up until 18 threads, though, all variants show desirable multi-
threading scaling. Since the NPO is read-dominant, we observe
that it benefits from parallelization in PMem and DRAM.

Regarding the PRO’s thread scaling behavior, we notice a sig-
nificant speedup of the PMem-relations and DRAM-only variants
(see Figure 5b). At the highest CPU utilization with 18 threads,
both implementations achieve a speedup of 8.1x and 7.3X, respec-
tively, compared to the single-threaded execution. The perfor-
mance improvements of thread scaling in the PMem-only variant
are significantly lower. With 8 threads, it reaches a speedup of
merely 3X - without any considerable increase upwards. We
observe the maximum speedup of 3.2x with 16 threads.

The PRO’s partitioning phases are dominated by write accesses
to PMem to re-partition both input relations. Recent studies show
that PMem writes quickly suffer from over-saturation when using
numerous threads [13, 36]. However, since multiple threads do
not negatively affect PMem and DRAM read operations, the
DRAM-only and PMem-relations implementations do not reflect
this behavior. Write operations, thus, impose a disadvantage for
the PRO in PMem. In conclusion, when employing the PRO in
PMem, few parallel threads are sufficient to achieve close to
optimal performance during the partitioning phase.

Speedup factor
no £ (= oo
Speedup factor
(=

5.3 Data Partitioning vs. Random Writes

In Figure 6, we analyze the NPO’s and the PRO’s performance for
a workload with equal-sized relations. If both relations have the
same size, the probing table becomes larger, and the NPO incurs
more random write accesses. Although both input relations have
the same size, building a probing table requires more time than

Probe
B Build
33 B Partition

Runtime [s]

PMem-rel.

DRAM-only

PMem-only
Variant [NPO, PRO]

Figure 6: Runtime for workload with equal-sized relations

probing a relation of the same size. We observe a drastic decline
in NPO’s performance, caused by a slower build phase.

The performance benefit of the PRO mainly originates from
the partition phase. It enables the join operation to benefit from
high cache utilization. However, as a fundamental premise, par-
titioning the input relations has to perform quicker than build-
ing the probing table from an unpartitioned relation. In order
to investigate whether building a probing table of a relation is
inherently slower than partitioning the relation, we conduct a
micro-benchmark comparing their write access patterns.

We initially allocate a contiguous chunk of values with a total
size of 2 GiB. A value is 8 Bytes long, resembling a (key, payload)
tuple where key and value is each 4 Byte. First, to mimic the ac-
cess pattern of building a probing table, we write each value
exactly once but in random order. Without collisions, we assume
the best-case scenario of a uniform distribution in the probing
table. Second, to emulate the access pattern of data partition-
ing, we divide the array into N partitions. The data is written
sequentially inside each partition. However, the order in which
partitions are written in each iteration is random.

In Figure 7, we study the write bandwidth of DRAM and PMem.
Dashed lines represent the write bandwidth of random writes
at 2 GiB/s for DRAM and 0.3 GiB/s for PMem. Solid lines depict
the bandwidth of data partitioning, which highly depends on
the number of partitions. With only one partition, we measure
the performance of sequential writes to be 13.8 GiB/s for DRAM
and 2.6 GiB/s for PMem. Therefore, applying data partitioning to
mitigate random write overhead remains viable in PMem.

The cores on our system have ten write buffers [19]. Con-
sequently, a core can combine 8 Byte writes into 64 Byte ones
without switching the cache line for up to ten partitions. Starting
at 8 to 16 partitions, the write bandwidth decreases gradually.
Beginning at 32 partitions, the number of partitions reaches the
number of entries in the L1 TLB. After this point, TLB misses
become more frequent and negatively impact the performance.
More partitions further reduce the bandwidth until it converges
to the minimum bandwidth of random writes.

To enable high cache utilization during the join phase, each
partition must be small enough to fit into the core-local cache.
When an input relation becomes too big, partitioning cannot be
conducted efficiently. Therefore, the PRO introduces multi-pass
partitioning, which reduces the number of partitions.

6 DISCUSSION

We observe that adapting a DRAM-optimized hash join to PMem
does not automatically yield the best performance. Our results
show that writes to PMem constitute the central performance
bottleneck in PMem-based hash joins. Due to PMem’s read/write
asymmetry, slower and limited writes negatively impact perfor-
mance more than in DRAM. Future PMem-aware hash joins must

Bandwidth [GiB/s]

1 4 16 64 256 1k 4k
Number of partitions

Figure 7: Write bandwidth (solid lines: data partitioning,
dashed lines: random writes)

put a focus on optimizing the build phase to achieve better perfor-
mance, e.g., by adopting published DRAM optimizations [29, 32].
One idea is to perform only one partition pass or buffer before
writing to PMem. The partitioning concepts of the PRO can fur-
ther be incorporated to avoid low random write performance
as the hash table stays in each CPU’s cache without entailing
random flushes to PMem. A precondition for this is to not have
any PMem-resident data in the caches before building the tables
since that would cause random cache evictions to PMem.

Performing another write phase before building the hash table
is unnecessary if the build side is small. While the additional
partitioning pays off in DRAM, it does not in PMem. To improve
the performance of partitioning in PMem, in-memory hash joins
should improve write accesses for small sequential blocks (e.g.,
by varying the store operations and the size of flushed blocks). It
requires optimizing for the case that sequential PMem bandwidth
drops for more than 8 threads. While the probe phase can scale
to many threads, the build side’s thread scaling behavior is upper
bounded. Consequently, more fine-grained thread scaling in the
build phase may yield further performance gains.

Recent work shows that radix partitioned hash joins often do
not perform better than their non-partitioned counterparts in
real-world main memory database systems [7]. To understand
how PMem is most efficiently utilized in modern database sys-
tems, future work should further investigate PMem-aware hash
joins in the context of larger systems and more workloads.

7 CONCLUSION

In this paper, we adapt two in-memory hash joins to PMem:
the NPO, a hardware-oblivious join, and the PRO, a hardware-
conscious algorithm. We benchmark the two hash joins in PMem
and DRAM to show their performance characteristics on both
memory technologies and re-evaluate whether common wisdom
on optimized implementations applies to PMem.

We show that the number and type of writes to PMem is the
deciding factor for both hash joins’ performance. Although the
PRO outperforms the NPO in DRAM, it does not in PMem. Due
to fewer write operations, the NPO performs up to 1.7X better
than the PRO. Furthermore, we demonstrate that the PMem-
relations variants of NPO and PRO, where PMem is used in a read-
only mode, reach competitive performance to their respective
DRAM-only implementations. Storing the relations in PMem
enables joining significantly larger tables, as DRAM is not used
for storage. Since different memory technology characteristics
impact hash join performance, we provide insights for designing
future PMem-optimized hash join implementations.

ACKNOWLEDGMENTS

This work was partially funded by the European Union’s Horizon
2020 research and innovation program (ref. 957407).

REFERENCES

(1]

[2

=

G

=

[7

[

[8

=

=

[10]

[11]

[12

(13

[14

[15]

[16]

[17]

[18

[19]

A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. 1999. DBMSs on a
Modern Processor: Where Does Time Go?. In Proc. VLDB Endow. (VLDB °99).
ACM, New York, NY, USA, 266-277. https://doi.org/10.5555/645925.671662
J. Arulraj, J. Levandoski, U. F. Minhas, and P.-A. Larson. 2018. Bztree: A High-
Performance Latch-Free Range Index for Non-Volatile Memory. Proc. VLDB
Endow. 11, 5 (January 2018), 553-565. https://doi.org/10.1145/3164135.3164147
J. Arulraj, A. Pavlo, and S. R. Dulloor. 2015. Let’s Talk about Storage and
Recovery Methods for Non-volatile Memory Database Systems. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data
(SIGMOD °15). ACM, New York, NY, USA, 707-722. https://doi.org/10.1145/
2723372.2749441

C. Balkesen, G. Alonso, J. Teubner, and M. T. Ozsu. 2013. Multi-Core, Main-
Memory Joins: Sort vs. Hash Revisited. Proc. VLDB Endow. 7, 1 (September
2013), 85-96. https://doi.org/10.14778/2732219.2732227

C. Balkesen, J. Teubner, G. Alonso, and M. T. Ozsu. 2013. Main-Memory Hash
Joins on Multi-Core Cpus: Tuning to the Underlying Hardware. In 2013 IEEE
29th International Conference on Data Engineering (ICDE °13). IEEE, New York,
NY, USA, 362-373. https://doi.org/10.1109/ICDE.2013.6544839

C. Balkesen,]. Teubner, G. Alonso, and M. T. Ozsu. 2015. Main-Memory Hash
Joins on Modern Processor Architectures. IEEE Transactions on Knowledge
and Data Engineering 27, 7 (2015), 1754-1766. https://doi.org/10.1109/TKDE.
2014.2313874

M. Bandle, J. Giceva, and T. Neumann. 2021. To Partition, or Not to Partition,
That Is the Join Question in a Real System. In Proceedings of the 2021 Interna-
tional Conference on Management of Data (SIGMOD ’21). ACM, New York, NY,
USA, 168-180. https://doi.org/10.1145/3448016.3452831

L. Benson, H. Makait, and T. Rabl. 2021. Viper: An Efficient Hybrid PMem-
DRAM Key-Value Store. Proc. VLDB Endow. 14, 9 (2021), 1544-1556. https:
//doi.org/10.14778/3461535.3461543

S. Blanas, Y. Li, and J. M. Patel. 2011. Design and Evaluation of Main Memory
Hash Join Algorithms for Multi-Core CPUs. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data (SIGMOD ’11). ACM,
New York, NY, USA, 37-48. https://doi.org/10.1145/1989323.1989328

P. A. Boncz, S. Manegold, and M. L. Kersten. 1999. Database Architecture
Optimized for the New Bottleneck: Memory Access. In Proc. VLDB Endow.
(VLDB *99). ACM, New York, NY, USA, 54-65. https://doi.org/10.5555/645925.
671364

S. Chen and Q. Jin. 2015. Persistent B+-Trees in Non-Volatile Main Memory.
Proc. VLDB Endow. 8, 7 (February 2015), 786-797. https://doi.org/10.14778/
2752939.2752947

X. Cheng, B. He, X. Du, and C. T. Lau. 2017. A Study of Main-Memory
Hash Joins on Many-Core Processor: A Case with Intel Knights Landing
Architecture. In Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management (CIKM °17). ACM, New York, NY, USA, 657-666.
https://doi.org/10.1145/3132847.3132916

B. Daase, L. J. Bollmeier, L. Benson, and T. Rabl. 2021. Maximizing Persistent
Memory Bandwidth Utilization for OLAP Workloads. In Proceedings of the
2021 International Conference on Management of Data (SIGMOD °21). ACM,
New York, NY, USA, 339-351. https://doi.org/10.1145/3448016.3457292

P. Gotze, A. K. Tharanatha, and K.-U. Sattler. 2020. Data Structure Primitives
on Persistent Memory: An Evaluation. In Proceedings of the 16th International
Workshop on Data Management on New Hardware (DaMoN °20). ACM, New
York, NY, USA, 1-3. https://doi.org/10.1145/3399666.3399900

B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V. Sander. 2009.
Relational Query Coprocessing on Graphics Processors. ACM Trans. Database
Syst. 34, 4 (December 2009), 1-39. https://doi.org/10.1145/1620585.1620588
B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and P. Sander. 2008.
Relational Joins on Graphics Processors. In Proceedings of the 2008 ACM SIG-
MOD International Conference on Management of Data (SIGMOD °08). ACM,
New York, NY, USA, 511-524. https://doi.org/10.1145/1376616.1376670

M. Heimel, M. Saecker, H. Pirk, S. Manegold, and V. Markl. 2013. Hardware-
Oblivious Parallelism for In-Memory Column-Stores. Proc. VLDB Endow. 6, 9
(July 2013), 709-720. https://doi.org/10.14778/2536360.2536370

Intel. 2019. Intel® Optane™ DC Persistent Memory Product Brief. Intel. Re-
trieved June 28, 2021 from https://www.intel.de/content/dam/www/public/
us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
Intel. 2021. Intel® 64 and IA-32 Architectures Optimization Ref-
erence Manual. Intel. Retrieved June 28, 2021 from https:
//software.intel.com/content/dam/develop/external/us/en/documents-tps/
64-1a-32-architectures- optimization-manual.pdf

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27

(28]

[29]

[30]

[31]

[32]

[33

[34]

[35]

[36]

(371

[38]

Intel. 2021. Intel® Optane™ Persistent Memory. Intel. Re-
trieved June 28, 2021 from https://www.intel.com/content/www/us/en/
architecture-and-technology/optane-dc-persistent-memory.html

Intel. 2021. PCM: Processor Counter Monitor. Intel. Retrieved June 28, 2021
from https://github.com/opcm/pem

S.Jha, B. He, M. Lu, X. Cheng, and H. P. Huynh. 2015. Improving Main Memory
Hash Joins on Intel Xeon Phi Processors: An Experimental Approach. Proc.
VLDB Endow. 8, 6 (February 2015), 642-653. https://doi.org/10.14778/2735703.
2735704

C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish, J. Chhugani,
A. Di Blas, and P. Dubey. 2009. Sort vs. Hash Revisited: Fast Join Implemen-
tation on Modern Multi-Core CPUs. Proc. VLDB Endow. 2, 2 (August 2009),

1378-1389. htﬁos://doi.org/10.14778/168755341687564
L. Lersch, X. Hao, I. Oukid, T. Wang, and T. Willhalm. 2019. Evaluating

Persistent Memory Range Indexes. Proc. VLDB Endow. 13, 4 (December 2019),
574-587. https://doi.org/10.14778/3372716.3372728

B. Lu, X. Hao, T. Wang, and E. Lo. 2020. Dash: Scalable Hashing on Persistent
Memory. Proc. VLDB Endow. 13, 8 (April 2020), 1147-1161. https://doi.org/10.
14778/3389133.3389134

B. Lu, X. Hao, T. Wang, and E. Lo. 2021. Scaling Dynamic Hash Tables on Real
Persistent Memory. SIGMOD Rec. 50, 1 (June 2021), 87-94. https://doi.org/10.
1145/3471485.3471506

S. Manegold, P. Boncz, and M. Kersten. 2002. Optimizing Main-Memory Join
on Modern Hardware. IEEE Transactions on Knowledge and Data Engineering
14, 4 (2002), 709-730. https://doi.org/10.1109/TKDE.2002.1019210

P. Menon, T. C. Mowry, and A. Pavlo. 2017. Relaxed Operator Fusion for
In-Memory Databases: Making Compilation, Vectorization, and Prefetching
Work Together at Last. Proc. VLDB Endow. 11, 1 (September 2017), 1-13.
https://doi.org/10.14778/3151113.3151114

Ingo Miiller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, and Franz
Farber. 2015. Cache-Efficient Aggregation: Hashing Is Sorting. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data
(SIGMOD °15). Association for Computing Machinery, New York, NY, USA,
1123-1136. https://doi.org/10.1145/2723372.2747644

C. Pohl and K.-U. Sattler. 2018. Joins in a Heterogeneous Memory Hierarchy:
Exploiting High-Bandwidth Memory. In Proceedings of the 14th International
Workshop on Data Management on New Hardware (DAMON °18). ACM, New
York, NY, USA, 1-10. https://doi.org/10.1145/3211922.3211929

S. Schuh, X. Chen, and J. Dittrich. 2016. An Experimental Comparison of
Thirteen Relational Equi-Joins in Main Memory. In Proceedings of the 2016
International Conference on Management of Data (SIGMOD °16). ACM, New
York, NY, USA, 1961-1976. https://doi.org/10.1145/2882903.2882917

Felix Martin Schuhknecht, Pankaj Khanchandani, and Jens Dittrich. 2015. On
the Surprising Difficulty of Simple Things: The Case of Radix Partitioning.
Proc. VLDB Endow. 8, 9 (may 2015), 934-937. https://doi.org/10.14778/2777598.
2777602

A. Shatdal, C. Kant, and J. F. Naughton. 1994. Cache Conscious Algorithms
for Relational Query Processing. In Proc. VLDB Endow. (VLDB ’94). ACM, New
York, NY, USA, 510-521. https://doi.org/10.5555/645920.758363

A. van Renen, K. Leis, A. Kemper, T. Neumann, T. Hashida, K. Oe, Y. Doi,
L. Harada, and M. Sato. 2018. Managing Non-Volatile Memory in Database
Systems. In Proceedings of the 2018 International Conference on Management of
Data (SIGMOD ’18). ACM, New York, NY, USA, 1541-1555. https://doi.org/10.
1145/3183713.3196897

A. van Renen, L. Vogel, V. Leis, T. Neumann, and A. Kemper. 2019. Persistent
Memory I/O Primitives. In Proceedings of the 15th International Workshop on
Data Management on New Hardware (DaMoN’19). ACM, New York, NY, USA,
1-7. https://doi.org/10.1145/3329785.3329930

A. van Renen, L. Vogel, V. Leis, T. Neumann, and A. Kemper. 2020. Building
Blocks for Persistent Memory. The VLDB Journal 29, 6 (2020), 1223-1241.
https://doi.org/10.1007/s00778-020-00622-9

Y. Wu, K. Park, R. Sen, B. Kroth, and J. Do. 2020. Lessons Learned from
the Early Performance Evaluation of Intel Optane DC Persistent Memory in
DBMS. In Proceedings of the 16th International Workshop on Data Management
on New Hardware (DaMoN °20). ACM, New York, NY, USA, 1-3. https://doi.
0rg/10.1145/3399666.3399898

J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson. 2020. An
Empirical Guide to the Behavior and Use of Scalable Persistent Memory. In
18th USENIX Conference on File and Storage Technologies (FAST °20). USENIX,
Santa Clara, CA, USA, 169-182.

https://doi.org/10.5555/645925.671662
https://doi.org/10.1145/3164135.3164147
https://doi.org/10.1145/2723372.2749441
https://doi.org/10.1145/2723372.2749441
https://doi.org/10.14778/2732219.2732227
https://doi.org/10.1109/ICDE.2013.6544839
https://doi.org/10.1109/TKDE.2014.2313874
https://doi.org/10.1109/TKDE.2014.2313874
https://doi.org/10.1145/3448016.3452831
https://doi.org/10.14778/3461535.3461543
https://doi.org/10.14778/3461535.3461543
https://doi.org/10.1145/1989323.1989328
https://doi.org/10.5555/645925.671364
https://doi.org/10.5555/645925.671364
https://doi.org/10.14778/2752939.2752947
https://doi.org/10.14778/2752939.2752947
https://doi.org/10.1145/3132847.3132916
https://doi.org/10.1145/3448016.3457292
https://doi.org/10.1145/3399666.3399900
https://doi.org/10.1145/1620585.1620588
https://doi.org/10.1145/1376616.1376670
https://doi.org/10.14778/2536360.2536370
https://www.intel.de/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.de/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://github.com/opcm/pcm
https://doi.org/10.14778/2735703.2735704
https://doi.org/10.14778/2735703.2735704
https://doi.org/10.14778/1687553.1687564
https://doi.org/10.14778/3372716.3372728
https://doi.org/10.14778/3389133.3389134
https://doi.org/10.14778/3389133.3389134
https://doi.org/10.1145/3471485.3471506
https://doi.org/10.1145/3471485.3471506
https://doi.org/10.1109/TKDE.2002.1019210
https://doi.org/10.14778/3151113.3151114
https://doi.org/10.1145/2723372.2747644
https://doi.org/10.1145/3211922.3211929
https://doi.org/10.1145/2882903.2882917
https://doi.org/10.14778/2777598.2777602
https://doi.org/10.14778/2777598.2777602
https://doi.org/10.5555/645920.758363
https://doi.org/10.1145/3183713.3196897
https://doi.org/10.1145/3183713.3196897
https://doi.org/10.1145/3329785.3329930
https://doi.org/10.1007/s00778-020-00622-9
https://doi.org/10.1145/3399666.3399898
https://doi.org/10.1145/3399666.3399898

	Abstract
	1 Introduction
	2 In-Memory Hash Joins
	3 Persistent Memory
	4 Experimental Setup
	5 Experimental Evaluation
	5.1 Memory Access
	5.2 Thread Scalability
	5.3 Data Partitioning vs. Random Writes

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

