DAPHNE: An Open and Extensible System Infrastructure
for Integrated Data Analysis Pipelines

Patrick Damme!, Marius Birkenbach!?, Constantinos Bitsakos®, Matthias Boehm!,
Philippe Bonnet’, Florina Ciorba'?, Mark Dokter!, Pawel Dowgiallo®, Ahmed Eleliemy'?,
Christian Faerber®, Georgios Goumas®, Dirk Habich!?, Niclas Hedam®, Marlies Hofer?,

Wenjun Huang?, Kevin Innerebner!, Vasileios Karakostas®, Roman Kern!, Tomaz Kosar!?,

13

Alexander Krause!!, Daniel Krems?, Andreas Laber’, Wolfgang Lehner!!, Eric Mier'!,
Marcus Paradies®, Bernhard Peischl?, Gabrielle Poerwawinata'!?, Stratos Psomadakis®,
Tilmann Rabl®, Piotr Ratuszniak®, Pedro Silva®, Nikolai Skuppin3b, Andreas Starzacher’,
Benjamin Steinwender!?, Ilin Tolovski®, Pinar T6ziin®, Wojciech Ulatowski®,
Yuanyuan Wang®’, Izajasz Wrosz®, Ale§ Zamuda'®, Ce Zhang?, Xiao Xiang Zhu®”

1 Know-Center GmbH/TU Graz, Austria; 2 AVL List GmbH, Austria; > DLR, 3> DLR/TU Munich, Germany;
4 ETH Zurich, Switzerland; > HPI/Uni Potsdam, Germany; 6 JCCS/NTUA, Greece; 7 Infineon, Austria;
8 Intel, Poland; ° ITU Copenhagen, Denmark; '® KAI GmbH, Austria; ! TU Dresden, Germany;
12 University of Basel, Switzerland; '* University of Maribor, Slovenia

ABSTRACT

Integrated data analysis (IDA) pipelines—that combine data man-
agement (DM) and query processing, high-performance computing
(HPC), and machine learning (ML) training and scoring—become
increasingly common in practice. Interestingly, systems of these
areas share many compilation and runtime techniques, and the
used—increasingly heterogeneous—hardware infrastructure con-
verges as well. Yet, the programming paradigms, cluster resource
management, data formats and representations, as well as execution
strategies differ substantially. DAPHNE is an open and extensible
system infrastructure for such IDA pipelines, including language ab-
stractions, compilation and runtime techniques, multi-level sched-
uling, hardware (HW) accelerators, and computational storage for
increasing productivity and eliminating unnecessary overheads. In
this paper, we make a case for IDA pipelines, describe the overall
DAPHNE system architecture, its key components, and the design
of a vectorized execution engine for computational storage, HW
accelerators, as well as local and distributed operations. Prelimi-
nary experiments that compare DAPHNE with MonetDB, Pandas,
DuckDB, and TensorFlow show promising results.

1 INTRODUCTION

Modern data-driven applications in many domains deal with in-
creasingly large and heterogeneous data collections as well as a
variety of machine learning (ML) models for cost-effective automa-
tion and improved analysis results. Examples include ML-assisted
manufacturing, biomedical engineering [4], natural sciences, re-
mote sensing, transportation, health-care, and finance [88], which

This paper is published under the Creative Commons Attribution 4.0 Inter-
national (CC-BY 4.0) license. Authors reserve their rights to disseminate
the work on their personal and corporate Web sites with the appropriate
attribution, provided that you attribute the original work to the authors and
CIDR 2022. 12th Annual Conference on Innovative Data Systems Research
(CIDR ’°22). January 9-12, 2022, Chaminade, USA.

often include data access via open formats, data pre-processing
and cleaning, ML model training and scoring, HPC libraries and
custom codes, but also ML-assisted simulations [3, 66] and data
analysis of simulation outputs [12]. These complex end-to-end anal-
ysis requirements create a trend towards integrated data analysis
(IDA) pipelines that jointly utilize data management (DM), high-
performance computing (HPC), and ML systems.

Deployment Challenges: Developing and deploying such IDA
pipelines is, however, still a painful process of integrating different
systems and related developers, programming paradigms, resource
managers, and data representations. Common tools include local
or distributed analytical database systems [24, 71]; flexible data-
parallel computation frameworks like Spark [87], Flink [20], or
Dask [73]; distributed ML systems like TensorFlow [1] or PyTorch
[65]; domain-specific systems and libraries; and custom application
codes. Integrating DM+ML, HPC+ML, DM+HPC for improving
productivity and/or performance are old problems though. Exam-
ples go back to Jim Gray’s work on the Sloan Digital Sky Survey
[83], decades of data mining and advanced analytics, in-DBMS
ML [50], array databases like SciDB [82], and more recently, data
management around ML systems (e.g., TensorFlow TFX [9]), and
HPC-inspired (e.g., topology-aware) data management and query
processing [13]. However, an open system infrastructure for seam-
lessly developing and running IDA pipelines is still missing, and at
the same time, new challenges emerge.

HW Challenges: Interestingly, data management, HPC, and
ML systems share many compilation and runtime techniques; and
together stress every hardware aspect of storage, computation, and
networking. Accordingly, these systems are strongly impacted by
HW challenges such as the end of Dennard scaling and the end of
Moore’s law, which ultimately lead to dark silicon [46] and increas-
ing specialization at device level (CPUs, GPUs, FPGAs, ASICs), stor-
age level (computational memory/storage, storage hierarchies), and
workload level (data types and sparsity). Similar to—and triggered
by—the trend to IDA pipelines, the underlying HW environment of

CIDR’22, January 10-13, 2022, Chaminade, USA

DM/HPC/ML systems converges as well. This HW specialization in
turn leads to increasing heterogeneity and thus, even larger produc-
tivity and utilization challenges for pipelines across DM, HPC, and
ML systems. Although it might appear overly ambitious, we argue
that it is time for building a dedicated system infrastructure—albeit
utilizing existing compilation frameworks and runtime libraries—
that can mitigate these challenges.

Contributions: The DAPHNE project' sets out to build an open
and extensible system infrastructure for integrated data analysis
pipelines. For good integration and extensibility, we base this infras-
tructure on MLIR [51] as a multi-level, LLVM-based intermediate
representation backed by multiple organizations and communi-
ties. This approach allows a seamless integration with existing
applications and runtime libraries (e.g., BLAS/LAPACK, collective
operations, task scheduling, DNN operations, compression, I/O,
and column-vector primitives), while also enabling extensibility
for specialized data types, hardware-specific compilation chains,
and custom scheduling algorithms. In this paper, we share the mo-
tivation and design of the overall DAPHNE system, including the
following technical contributions:

o IDA Pipelines: We first make a case for IDA pipelines by
example of real-world use cases, and then summarize re-
quirements and opportunities in Section 2.

o System Architecture: Subsequently, we describe the overall
MLIR-based system architecture (Section 3), language ab-
stractions (Section 4), and selected compiler and runtime
components (Section 5), including aspects of extensibility.

o Vectorized Execution: We further introduce our central, vec-
torized (a.k.a. tiled) execution engine for fused pipelines
of frame and matrix operations, which can utilize heteroge-
neous HW devices, and computational storage in Section 5.5.

o Experiments: Finally, we share promising preliminary results
of an early prototype, comparing DAPHNE on four basic IDA
pipelines with baseline systems in Section 6.

2 IDA PIPELINES

Integrated data analysis pipelines are complex, often multi-phase
workflows of ETL (extraction transformation loading), ML train-
ing/scoring, numerical computation, simulations, and data analysis.
In order to raise awareness of this trend towards IDA pipelines, we
briefly describe representative DAPHNE use cases, and summarize
requirements and opportunities of such IDA pipelines.

2.1 Example Use Cases

We describe selected use cases—representative for a broader range
of applications—from earth observation, semiconductor manufac-
turing, and vehicle development.

Earth Observation (DLR): Local climate zones (LCZs) classifi-
cation categorizes patches of satellite images for modeling climate-
relevant surface properties (e.g., surface imperviousness and struc-
ture) [80, 89]. This use case leverages the Sentinel-1 synthetic aper-
ture radar data and Sentinel-2 optical images (obtained by the Eu-
ropean Space Agency as part of the Copernicus initiative), where
one year of global data is already in the range of 4 PB. For training

Project website: https://daphne-eu.eu/. The initial open source release of
the DAPHNE system prototype is planned for 03/2022.

Patrick Damme et al.

LCZs classifiers [91], the DLR team materialized and published a la-
beled dataset, called So2Sat LCZ42 [89, 90] that consists of 400,673
pairs of Sentinel-1/Sentinel-2 image patches (32x32) and LCZ labels.
The labels were hand-annotated by 15 experts in a month, and
verified by 10 expert votes for a subset of the dataset, yielding a
high confidence of 85%. Together, the train, test, and validation data
account for ~ 55.1 GB in HDF5 format. The training pipeline in-
cludes Sentinel-2 pre-processing steps as well as training a ResNet20
[41, 42] classifier. However, the main challenge is applying the scor-
ing pipeline efficiently at peta-byte scale: reading the data from
complex storage hierarchies, applying pre-processing, quantization
into fixed-point representations, forward pass of ResNet20, mate-
rialization and subsequent spatio-temporal data analysis (e.g., for
research on the global change process of urbanization).

Semiconductor Manufacturing (Infineon): Ion implantation
changes the physical, chemical, and electrical properties of target
substrates such as silicon wafers. Special equipment accelerates
dopants in an electric field onto these wafers. Every recipe change
requires ion-beam tuning to meet specific requirements. In order
to avoid expensive timeouts (after 15min) of unsuccessful tuning, a
prediction model estimates the tuning success. For data preparation,
raw implant log files are scanned, parsed, and stored in a multi-
table database. These tables are joined and exported—with different
time horizons—into CSV-files of 79 categorical and 2,468 numerical
features. For model training, the data is pre-processed by removing
low-variance and highly-correlated features, train/test splitting,
missing value imputation, one-hot encoding, and normalization.
Finally, a random forest classifier is trained via extensive hyper-
parameter tuning and cross validation, and evaluated by F1 measure,
AUC (area under the ROC curve), and correlation measures.

Material Degradation (KAI): For investigating degradation of
power semiconductors, accelerated stress tests are performed for
different devices under test. Many devices are tested simultaneously
and the results are stored as waveforms (time series of voltage and
current measurements). Over the past years, KAI stored millions of
electrical signals per semiconductor technology, stored as TDMS
files. Using physics-based models, the microscopic degradation
in the thin metal layers are simulated and lifetime under different
parameters of mechanical stress are estimated and serve as input for
the subsequent reliability analysis and degradation modeling. The
analysis pipeline includes reading the TDMS files, slicing out pulses,
computing the power waveform, waveform line simplification for
data reduction with bounded error, and ingestion into a databases
via a REST API; the simulation component then reads from this
database, performs FEM (finite element method) simulations in a
separate HPC cluster, and stores the results back.

Vehicle Development (AVL): In the context of automotive ve-
hicle development, we focus on two specific use cases. First, in PEM
and SOFC fuel cells, a hydrogen (H2) flow gets supplied from a
fuel tank and accelerated via a nozzle. In a mixing chamber of the
ejector, this primary and recirculated streams are mixed. Depending
on the geometric variables of the ejector and the operating condi-
tions, a certain entrainment ratio of recirculated and fresh flows,
and suction pressure can be achieved. The ejector geometry opti-
mization iteratively predicts geometry variants (7 key and 17 side
design parameters) via a behavioral model (trained via non-linear
or weighted least-squares) [28], and performs CFD (computational

https://daphne-eu.eu/

DAPHNE: An Extensible System for Integrated Data Analysis Pipelines

fluid dynamics) simulations on the ejector mesh for verification
and result post-processing. This process is repeated until the target
properties and constraints are met. Besides mesh simplification
and parallelization, the challenge is to minimize expensive CFD
simulations, which shares characteristics with neural architecture
search [68, 92]. Second, during vehicle development, many tar-
get key performance indicators (e.g., fuel consumption, vehicle
mass, aerodynamic drag) are predicted, and repeatedly validated
via simulations and hardware-in-the-loop tests. Consolidating the
heterogeneous metadata and measurements along this process al-
lows to build prediction models for individual KPIs, interactions
among KPIs, and maturity/confidence of KPIs. The current analysis
pipeline collects data in JSON files, and trains GPR (Gaussian pro-
cess regression) models [31], but the main challenge is collecting
these heterogeneous measurements and simulation data.

2.2 Requirements and Opportunities

Main characteristics of IDA pipelines are the composition of com-
plex workflows of data extraction and pre-processing, ML training
and scoring (with multiple models), numerical computation and
simulations; human intervention and large project teams; as well as
query processing of inputs, intermediates, and simulation outputs.
Related emerging application trends include data cleaning during
exploratory query processing (e.g., imputation and deduplication)
[5,19], ML-assisted data cleaning and augmentation [23, 25, 29], ML-
assisted simulation [67], graph extraction and processing pipelines
[76], and increasing use of vectorized array programs for graph-
and tree-based problems [61, 75]. The following list identifies key re-
quirements on system infrastructure supporting such IDA pipelines:

e Seamless high-level APIs and DSLs (DM, HPC, ML; opera-
tions and primitives; mini-batch and batch; SQL)

e Interoperability through common frame/matrix operations

o Extensible infrastructure (data types, kernels, metrics, sched-
uling) with externalized multi-level compilation

e Local, distributed, and out-of-core datasets; with dense, sparse,
and irregular (ragged, nested) formats, and support for het-
erogeneous, multi-modal input data formats

e Integration with resource management, programming mod-
els, and specialized DM, HPC, ML libraries

e Awareness and utilization of storage hierarchies, computa-
tional storage, and heterogeneous accelerators

o Fine-grained operator fusion and parallelism, with code gen-
eration and data/plan partitioning across devices and nodes

Opportunities: With system infrastructure addressing these
requirements, new opportunities arise. Examples include tightly
integrated ML-assisted simulations; materialization decisions for
late data augmentation during ML training, and query processing
of simulation outputs; holistic optimization; as well as improved
scheduling and resource utilization in shared cluster environments.

3 SYSTEM ARCHITECTURE

DAPHNE is an open and extensible system infrastructure for de-
veloping and executing IDA pipelines. In this section, we share the
design of the overall system architecture and its key components.

The DAPHNE system architecture is shown in Figure 1. DAPHNE
is built from scratch in C++, but utilizes MLIR [51] as a multi-level,

CIDR’22, January 10-13, 2022, Chaminade, USA

Extensible
) Infrastructure

@ MLIR DaphnelR (MLIR Dialect)

Multi-level

Optimization Passes Compilation/

MLIR-'Ba§ed New Runtime Abstractions Runtime
Compilation X .
Chain for Data, Devices, Operations

Hierarchical Scheduling Fine-grained

Fusion and

Device Kernels Vectorized Sync/Async I/0 Paralleli
(CPU, GPU, FPGA, Execution Engine Buffer/Memory arallelism
Storage) (Fused Op Pipelines) Management

Integration w/
Resource Mgmt &
Prog. Models

Local (embedded) and Distributed Environments

(standalone, HPC, data lake, cloud, DB)

Figure 1: DAPHNE System Infrastructure.

LLVM-based intermediate representation (IR) as well as existing
runtime libraries such as BLAS, LAPACK, DNN kernels and col-
lective operations. These libraries are augmented with more spe-
cialized, custom kernel implementations. Users specify their IDA
pipelines in DaphneDSL (a language similar to Julia, PyTorch, or
R) or DaphneLib (a Python API with lazy evaluation that creates
DaphneDSL well). These DSL programs are then compiled—via a
multi-level compilation chain—into executable runtime plans.

Extensibility: A major design decision is the focus on an ex-
tensible infrastructure allowing the registration of new data types,
kernels, and scheduling algorithms in predefined extension hooks.
Extensibility goes beyond recent work on combining variants (vari-
ability) of communication primitives [34]. We further allow sideway
entries into the multi-level compilation chain for enforcing certain
physical data types and kernels. These enforced physical properties
are treated as constraints and the optimizing compiler respects and
works around them. In contrast to purely declarative interfaces,
this multi-level abstraction can simplify experimentation and sys-
tem extensions while providing data independence and automatic
optimization for unconstrained scripts.

Compilation Chain: The DaphneDSL scripts are converted
by an ANTLR parser into DaphnelR, an MLIR dialect comprising
control flow (via MLIR dialect SCF), frame/matrix data types, and
operations. Additionally, we aim to integrate parsers for SQL and
existing ML DSLs. After parsing, we apply various MLIR optimiza-
tion passes such as common-subexpression elimination, and code
motion, but also new passes such as algebraic simplifications, infer-
ence of interesting properties [44], and cost-based optimization. A
common infrastructure also enables cardinality and sparsity esti-
mation in a holistic manner. In contrast to other MLIR dialects, we
lower frame and matrix operations to C++ kernels and use LLVM
mainly for control flow and scalar operations.

Runtime Environment: During runtime, the kernels are exe-
cuted sequentially and produce materialized intermediates in mem-
ory with copy-on-write semantics and operator-level synchroniza-
tion barriers. Besides this basic execution model, DAPHNE will
adopt hierarchical scheduling mechanisms for ML pipelines; task-
parallel loops and operations; data-parallelism across nodes, devices,
NUMA nodes, and cores; as well as instruction-level parallelism.
Our vectorized execution engine further provides means of opera-
tor fusion, and a seamless integration of heterogeneous computing
devices, computational storage, and distributed operations.

CIDR’22, January 10-13, 2022, Chaminade, USA

4 LANGUAGE ABSTRACTIONS

Common Abstractions: Tuning IDA pipelines for emerging hard-
ware and changing data characteristics requires substantial manual
effort and is often unsustainable in practice. Orchestrating IDA
pipelines with specialized systems reduces the effort but causes
overhead for boundary crossing (e.g., materialization of interme-
diates), static resource allocation (temporal and/or spatial under-
utilization), and lacks the ability of optimization and redundancy
elimination (data and computation) if IDA pipeline primitives are
mixed in repetitive or iterative computations. A necessary require-
ment for an open and extensible system infrastructure for entire
IDA pipelines is a common language abstraction. Data manage-
ment, HPC, and ML systems rely upon well-established language
abstractions: in data management we have SQL, UDFs, procedures,
and recently data frame abstractions; in HPC the focus is on appli-
cation codes, programming models like OpenMP, MP], and stencil
computation, as well as libraries for numerical computation and
simulation (e.g., FEM, CFD); in ML systems, we have UDF-based
systems, linear algebra programs, and higher-level abstractions for
DNNe, features, and ML algorithms. Despite these very different
language abstractions, programming models, and objectives, there
is common ground: all of these systems fundamentally work with
combinations of data frames, and matrices/tensors.

Design Principles: The following design principles govern the
individual design decisions on DAPHNE language abstractions:

o Frame & Matrix Operations: Many ML algorithms, query pro-
cessing, and numerical computation can be expressed via
frame and matrix operations. These coarse-grained opera-
tions preserve their semantics, and simplify the paralleliza-
tion and lowering to kernels for emerging hardware.

o Data Independence: Instead of requiring users to specify data
representations like dense, sparse, and compressed; or data
locations like local CPU, local GPU, or distributed; users
work with abstract data types and the system optimizes the
IDA pipeline for data and deployment characteristics. This
principle is crucial for composite DSL-based primitives.

o Extensibility: Data independence and automatic optimiza-
tions are great aspirations but face challenges regarding
extensibility for new operations, data types, and hardware.
Given increasing specialization across the SW and HW stack,
DAPHNE aims for good extensibility to allow researchers to
quickly experiment with new prototypes and extensions.

4.1 DaphneDSL: A Domain-specific Language

Overview: DaphneDSL is a domain-specific language inspired by
ML systems and languages/libraries for numerical computation like
Julia [11], Python NumPy [40], R [59], and SystemDS DML [17]. Ata
high-level, this DSL supports conditional control flow, typed and un-
typed functions; abstract data types of frames, matrices, and scalars;
various built-in operations (i.e., functions and operators), and addi-
tional second-order language abstractions. A user creates a simple
text file with a DSL program (e.g., example.daphne) and can parse,
compile, and execute this program via daphnec example.daphne.
DaphneDSL is parsed into DaphnelR using ANTLR4, for which we
provide a DSL grammar file and generate the respective parser in
an offline manner on grammar updates.

Patrick Damme et al.

Table 1: Basic Frame/Matrix Built-in Operations.

Operation Group Examples

Matrix Multiply
Element-wise Ops
Aggregation and Stats
Data Generation
DNN Layers/Optimizers
Matrix Reorganization
Frame Reorganization
Set Operations
Relational
Read and Write

gemm, syrk, conv2d
unary, binary, ternary, n-ary
sum(), rowSums(), colSums(), median()
random data, sequences, sampling
Istm(), softmax(), sgd, adam, adagrad
transposition, slicing and insert, reshaping
dedup, sorting, renaming, casting
union, intersect, diff, cartesian product
selection, projection, join, group-by
csv, matrix market, parquet, arrow, hdf5

Data and Value Types: DaphneDSL differentiates data and
value types. Supported data types include frames (a table with
columns of potentially different value types), matrices (homoge-
neous value type) and scalar values, but in the future we will
likely extend this by tensors and named/unnamed lists to group in-
stances of such data types and access by name and/or position (e.g.,
params[“1lr”], or params[7]). Value types specify the representa-
tion of individual values and currently we support: SI8, SI32, SI64,
UI8,UI32,UI64, FP32, FP64 (integer and floating point). In addition,
we also support strings but currently only for scalars. The combi-
nation of data and value types yields powerful data representations
such as Matrix<FP32> and Frame<SI32, SI8, FP64>.

Basic Built-in Operations: The supported frame and matrix
operations include both relational algebra and linear algebra as well
as various aggregation and statistical functions. In detail, there are
100s of relevant operations in the categories shown in Table 1. At
language level, these operations process abstract data types.

ExampLE 1. Example DSL Program: The following DaphneDSL
program computes the connected components of a co-author graph.

G = readC00("./AuthorC00.csv"); // n-by-n boolean matrix
n = nrow(G); // get the number of vertexes

maxi = 100;

c = seq(1, n); // init n-by-1 matrix of vertex IDs
diff = inf; // init diff to +Infinity

iter = 1;

// iterative computation of connected components
while(diff>0 & iter<=maxi) {
u = max(rowMaxs(G x t(c)), c); // neighbor propagation
diff = sum(u != c); // # of changed vertexes
c = u; // update assignment
iter = iter + 1;

}

We read a CSV file in coordinate format of row indexes, column
indexes, and values (ones) into an expanded (likely sparse) matrix,
where each row and column (i.e., vertex or node) refers to an author
and non-zero cells (i.e., edges) refer to co-author relationships. We
then initialize the state of each vertex with a unique ID and iteratively
propagate the current state to all neighbors (here, Gxt(c) performs
a matrix/row-vector element-wise multiplication with broadcasting
of the transposed vector). The new vertex states are computed as the
maximum IDs received from neighbors and the current state [56].
That way, the maximum vertex ID per component propagates through
the entire subgraph, and once a fixpoint is reached, we terminate and
obtain the assignment of nodes to connected components.

DAPHNE: An Extensible System for Integrated Data Analysis Pipelines

Control Flow and Function Calls: For expressiveness, we also
support conditional control flow with loops, branches, and function
calls. The basic control flow constructs are mapped to the existing
MLIR dialect SCF (structured control flow). We support for, while-
do, and do-while loops, but will further add parfor (parallel for)
loops [14, 35, 77] as an entry point for parallelization. Branches
use an if-elseif-else syntax, and both loops and branches allow
for arbitrary nesting levels. In order to build a hierarchy of DSL-
based primitives, we aim to support—inspired by Python type hints,
Julia type assertions, and Rust function signatures—both typed and
untyped functions. For example, consider making the DSL script
for connected components a built-in function components():

def components(G, maxi, verbose) { ... }
def components(G: matrix<uil>, maxi: ui32, verbose: uil)
-> matrix<ui64> { ... } // one output matrix of UI64

These alternatives provide good flexibility (untyped functions are
compiled on demand according to types at a call site) as well as
typing (for data and/or value types) if the types are known during
development. For example, the function components() assumes
Boolean input graphs (1 bit integers) and can make this explicit.
Multiple function returns also require multi-assignments such as
X,Y = foo(Z). Arguments are passed by position or name, were
the latter allows arbitrary argument orderings and defaults. For
both DSL-based functions and built-in operations, we aim to allow,
similar to Julia [10], multiple dispatch where function calls are
dispatched to the most specific type combination of inputs. Only
top-level function declarations are supported, but namespaces allow
the packaging of function libraries without conflicts.

Scoping and Type Polymorphism: Related to control flow,
we use bounded scoping from traditional programming languages.
If an intermediate variable is created in a certain nested scope,
it is deleted at the end of this scope. This scoping is in contrast
to R’s unbounded scoping, which is useful in the absence of vari-
able declarations. However, via simple matrix/frame constructors,
we can easily overcome the need for type declarations. Variable
shadowing is not supported, so an assignment of X overwrites the
outer scope’s variable but in a function-local manner. Furthermore,
DaphneDSL has copy-on-write semantics by default, where assign-
ments like A=B, and function calls are copy-by-reference, but any
modification like B[i,]=C, implicitly copies B, performs the partial
update and assigns the new intermediate to B, while A remains
unmodified. This approach is equivalent to R’s copy-on-write se-
mantics, whereas other languages like Julia use update-in-place by
default and require users to perform explicit A=copy (B) operations
if implicit updates to multiple objects are unintended. Internally,
the DAPHNE compiler and runtime then help to avoid unnecessary
copies (e.g., via update-in-place flags and/or reference counting).
Finally, DaphneDSL provides limited type polymorphism in terms
of non-polymorphic data types but polymorphic value types. This
approach excludes variable assignments of conflicting data types
and simplifies runtime plan generation.

Higher-level Built-in Operations: Besides the basic built-in
operations, we further aim to provide higher-level built-in opera-
tions. This includes DSL-based functions and second-order func-
tions. DSL-based functions are composite functions (e.g., ML algo-
rithms or DNN layers) written in DaphneDSL that are registered
in packages, which can be imported in other DaphneDSL scripts.
Second-order functions take functions as arguments, and include

CIDR’22, January 10-13, 2022, Chaminade, USA

built-in functions for executing SQL queries on registered frames,
primitives like parameter servers for data-parallel mini-batch train-
ing, and user-defined functions with different data bindings:

// (a) SQL query processing

registerView(“XTab”, X); // X:= [SI32, SI8, FP64]

Y = sql (“SELECT DISTINCT a, b FROM XTab”); // Y:= [SI32, SI8]

// (b) primitives for mini-batch training

Mp = paramserv(model=M, features=X, labels=y,
upd=updateGrad, agg=updateModel, utype=ASP,
freq=BATCH, epochs=200, batchsize=128, ...);

// (c) user-defined functions (axis: @ cell, 1 row, 2 column)

Y = map(X, foo); // DSL function foo on every cell of X

Y = map(X, “v -> v.length + 1“); // C++ with pre-defined env

These primitives are either compiled to frame and matrix operations,
or are mapped to dedicated infrastructure that repeatedly calls
the passed function arguments. For example, the parameter server
[27] (or similar distributions strategies [36]) establishes temporary
workers, repeatedly runs gradient and model updates and, after
termination, returns the model and thus, acts as a stateless function.

External Libraries: The integration of external libraries is very
important for enabling an incremental adoption of DAPHNE. This
integration focuses on two main aspects, low overhead data ex-
change with UDFs and libraries, as well as exposing the tuning
knobs (e.g., degree of parallelism) of libraries to optimization and hi-
erarchical scheduling of IDA pipelines. While the basic integration
is through UDFs with materialized intermediates, we aim to support
zero-copy data formats like Apache Arrow, chunked data transfers
as known from R-Integrations [26, 39], and careful tuning of buffer
management [74]. Additionally, we aim to annotate the called UDFs
in special script-level scopes to expose tunable parameters such
as the degree of parallelism, and other MPI/OpenMP/BLAS library
configurations. Exposing and utilizing these parameters during op-
timization will allow for seamless scheduling and better utilization
of hardware resources in complex, composite IDA pipelines.

4.2 DaphneLib: A Python API

Overview: Python is currently undoubtedly the main entrance to
ML systems, but increasingly often also to query processing and
numerical computations. Accordingly, we provide DaphneLib as a
simple user-facing Python API that allows calling individual basic
and higher-level DAPHNE built-in functions. The overall design
follows similar abstractions like PySpark [87] and Dask [73] by
using lazy evaluation, but on evaluation, creates and executes a
DaphneDSL script, reusing the entire compilation chain.

Lazy Evaluation: The entry point for DaphneLib is a Daph-
neContext that can create DAPHNE matrices or frames from pan-
das data-frames or NumPy arrays. These matrices and frames are
essentially metadata objects with references to leaf data. Subse-
quent operations are directly invoked on these metadata objects.
For example, our components() function can be called as follows:

dc = DaphneContext()

G = dc. from_numpy(npG)

G=(G!=09)

c = components(G, 100, True).compute()

While Spark differentiates transformations and actions (where ac-
tions trigger computation), Dask [73] provides an explicit compute()

CIDR’22, January 10-13, 2022, Chaminade, USA

function. In order to make our API easily understandable, we fol-
low this design of explicit triggers. In the example above, we create
a DAPHNE matrix from a NumPy array, convert it to a Boolean
matrix (G!=0), and call the components() function. All these op-
erations only build a local dependency graph of operations, where
metadata objects refer to data or operation nodes, and subsequent
operations extend the dependencies of their inputs. On compute (),
we then traverse the dependency graph in a depth-first manner
and construct a DaphneDSL script. Each node adds a line of DSL
script, and the depth-first traversal with memorization ensures an
ordering by data dependencies without unnecessary redundancy if
a node is reachable over multiple paths. The resulting DaphneDSL
script is parsed, compiled, and executed through daphnec, and the
results are converted to NumPy arrays or pandas data-frames. In
addition to all basic and high-level built-in functions and operations,
we also provide a function for executing DaphneDSL directly. Given
this seamless integration, users can then mix and match DAPHNE
computations with other Python libraries.

4.3 Extensibility

The design principle of extensibility is of utmost importance to en-
able low-effort exploratory experimentation and custom extensions
for new data types, operations, and hardware. At language and
configuration level, there are multiple aspects of extensibility, all of
which require a discussion of different personas and deployments.
DAPHNE aims for deployments with different distribution strate-
gies, different distributed computing frameworks, different resource
managers, as well as different on-premise and cloud hardware re-
sources. In this context, we see the personas of internal/external
developers, users, and infrastructure administrators.

Extension Catalog: Our initial design centers around an ex-
tension catalog that allows registering dedicated artifacts in the
form of shared libraries. The catalog also registers the type of exten-
sion (e.g., kernels for existing operations, or data types), traits and
properties, as well as cost functions provided by developers. Based
on this metadata, these extensions are represented in DaphnelR
and thus, included in various optimization passes such as shape
inference, and operator selection. The concrete use of extensions
can be further influenced both at script level (mostly by users) or
configuration files (mostly by administrators).

Extensibility at DSL Level: At DaphneDSL level, we will pro-
vide means for programmatically obtaining and setting configu-
rations and topology information (e.g., get/setNumThreads(32)).
These configurations include available devices, degree of paral-
lelism, memory budgets, but also different garbage collection and
scheduling algorithms. Depending on the place of invocation, these
configurations affect the default configuration for the current scope
and child-scopes (e.g., called functions). Script-level extensibility
also includes dedicated built-in functions for affecting data repre-
sentations, data placement, and operator placement:

= sparse(Y);

= compress(Y);

= device(Y, “/GPU:0@”);

device(Y, [“/GPU:@”,“/GPU:1”], round_robin);
X =Y @_gpu Z; // matmult on GPU

X X X X

All these decisions are made via basic built-in functions. This ap-
proach provides clear data-flow semantics and allows extensibility.

Patrick Damme et al.

For example, a developer might create a new compressed data type
and operations. By registering and invoking a shared library with a
custom compressXYZ() operation, the data can be brought into this
representation, and subsequent function calls on this data object are
then dispatched to the specialized operator implementations. Such
script-level decisions lose data dependence but are user choices
and will be treated as constraints. The optimizing compiler then
handles remaining operations around these fixed operators, and
helps lowering everything to execution plans as needed.

5 COMPILER AND RUNTIME

As shown in Figure 1, the DaphneDSL scripts are then compiled into
executable runtime plans. In this section, we give a more detailed
overview of the compiler and selected runtime components.

5.1 Compiler Overview

MLIR Background: The ANTLR parser converts a DaphneDSL
program into an MLIR-based intermediate representation. MLIR
[51] is a customizable compiler infrastructure for creating low-cost
domain-specific compilers. Programs are represented in static single
assignment (SSA) form—permitting only a single assignment to
otherwise immutable variables—and then lowered to LLVM. Its
basic concepts are modules, functions, and regions that can contain
sequences of blocks, which in turn contain sequences of operations.
The basic philosophy is that everything, even loops with complex
body programs, are operations and everything is customizable.
Using MLIR allows for reuse of basic infrastructure and various
optimization passes as a library, as well as future extensibility by
other MLIR dialects. For control structures like branches and loops,
we already use the SCF (structured control flow) dialect.
DaphnelR: The DAPHNE MLIR dialect, called DaphnelR, de-
fines the types, operations, and various traits (e.g., for schema,
type, and shape inference) in so-called TableGen [84] records, from
which C++ code is automatically generated. Operations produce
values of a certain type. For example, the following snippets show
the TableGen specifications of basic scalar value types, the matrix
multiplication operation, and the shape inference interface:

def SIScalar : AnyTypeOf<[SI8, SI32, SI64], "signed int">;

def UIScalar : AnyTypeOf<[UI8, UI32, UI64], "unsigned int">;

def IScalar : AnyTypeOf<[SIScalar, UIScalar], "int">;

def FPScalar : AnyTypeOf<[F32, F64], "float">;

def NumScalar : AnyTypeOf<[IScalar, FPScalar], "numeric">;

def Daphne_MatMulOp : Daphne_Op<"matMul", [
DeclareOpInterfaceMethods<VectorizableOpInterface>,
NRowsFromIthArg<@>, NColsFromIthArg<i>

1> {
let arguments = (ins MatrixOf<[NumScalar]>:$lhs, ...rhs);
let results = (outs MatrixOf<[NumScalar]>:$res);

3
def InferShapeOpInterface :
let description = [{
Interface to infer the shape(s) of the data object(s)
returned by an operation.

OpInterface<"InferShape"> {

11
let methods = [
InterfaceMethod<
"Infer the shape(s) of the output data object(s).",
"std::vector<std::pair<ssize_t, ssize_t>>",
"inferShape", (ins)>
1;

NumScalar refers to any supported integer or floating point type,
and is used to parametrize the value types of operation inputs/outputs.

DAPHNE: An Extensible System for Integrated Data Analysis Pipelines

The InferShapeOplnterface specifies an inferShape method that
returns a vector of matrix dimensions (pair of rows and columns,
for each result). For matrix multiplication, we take the rows from
the left- and columns from the right-hand-side. Additional traits
exist for operator fusion (vectorization), distributed operations, and
type inference. During parsing, we instantiate the individual opera-
tions, blocks, and regions to obtain a DaphnelR program, and apply
optimization passes for rewrites, shape inference, and lowering of
the SCF dialect. Finally, this representation is further lowered to
the MLIR-LLVM dialect, including LLVM function calls to specific
kernels (e.g., ewNeq and sumAll for sum(u != c)), and ultimately
compiled to hardware-specific instructions.

Optimization Passes: The DAPHNE compilation is based on
MLIR optimization passes for enrichment by inferred properties
and lowering. This lowering descends from high-level, abstract
operations and data types to multiple levels of operator special-
ization (e.g., local/distributed operations, device placement, choice
of physical kernels), as well as data specialization (e.g., DenseMa-
trix/CSRMatrix representations). Optimization passes for rewrites
and lowering can be interleaved and repeatedly executed accord-
ing to known dependencies. Important categories of optimization
passes include (so far, only partially implemented):

e MLIR Programming Language Rewrites (e.g., CSE, constant
folding, branch removal, code motion, function inlining)

e Type and Property Inference (e.g., data and value types,
shape/dimensions, schema, sparsity/cardinality, symmetry)

o Inter-Procedural Analysis (analysis of function call graphs,
propagation of types, dimensions, properties)

o Algebraic Simplification Rewrites (e.g., many peephole opti-
mizations for relational/linear algebra operations)

e Operator Ordering (e.g., join/matmult ordering/enumeration,
sum-product optimizations, operator scheduling)

e Operator Fusion (selection of fused operators, vectoriza-
tion/tiling, and splitting/merging strategies)

e Memory Management (update-in-place, reuse of allocations)

e Execution Type Selection (local vs distributed, distributed
caching/partitioning)

e Device Placement (e.g., CPU/GPU/FPGA, multiple devices)

e Physical Operator Selection (e.g., different join/group-by,
matrix multiplication, and matrix-vector operators)

Additional Compiler Components: There are additional com-
piler components that are used by several passes and during run-
time. First, many advanced rewrites and reordering require cost
estimation. We aim to provide a cost estimation component includ-
ing cardinality and sparsity estimation (with different cost functions
and summary statistics) for blocks of operations and entire sub-
programs. Costing sub-programs needs to reason about loops or
branches, and compute aggregated costs. Second, data-dependent
operators, UDFs, and control flow can create unknown shapes and
properties [45], which would result in inefficient fallback plans. A
recompilation component [15] aims to adaptively recompile sub-
programs at natural or artificial block boundaries according to
the actual sizes of intermediates. Third, various runtime strategies
would benefit from compiler assistance. Examples include compiler-
assisted compression and reuse [69], which both leverage workload
characteristics to make more informed choices during runtime.

CIDR’22, January 10-13, 2022, Chaminade, USA

Logical Partitioning Physical Partitioning Federated Matrix

(FP64, 4500x3000) GPU:1
111213 [0:1000, 0:2500] _,l:l CPUs1
o] | Moy
2,1(22|23 T

jm————— -
[1000:3500,

|

|

' | [0:4500, 2500:3000]
} 0:2500] :

| T

| 1

3,1(3.2(33 e

414243

|
|
l
5115253 ! }
Blocksize: 1000x1000 P = 1
Hash function: | 2 mmwm (35002500, FPGA:1
(RowlIx+Collx)%3 0:2500]
(a) Collection of Matrix Tiles (b) Federated Matrix
Figure 2: Distributed/Multi-device Data Representations.

5.2 Data Representations

DAPHNE’s basic data types are frames, matrices, and scalars. Each
matrix, scalar or frame-column has a value type. At DSL level, users
deal with these abstract data types, and the compiler systemati-
cally lowers operations to kernels that produce local or distributed
physical data structures that are the inputs/outputs of kernels.

Local Data Structures: DAPHNE’s core data structures are
dense or sparse matrix formats. Both use row-major representations:
a dense linearized one-dimensional array, and a compressed sparse
row (CSR) format of row offsets, column-index and value arrays.
While matrices are homogeneous arrays, frames have a schema
and thus, require the handling of value types. Given common ana-
lytic workload characteristics, our frames rely on column-oriented
storage implemented via a dense matrix per column or column
group. This composition allows the reuse of matrix operations as
frame operations. Finally, for zero-copy indexing (e.g., slicing or
vectorized execution), each matrix can specify—similar to NumPy
[40]—a view window on a potentially larger array.

Distributed Data Structures: The distributed matrix and frame
representations are then composed from the local data structures.
We support the following two abstractions that give a great balance
of flexibility and fine-grained control if needed:

o Distributed Collection of Tiles: A matrix is divided into fixed-
size blocks and stored as a collection of block-indexes and
blocks [50]. By default, such a bag is unordered but can be
partitioned (hash, range), or sorted.

o Federated Matrix/Frame: A federated matrix is a virtual ma-
trix whose individual parts (identified by index ranges) are
stored as a local or distributed data structure at a particular
federated site [8] or device.

Figure 2 shows an example 4,500 X 3,000 matrix. Both distributed
representations are amenable to data-parallel computation, but
they have different tradeoffs regarding distribution, load balancing,
sparsity, and direct access. The collection-of-tiles splits the matrix
into squared blocks of fixed size, and applies hash partitioning if
needed. The host does not maintain the location of individual tiles
but distributed joins and aggregations apply, and tiles are always
aligned. In contrast, the federated matrix keeps metadata of physical
data at the host, and stores device-local data as a local data structure.
This approach avoids overheads for ultra-sparse matrices, allows
more effective placement, and yields efficient kernel operations.

5.3 Local and Distributed Runtime

The compiler produces an execution plan with calls to C++ host
kernels for local, distributed, or accelerator operations. Our kernels

CIDR’22, January 10-13, 2022, Chaminade, USA

make heavy use of C++ templates for both value types and combi-
nations of dense and sparse inputs. Since we support hundreds of
operations that require specialization, we automatically generate
the template instantiations. For n-ary operations with mixed types,
the compiler injects casts, some of which (e.g., casting an FP32
frame-column to an FP32 matrix) are no-ops.

DEFINITION 1. Kernel: A kernel is an implementation of an IR op-
eration (or registered user-defined kernel) that operates on instantiated
and materialized data types. Most kernels are stateless (except mem-
ory allocation) and deterministic. Stateful kernels are allowed as well
(e.g., implementing configuration management and setup/tear-down
of context objects for device/cluster initialization and cleanup).

Context Objects: Access to distributed runtimes and HW ac-
celerators is encapsulated in a context object that is passed to indi-
vidual kernels. The initializers of specific devices or frameworks
are local kernels themselves that add state to the global context.
This approach simplifies the integration of new accelerators by
registering such kernels in the extension catalog.

Distributed Runtime: We aim for an integration with different
distributed programming models and resource managers. As a first
step, we are building the DAPHNE standalone distributed runtime
with dedicated worker processes, simple RPC communication (us-
ing gRPC), and a basic integration with SLURM as a common HPC
resource manager. The host kernels of distributed operations then
bring data into a distributed representation if needed and spawn
distributed jobs in the form of MLIR snippets that can be compiled
in an architecture-aware manner at the individual workers. In the
future, we aim to further integrate MPI and device-specific collec-
tive operations (e.g., NVIDIA NCCL), and embedded deployments
in different HPC, cloud, and DB environments.

5.4 Accelerators and Storage

Most HW accelerators like GPUs, FPGAs, and near-SSD compute
have a cache hierarchy and high-bandwidth memory. In hybrid run-
time plans that utilize heterogeneous hardware, a data object might
be partitioned or replicated across devices. For flexibility—e.g., in
programs with conditional control flow—we keep this data-location
information in runtime data structures. Specifically, matrices and
frames reference the host data (which can be a nullptr), and/or
data on HW accelerators, computational storage devices, and dis-
tributed workers. For example, a compiled GPU operation is called
through its host kernel, which first invokes primitives to make the
inputs available in GPU memory. If the data is already on the GPU,
there is no additional transfer, and otherwise the primitive initiates
implicit (stream & discard) or explicit (copy & retain) data trans-
fer. Additionally, the compiler can inject prefetch and broadcast
directives to overlay anticipated transfers with other operations.
These primitives nicely generalize to different HW accelerators, the
distributed runtime, and computational storage [7, 54].

ExAMPLE 2. Near-SSD Quantization: For the DLR inference
workload from Section 2.1, we might broadcast the quantization
boundaries (and parts of the trained model) via the mentioned primi-
tives to the near-SSD CPU or FPGA, stream FP32 data from the SSD’s
flash chips, quantize the data in batches to UINTS, and thus, reduce
the PCle data transfer to the CPU or other HW accelerators by 4x.

Patrick Damme et al.

(%9, %10) = fusedPipelinel(%X, %y, %colmu, %colsd) {

GPU/FPGA Workers

inter-
mediates

N
(@)) CPU Workers

Figure 3: Vectorized Execution of Compiled Operator
Pipelines (with multi-device data and task placement).

5.5 Vectorized (Tiled) Execution

Basic runtime plans of kernels with materialized intermediates
offer good performance and simplify debugging. Although this
model is commonly used in ML systems and column stores, it
suffers from several limitations. Materializing intermediates has
large temporary memory and memory-bandwidth requirements,
multi-threaded kernels create synchronization barriers per operator,
and device placement of operators is too coarse-grained. To address
these limitations, we introduce a vectorized execution engine for
compiled operator pipelines of frames and matrices, which allows
fine-grained operator fusion and parallelism across HW devices.
Vectorized Task Execution: Figure 3 shows the integration
of vectorized operator pipelines into execution plans. Similar to
LLVM loops, a vectorized pipeline has multiple inputs, multiple
outputs, and an IR body. Additionally, we specify split (e.g., row
slicing) and combine (e.g., concatenate or aggregate) functions
for inputs and outputs. Here, we perform matrix standardization
((X — colMeans(X))/colSds(X)), append a column of ones for the
intercept, and compute X' X and X"y as part of a closed-form
linear regression algorithm. The input matrix X is federated across
CPU, GPU, and FPGA memory, and vectorized execution creates
tasks for aligned row partitions (similar to morsels [30, 53]) and
appends them to one or multiple (e.g., device-specific) task queues.

DEFINITION 2. Vectorized Task: A task comprises its input data,
an operator pipeline (graph) with a specific input data binding (scalar,
row, or tile), outputs, and a combiner. The inputs and outputs can be
zero-copy views (index ranges) or buffers, where the task size refers
to the length of the range (e.g., number of rows). If the task size is
greater than the data binding, the pipeline is invoked for each data
item (sub-ranges). Vectorization is achieved through these input data
bindings, which also affect the size of pipeline intermediates.

Worker threads then dequeue and execute tasks, and combine the
results with worker-local aggregation. HW accelerator workers are
CPU threads that launch the accelerator kernels per task.

Fused Operator Pipelines: By controlling the task size, we
can ensure bounded memory requirements and fit intermediates
into the device caches. That way, the entire operator pipeline be-
haves like a dedicated, hand-crafted kernel. A task is the unit of
scheduling with potential worker contention on shared task queues
and outputs, and random access to the start of the task data. The
more tasks (or the smaller the task size), the higher the overhead
but the better for load balancing. Separating task size from data
binding provides additional flexibility. For example, the pipeline in
Figure 3 can be invoked at row granularity (where the BLAS matrix

DAPHNE: An Extensible System for Integrated Data Analysis Pipelines

multiplications dsyrk and dgemv can be specialized to an outer
product dger and daxpy), minimizing the size of intermediates for
minus, div, and cbind. However, with sufficiently many features
(e.g., >1000) every row’s outer product and accumulation would
flush the last-level cache. Instead, a tiling with multiple rows allows
more efficient, cache-conscious operations. The operations inside
a fused operator pipeline are regular kernel calls with view-based
indexing of inputs, which allows reusing kernels, and exploiting
sparsity of both, inputs and pipeline intermediates.

Multi-device Scheduling: As shown in Figure 3, vectorized
execution also seamlessly integrates HW accelerators and sched-
uling. For CPU kernels, we leverage single-operator pipelines as
the default multi-threading approach. In this framework, we will
further explore different task partitioning and scheduling strate-
gies, single and multiple task queues (e.g., device-specific with task
stealing), data-locality-aware scheduling, and means of runtime
adaptation. Finally, vectorized execution also nicely integrates with
computational storage, where operator pipelines might be executed
on near-SSD CPUs or FPGAs; and the task queues can connect
asynchronous I/O and subsequent computation pipelines.

Code Generation: Vectorized execution also simplifies code
generation. Instead of interpreting vector kernels, we can compile
device-specific kernels for different workers, but reuse the split
and combine infrastructure. Code generation allows fine-grained
specialization, sparsity exploitation, and exploitation of reconfig-
urable devices like FPGAs. For CPU pipelines, we use MLIR which
leverages LLVM for scalar data bindings, and vectorized kernels
or libraries like BLAS and TVL [85] for matrices and frames; for
GPUs, we compile CUDA C++ code and call CUDA libraries; and for
FPGAs, we will use OneAPI DPC++, T2S [79], and hand-crafted ker-
nels. Similarly, but largely unexplored, for computational storage,
we aim to compile eBPF byte-code programs [54].

5.6 Extensibility

Besides the extensibility features at script and configuration level—
which allows registering new runtime kernels—we further aim at
extensibility of DaphnelR and the optimizing compiler.
DaphnelR: Our DaphnelR dialect defines types, operations, and
various traits in TableGen [84] records, but also reuses existing
MLIR dialects like SCF. One developer-centric direction for extensi-
bility is the extension of the DaphnelR dialect. Common use cases
are adding new operations of an existing category (e.g., a new unary
element-wise operation), adding a new category of operations (e.g.,
a specific quaternary operator), and adding new traits (e.g., as help
for new optimization passes). Additionally, developers might add
existing or new MLIR dialects and integrate them with the rest
of the system by changing the DAPHNE infrastructure internally.
While some of these extensions can reuse most of the existing
runtime operations, other require additional runtime kernels.
Compilation Chain: MLIR’s approach of applying a sequence
of optimization passes is already very modular and can reuse ex-
isting LLVM and MLIR passes. Adding new optimization passes
or composing existing passes into custom compilation chains is a
natural direction for compiler extensibility. For example, having
registered a new data type or kernel, an additional optimization pass
may apply them for a given IR program under certain conditions.

CIDR’22, January 10-13, 2022, Chaminade, USA

Sideways Entry in Multi-level Compilation: The regular in-
vocation of daphnec (by a user or through the Python API) takes a
DaphneDSL script and then compiles and executes this script. In or-
der to aid debugging and understanding, an explain flag allows to
print the DaphnelR at different states of compilation. Similar to the
use of kernels at script level, which are treated as constraints, we
will extend daphnec to take valid DaphnelR instead of DaphneDSL
as program specification as well. This flexibility allows researchers
to obtain the generated execution plan, modify the plan slightly (e.g.,
to force certain sequences of local or distributed operations), and
execute this plan through daphnec, which performs the remaining
lowering and runs the final executable plan.

6 EXPERIMENTS

Our experiments study a DAPHNE prototype with a preliminary
compilation chain, templated kernels, vectorized execution engine,
CSV reader, distributed runtime, and basic GPU integration.

6.1 Experimental Setting

HW&SW Environment: We ran the experiments on a single node
with two Intel Xeon Gold 6238 CPUs @ 2.2-2.5 GHz (56 physical/112
virtual cores, 7.7 TFLOP/s), 768 GB DDR4 RAM at 2.933 GHz bal-
anced across 6 memory channels per socket, 2 x 480 GB SATA SSDs
(system/home), and 12 x 2 TB SATA SSDs (data). This node has a
PCle-connected NVIDIA Tesla T4 GPU with 8.1 TFLOP/s and 16 GB
memory. Finally, we use Ubuntu 20.04.1, MLIR and LLVM as of
05/2021, openBlas 0.3.15, CUDA 11.4.1, and cuDNN-8.2.2.

IDA Pipelines and Data: The tested workloads are four sim-
ple IDA pipelines: P1 (TPC-H query processing, standardization,
and linear regression), P2 (earth observation ResNet20 scoring),
K-means clustering (with 20 iterations), and connected components
from Example 1. First, for pipeline P1, we use the TPC-H data
generator with scale factor SF=10, processing the query

YCID, C ¥, sum(TPrice) (OMktSeg=p(C) XCID ODaree[3a](0)) (1)

(filters on Customers/Orders, and a group-join [58]), following by
one-hot encoding, normalization and linear regression as discussed
in Section 5.5. Baselines are MonetDB, Pandas, and DuckDB [71],
each combined with TensorFlow (TF) 2.6 [1]. Second, pipeline P2
is the ResNet20 scoring pipeline from the earth observation use
case—described in Section 2.1—applied to the 4.9 GB test data in
FP32, where we compare with TF, TF XLA [52], and SystemDS [17].

6.2 Simple IDA Pipelines

P1 - Query Processing and LM: For a fair comparison, DAPHNE
and all baselines read from CSV, with different loading (e.g., Mon-
etDB load into temporary tables) and transfer strategies, and all
systems run single-threaded. Figure 4(a) shows the results with
varying query output size (selectivity of predicate p). Due to the
group-by aggregation, boundary crossing and model training has
only minor performance impact. However, the larger the passed in-
termediates, the more DAPHNE benefits from integrated execution.
Figures 4(b) and 4(c) show additional micro-benchmarks for nor-
malization and LM regression (closed-form algorithm, part of P1) as
well as K-means clustering on synthetic data. Vectorized execution
already yields speedups of 3x with room for improvements.

CIDR’22, January 10-13, 2022, Chaminade, USA

40 1m DAPHNE
@ MonetDB+TF

start-up

[J LM training
border-crossing
O relational query

DAPHNE (single-threaded)

B DAPHNE (vectorized pipelines)
TF (single-threaded)

M TF (multi-threaded)

=
o

30 I Pandas+TF
I DuckDB+TF

Runtime [s]
Runtime [s]
=
A

-
o

12 36 60
Size of relational query result [MB]

(a) P1: Query and LM

100K x 1K
Input dimensions (rows x cols)

(b) LM Micro-Benchmark

1M x 1K

Runtime [s]

Patrick Damme et al.

DAPHNE (single-threaded)
B DAPHNE (vectorized pipelines)
TF (single-threaded)
M TF (multi-threaded)

M Scoring
Loading

[
o

Runtime [s]

-
=)

100K x 1K
Input dimensions (rows x cols)

1M x 1K

0
Daphne SysDS SysDS-MT TF
System

TF/XLA

(c) K-means Micro-Benchmark (d) P2: ResNet20 Scoring

Figure 4: Preliminary Experimental Results of Selected IDA Pipelines and Micro-Benchmarks.

P2 - ResNet20 Scoring: Figure 4(d) shows the P2 results on the
T4 GPU. We trained the ResNet20 model with the Adam optimizer
for 100 epochs on So02Sat LCZ42 [90]. TF and TF XLA (both with
GPU) show similar performance, which is dominated by I/O, while
SystemDS’ [17] (with GPU and read into FP64 and conversion to
FP32) is about 1.2x slower, but 4x faster with multi-threaded I/0.
DAPHNE’s basic CSV reader and GPU integration already show
the best single-threaded performance. Vectorized read pipelines
and task placement have potential for solid improvements.

Additional Experiments: We conducted additional experiments
with FPGA kernels (Intel FPGA PAC D5005 with Stratix 10SX FPGA
and 32 GB memory), hybrid CPU+GPU vectorized pipelines, vec-
torized sparse pipelines, and distributed operations with up to 100
workers on the Vega® Supercomputer. While still in an early stage
and several integration challenges remain, we observed promising
results and can draw several conclusions. First, vectorized execu-
tion with reuse of kernels makes multi-device scheduling feasible,
and simplifies multi-threaded pipelines with sparse intermediates.
Second, hybrid local+distributed or multi-device execution requires
a careful planning of data/task placement and related data transfers.
Third, vectorized execution in distributed operations is a promising
direction for exploiting both inter- and intra-node parallelism.

7 RELATED WORK

System infrastructure for IDA pipelines is related to a wide variety
of areas. We specifically discuss the context of modern system
support for IDA pipelines, trends of HW accelerator integration,
and vectorized (tiled) execution, and extensibility.

Systems for IDA Pipelines: The trend toward IDA pipelines
is currently handled with a combination of existing systems in-
cluding standalone and embedded DBMS like DuckDB [71], ML
systems like TensorFlow [1] or PyTorch [65], data-parallel compu-
tation frameworks like Spark [87], Flink [20], or Dask [73] (often
with collections of tiles of an overall matrix or frame), and variety
of specialized systems or libraries (e.g., for graph processing and
time series analysis). Furthermore, ML systems are extended with
basic data processing (e.g., TFX [9]), DBMS are extended with ML
capabilities (e.g., via UDFs or lambda functions) [50], data-parallel
frameworks aim to provide a unified environment [87], compilation
frameworks like MLIR [51] or CVM [60] provide common compiler
infrastructure, and HPC techniques are increasingly adopted across
these systems [13]. However, these integrated systems often rely
on separate libraries and data representations for query processing,
ML, and HPC; the integration of HW accelerators is not holistic;
and the handling of numerical HPC codes is limited.

2Vega Supercomputer (Maribor): https://doc.vega.izum.si/general-spec/

HW Accelerator Integration: The spectrum of hardware ac-
celeration ranges from CPUs with SIMD, over GPUs and FPGAs, to
custom ASICs and focuses on tradeoffs regarding reconfiguration
capabilities, performance, and energy efficiency [64]. Other dimen-
sions include custom data types, sparsity exploitation (e.g., via
operator fusion [16], or HW support [63]), and near-data process-
ing (e.g., on SSDs with FPGAs attached [6, 7]). Existing work largely
relies on manual or heuristic operator placement, but there is work
on reinforcement learning for multi-device operator placement [57],
and new link technologies significantly influence these decisions
[55, 72]. Recent work applies self-scheduling across devices [30],
and data partitioning according to expected device performance
[37], for fully utilizing available devices. At systems level, mostly
HW-vendor-provided libraries (e.g., BLAS, DNN, but also frame
operations [62]) are used for CPU, GPU, and partially FPGA opera-
tions, while FPGAs and ASICs are often integrated via compilation
frameworks like TensorFlow XLA [52], TVM [22], T2S [79], EVER-
EST [70], or target-specific compilers [64]. DAPHNE as a compiler
and runtime system aims to improve the productivity, extensibility,
and performance of utilizing multiple heterogeneous devices.

Vectorized Execution: Vectorized execution is a heavily over-
loaded term including (1) computation via coarse-grained (vector-
ized) array operations, (2) SIMD (vector) instruction parallelism,
and (3) vector-at-a-time (vectorized) query processing a la Mon-
etDB/X100 [18]. Interestingly, all three interpretations apply to
DAPHNE: the system is optimized for data analysis and linear alge-
bra on frames and matrices, the kernels and LLVM compiler exploit
SIMD and SPMD parallelism, and the central vectorized execution
engine processes batches of data. Besides ML systems, recent work
on vectorized array operations include tensors for data processing
[48], decision tree predictions in Hummingbird [61], slicing finding
in SliceLine [75], and maximum inner-product search in Maximus
[2], which all cleanly map complex algorithms to vectorized array
operations. Furthermore, vectorization is related to fused and com-
piled operator pipelines in SystemDS [16] and Tuplex [78] as well
as work on morsel-driven query processing [30, 53].

Extensibility: Providing extensibility for functionality and per-
formance has been investigated in different systems and at different
abstraction levels. First, in the context of database management sys-
tems, there are great surveys of work on extensibility [21]. Abstract
data types and user-defined functions/aggregates were introduced
in PostgreSQL [81] and are now widely used in practice. Such UDFs
have also been used to integrate ML into DBMS [33] and HPC
OpenMP applications in DBMS [86], but UDFs are often treated as
black boxes and thus, not subject to optimization (unless specifi-
cally handled [43]). Additional means of extensibility include query
optimizer generators [38], extensible cardinality estimation [47],

https://doc.vega.izum.si/general-spec/

DAPHNE: An Extensible System for Integrated Data Analysis Pipelines

interfaces for new storage methods (a.k.a. storage managers, or en-
gines) with well-defined interfaces for create/drop relation, insert,
delete, update, and get/getNext operations, but also persistently
stored modules like attachments or triggers. Second, several ML
systems also provide means of extensibility. DNN frameworks like
Caffee, PyTorch, and TensorFlow make it easy to add layers and
optimizers. AutoML systems like MLBase defined catalogs for regis-
tering new ML algorithms with their cost functions [49]. Additional
work also focuses on extensibility of system internals. Examples
include TensorFlow distribution strategies for mini-batch training
[36], TVM code generation for new hardware backends [22], and
the Flashlight library for extensibility by custom modules and ker-
nels [32]. DAPHNE is inspired by these existing works and aims to
build an open and extensible infrastructure for IDA pipelines.

8 CONCLUSIONS

We described the overall architecture and key design decisions
of the DAPHNE system infrastructure as an open and extensible
system for integrated data analysis pipelines, comprising query pro-
cessing, ML, and HPC. Major aspects are an MLIR-based compila-
tion chain, frame and matrix representations, HW accelerators and
computational storage, hierarchical scheduling, and a vectorized
execution engine that allows for fine-grained fusion and parallelism
across these heterogeneous components. Preliminary experiments
with selected ML pipelines on CPUs and GPUs show promising re-
sults. In the next few years, we will build out this infrastructure and
tackle research challenges across the different levels from resource
management, device kernels, I/O, buffer management, and vector-
ized execution, over compilation, operator and pipeline scheduling,
to seamless extensibility and customization of IDA pipelines, as
well as extensibility of system internals.

ACKNOWLEDGEMENTS

B The DAPHNE project is funded by the European Union’s Hori-
zon 2020 research and innovation program under grant agreement
number 957407 from 12/2020 through 11/2024. We further thank
Aristotelis Vontzalidis (ICCS/NTUA), Dzevad Corali¢ (TU Graz),
and Thomas Krametter (KAI) for their valuable contributions—after
the initial paper submission—to the DAPHNE distributed runtime,
Python API, and use case implementation, respectively.

REFERENCES

[1] M. Abadi et al. TensorFlow: A System for Large-Scale Machine Learn-
ing. In OSDI, 2016.

[2] F. Abuzaid, G. Sethi, P. Bailis, and M. Zaharia. To Index or Not to Index:
Optimizing Exact Maximum Inner Product Search. In ICDE, 2019.

[3] S. Agrawal, L. Barrington, C. Bromberg, J. Burge, C. Gazen, and
J. Hickey. Machine Learning for Precipitation Now- casting from
Radar Images. CoRR, abs/1912.12132, 2019.

[4] S. N. M. Albarqouni. Machine Learning for Biomedical Applications.
PhD thesis, TU Munich, 2017.

[5] H. Altwaijry, S. Mehrotra, and D. V. Kalashnikov. Query: A framework

for integrating entity resolution with query processing. PVLDB, 9(3),

2015.

Amazon. AQUA (Advanced Query Accelerator) for Amazon Redshift,

2021.

[7] A.Barbalace and J. Do. Computational Storage: Where Are We Today?
In CIDR, 2021.

l6

—

CIDR’22, January 10-13, 2022, Chaminade, USA

[8] S.Baunsgaard et al. ExDRa: Exploratory Data Science on Federated
Raw Data. In SIGMOD, 2021.

[9] D. Baylor et al. TFX: A TensorFlow-Based Production- Scale Machine
Learning Platform. In SIGKDD, 2017.

[10] J. Bezanson et al. Julia: dynamism and performance reconciled by
design. Proc. ACM Program. Lang., 2(OOPSLA), 2018.

[11] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. Julia: A fast
dynamic language for technical computing. CoRR, abs/1209.5145, 2012.

[12] S. Bhattacherjee, A. Deshpande, and A. Sussman. PStore: an efficient
storage framework for managing scientific data. In SSDBM, 2014.

[13] S. Blanas, P. Koutris, and A. Sidiropoulos. Topology-aware Parallel
Data Processing: Models, Algorithms and Systems at Scale. In CIDR,
2020.

[14] M. Boehm et al. Hybrid parallelization strategies for large-scale ma-
chine learning in systemml. PVLDB, 7(7), 2014.

[15] M. Boehm et al. SystemML’s Optimizer: Plan Generation for Large-
Scale Machine Learning Programs. IEEE Data Eng. Bull., 37(3), 2014.

[16] M. Boehm et al. On Optimizing Operator Fusion Plans for Large-Scale
Machine Learning in SystemML. PVLDB, 11(12), 2018.

[17] M. Boehm et al. SystemDS: A Declarative Machine Learning System
for the End-to-End Data Science Lifecycle. In CIDR, 2020.

[18] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-
Pipelining Query Execution. In CIDR, 2005.

[19] J. Cambronero, J. K. Feser, M. J. Smith, and S. Madden. Query opti-
mization for dynamic imputation. PVLDB, 10(11), 2017.

[20] P. Carbone et al. Apache Flink: Stream and Batch Processing in a
Single Engine. IEEE DE Bull., 38(4), 2015.

[21] M.]. Carey and L. M. Haas. Extensible database management systems.
SIGMOD Rec., 19(4), 1990.

[22] T. Chen et al. TVM: An Automated End-to-End Optimizing Compiler
for Deep Learning. In OSDI, 2018.

[23] E.D. Cubuk, B. Zoph, D. Mané, V. Vasudevan, and Q. V. Le. Autoaug-
ment: Learning augmentation strategies from data. In CVPR, 2019.

[24] B.Dageville et al. The Snowflake Elastic Data Warehouse. In SIGMOD,
2016.

[25] T.Dao, A. Gu, A. Ratner, V. Smith, C. D. Sa, and C. Ré. A kernel theory
of modern data augmentation. In ICML, 2019.

[26] S.Das et al. Ricardo: integrating R and Hadoop. In SIGMOD, 2010.

[27] J. Dean et al. Large scale distributed deep networks. In NeurIPS, 2012.

[28] M. Deregnaucourt, M. Stadlbauer, C. Hametner, S. Jakubek, and H.-
M. Koegeler. Evolving model architecture for custom output range
exploration. Mathematical and Computer Modelling of Dynamical
Systems, 21(1), 2015.

[29] L.Dong and T. Rekatsinas. Data integration and machine learning: A
natural synergy. PVLDB, 11(12), 2018.

[30] K. Dursun, C. Binnig, U. Cetintemel, G. Swart, and W. Gong. A
Morsel-Driven Query Execution Engine for Heterogeneous Multi-
Cores. PVLDB, 12(12), 2019.

[31] D.Duvenaud, J. R. Lloyd, R. B. Grosse, J. B. Tenenbaum, and Z. Ghahra-
mani. Structure discovery in nonparametric regression through com-
positional kernel search. In ICML, 2013.

[32] Facebook. Flashlight: Fast and flexible machine learning in C++, 2021.
https://github.com/flashlight/flashlight.

[33] X.Feng, A. Kumar, B. Recht, and C. Ré. Towards a unified architecture
for in-rdbms analytics. In SIGMOD, 2012.

[34] S. Gan et al. BAGUA: Scaling up Distributed Learning with System
Relaxations. CoRR, abs/2107.01499, 2021.

[35] G.E. Gévay, J. Quiané-Ruiz, and V. Markl. The power of nested paral-
lelism in big data processing - hitting three flies with one slap -. In
SIGMOD, 2021.

[36] Google. Inside TensorFlow: tf.distribute.Strategy, 2019. https://www.
youtube.com/watch?v=jKV53r9-H14.

https://github.com/flashlight/flashlight
https://www.youtube.com/watch?v=jKV53r9-H14
https://www.youtube.com/watch?v=jKV53r9-H14

CIDR’22, January 10-13, 2022, Chaminade, USA

[37] M. Gowanlock, B. Karsin, Z. Fink, and J. Wright. Accelerating the
Unacceleratable: Hybrid CPU/GPU Algorithms for Memory-Bound
Database Primitives. In DaMoN@SIGMOD, 2019.

[38] G. Graefe and W. J. McKenna. The volcano optimizer generator: Ex-
tensibility and efficient search. In ICDE, 1993.

[39] P. Grofle, W. Lehner, T. Weichert, F. Farber, and W. Li. Bridging two
worlds with RICE integrating R into the SAP in-memory computing
engine. PVLDB, 4(12), 2011.

[40] C.R.Harris et al. Array programming with numpy. Nat., 585, 2020.

[41] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image
Recognition. In CVPR, 2016.

[42] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual
networks. In ECCV, 2016.

[43] F. Hueske et al. Opening the black boxes in data flow optimization.
PVLDB, 5(11), 2012.

[44] I F. Ilyas, J. Rao, G. M. Lohman, D. Gao, and E. T. Lin. Estimating
compilation time of a query optimizer. In SIGMOD, 2003.

[45] Z.G.1Ives, A. Y. Halevy, and D. S. Weld. Adapting to source properties
in processing data integration queries. In SIGMOD, 2004.

[46] R. Johnson and I. Pandis. The bionic DBMS is coming, but what will it

look like? In CIDR, 2013.

V. Josifovski, P. M. Schwarz, L. M. Haas, and E. T. Lin. Garlic: a new

flavor of federated query processing for DB2. In SIGMOD, 2002.

[48] D. Koutsoukos, S. Nakandala, K. Karanasos, K. Saur, G. Alonso, and
M. Interlandi. Tensors: An abstraction for general data processing.
PVLDB, 14(10), 2021.

[49] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and M. L
Jordan. Mlbase: A distributed machine-learning system. In CIDR, 2013.

[50] A. Kumar, M. Boehm, and J. Yang. Data Management in Machine
Learning: Challenges, Techniques, and Systems. In SIGMOD, 2017.

[51] C. Lattner et al. MLIR: A Compiler Infrastructure for the End of
Moore’s Law. CoRR, abs/2002.11054, 2020.

[52] C.Leary and T. Wang. TensorFlow, Compiled! (TensorFlow Dev Sum-
mit), 2017.

[53] V. Leis, P. A. Boncz, A. Kemper, and T. Neumann. Morsel-driven
parallelism: a NUMA-aware query evaluation framework for the many-
core age. In SIGMOD, 2014.

[54] A. Lerner and P. Bonnet. Not your Grandpa’s SSD: The Era of Co-
Designed Storage Devices. In SIGMOD, 2021.

[55] C.Lutz, S.Bref3, S. Zeuch, T. Rabl, and V. Markl. Pump Up the Volume:
Processing Large Data on GPUs with Fast Interconnects. In SIGMOD,
2020.

[56] G. Malewicz et al. Pregel: a system for large-scale graph processing.
In SIGMOD, 2010.

[57] A. Mirhoseini et al. Device Placement Optimization with Reinforce-
ment Learning. In ICML, 2017.

[58] G. Moerkotte and T. Neumann. Accelerating Queries with Group-By
and Join by Groupjoin. PVLDB, 4(11), 2011.

[59] F. Morandat, B. Hill, L. Osvald, and]. Vitek. Evaluating the design of
the R language - objects and functions for data analysis. In ECOOP,
volume 7313, 2012.

[60] I Miller, R. Marroquin, D. Koutsoukos, M. Wawrzoniak, S. Akhadov,
and G. Alonso. The collection virtual machine: an abstraction for
multi-frontend multi-backend data analysis. In DaMoN@SIGMOD,
2020.

[61] S.Nakandala et al. A Tensor Compiler for Unified Machine Learning
Prediction Serving. In OSDI, 2020.

[62] O. O. Napoli, V. M. do Rosario, J. P. Navarro, P. M. C. e Silva, and
E. Borin. Accelerating multi-attribute unsupervised seismic facies
analysis with RAPIDS. CoRR, abs/2007.15152, 2020.

[63] NVIDIA. A100 Tensor Core GPU Architecture, 2020.

[64] K. Olukotun. "Let the Data Flow!". In CIDR, 2021.

—

(47

—

Patrick Damme et al.

[65] A. Paszke et al. PyTorch: An Imperative Style, High- Performance
Deep Learning Library. In NeurIPS, 2019.

[66] T.Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. W. Battaglia. Learn-
ing Mesh-Based Simulation with Graph Networks. ICLR, 2021.

[67] T.Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. W. Battaglia. Learn-
ing mesh-based simulation with graph networks. In ICLR, 2021.

[68] H.Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. Efficient neural
architecture search via parameter sharing. In ICML, 2018.

[69] A.Phani, B. Rath, and M. Boehm. LIMA: fine-grained lineage tracing
and reuse in machine learning systems. In SIGMOD, 2021.

[70] C. Pilato et al. EVEREST: A design environment for extreme-scale big
data analytics on heterogeneous platforms. In DATE, 2021.

[71] M. Raasveldt and H. Mithleisen. Data Management for Data Science -
Towards Embedded Analytics. In CIDR, 2020.

[72] A. Raza, P. Chrysogelos, P. Sioulas, V. Indjic, A. G. Anadiotis, and
A. Ailamaki. Gpu-accelerated data management under the test of time.
In CIDR, 2020.

[73] M. Rocklin. Dask: Parallel Computation with Blocked algorithms and
Task Scheduling. In SciPy, 2015.

[74] V. Rosenfeld, R. Miiller, P. Téziin, and F. Ozcan. Processing java udfs
in a C++ environment. In SoCC, 2017.

[75] S. Sagadeeva and M. Boehm. SliceLine: Fast, Linear-Algebra-based
Slice Finding for ML Model Debugging. In SIGMOD, 2021.

[76] S. Sakr et al. The future is big graphs: a community view on graph
processing systems. Commun. ACM, 64(9), 2021.

[77] G. Sharma and J. Martin. Matlab®: A language for parallel computing.
Int. J. Parallel Program., 37(1), 2009.

[78] L.F. Spiegelberg, R. Yesantharao, M. Schwarzkopf, and T. Kraska. Tu-
plex: Data Science in Python at Native Code Speed. In SIGMOD, 2021.

[79] N. K. Srivastava et al. T2S-Tensor: Productively Generating High-
Performance Spatial Hardware for Dense Tensor Computations. In
FCCM, 2019.

[80] L D.Stewartand T.R. Oke. Local Climate Zones for Urban Temperature
Studies. Bulletin of the American Meteorological Society, 93(12), 2012.

[81] M. Stonebraker. The land sharks are on the squawk box. Commun.
ACM, 59(2), 2016.

[82] M. Stonebraker, P. Brown, A. Poliakov, and S. Raman. The Architecture
of SciDB. In SSDBM, 2011.

[83] A.S. Szalay, P. Z. Kunszt, A. Thakar, J. Gray, D. R. Slutz, and R. J.
Brunner. Designing and Mining Multi-Terabyte Astronomy Archives:
The Sloan Digital Sky Survey. In SIGMOD, 2000.

[84] L. Team. TableGen Overview, 2021. https://llvm.org/docs/TableGen/.

[85] A. Ungethiim et al. Hardware-oblivious SIMD parallelism for in-
memory column-stores. In CIDR, 2020.

[86] F. Wolf, I. Psaroudakis, N. May, A. Ailamaki, and K. Sattler. Extend-
ing database task schedulers for multi-threaded application code. In
SSDBM, 2015.

[87] M. Zaharia et al. Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing. In NSDI 2012.

[88] A. Zamuda et al. Forecasting Cryptocurrency Value by Sentiment
Analysis: An HPC-Oriented Survey of the State- of-the-Art in the
Cloud Era. In High-Performance Modelling and Simulation for Big Data
Applications. 2019.

[89] X.X. Zhu et al. So2Sat LCZ42: A Benchmark Dataset for Global Local
Climate Zones Classification. CoRR, abs/1912.12171, 2019.

[90] X.X. Zhu et al. So2Sat LCZ42: A Benchmark Data Set for the Classifi-
cation of Global Local Climate Zones [Software and Data Sets]. IEEE
GRS Magazine, 8(3), 2020.

[91] X.X.Zhu,C.Qiu,J.Hu, Y. Shi, Y. Wang, M. Schmitt, and H. Taubenbock.
The urban morphology on our planet — global perspectives from space.
Remote Sensing of Environment, 269:112794, 2022.

[92] B. Zoph and Q. V. Le. Neural architecture search with reinforcement
learning. In ICLR, 2017.

https://llvm.org/docs/TableGen/

	Abstract
	1 Introduction
	2 IDA Pipelines
	2.1 Example Use Cases
	2.2 Requirements and Opportunities

	3 System Architecture
	4 Language Abstractions
	4.1 DaphneDSL: A Domain-specific Language
	4.2 DaphneLib: A Python API
	4.3 Extensibility

	5 Compiler and Runtime
	5.1 Compiler Overview
	5.2 Data Representations
	5.3 Local and Distributed Runtime
	5.4 Accelerators and Storage
	5.5 Vectorized (Tiled) Execution
	5.6 Extensibility

	6 Experiments
	6.1 Experimental Setting
	6.2 Simple IDA Pipelines

	7 Related Work
	8 Conclusions
	References

