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Abstract—Modern data analysis tasks often involve control flow
statements, such as iterations. Common examples are PageRank
and K-means. To achieve scalability, developers usually imple-
ment data analysis tasks in distributed dataflow systems, such as
Spark and Flink. However, for tasks with control flow statements,
these systems still either suffer from poor performance or are
hard to use. For example, while Flink supports iterations and
Spark provides ease-of-use, Flink is hard to use and Spark has
poor performance for iterative tasks. As a result, developers
typically have to implement different workarounds to run their
jobs with control flow statements in an easy and efficient way.

We propose Mitos, a system that achieves the best of both
worlds: it achieves both high performance and ease-of-use. Mitos
uses an intermediate representation that abstracts away specific
control flow statements and is able to represent any imperative
control flow. This facilitates building the dataflow graph and
coordinating the distributed execution of control flow in a
way that is not tied to specific control flow constructs. Our
experimental evaluation shows that the performance of Mitos
is more than one order of magnitude better than systems that
launch new dataflow jobs for every iteration step. Remarkably,
it is also up to 10.5 times faster than Flink, which has native
iteration support, while matching the ease-of-use of Spark.

Index Terms—Iterative dataflow, Loop pipelining, Loop-
invariant hoisting

I. INTRODUCTION

Modern data analytics typically achieve scalability by relying
on dataflow systems, such as Spark [1] and Flink [2], [3].
Besides this scalability need, many data analysis algorithms
require support for control flow statements. For example,
many graph analysis tasks are iterative, such as PageRank [4]
and computing connected components [5]. Other data science
pipelines are also mainly composed of iterative programs [6]. K-
means clustering [6] and gradient descent [7] are just two of the
most commonly occurring iterative tasks. Additionally, control
flow is just getting more complex: An iterative machine learning
training task can be inside another loop for hyperparameter
optimization; programs may contain if statements inside loops,
such as in simulated annealing [8].

However, despite that control flow statements are at the core
of modern data analytics, supporting control flow efficiently
and effectively is the biggest weakness of dataflow systems:
They either suffer from poor performance or are hard to use.
On the one hand, in some systems, such as Spark, users
express iterations inside the driver program, using the standard,
imperative control flow constructs. Although this imperative
approach is easy to use, it launches a new dataflow job for
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Fig. 1: Imperative vs. functional control flow.

every iteration step, which hurts performance because of a high
inherent job-launch overhead. On the other hand, some other
systems, such as Flink, provide native control flow support [9],
i.e., users can include iterations in their (cyclic) dataflow jobs.
This removes the job-launch overhead, which is present in
Spark, resulting in much better performance. However, this
high performance comes at a price: Users have to express
iterations by calling higher-order functions, which are harder
to use than the imperative control flow of Spark.

To better illustrate this problem, we ran an experiment to
evaluate Spark and Flink, using a program that computes the
visit counts from a year of page visit logs. This program has
a loop that reads a different file at each iteration step and
compares the visit counts with the previous day2. Figure 1
shows the results of this experiment. We observe that Spark is
more than an order of magnitude slower than Flink because
it does not support native iterations. Spark launches a new
dataflow job for every iteration step, incurring a high overhead.
However, on the other side, Flink is harder to use than Spark.
In Flink users call the iterate higher-order function and give the
loop body as an argument (see the functional control flow box
in Figure 1). The loop body is a function that builds the dataflow
job fragment representing the actual loop body operations. This
API is clearly not easy at all for non-expert users, such as data
scientists3. In contrast, users prefer the imperative control flow
present in Spark, similar to, e.g., Python, R, or Matlab (see

1Work done while the author was at TU Berlin.
2We provide the details of this experiment in Section VI and provide the

code for both the imperative and functional control flow APIs in the Appendix.
3A simple search on stackoverflow.com for the terms Flink iterate or

TensorFlow while_loop shows that a large number of users are indeed confused
by such a functional control flow API.



the imperative control flow box in Figure 1).
Ideally, the system should allow users to express control

flow using simple imperative control flow statements, while
matching the performance of native control flow. In other words,
we want a system that marries the ease-of-use of Spark with
the high efficiency of Flink. The research community has paid
attention to this problem and recently proposed a number of
solutions [10], [11], [12]. For example, Emma [10] can translate
imperative control flow to Flink’s native iterations, but only
when there is a single while-loop without any other control flow
statement in its body. This makes it not suitable for many tasks
in modern data analytics, such as hyper-parameter optimization,
simulated annealing, and strongly connected components [13].
AutoGraph [11] and Janus [12] compile imperative control
flow to TensorFlow’s native iterations [14]. However, they do
not support general data analytics other than machine learning.

Supporting general imperative control flow (e.g., iterative
tasks) without sacrificing performance is challenging for two
main reasons. First, normally a dataflow job is built from just
the method calls (e.g., map, join) that the user program makes
to the system. However, to build a complete cyclic dataflow
job from imperative control flow, the system also needs to
inspect other parts of the user code, such as the control flow
statements: It also has to insert special nodes and edges into the
dataflow job for such parts of the code. Second, to fully take
advantage of the entire program being in a single dataflow job,
we want to support loop pipelining, i.e., overlapping subsequent
executions of a loop body. This means that we cannot simply
insert a full synchronization barrier between iteration steps,
and just reset all operators at the barrier. Instead, we need
to deal with different operators (and their different physical
instances) processing different iteration steps at the same time.

We propose Mitos4, a system where control flow support
matches Spark’s ease-of-use, and that significantly outperforms
both Spark and Flink. Specifically, it outperforms Spark
because of native iterations, and it outperforms Flink’s native
iterations because of loop pipelining. Mitos uses compile-time
metaprogramming to parse an imperative user program into an
intermediate representation (IR) that abstracts away specific
control flow constructs. This IR facilitates the building of a
single (cyclic) dataflow job from any program with imperative
control flow. At runtime, Mitos coordinates the distributed
execution of control flow using a novel coordination algorithm
that leverages our IR to handle any general imperative control
flow. In summary, we make three major contributions:
(1) We propose a compilation approach based on metaprogram-
ming to build a single dataflow job of a distributed dataflow
system from a program with general imperative control flow
statements. Specifically, we leverage Scala macros [15] to
inspect and rewrite the user program’s abstract syntax tree
such that the system can produce a single dataflow job. By this,
we can bring the power of native control flow to data scientists,
who like to use high-level languages that have imperative
control flow statements. (Section IV)

4The name comes from Greek mythology: Mitos is the thread that Ariadne
gave to Theseus to help him get out of the labyrinth.

(2) We devise a mechanism that coordinates and communicates
the control flow decisions between machines in a non-intrusive
manner. In particular, our coordination mechanism enables two
core optimizations that speed up the dataflow job execution:
loop pipelining, i.e., overlapping iteration steps, and loop-
invariant hoisting, i.e., reusing loop-invariant (static) datasets
during subsequent iteration steps. As a result, our system not
only supports any control flow statement but also outperforms
dataflow systems with native control flow support. (Section V)
(3) We experimentally evaluate Mitos using real tasks (Visit
Count and PageRank) and microbenchmarks. We mainly
compare its performance to Flink (as a system supporting
native control flow), Spark (as a system providing ease-of-use).
Our results show the superiority of Mitos over all baselines: It
is more than one order of magnitude faster than Spark, and,
surprisingly, it is also up to 10.5× faster than Flink (the system
with native control flow support). (Section VI)

II. MOTIVATING EXAMPLE

We now illustrate through an example the problems of current
dataflow systems when faced with imperative control flow.

Consider a program that computes the visit counts for each
page per day in a year of page visit logs. Assume that the log
of each day is read from a separate file and that each log entry
is a page ID, which means that someone has visited the page.

1: for day = 1 .. 365 do
2: visits = readFile(“PageVisitLog_” + day) // page IDs
3: counts = visits.map(x => (x,1)).reduceByKey(_ + _)
4: counts.writeFile(“Counts_” + day)
5: end for
We cannot express this simple program in Flink’s native

iterations, because Flink does not support reading and writing
files inside native iterations. However, not using native iterations
would cause each iteration step to launch a new dataflow job,
which has an inherent high overhead5 (see Spark in Figure 1).

This simple program can easily become more complicated.
Imagine that instead of just writing out the visit counts for
each day separately, we want to compare the visit counts of
consecutive days. For this, we replace Line 4 with the following:

4: if day != 1 then
5: diffs =
6: (counts join yesterdayCounts)
7: .map((id,today,yesterday) => abs(today - yesterday))
8: diffs.sum.writeFile(“diff” + day)
9: end if

10: yesterdayCounts = counts
If it is not the first day, we join the current counts with the
previous day’s counts (Line 6). We then compute pairwise
differences (Line 7), sum up the differences (Line 8), and write
the sum to a file. At the end, we save the current counts so that
we can use them the next day (Line 10). We can see that it is

5Note that a new job is not launched if there is no action inside the loop
body. However, actions are needed in most iterative algorithms to compute a
loop exit condition from the current state of the algorithm. Moreover, Spark’s
job-launch overhead is mostly the task launch overhead, which will still be
present at each iteration step even without actions (see Section VI-E).



natural to use an if statement inside the loop. On top of that,
we could replace the computation of visit counts (Line 3) with
a more complex computation that itself involves a loop, such
as PageRank [4]. This would result in having nested loops.
Unfortunately, Flink does not provide native support for either
nested loops or if statements inside loops. On the other side,
Spark does not have native support for any control flow at all.

Yet, this program can become even more complex. Imagine
we are interested only in a certain page type. As the logs do
not contain information about the page type (each log line is
just a page ID), we have to read a dataset containing the types
of all pages before the loop. Inside the loop, we then add the
line below before Line 3, which performs a join between the
visits and page type datasets, and filters based on page type:

3: visits = (visits join pageTypes).filter(p => p.type=...)
It is worth noting that the pageTypes dataset does not change
between iteration steps, i.e., it is loop-invariant. This clearly
opens an opportunity for optimization: Even though the join
method is called inside the loop, we can build the hash table
of the join only once before the loop and probe it at every
iteration step. This is only possible if the system implements
the loop as a native iteration. This is because all iteration steps
are in a single dataflow job, which enables the join operator to
keep the hash table throughout the entire loop. Nevertheless,
we cannot express this program using Flink’s native iterations
because of the aforementioned issues.

Note that iterations are at the core of machine learning
training algorithms and hyperparameter search. This makes
Mitos an important piece in modern analytics, such as the ones
targeted by Agora [16].

III. MITOS OVERVIEW

We present Mitos, a system that compiles a data analysis
program with imperative control flow statements into a single
dataflow job for distributed execution on a dataflow system.
The main goal of Mitos is to bring ease-of-use to users while
achieving high efficiency for their programs. Overall, users
write their programs using imperative control flow. The system,
in turn, parses an imperative program into an intermediate
representation, from which it builds a single (cyclic) dataflow
job. At runtime, the system coordinates the distributed execution
of control flow statements among workers in the underlying
dataflow system. Below, we describe these steps in more detail.

Figure 2 illustrates the general architecture of Mitos. A user
provides a data analysis program in a high-level language
with imperative control flow support. We use the Emma lan-
guage [17], [10] because of its metaprogramming infrastructure
and because it is similar to the languages of typical dataflow
systems, such as Flink and Spark: The user expresses a
data analysis program in Scala using a scalable collection
type, which we call bag henceforth. Given an imperative
program, Mitos first simplifies it to make each assignment
statement have only a single bag operation (e.g., a map). It then
parses this simplified imperative program to an intermediate
representation (IR). From there, it creates a dataflow job of a
distributed dataflow system (Section IV). Recall that running
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Fig. 2: Mitos architecture.

many dataflow jobs sequentially significantly deteriorates the
execution time of a program as illustrated in Figure 1 (the
Spark case). Thus, it is crucial to generate as few dataflow jobs
as possible: Mitos creates a single job for the entire program.

Next, the system sends the job for execution on the under-
lying dataflow system. Then, Mitos coordinates the distributed
execution of control flow via two components: the Control
Flow Manager and the Bag Operator Host (Section V). The
control flow manager communicates control flow decisions
among the worker machines. The bag operator host bridges
the gap between Mitos’ and the underlying dataflow system’s
operators. While Mitos’ operators take input bags and compute
output bags, the underlying dataflow system’s operators do not
know about bags. The bag operator host provides an interface
for implementing Mitos’ operators at the level of bags instead
of directly with the dataflow system’s operator interface. Note
that our control flow coordination enables loop pipelining, i.e.,
overlapping different iteration steps.
Generality for Backends. Although we use Flink as our target
dataflow system, Mitos is designed to be as general as possible,
i.e., not closely tied to a specific dataflow system. It only
requires a dataflow system that allows for arbitrary stateful
computations in the dataflow vertices, and supports arbitrary
cycles in the dataflow graph. Examples of systems that support
cycles are Flink, Naiad [18], Dandelion [19], and TensorFlow.
Note that, for Mitos’ loop pipelining to have a significant effect,
the system should support pipelined data transfers. It is also
possible to integrate Mitos into Rheem [20], [21], [22] (now
Apache Wayang), to run over multiple dataflow systems.
Generality for Languages. Although we use the Emma
language [17], [10] for Mitos, one could use other high-level
data analytics languages that have imperative control flow
support. Importantly, the language should provide the system
with means to get information about the imperative control
flow statements. In the case of Emma, this is achieved by
compile-time metaprogramming. Specifically, we use Scala
macros [15]. Julia [23] and Python also have the required
metaprogramming capabilities. Alternatively, SystemML [24]
could also be integrated with Mitos. SystemML’s language
is an external [10] domain-specific language, and thereby



SystemML’s compiler can naturally inspect the control flow.
Background (Compiler Concepts). We rely on a couple of
basic compiler concepts: static single assignment form (SSA)
and basic blocks. SSA [25] is often used in compilers to
represent imperative control flow. When a program is in SSA
form, each variable has exactly one assignment statement to it.
Another important characteristic of SSA is that it abstracts away
from specific control flow constructs: The program is divided
into so-called basic blocks. A basic block is a contiguous
sequence of instructions with no control flow instructions,
except at the end, where they conditionally jump to the
beginning of the same (or another) basic block. For example,
consider a loop body consisting of a single basic block. The last
instruction jumps either back to the beginning of the loop body
block or to the basic block that is after the loop, depending
on the loop exit condition. We later provide more details of
SSA and other compiler concepts where necessary.

IV. BUILDING DATAFLOWS FROM IMPERATIVE PROGRAMS

Our goal is to produce a single dataflow job from a user’s
imperative program that has arbitrary imperative control flow
constructs. Doing so is far from being a trivial task. We need
to inspect control flow statements and add extra edges. For
example, in iterative algorithms, there is typically a dataflow
node near the end of the loop body whose output has to be fed
into the next iteration step. A more specific example is passing
the current PageRanks from one step to the next. Additionally,
we need to include non-bag variables into our dataflow jobs.

We leverage compile-time metaprogramming to overcome
the above-mentioned challenges and hence create a dataflow
job containing all the operations of an imperative program.
Specifically, we leverage Scala macros [15] to inspect and
rewrite the user program’s abstract syntax tree. In more detail,
we first simplify the imperative program (Section IV-A), and
then parse it into an intermediate representation (Section IV-B).
Both of these facilitate the translation of the user’s program
into a single dataflow job (Section IV-C).

A. Simplifying an Imperative Program

As a first step, we split those assignment statements that have
more than one operation on their right-hand side. For example,
we split b = a.map(...).filter(...) into two assignments: tmp =
a.map(...); b = tmp.filter(...). For instance, Lines 8 & 9 in
Figure 3a are the splitted version of Line 3 in Section II.

Next, we take care of non-bag variables, e.g., an Integer loop
counter or a Double learning rate. We wrap all these variables
into one-element bags. This normalization step simplifies later
dataflow-building by ensuring that it needs to deal with only
bag operations instead of introducing special cases for non-
bag variables. More specifically, we perform the following
transformations: any operation that creates a non-bag value
is substituted with an equivalent operation that puts the same
value inside a one-element bag (e.g., creating a constant, such as
a = 1 becomes a = newBag(1)); a unary function f that acts
on a non-bag value is substituted with a map operator, whose
user-defined function (UDF) is f (e.g., b = −a is substituted
by b = a.map(x => −x)); a binary function that acts on two

non-bag values is substituted by a cross product and a map.
The cross product creates a one-element bag that contains a
pair with the elements of the two input bags. The map operates
on this pair and has f as its UDF (e.g., c = a+ b is substituted
by c = (a cross b).map(_ + _)). Note that we can apply
further simplifications in some cases. For example, b = a + 1
can be transformed into b = a.map(x => x + 1) instead of
tmp = newBag(1); b = a.cross(tmp).map((x, y) => x+y).

B. Intermediate Representation for General Control Flow

To handle all imperative control flow statements uniformly,
Mitos transforms the program into an IR that is based on
SSA [25]. As part of this transformation, Mitos introduces a
different variable for each assignment statement: if a variable in
the original program had more than one assignment statement,
we rename the left-hand sides of all these assignments to
unique names. At the same time, we update all references to
these variables with the new names. However, this updating
step is not directly possible if there are different control flow
paths that assign different values to a variable. In this case,
the different assignments in the different control flow paths
are renamed to different names and hence there is no single
name to change a reference into. For example:

1: if ... then
2: a = ...
3: else
4: a = ...
5: end if
6: b = a.map(...)

Note that after we change the left-hand sides of the assignments
in Line 2 and 4 to different names, we cannot simply change
the variable reference in Line 6 to just one of them at compile
time. Therefore, we have to choose the value to refer to at
runtime, based on the actual control flow path that the program
execution takes. SSA solves this problem by introducing Φ-
functions, which make this runtime choice explicit (Line 6):

1: if ... then
2: a1 = ...
3: else
4: a2 = ...
5: end if
6: a3 = Φ(a1,a2)
7: b = a3.map(...)

We explain how Mitos tracks the control flow and thus how Φ-
functions choose between their inputs at runtime in Section V.

By relying on SSA, we abstract away from specific control
flow constructs, and thus handle all control flow uniformly:
Control flow constructs are translated into basic blocks and
conditional jumps at the end of basic blocks.

C. Translating an Imperative Program to a Single Dataflow

After simplifying an imperative program and putting it into
our intermediate representation, the final step to build a dataflow
job is now simple: We create a single dataflow node from each
assignment statement and a single dataflow edge from each
variable reference. For example, from c = a join b, we create



1: yesterdayCnts1 = EmptyBag
2: day1 = newBag(1)
3: do
4: yesterdayCnts2 = Φ(yesterdayCnts1,yesterdayCnts3)
5: day2 = Φ(day1,day3)
6: fileName = day2.map(x => “pageVisitLog” + x)
7: visits = readFile(fileName)
8: visitsMapped = visits.map(x => (x,1))
9: counts = visitsMapped.reduceByKey(_ + _)

10: ifCond = day2.map(x => x != 1)
11: if ifCond then
12: joinedYesterday = counts join yesterdayCnts2
13: diffs = joinedYesterday.map(...)
14: summed = diffs.reduce(_ + _)
15: outFileName = day2.map(x => “diff” + x)
16: summed.writeFile(outFileName)
17: end if
18: yesterdayCnts3 = counts
19: day3 = day2.map(x => x + 1)
20: exitCond = day3.map(x => x ≤ 365)
21: while exitCond

(a)
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day1

yesterdayCnts2

day2

visits

joinedYesterday

diffs

summed

writeFile

yesterdayCnts3

day3

exitCond
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counts

ifCond

fileName

1 2

3
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(b)

Fig. 3: (a) SSA representation of Visit Count and (b) its Mitos
dataflow: The basic blocks are marked with dotted rectangles;
The small rectangles are dataflow nodes, corresponding to
variables in SSA; The variables corresponding to the thick-
bordered nodes are bags; The colored nodes make control flow
decisions and influence the same-colored edges.
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2

3
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a join node, whose two input edges come from the nodes of
the a and b variables.

To better illustrate this final translation step, we use our Visit
Count running example program (Section II). Figure 3a shows
the program’s intermediate representation, with the basic blocks
as dotted rectangles, and Figure 3b shows the corresponding
Mitos dataflow. Note that the join with the page types is not
included for simplicity. As explained in Section IV-A, we wrap
non-bag variables in one-element bags. We show the extra
code for this in italic in Figure 3a. The corresponding nodes in
Figure 3b have thin borders. We also create the nodes with the

black background from assignments whose right-hand sides
are Φ-functions (Lines 4–5). Unlike other nodes, the origins
of their inputs depend on the execution path that the program
has taken so far: In the first iteration step, they get their values
from outside the loop (Lines 1 & 2), but then from the previous
iteration step (Lines 18 & 19). This choice is represented by
Φ-functions of the SSA form. The blue node corresponds to
the ifCond variable (Line 10), and the brown node to the loop
exit condition (Line 20). These condition nodes determine
the control flow path. Edges with corresponding colors are
conditional edges. A condition node determines whether a
conditional edge with the same color transmits data in a certain
iteration step, as we explain in the following section.

V. CONTROL FLOW COORDINATION

Once a job is submitted for execution in an underlying
dataflow system, Mitos has to coordinate the distributed
execution of control flow constructs. It communicates control
flow decisions between worker machines, gives appropriate
input bags to operators for processing, and handles conditional
edges. One of the difficulties in doing so is that we must do it in
a non-intrusive manner, i.e., with minimal changes or additions
inside the underlying dataflow system. This allows Mitos to be
as general as possible. We achieve this via two components:
the control flow manager and the bag operator host. The
control flow manager communicates control flow decisions
among machines. Thus, there is one instance per machine. Next,
each operator is wrapped inside a bag operator host, which
implements the coordination logic from the operators’ side. We
refer to these two components together as the Mitos runtime
(runtime, for short), and we detail them in the following.

Before diving into the runtime, we first give some required
preliminaries. We will use the terms “logical” and “physical”
to refer to parallelization: A dataflow system parallelizes a data-
flow graph (job) by creating multiple physical instances of each
logical operator. A logical edge between two logical operators
is also multiplied into physical edges. Note that if an operator
requires a shuffle (e.g., joins), then one physical instance of
the operator has p physical input edges corresponding to one
logical input edge, where p is the degree of parallelization.

A. Challenges for the Runtime

Devising an algorithm for coordinating the distributed
execution of control flow is challenging for three main reasons:
Challenge 1. Input elements from different bags can get
mixed. Mitos aims at pipelining loop execution for efficiency
reasons. This means that different iteration steps can potentially
overlap. That is, different operators or different physical
instances of the same operator may be processing different
bags that belong to different iteration steps. An example is
the Visit Count program’s file reading: When any instance of
the file-reading operator is done reading the file of the current
iteration step, the instance can start working on the file that
belongs to the next step. The difficulty is that the output from
these different instances get mixed when the next operator is
connected by a shuffle. This is because in case of a shuffle, each
instance of the next operator receives input from all instances



while ... do
x = ...
while ... do
y = ...
z = x join y

end while
end while

(a)

while ... do
...
if ... then
x1 = ...
y1 = ...

else
x2 = ...
y2 = ...

end if
x3 = Φ(x1, x2)
y3 = Φ(y1, y2)
z = x3 join y3

end while

(b)

Listing 1: Programs with non-trivial control flow structures.

A

B

A

B

C

D

of the previous operator. This means that the runtime has to
separate input elements that belong to different steps, so that
appropriate inputs are used for computing an output bag.
Challenge 2. The matching of input bags of binary opera-
tors is not always one-to-one. In the case of binary operators
(e.g., join), the runtime gives a pair of bags to an operator at
a time. To form a pair, we have to match bags arriving on one
logical input edge to bags arriving on the other logical input
edge. This matching is not always one-to-one, e.g., sometimes
one bag has to be used several times, each time matching
it with a different bag. The example program in Listing 1a
demonstrates such a case. Input x of the join is from outside
the loop, while input y is from inside the loop. This means
that when the runtime provides the join with pairs of input
bags, it has to use a bag from x several times, matching it
with different bags from y each time.
Challenge 3. First-come-first-served does not work for
choosing the input bags to process. Even when the matching
of bags between the two logical input edges is one-to-one,
the following naive algorithm for matching them up does not
work: Assume we order bags in the same order as their first
elements arrive. In this case, we could match bags from each
of the inputs in the order they arrived, i.e., match the first bag
from one input with the first bag from the other input, then
match the second bags from both inputs, and so on. However,
doing so might lead to errors. Suppose that the control flow
in Listing 1b reaches the basic blocks in the following order:
ABDACD. It is then possible that, due to irregular processing
delays, the operator of x3 gets data from x1 first and then from
x2, while the operator of y3 gets data from y2 first and then
from y1. This can happen because the operators in the different
if branches are not synchronized, i.e., they do not agree on
a global order in which to process bags. This would clearly
lead to an incorrect result: The operator of z has to match the
bag that originates from x1 with the bag that originates from
y1, and match the bag that originates from x2 with the bag
that originates from y2. Note that this issue can arise only if
we perform loop pipelining. Otherwise, all operators finish the
processing of one step before any operator starts the next step.

B. Coordination Based on Bag Identifiers

We tackle the aforementioned challenges by introducing a
bag identifier (Section V-B1). We make sure that the same

bags and same bag identifiers are created during the distributed
execution as they would be in a non-parallel execution. More
specifically, we show how a physical operator instance can
determine during a distributed execution: (i) the identifier of
the output bag that it should compute next (Section V-B2);
(ii) the identifier of the input bags that it should use to compute
a particular output bag (Section V-B3), and; (iii) on which
conditional output edge it should send a particular output bag
(Section V-B4). Note that the Mitos runtime is designed for
allowing operators to start computing an output bag as soon as
its inputs start to arrive. The runtime achieves loop pipelining
via this feature, i.e., an operator can start a later step while
some other operators are still working on a previous step.

1) Bag Identifiers with Execution Paths: A bag identifier
encapsulates both the identifier of the logical operator that
created the bag and the execution path of the program up
to the creation of the bag. The execution path is a sequence
of basic blocks that the execution reached. In a distributed
execution, the execution path is determined by the condition
nodes. A condition node appends a basic block to the path when
it evaluates its condition. Condition nodes let all other operators
know about these decisions through the control flow manager.
The local control flow manager broadcasts the decision to
all remote control flow managers through TCP connections
(which are independent from dataflow edges). This way every
physical instance of every operator knows how the execution
path evolves. The bag identifiers are also used to separate
elements that belong to different bags (Challenge 1): we tag
each element with the bag identifier that it belongs to.

2) Choosing Output Bags: By watching how the execution
path evolves, operators can choose the identifiers of output
bags to be computed: When the path reaches the basic block of
the operator, the operator starts to compute the bag whose bag
identifier contains the current path. For example, in Challenge 3,
this means that the physical operator instances of both x3 and
y3 choose to compute the output bag with path ABD in its
identifier first, and then ABDACD.

3) Choosing Input Bags: When an operator O2 decides to
produce a particular output bag g2 next, it also needs to choose
input bags for it (Challenges 2 & 3). This choice is made
independently for each logical input.

In a non-parallel execution, the operator would use the latest
bag that was written to the variable that the particular input
refers to. We mirror this behavior in the distributed execution,
by examining the execution path while keeping in mind the
operator’s and input’s basic blocks. More specifically, for a
logical input i of O2, let O1 be the operator whose output
is connected to i, b1 and b2 be the basic blocks of O1 and
O2, and c be the execution path in the identifier of g2. To
determine the identifier of a bag coming from i to compute
an output bag g2, we consider all the prefixes of c. Among
these prefixes, we choose the longest one such that it ends
with b1. For example, in Listing 1a when we are computing z
and choosing an input bag from x, we always choose the bag
that the latest run of the outer loop computed. Concretely, if
we are computing the bag with the path ABBABBB, then
the prefix we choose is ABBA.



Recall that Φ-nodes need to choose between their inputs
at each run. We, thus, specially treat Φ-nodes: For each
particular output bag, a Φ-node reads a bag from only one input.
Therefore, we adapt the above procedure to choose between
the inputs by looking at the above-mentioned prefixes for each
input, and choosing the longer one.

It is worth noting that in some cases we need to materialize
input bags. This happens in two cases: First, when an arriving
input bag is not the bag that is currently being processed;
Second, when the operator might need the same input bag
later (for example, see Challenge 2 in Section V-A). In both
of these cases, the bag operator host saves the arriving input
elements and provides them (possibly multiple times) to the
bag operator at an appropriate time. Note that Mitos saves
the elements in a serialized form to reduce the pressure on
the Java garbage collector. It discards such saved input bags
when they are not needed anymore. This happens when the
execution path reaches a block b3, such that b1 dominates6 b2
from b3. This is because in that case, the variable of O1 will
necessarily have a new value before O2 would want to read it.

4) Choosing Conditional Outputs: Operators look at how
the execution path evolves after a particular output bag and
send the bag on such conditional output edges whose target is
reached by the path before the next output bag is computed.
Specifically, let O1 be an operator that is computing output bag
g, e be a conditional output edge of O1, O2 be the operator
that is the target of e, b1 be the basic block of O1, b2 be the
basic block of O2, and c be the execution path of the identifier
of g. Note that the last element of c is b1. O1 should examine
each new basic block appended to the execution path and send
g to O2 when the path reaches b2 for the first time after c but
before it reaches b1 again. This means that instances of O1 can
discard their partitions of g once the execution path reaches
such a basic block from which every path to b2 on the control
flow graph goes through b1. If O2 is a Φ-function, then we
also need to consider the basic blocks of the other O2’s inputs.

C. Bag Operator Host

To separate the above coordination logic from the semantics
of operators (i.e., performing a join, aggregation, etc.), we
introduced the bag operator host. This provides a standard,
push-based interface for implementing the logic of bag oper-
ators: First, the operator’s open method is called by the bag
operator host so that the operator can initialize its state; Then,
the operator is given input elements by pushInElement method
calls; Finally, the operator is closed by the bag operator host,
at which point it can emit its final output, e.g., all the results
of a per-group aggregation. In other words, each bag operator
instance is wrapped by a bag operator host, which performs
the coordination logic described in the previous subsection on
behalf of the bag operator. It provides the bag operator with

6On the control flow graph, a node d is said to dominate [25] a node n
from node s, when all paths from s to n go through d. The control flow
graph’s [26] nodes are the basic blocks and its edges are the possible control
flow transitions between the blocks.

appropriate input bags, separates input elements belonging to
different input bags, and so forth.

D. Optimization: Loop-Invariant Hoisting

We now show how to incorporate loop-invariant hoisting into
our dataflows. That is, we show how to improve performance
when an iteration involves a loop-invariant (static) dataset,
which is reused without updates during subsequent iteration
steps. We can see an example of this in our running example
in Section II: The pageTypes dataset is read from a file outside
the iteration and is used in a join inside the iteration. Another
example is any iterative graph algorithm that performs a join
with a static dataset containing the edges of the graph.

It is a common optimization to pull those parts of a loop
body that depend on only static datasets outside of the loop,
and thus execute them only once [9], [27], [28]. However,
launching new dataflow jobs for every iteration step prevents
this optimization in the case of binary operators where only
one input is static. For example, if a static dataset is used as the
build-side of a hash join, then the system should not rebuild
the hash table at every iteration step. Mitos operators can keep
such a hash table in their internal states among iteration steps.
We make this possible by having a single cyclic dataflow job,
where the lifetime of operators spans all the steps.

We now show how to incorporate this optimization into
Mitos. Normally, the bag operators drop the state that they
have built up during the computation of a specific output bag.
However, to perform loop-invariant hoisting, the runtime lets
the bag operators know when to keep their state that they build
up for an input (e.g., the hash table of a hash join). Assume,
without loss of generality, that the first input of the bag operator
is the one that does not always change between output bags,
and the second input changes for every output bag. Between
two output bags, the runtime tells the operator whether the next
bag coming from the first input changes for the next output bag.
If it changes, the operator should drop the state built-up for
the first input. Otherwise, the operator implementation should
assume that the first input is the same bag as before. For our
example in Listing 1a, the first input bag changes at every step
of the outer loop, but not between steps of the inner loop.

E. Fault Tolerance

Mitos comes with its own fault-tolerance mechanism as it
cannot directly use Flink’s Asynchronous Barrier Snapshotting
algorithm [29]. This is because the communication among
control flow managers happens independently of the dataflow
edges that Flink knows about. Mitos provides a snapshotting
mechanism that is tied to basic blocks in the execution path. A
snapshot contains the values of all the variables of a program
at a certain point in the execution path, e.g. after every 10th
basic block. In detail, Mitos takes snapshots as follows. First,
it designates one control flow manager to be the coordinator.
The coordinator selects the points in the execution path where
snapshots should be taken and broadcasts these decisions.
Each operator can then individually determine when it reaches
such a snapshot point and write its latest output bag into
the appropriate snapshot. Once it is done, it sends a ‘done’



message to the coordinator. When the coordinator receives all
the ‘done’ messages, it writes its state (the execution path) into
the snapshot and marks the snapshot as complete. Note that
this is an asynchronous algorithm, because different operators
can reach a certain snapshot point at different wall-clock times.
To restore from a snapshot, all operators read their bags from
the snapshot and send these on their output edges. Additionally,
the control flow managers read the execution path and tell it
to the operators. Normal execution then resumes.

F. Integration with the Underlying Dataflow System
We rely on Flink’s streaming API because it allows us to

add any arbitrary cycle to the dataflow graph. Note that we do
not use any other streaming-specific features. As mentioned
before, we aimed for minimal changes in Flink, so that Mitos
is as general as possible to be able to sit on top of any dataflow
system. We made only one non-superficial change in Flink to
enable operators to flush output network buffers at will, which
is needed at the end of output bags.

VI. EVALUATION

We implemented Mitos on Java 8 and Scala 2.11 and used
Flink 1.6 as an underlying dataflow system. We evaluate
Mitos with six main questions in mind: (i) How well does
Mitos perform vis-a-vis state-of-the-art systems? (Section VI-B)
(ii) Can one efficiently bring the ease-of-use of Spark to Flink
without Mitos? (Section VI-C) (iii) How well does Mitos scale
with respect to the input dataset size? (Section VI-D) (iv) What
is the iteration step overhead of Mitos? (Section VI-E) (v) How
effective is Mitos’ loop-invariant hoisting optimization? (Sec-
tion VI-F) and (vi) What is the performance impact of the loop
pipelining feature of Mitos? (Section VI-G)

A. Setup
Hardware. We ran our experiments on a cluster of 26 machines,
each with 2×8-core AMD Opteron 6128 CPUs, 32 GB memory,
4×1 TB disks, a 1 Gb network card, and Ubuntu Linux 18.04.
Tasks and Datasets. We used the Visit Count example
introduced in Section II, where we compare visit counts of
subsequent days. We used two versions: one with and one
without the join of the pageTypes dataset. We also used the
per-day PageRank task, i.e., we inserted PageRank into the
Visit Count example in place of the reduceByKey in Line 3.
This resulted in nested loops, as explained in Section II. For
Visit Count, we have generated random inputs, with the visits
uniformly distributed. The page types filter’s selectivity is 0.5.
For PageRank, we took a real graph7 [30], and randomly
sampled its edges for each day. We have also performed
microbenchmarks to isolate the iteration step overhead.
Baselines. We performed most of our experiments against
Spark 3.0 and Flink 1.6, with both running on OpenJDK 8.
We stored input data on HDFS 2.7.1. We also performed
microbenchmarks against Naiad [18] and TensorFlow [14].
Repeatability. We report numbers for the average of three
runs. We also provide the code for Mitos8.

7http://law.di.unimi.it/webdata/webbase-2001/
8https://github.com/ggevay/mitos
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B. Strong Scaling

We start by evaluating how well Mitos scales with respect to
the number of worker machines as well as how well it performs
vis-a-vis the two state-of-the-art systems: Spark and Flink.

1) Visit Count: Figure 4 shows the results for the Visit Count
task. The size of the input for one day is 21 MB, and there are
365 days, i.e., the total input size is 7.6 GB. We observe that
Mitos scales gracefully with the number of machines. However,
Spark and Flink show a surprising increase in execution time
as we give more machines to the system. This is because
of their overhead in each iteration step increases with the
number of machines, and thereby becoming a dominant factor
in the execution time. We study this iteration overhead in
Section VI-E. In particular, we observe that with the maximum
number of machines, Mitos is 10× faster than Spark and 3×
faster than Flink. The latter is an interesting result as Flink
provides native control flow support. Our system improves over
Flink because it performs loop pipelining.

2) PageRank: Figure 5 shows the results for PageRank. Note
that Flink does not support this task with its native iterations
API. We observe that Mitos scales gracefully, while Spark
stops getting faster beyond 9 machines. Our system reaches
an improvement factor of 4.6× over Spark with 25 machines.

Mitos performs and scales better than Spark and Flink. It
achieves speedups of 4.6–10× compared to Spark while
matching Spark’s ease-of-use, and 3× compared to Flink
while being easier to use than Flink.

C. Ease-of-Use vs. Performance in Flink
It is worth noting that implementing Visit Count using Flink’s

native iterations was quite challenging. This is because Flink
does not have built-in support for file I/O or if statements inside
native iterations. It took us almost 10 hours to implement such
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the input size. The factors are relative to Mitos.

a task on Flink compared to less than 1 hour for its Spark
counterpart. Thus, Flink users (including expert users) would
typically resort to the workaround of an imperative loop in
the driver program (similarly as in Spark), which launches a
separate job per iteration. However, this comes at the price
of poor performance. We implemented Visit Count using this
workaround, Flink (separate jobs), to show this problem.

Figure 6 shows the results. Note that, as a reference, we
also show the numbers for Mitos and Flink (native iterations)
from Figure 4. We observe that launching separate Flink jobs
from the driver program results in a big performance hit. For
24 machines, this approach is 4.5× slower than Flink native
iteration, and 13.5× slower than Mitos. We also observe that
the performance of this approach gets worse as we increase the
number of machines due to its inherent job-launch overhead.
This result shows the high effectiveness and efficiency of our
system: it allows users to write control flow imperatively, i.e., it
matches the ease-of-use of this approach (as well as of Spark),
while still achieving 13.5× better performance.

When users resort to an easy-to-use workaround in Flink due
to the limitations of Flink’s functional API, Mitos outperforms
this approach by more than one order of magnitude.

D. Scalability With Respect to Input Size

Our goal is now to analyze how well Mitos performs
with different input dataset sizes for Visit Count. Figure 7
shows the results of this experiment. We observe that our
system significantly outperforms Spark and the performance
gap increases with the dataset size: it goes from 23× to more
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Fig. 8: Log-log plot for the per-step overhead.

than two orders of magnitude. This is because of the loop-
invariant hoisting optimization (see Section VI-F for a detailed
evaluation). Mitos outperforms also Flink, by 3.1–10.5×, while
being easier to use due to its imperative control flow interface.
The surprisingly large improvement factor over Flink for small
data sizes is due to Flink’s native iteration having a large
per-step overhead due to a technical issue9.

Mitos can achieve more than two orders of magnitude speedup
compared to Spark for large input datasets.

E. Iteration Step Overhead

We now dive into studying the step overhead. First, we
isolate the step overhead from the actual data processing in
a microbenchmark: a simple loop with minimal actual data
processing in each step. In this experiment, we also considered
TensorFlow and Naiad as baselines to better evaluate the
efficiency of Mitos. Figure 8 shows the results. We observe that
the native iteration of Mitos is about two orders of magnitude
faster than launching new jobs for each step, i.e., Spark and
Flink (separated jobs). It is interesting to note that the job
launch overhead increases linearly with the number of machines.
Importantly, this means that scaling out to more machines
makes the step overhead problem of Spark worse. Furthermore,
we can also see that Mitos matches the performance of other
systems with native iterations, i.e., Flink, TensorFlow, and
Naiad, despite being able to handle more general control flow.
Note that even systems with native control flow have some step
overhead (1–10ms). This is because they need to 1) broadcast
control flow decisions, and 2) track progress, i.e., determine
when operator input for a certain step is complete.

We now investigate the composition of Spark’s step overhead.
Since in typical cases each step launches a new dataflow job,
we have considered so far Spark’s step overhead to be the job-
launch overhead (task-launch overhead included). However, if
a loop body does not contain an action (which is an uncommon
case), then Spark can execute the entire loop in a single
dataflow job. One might think that this eliminates Spark’s
step overhead. However, the number of tasks per step is still
the same. Therefore, we have to focus on the task-launch
overhead (including the initiation of shuffle-reads) to know

9https://issues.apache.org/jira/browse/FLINK-3322
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the step overhead in this case. We ran a microbenchmark that
compares a loop with an action to the same loop without an
action, but with the same number of tasks. In our experiments,
we observed only a 10% speedup from removing the action.
Therefore, we can conclude that most of Spark’s step overhead
actually comes from launching tasks. In other words, Mitos’
performance advantage would not significantly diminish even
in the case of a loop with no action.

We now examine how much effect the iteration step overhead
has on a real program. As this depends on the amount of actual
data processing per step, we ran an experiment where we varied
the input size of the Visit Count program. In this experiment,
we isolated the effect of removing the job-launch overhead
from Mitos’ other optimizations: The join with the pageTypes
dataset is not present in the program, and thus Mitos’ loop-
invariant hoisting optimization is not applicable. Furthermore,
we disabled the loop pipelining optimization of Mitos. Figure 9
shows the result. We observe that increasing the input dataset
size decreases the effect of the job-launch overhead, and thereby
the improvement factor of Mitos over Spark For a 34 MB input,
Mitos is 8.4× faster than Spark. However, even for a 34 GB
input, Mitos is still 1.9× faster than Spark. In practice, many
real datasets fall into this size range [31].

The overhead of Mitos is two orders of magnitude less than
launching separate dataflow jobs per step, which, in real
programs, can result in a 1.9–4.5× speedup over Spark, even
when Mitos’ other optimizations are disabled.
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F. Loop-Invariant Hoisting

We proceed to evaluate the loop-invariant hoisting optimiza-
tion in Mitos. For this, we used the version of the Visit Count
example that has the join with the pageTypes dataset at every
iteration step. The pageTypes dataset does not change between
steps, and therefore the loop-invariant hoisting optimization
can improve performance. Figure 10 shows the results when
varying the size of the loop-invariant dataset, while keeping
the other part of the input constant (13 GB). We observe that
increasing the loop-invariant dataset size has very little effect
on Mitos and Flink. This is because they perform the loop-
invariant hoisting optimizations i.e., they build the hash table
for the join only once and then just probe the hash table at
every iteration step. Still, Mitos is 5–6× faster than Flink.

On the other hand, the execution time of Spark (and the
speedup of Mitos over Spark) linearly increases because Spark
does not perform this loop-invariant hoisting optimization.
Note that, in our Spark implementation, we manually inserted
a repartitioning of the pageTypes dataset once before the
loop. This way, the join does not need to repartition at every
iteration step. However, this does not eliminate all redundancy:
(1) Matching partitions might still be on different machines,
and thus network transfer still happens redundantly at each step;
(2) The join’s hash table building also still happens redundantly.
As a result, Mitos is up to 45× faster than Spark.

To isolate the effect of loop-invariant hoisting from other
differences between Spark and Mitos, we also ran Mitos with
loop-invariant hoisting switched off. In this case, its execution
time increases linearly with the size of the loop-invariant
dataset, similarly to Spark. Therefore, Mitos is up to 11×
faster than Mitos without loop-invariant hoisting.

Mitos performs loop-invariant hoisting, which improves its
performance by up to 45× compared to Spark.

G. Loop Pipelining

We now analyze the loop pipelining feature of Mitos, which
allows it to outperform Flink. Recall that, even though Flink
also provides native iteration support, our system is up to 3×
faster in Figure 4, 3.1–10.5× faster in Figure 7, and 5–6×
faster in Figure 10. As one might think that this performance
difference could come from other factors, we ran an experiment
to better isolate the effect of loop pipelining. We ran Visit
Count (without the pageTypes dataset) in Mitos with and
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without the loop pipelining optimization. Figure 11–12 show
the results. Overall, we clearly observe the benefits of loop
pipelining: Our system can be up to 4× faster with than without
loop pipelining, which is made possible by our control flow
coordination mechanism. Varying the input size does not have a
significant effect on the speedup achievable by loop pipelining.

The control flow coordination algorithm of Mitos allows for
loop pipelining, which results in speedups of up to 4×.

H. Fault Tolerance

To test Mitos’ snapshotting mechanism, we used the Visit
Count program (without the pageTypes dataset) with an input
data size of 34.4 GB. We configured Mitos to snapshot every
10th iteration step. We observed that the execution without
Mitos’ snapshotting is 205s, while with Mitos’ snapshotting is
222s. This represents an overhead of 8.3%, which shows the
high efficiency of Mitos’ snapshotting algorithm.

VII. RELATED WORK

The dataflow model of computing has a long history
[32]. Arvind et al. [33] include control flow into dataflow
graphs through the switch and merge primitives (operations),
which TensorFlow recently adopted [14]. Mitos, in contrast
to TensorFlow, applies to general data analytics in addition to
machine learning. The recent AutoGraph [11] and Janus [12]
systems compile imperative control flow to TensorFlow, which
makes them not directly applicable for general data analytics.
Hirn et al. [34] compile from PL/SQL’s imperative control flow
to recursive SQL queries.

Several systems can natively support a limited number of
control flow constructs, such as Flink [9], and Naiad [18].
However, they rely on functional-style APIs, where each control
flow construct is a higher-order function. For example, in
TensorFlow, users call the while_loop method and provide two
functions: one for building the dataflow of the loop body and
another for building the dataflow of the loop exit condition.
Similarly, in Flink, users call the iterate method and supply the
loop body as a function that builds the dataflow job fragment
representing the loop body. A simple search for these Flink
and TensorFlow methods on stackoverflow.com shows many
users being confused by this API. Mitos allows users to write
imperative control flow constructs, such as regular while-loops
and if statements, which makes it more accessible to a larger

number of programmers. See the Appendix for more discussion
comparing functional and imperative control flow APIs.

Other works have added iteration to systems that do not
support control flow natively. HaLoop [27] and Twister [28] ex-
tend MapReduce to provide support for iterations. Nonetheless,
in contrast to Mitos, the programming model of these systems
is directly based on MapReduce rather than building complex
programs using a collection-based API. Moreover, although
loop-invariant hoisting is a well-known optimization in the
context of distributed data analytics systems [9], [18], [27],
[28], none of these works supports programs with imperative
control flow constructs. SystemML [24] does, but it cannot
perform it on a binary operator having only one static input,
e.g., the hash join that we used in Section V-D.

VIII. CONCLUSION

Despite modern data analysis requires complex control
flow constructs, dataflow systems either suffer from poor
execution times for programs with control flow or are hard
to use. We presented Mitos, a system that allows users to
express control flow by easy-to-use imperative constructs, and
still executes these programs efficiently as a single dataflow
job. Mitos uses an intermediate representation that abstracts
away from specific control flow constructs and that facilitates
both building dataflows and coordinating the execution of
control flow statements. Our coordination mechanism enables
loop pipelining and loop-invariant hoisting. The experimental
evaluation shows that Mitos outperforms Spark by up to 45×
thanks to native control flow. Interestingly, the results also
show that Mitos outperforms Flink, which supports iterations
natively, by up to a factor of 10.5× (thanks to loop pipelining
and less per-step overhead) while also being easier to use.

ACKNOWLEDGMENTS

We thank Alexander Alexandrov for pointing our attention to
SSA, and Eleni Tzirita Zacharatou for the system name. This work
was funded by the German Ministry for Education and Research
as BIFOLD – Berlin Institute for the Foundations of Learning and
Data (ref. 01IS18025A and ref. 01IS18037A), and German Research
Foundation – Project-ID 414984028 – SFB 1404.

REFERENCES

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: cluster computing with working sets.” HotCloud, vol. 10, 2010.

[2] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise,
O. Kao, M. Leich, U. Leser, V. Markl et al., “The Stratosphere platform
for big data analytics,” The VLDB Journal, vol. 23, no. 6, 2014.

[3] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache Flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, vol. 36, no. 4, 2015.

[4] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: Bringing order to the web,” Stanford InfoLab, Tech. Rep., 1999.

[5] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: mining peta-
scale graphs,” Knowledge and information systems, vol. 27, no. 2, 2011.

[6] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, S. Y. Philip et al., “Top 10 algorithms in
data mining,” Knowledge and information systems, vol. 14, no. 1, 2008.

[7] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized stochastic
gradient descent,” in Advances in neural information processing, 2010.

[8] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.



[9] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl, “Spinning fast
iterative data flows,” Proceedings of the VLDB Endowment, vol. 5, 2012.

[10] A. Alexandrov, G. Krastev, and V. Markl, “Representations and opti-
mizations for embedded parallel dataflow languages,” ACM Transactions
on Database Systems (TODS), vol. 44, no. 1, p. 4, 2019.

[11] D. Moldovan, J. Decker, F. Wang, A. Johnson, B. Lee, Z. Nado,
D. Sculley, T. Rompf, and A. B. Wiltschko, “AutoGraph: Imperative-style
coding with graph-based performance,” in SysML, 2019.

[12] E. Jeong, S. Cho, G.-I. Yu, J. S. Jeong, D.-J. Shin, and B.-G. Chun,
“JANUS: Fast and flexible deep learning via symbolic graph execution
of imperative programs,” in 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), 2019, pp. 453–468.

[13] S. M. Orzan, “On distributed verification and verified distribution,” Ph.D.
dissertation, Vrije Universiteit Amsterdam, 2004.

[14] Y. Yu, M. Abadi, P. Barham, E. Brevdo, M. Burrows, A. Davis, J. Dean,
S. Ghemawat, T. Harley, P. Hawkins et al., “Dynamic control flow in
large-scale machine learning,” in EuroSys. ACM, 2018, p. 18.

[15] E. Burmako, “Scala macros: let our powers combine!: on how rich syntax
and static types work with metaprogramming,” in Proceedings of the 4th
Workshop on Scala. ACM, 2013.

[16] J. Traub, Z. Kaoudi, J.-A. Quiané-Ruiz, and V. Markl, “Agora: Bringing
together datasets, algorithms, models and more in a unified ecosystem
[vision],” SIGMOD Record, vol. 49, no. 4, pp. 6–11, 2020.

[17] A. Alexandrov, A. Kunft, A. Katsifodimos, F. Schüler, L. Thamsen,
O. Kao, T. Herb, and V. Markl, “Implicit parallelism through deep
language embedding,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. ACM, 2015.

[18] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi,
“Naiad: a timely dataflow system,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles. ACM, 2013.

[19] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fetterly, “Dandelion:
a compiler and runtime for heterogeneous systems,” in Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles,
2013, pp. 49–68.

[20] D. Agrawal, S. Chawla, B. Contreras-Rojas, A. K. Elmagarmid, Y. Idris,
Z. Kaoudi, S. Kruse, J. Lucas, E. Mansour, M. Ouzzani, P. Papotti,
J. Quiané-Ruiz, N. Tang, S. Thirumuruganathan, and A. Troudi, “RHEEM:
enabling cross-platform data processing - may the big data be with you!”
PVLDB, vol. 11, no. 11, pp. 1414–1427, 2018.

[21] D. Agrawal, S. Chawla, A. K. Elmagarmid, Z. Kaoudi, M. Ouzzani,
P. Papotti, J. Quiané-Ruiz, N. Tang, and M. J. Zaki, “Road to Freedom
in Big Data Analytics,” in EDBT, 2016, pp. 479–484.

[22] D. Agrawal, M. L. Ba, L. Berti-Équille, S. Chawla, A. K. Elmagarmid,
H. Hammady, Y. Idris, Z. Kaoudi, Z. Khayyat, S. Kruse, M. Ouzzani,
P. Papotti, J. Quiané-Ruiz, N. Tang, and M. J. Zaki, “Rheem: Enabling

Multi-Platform Task Execution,” in SIGMOD, F. Özcan, G. Koutrika,
and S. Madden, Eds., 2016, pp. 2069–2072.

[23] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM review, vol. 59, no. 1, pp.
65–98, 2017.

[24] M. Boehm, M. W. Dusenberry, D. Eriksson, A. V. Evfimievski, F. M.
Manshadi, N. Pansare, B. Reinwald, F. R. Reiss, P. Sen, A. C. Surve
et al., “SystemML: Declarative machine learning on Spark,” VLDB, 2016.

[25] F. Rastello, SSA-based Compiler Design. Springer, 2016.
[26] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: principles, techniques,

and tools, 2nd ed. Addison-wesley Reading, 2007.
[27] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop: efficient

iterative data processing on large clusters,” VLDB, 2010.
[28] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and

G. Fox, “Twister: a runtime for iterative MapReduce,” in Proceedings of
the 19th ACM international symposium on high performance distributed
computing. ACM, 2010, pp. 810–818.

[29] P. Carbone, S. Ewen, Gy. Fóra, S. Haridi, S. Richter, and K. Tzoumas,
“State management in Apache Flink®: consistent stateful distributed
stream processing,” Proceedings of the VLDB Endowment, vol. 10, 2017.

[30] P. Boldi and S. Vigna, “The WebGraph framework I: Compression
techniques,” in Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). Manhattan, USA: ACM Press, 2004.

[31] G. Piatetsky, “Largest Dataset Analyzed Poll shows surprising stability,
more junior Data Scientists,” https://www.kdnuggets.com/2016/11/poll-
results-largest-dataset-analyzed.html, 2016, [accessed 14-Oct-2020].

[32] P. G. Whiting and R. S. Pascoe, “A history of data-flow languages,” IEEE
Annals of the History of Computing, vol. 16, no. 4, pp. 38–59, 1994.

[33] Arvind and D. E. Culler, “Dataflow architectures,” Annual review of
computer science, vol. 1, no. 1, pp. 225–253, 1986.

[34] D. Hirn and T. Grust, “PL/SQL without the PL,” in Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data,
2020, pp. 2677–2680.

APPENDIX

Listing 2 compares functional control flow APIs and Mitos’
imperative API through the Visit Count example program
(Section II). For the functional version, we show an idealized
version of Flink’s API: we extend it with 1) file I/O inside iter-
ations, 2) if statements, 3) support for multiple loop variables,
and 4) a Scalar type for wrapping non-bag values. However,
even all these extensions cannot hide the inconvenience of the
functional API, as we can see in the listing.

1: pageTypes = readFile(“pageTypes”)
2: yesterdayCounts = null
3: day = 1
4: while day ≤ 365 do
5: // Read all page-visits for this day
6: visits = readFile(“pageVisitLog” + day) // pageIDs
7: // We want to examine only pages of a certain type, so
8: // we get the page types from a large lookup table:
9: visits = visits.join(pageTypes).filter(p => p.type=...)

10: // Count how many times each page was visited:
11: counts = visits.map(x => (x,1)).reduceByKey(_ + _)
12: // Compare to previous day (but skip the first day)
13: if day != 1 then
14: diffs =
15: (counts join yesterdayCounts)
16: .map((id,today,yesterday) => abs(today - yesterday))
17: diffs.reduce(_ + _).writeFile(“diff” + day)
18: end if
19: yesterdayCounts = counts
20: day = day + 1
21: end while

(a) Imperative control flow (Mitos).

1: pageTypes = readFile(“pageTypes”)
2: initialCounts = EmptyBag
3: initialDay = Scalar(1) Wrap non-bag values in system-provided types
4: whileLoop( // Higher-order function call
5: // First two arguments are the initial values of the loop variables:
6: initialDay, initialCounts,
7: // Third arg is the function building the dataflow for the body:
8: (day, yesterdayCounts) => {
9: fileName = day.map(d => “pageVisitLog” + d)

10: visits = readFile(fileName)
11: visits = visits.join(pageTypes).filter(p => p.type = ...)
12: counts = visits.map(x => (x,1)).reduceByKey(_ + _)
13: if( // Higher-order function call
14: // First arg is the function building the dataflow for the condition:
15: () => day.map(d => d != 1),
16: // 2nd arg is the function building the dataflow for then-branch:
17: () => (counts join yesterdayCounts)
18: .map((id,today,yesterday) => abs(today - yesterday))
19: .reduce(_ + _).writeFile(“diff” + day)
20: )
21: day = day.map(d => d + 1)
22: exitCond = day.map(d => d ≤ 365)
23: // next values of the loop vars and exit cond:
24: return (day, counts, exitCond)
25: }
26: )

(b) Functional control flow.

Listing 2: A comparison of control flow APIs through the Visit Count example program (explained in Section II).


