
LogStore: A Workload-aware, Adaptable Key-Value
Store on Hybrid Storage Systems

(Extended abstract)
Prashanth Menon∗, Thamir M. Qadah�, Tilmann Rabl†, Mohammad Sadoghi‡, Hans-Arno Jacobsen#

∗School of Computer Science, Carnegie Mellon University
�Umm Al-Qura University and Purdue University

†Database Systems and Information Management Group, TU Berlin
‡University of California, Davis

#Middleware Systems Research Group, University of Toronto, Canada

Abstract—Due to the recent explosion of data volume and
velocity, a new array of lightweight key-value stores have emerged
to serve as alternatives to traditional databases. The majority of
these storage engines, however, sacrifice their read performance
in order to cope with write throughput by avoiding random
disk access when writing a record in favor of fast sequential
accesses. But, the boundary between sequential vs. random access
is becoming blurred with the advent of solid-state drives (SSDs).

In this work, we propose our new key-value store, Log-
Store, optimized for hybrid storage architectures. Additionally,
introduce a novel cost-based data staging model based on log-
structured storage, in which recent changes are first stored on
SSDs, and pushed to HDD as it ages while minimizing the
read/write amplification for merging data from SSDs and HDDs.
Furthermore, we take a holistic approach in improving both the
read and write performance by dynamically optimizing the data
layout, such as deferring and reversing the compaction process
and developing an access strategy to leverage the strengths of
each available medium in our storage hierarchy. Lastly, in our
extensive evaluation, we demonstrate that LogStore achieves up
to 6x improvement in throughput/latency over LevelDB, a state-
of-the-art key-value store.

I. INTRODUCTION

Big data challenges are not characterized only by the large
volume of data that has to be processed but also by a high
rate of data production and consumption. The explosion in
data volume and velocity is commonplace in a wide range of
monitoring applications. In modern monitoring applications,
many thousands of sensors continuously produce a multitude
of readings that have to be stored at a high pace but have
to also be readily available for continuous query processing.
Solutions such as log-structured key-value storage systems that
address the velocity problem often rely on modern storage
hardware such as solid-state drives (SSDs) that provides faster
access to persistent storage as the bridge the gap between
sequential versus random access.

Existing solutions either use SSDs as the only storage
medium or as a buffer to traditional hard-disk drives (HDDs)
for improving the system’s performance. Unfortunately, the
usage of SSDs is not cost-effective in these cases because

increase in the cost of using SSDs does not translate to an
increase in performance with the same rate. For example, the
cost of using SSDs in the cloud is 4× the cost of HDDs and
the performance increase is much lower than 4×.

In this work, we rethink the design of modern log-structured
key-value (KV) stores. We present LogStore, a novel optimized
hybrid storage architecture that serves as a key building block
for distributed key-value stores in order to sustain high-
velocity and high-volume data. In LogStore, we introduce a
database staging mechanism using a novel, cost-based, log-
structured storage system such that recent changes are first
stored on SSDs, and as the data ages, it is pushed to HDD,
while minimizing the read and write amplification for merging
and compaction of data from SSDs and HDDs. We also ensure
that all writes on both SSD and HDD are sequential in large
block sizes. Furthermore, we develop a holistic approach to
improve both read and write performance by dynamically
optimizing the data layout based on the observed access
patterns.

The contributions of LogStore are as follows: (1) An analyt-
ical cost model to estimate the performance of log-structured
hybrid storage systems. The model accounts for access pattern
and specific system characteristics, provides insights that guide
the design of LogStore and reveals bottlenecks in LevelDB.
(2) A new statistics-driven informed compaction process that
retains only the hottest data on the SSD and evicts cold data to
the HDD to achieve maximum throughput. (3) A new reversed
compaction process that identifies hot data stored on HDD
and migrates this data to the SSD through compaction. This
technique also leverages statistics to remain adaptive to shift-
ing workloads. (4) An optimization that enables faster write
throughput by selectively deferring compactions based on
access frequency. Reducing compaction execution offers faster
overall throughput , and (5) a new compaction process that
operates within a single level (termed staging compaction).
This compaction process reduces the impact of having over-
lapping ranges of SSTs (which is unique to LogStore) on I/O
performance of read operations.

UNIVERSITY OF TORONTO

UNIVERSITY OF

TORONTO

Fighting�back:�
Using�observability tools�to�improve�
the�DBMS�(not�just�diagnose�it)

Ryan�Johnson

MIDDLEWARE SYSTEMS
RESEARCH GROUP

MSRG.ORG

LogStore	Architecture
• Resembles	LSM-tree	+	BigTable	

• SSTable	storage	+	Memtable	in-memory	
format	

• Write	and	read	path	essenMally	the	same	

• Organize	SSTables	into	three	levels	
• Youngest	levels	on	SSD,	oldest	on	HDD	

• SSD	stores	half	of	total	data	(across	two	levels)	

• Maintain	an	in-memory	histogram	of	accesses	
per-level	
• Buckets	for	histogram	=	SSTs	in	level	
• Read	path	now	modifies	histograms	on	
successful	read	request

12

SSTLevel 0

Level 1

…

Level 2

SSD

HDD

MemTableImmutable
MemTable

RAM

SST SST SST

SST SST SSTSST

Histograms

…

WriteRead

SST
Commit

Log!

…

Fig. 1. LogStore architecture

II. LOGSTORE OVERVIEW

Our proposed analytical model [3] clearly establishes a
connection between the number of levels on each device, the
access rates to each device and the throughput that can be
expected of a hybrid storage system. Specifically, in a hybrid
system that is bottlenecked by the HDD both read and write
throughput can be improved by storing at most one level on
HDD.

The architecture of LogStore, shown in Fig 1. Writes in
LogStore are buffered in a Memtable and written out to a
commit log. When the Memtable has reached a configurable
size, it is converted into a read-only immutable Memtable.
When this occurs, a new Memtable is created to handle
new writes while the Immutable Memtable is simultaneously
flushed to the first level as an SST. LogStore structures all
SSTs into a series of three levels, the first two of which are
on SSD while the last is on an HDD.

SSTs within a level are disjoint in the keys they store while
SSTs across levels may overlap in key ranges, and often do
in skewed workloads. LogStore does not size the levels such
that they grow exponentially, but rather arranges the levels so
that the total amount of data stored on the SSD (combined
between Level-0 and Level-1) is a configurable fraction of the
total amount of data. In most of our experiments, the SSD
stores 50% of the total data.

The LogStore architecture has three main goals: (1) Store the
hottest data on the SSD while evicting the coldest data to the
HDD. (2) Perform as much of the I/O-intensive, preparatory
work on the SSD as possible. (3) Ensure at most one seek for
reads on HDD. The proposed optimizations strive to achieve
these goals. The proposed informed compaction selects coldest
SSTs for compaction to HDD. When some SSTs become hot
again, the reverse compaction process bring them back to
SSDs. LogStore avoids initiating frequent compactions under
write-heavy workloads by relaxing the size constraints on
levels, and allowing SSTs to overlap. Finally, LogStore uses
staging compactions, which joins multiple overlapping SSTs
and keep them on the same level to reduce the overhead of
searching multiple SSTs for read operations. We refer the

LDB-HDD LS-UO LS-NH LS-SH LDB-SSD LDB-NVMe
101

102

103

104

105

O
p

s/
S

e
c

2GB

4GB

6GB

8GB

Fig. 2. Throughput for Workload-C with varying RAM sizes

LDB-HDD LDB-NVMe LDB-SSD LS-NH LS-UO
102

103

104

105

O
p

s/
S

e
c

Fig. 3. Throughput for write-only workload

B-90 A A-RMW B-10 E

102

103

104

O
p

s/
S

e
c

LDB-HDD

LDB-NVMe-$

LS-SH

LS-NH

LS-NS

LDB-SSD

LDB-NVMe

Fig. 4. Throughput for mixed read-write workloads

reader to our full paper [3] for detailed description of these
optimizations.

III. EVALUATION

In this section, we highlight some of the interesting results
from our evaluation of LogStore against LevelDB [1]. Exten-
sive experiments are performed with various workloads based
on YCSB [2] (i.e., A, B-10, B-19, C, A-RMW, and E), and
use different configurations of LogStore (e.g., with NVMe and
regular SSD). LogStore achieves 6× better throughput than
LevelDB (LogStore in Fig. 2) running on HDD in read-only
workloads, and up to 3.6× better throughput than LevelDB
(Fig. 3) running on SSD/NVMe when executing a write-only
workload. Across mixed read-write workloads, LogStore has
1.5-5.7× better throughput than LevelDB on HDD (Fig. 4).

IV. CONCLUSIONS

In this paper, we give an overview of LogStore, a new
key-value store architecture that is workload-aware, dynamic,
and designed to operate in a hybrid storage environment.
LogStore implements informed, reverse, deferred, and staging
compactions that are each driven by low-overhead statistics
and a cost-benefit run-time analysis to make key-value stores
use SSDs more effectively.

REFERENCES

[1] LevelDB, a fast key-value storage library by google. https://code.google.
com/p/leveldb/.

[2] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking Cloud Serving Systems with YCSB. In SoCC ’10, pages
143–154, 2010.

[3] P. Menon, T. Qadah, T. Rabl, M. Sadoghi, and H. A. Jacobsen. Logstore:
A workload-aware, adaptable key-value store on hybrid storage systems.
IEEE Transactions on Knowledge and Data Engineering, pages 1–1,
2020.

