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Window aggregation is a core operation in data stream processing. Existing aggregation techniques focus
on reducing latency, eliminating redundant computations, or minimizing memory usage. However, each
technique operates under different assumptions with respect to workload characteristics such as properties of
aggregation functions (e.g., invertible, associative), window types (e.g., sliding, sessions), windowing measures
(e.g., time- or count-based), and stream (dis)order. In this paper, we present Scotty, an efficient and general open-
source operator for sliding-window aggregation in stream processing systems, such as Apache Flink, Apache
Beam, Apache Samza, Apache Kafka, Apache Spark, and Apache Storm. One can easily extend Scotty with
user-defined aggregation functions and window types. Scotty implements the concept of general stream slicing
and derives workload characteristics from aggregation queries to improve performance without sacrificing its
general applicability. We provide an in-depth view on the algorithms of the general stream slicing approach.
Our experiments show that Scotty outperforms alternative solutions by up to one order of magnitude.
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1 Introduction

The need for real-time analysis shifts an increasing number of data analysis tasks from batch to
stream processing. To be able to process queries over unbounded data streams, users typically
formulate queries that compute aggregates over bounded subsets of a stream, called windows.
Examples of such queries on windows are average vehicle speeds per minute, monthly revenue
aggregations, or statistics of user behavior for online sessions. The transformation from streams to
windows is called stream discretization.

Large computation overlaps caused by sliding windows and multiple concurrent queries lead
to redundant computations and inefficiency. Consequently, there is an urgent need for general
and efficient window aggregation in industry [11, 56, 72]. In this paper, we contribute a general
solution that not only improves performance but also widens the applicability with respect to
window types, time domains, aggregate functions, and out-of-order processing. Our solution is
generally applicable to all data flow systems that adopt a tuple-at-a-time processing model (e.g.,
Apache Storm [61], Apache Flink [2, 16], and other Apache Beam-based systems [1, 4]).

To calculate aggregates of overlapping windows, the database community has been working
on aggregation techniques such as B-Int [5], Pairs [42], Panes [43], RA [59] and Cutty [17]. These
techniques compute partial aggregates for overlapping parts of windows and reuse these partial
aggregates to compute final aggregates for overlapping windows. We believe that these techniques
are not widely adopted in open-source streaming systems for two main reasons: first, the litera-
ture on streaming window aggregation is fragmented and, second, every technique has its own
assumptions and limitations. As a consequence, it is not clear for researchers and practitioners
under which conditions which streaming window aggregation techniques should be used.

General purpose streaming systems require a window operator that is applicable to many types
of aggregation workloads. At the same time, the operator should be as efficient as specialized
techniques that support selected workloads only. In order to provide such an operator, we have
implemented Scotty. Scotty is available as Open Source Project! under the Apache 2.0 license and,
right now, provides connectors for Apache Flink [16], Apache Storm [61], Apache Beam [1], Apache
Samza [48], Apache Kafka Streams [40], and Apache Spark Continous Processing [60, 75]. Scotty
serves as general operator for many systems and provides extension points to make it easy to add
new window types and aggregation functions.

In this paper, we discuss the core concept of Scotty: General Stream Slicing. To this end, we classify
existing aggregation techniques with respect to their underlying concepts and their applicability
(Section 3). We then identify and define the workload characteristics which may or may not be
supported by existing specialized window aggregation techniques (Section 4). Those characteristics
are: 1) window types (e.g., sliding, session, tumbling), ii) windowing measures (e.g., time or tuple-
count), iii) aggregate functions (e.g., associative, holistic), and iv) stream order.

We identify stream slicing as a concept on top of which window aggregation can be implemented
efficiently. With Scotty, we contribute a general stream slicing technique (Section 5). Existing slicing-
based techniques do not support complex window types such as session windows [42, 43], do not
consider out-of-order processing [17], or limit the type of aggregation functions [17, 42, 43]. With
Scotty, we provide a single, generally applicable, and highly efficient approach for streaming window
aggregation. General stream slicing inherits the performance of specialized techniques that use
stream slicing and generalizes stream slicing to support diverse workloads. Because we integrate all
workloads into one general solution, we enable aggregate sharing among all queries with different
window types (sliding, sessions, user-defined, etc.) and window measures (e.g., tuple-count or time).

10pen-Source-Repository: https://github.com/TU-Berlin-DIMA/scotty-window-processor
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Scotty breaks down slicing into three operations on slices, namely merge, split, and update.
Specific workload characteristics influence the cost of each operation and how often operations are
performed. By taking into account the workload characteristics, our slicing technique i) stores the
tuples themselves only when it is required, which saves memory and ii) minimizes the number of
slices that are created, stored, and recomputed. One can extend Scotty with additional aggregations
and window types without changing the three core slicing operations. Thus, these core operations
may be tuned by system experts while users can still implement custom windows and aggregations.

This paper is an extended version of two earlier publications presented at EDBT [65] and
ICDE [64]. We integrate both publication into one consistent manuscript and make the following
new contributions: We focus on the progress made in the open-source Scotty project and provide
more detailed explanations and additional insights. We also add the new Sections 7, 8, and 9.
Sections 7 and 8 provide an in-depth discussion and formal specification of the algorithms used in
Scotty. Section 9 shows examples that illustrate how to use Scotty in different stream processing
systems and how to extend Scotty with new aggregation functions and window types.

The remainder of this paper is structured as follows:

e We define terminology with respect to window types, stream order, timing, and data expira-
tion, which we use throughout the paper (Section 2).

o We survey different window aggregation concepts and identify their limitations with respect

to different workloads (Section 3).

We identify the workload characteristics that impact the applicability and performance

limitations of existing aggregation techniques (Section 4).

We contribute general stream slicing, a generally applicable and highly efficient solution for

streaming window aggregation in dataflow systems (Section 5).

e We take a close look on session windows and show how concurrent queries using session
windows can benefit from general stream slicing (Section 6).

e We present the algorithms and optimizations used in the two main components of of Scotty,
namely the Stream Slicer (Section 7) and the Slice Manager (Section 8).

o We show several examples that illustrate how one can use Scotty in different stream processing
systems and how one can extend Scotty with new aggregation functions and window types
(Section 9).

e We evaluate the performance implications of different workload characteristics and show
that general stream slicing is generally applicable while offering better performance than
existing approaches (Section 10).

2 Preliminaries

Streaming window aggregation involves special terminology with respect to window types, timing,
stream order, and data expiration. This section revisits terms and definitions that are required for
the remainder of this paper.

Window Types. A window type refers to the logic based on which systems derive finite windows
from a continuous stream (stream discretization). There exist diverse window types ranging from
common sliding windows to more complex data-driven windows [24]. We address the diversity of
window types with a classification in Section 4.4. For now, we limit the discussion to tumbling (or
fixed), sliding, and session windows (Figure 1) which we use in subsequent examples.

A tumbling window splits the time into segments of equal length I. The end of one window
marks the beginning of the next window. Sliding windows, in addition to the length [, also define
a slide step of length I;. This length determines how often a new window starts. Consecutive
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Fig. 1. Common Window Types.

windows overlap when [; < I. In this case, tuples may belong to multiple windows. A session
window typically covers a period of activity followed by a period of inactivity [1]. Thus, a session
window times out (ends) if no tuple arrives for some time gap l,. Typical examples of sessions are
taxi trips, browser sessions, and ATM interactions.

Notion of Time. One can define windows on different measures such as times and tuple-counts.
The event-time of a tuple is the time when an event was captured and the processing-time is the
time when an operator processes a tuple [1, 16]. Technically, an event-time is a timestamp stored
in the tuple and processing-time refers to a system clock. If not indicated otherwise, we refer to
event-time windows in our examples because applications typically define windows on event-time.

Stream Order. Input tuples of a stream are in-order if they arrive chronologically with respect to
their event-times, otherwise, they are out-of-order [1, 46]. In practice, streams regularly contain
out-of-order tuples because of transmission latencies, network failures, or temporary sensor outages.
We differentiate in-order tuples from out-of-order tuples and in-order streams from out-of-order
streams. Let a stream S consist of tuples sy, sz, s3, ... where the subscripts denote the order in which
an operator processes the tuples. Let the event-time of any tuple sy be f.(sx).

e A tuple s, is in-order if Py : te(sy) > te(sx) Ay < x.
e A stream is in-order iff all its tuples are in-order tuples.

Punctuations, Watermarks, and Allowed Lateness. Punctuations are annotations embedded in
a data stream [68]. Systems use punctuations for different purposes: low-watermarks (in short
watermarks) indicate that no tuple will arrive with a timestamp smaller than the watermark’s
timestamp [1]. Many systems use watermarks to control how long they wait for out-of-order tuples
before they output a window aggregate [4]. Window punctuations mark window starts and endings
in the stream [21, 30]. The allowed lateness, specifies how long systems store window aggregates. If
an out-of-order tuple arrives after the watermark, but in the allowed lateness, we output updated
aggregates.

Partial Aggregates and Aggregate Sharing. The key idea of partial aggregation is to compute
aggregates for subsets of the stream as intermediate results. These intermediate results are shared
among overlapping windows to prevent repeated computation [5, 42, 73]. In addition, one can
compute partial aggregates incrementally when tuples arrive [59]. This reduces the memory
footprint if a technique stores few partial aggregates instead of all stream tuples in the allowed
lateness. It also reduces the latency because aggregates are pre-computed when windows end. We say
that a window ends when the systems has to output the aggregate for a window. When processing
in-order streams, a window ends as soon as the time progresses beyond the end-timestamp of
the window. When processing out-of-order streams, a window ends as soon as the watermark
progresses beyond the end-timestamp of the window.
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Memory Usage Example
1.
Tuple |A|-size(A) AAAAAAAAAAAAAAAAL
Buffer
A 2. o | 1alsize(a)
ESTBAE 1 L (lal-1)-size(o)
3. |win|-size(e) L (<) i e i () )
Aggregate . e e )
Buckets +|win|-size(—) L e ’
4, . . AAAAALA AAA AL AAAAAL
Tuple |vx./1n| . [avggA per win.) ‘AAAAA AAAAAA
Buckets -size(A) +size()] AAAAA AAA
5.
Lazy | |-size(a@) [ — - — - Y - > Y — —
Slicing
o | |-size(m) ; g; :
Shagffg +(|@|-1)-size(®)
7.
Laay | WL LAAAAL
S | e size(e) AAAAALAALA
on tuples
8. |A| - size(A)
fosr | el s(ew)
on tuples +(|a®|—1)-size(®)

Legend: A Tuple o Aggregate < Slice with Aggregate . Bucket

Table 1. Memory Usage and Visualization of Aggregation Techniques.

3 Window Aggregation Concepts

In this section, we survey concepts for streaming window aggregation and give an intuition for each
solution’s memory usage, throughput, and latency. We provide a detailed comparison of all concepts
in our experiments. Techniques which support out-of-order streams store values for an allowed
lateness (see above). In the following discussion, we refer to allowed lateness only. Techniques
that do not process out-of-order tuples, store values for the duration of the longest window. All
presented concepts process a single input stream. However, one can merge (join) two or more data
streams in a preceding operator and apply windowing on the merged stream. If windows depend
on the stream from which a tuple originates, one can label tuples when merging streams.

Table 1 provides an overview of all techniques we discuss in the following subsections. We
denote the number of values (i.e., tuples) as |A|, the number of slices as |@|, and the number of
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windows in the allowed lateness as |win|. We further denote the size of a tuple in bytes as size(a),
the size of a slice including an aggregate as size(<®), the size of an aggregate as size(®), and the
size of a bucket as size(—). The size of slices and buckets covers metadata such as their start and
end timestamps and hashes. The metadata is of equal size for all buckets and slices.

3.1 Tuple Buffer

A tuple buffer (Table 1, Row 1) is a straightforward solution, which does not share partial aggregates.
The throughput of a tuple buffer is fair as long as there are few or no concurrent windows (i.e.,
no window overlaps), and there are few or no out-of-order tuples. Window overlaps decrease
the throughput because of repeated aggregate computations. Out-of-order tuples decrease the
throughput because of memory copy operations that are required for inserting values in the middle
of a sorted ring buffer. The latency of a tuple buffer is high because aggregates are computed lazily.
Thus, all aggregate computations contribute to the latency when the window ends.

A tuple buffer stores all tuples for the allowed lateness, which is |A|-size(A). Thus, the more
tuples we process per time, the higher the memory consumption and the higher the memory copy
overhead for out-of-order tuples.

3.2 Aggregate Trees

Aggregate trees such as FlatFAT [59] and B-INT [5] store partial aggregates in a tree structure
and share them among overlapping windows (Table 1, Row 2). FlatFAT stores a binary tree of
partial aggregates on top of stream tuples (leaves) which roughly doubles the memory consumption.
In-order tuples require log(|A|) updates of partial aggregates in the tree. Thus, the throughput is
decreases logarithmically when the number of tuples in the allowed lateness increases. Out-of-order
tuples decrease the throughput drastically: they require the same memory copy operation as in tuple
buffers. In addition, they cause a rebalancing of the aggregate tree and the respective aggregate
updates. The latency of aggregate trees is much lower than for tuple buffers because they can
compute final aggregates for windows from pre-computed partial aggregates. Thus, only a few
final aggregation steps remain when windows end [54].

3.3 Buckets

Li et al. introduce Window-ID (WID) [44-46], a bucket-per-window approach which is adopted by
many systems with support for out-of-order processing [1, 4, 16]. Each window is represented by
an independent bucket. A system assigns tuples to buckets (i.e., windows) based on event-times,
independently from the order in which tuples arrive [46]. Buckets do not utilize aggregate sharing.
Instead, they compute aggregates for each bucket independently. Systems can compute aggregates
for buckets incrementally [59]. This leads to very low latencies because the final window aggregate
is pre-computed when windows end.

We consider two versions of buckets. Tuple buckets keep individual tuples in buckets (Table 1,
Row 4). This leads to data replication for overlapping buckets. Aggregate buckets store partial
aggregates in buckets plus some overhead (e.g., start and end times), but no tuples (Table 1, Row 3).
We prefer to store aggregates instead of individual tuples to reduce the memory footprint. However,
some use-cases (e.g., holistic aggregates over count-based windows) require us to keep individual
tuples in memory. Buckets process in-order tuples as fast as out-of-order tuples for most use-cases:
they assign the tuple to buckets and incrementally compute the aggregate of these buckets. The
throughput bottleneck for buckets are overlapping windows. For example, one sliding window
with [ =20s and [; =2s results in 10 overlapping windows (i.e., buckets) at any time. This causes 10
aggregation operations for each input tuple.
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Fig. 2. Example Aggregation with Stream Slicing.
3.4 Stream Slicing

Slicing techniques divide (i.e., slice) a data stream into non-overlapping chunks of data (i.e., slices) [42,
43]. The system computes a partial aggregate for each slice. When windows end, the system
computes window aggregates from slices.

We show stream slicing with an example in Figure 2. Slicing techniques compute partial ag-
gregates incrementally when tuples arrive (bottom of Figure 2). We show multiple intermediate
aggregates per slice to illustrate the workflow. Partial aggregates (i.e., slices) are shared among
overlapping windows which avoids redundant computations. In Figure 2, dashed arrows mark
multiple uses of slices. In contrast to aggregate trees and buckets, slicing techniques require just
one aggregation operation per tuple because each tuple belongs to exactly one slice. This results in
a high throughput for in-order as well as out-of-order tuples.

Similar to aggregate trees, the latency of stream slicing techniques is low because only a few final
aggregation steps are required when a window ends. We consider a lazy and an eager version of
stream slicing. The lazy version of stream slicing stores slices including partial aggregates (Table 1,
Row 5). The eager version stores a tree of partial aggregates on top of slices to further reduce
latencies (Table 1, Row 6). Both variants compute aggregates of slices incrementally when tuples
arrive. The term lazy refers to the lazy computation of aggregates for combinations of slices.

There are usually many tuples per slice (|| < |A|) which leads to huge memory savings
compared to aggregate trees and tuple buffers. Some use-cases such as holistic aggregates over
count-based windows require us to keep individual tuples in addition to aggregates (Table 1, Row 7
and 8). In these cases, stream slicing requires more memory than tuple buffers, but saves memory
compared to buckets and aggregate trees.

We focus on stream slicing because it offers a good combination of high throughputs, low
latencies, and memory savings. Moreover, our experiments show that slicing techniques scale to
many concurrent windows, high ingestion rates, and high fractions of out-of-order tuples. We
create slices such that they can be shared among all queries.

4 Workload Characterization

In this section, we identify workload characteristics that either limit the applicability of aggregation
techniques or impact their performance. These characteristics are the basis for subsequent sections
in which we generalize stream slicing.

4.1 Characteristic 1: Stream Order

Out-of-order streams increase the complexity of window aggregation, because out-of-order tuples
can require changes in the past. For example, tuple buffers and aggregate trees process in-order
tuples efficiently using a ring buffer (FIFO principle) [59]. Out-of-order tuples break the FIFO
principle and require memory copy operations in buffers.

We differentiate whether or not out-of-order processing is required for a use-case. For techniques
that support out-of-order processing, we study how the fraction of out-of-order tuples and the
delay of such tuples affect the performance.
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4.2 Characteristic 2: Aggregation Function

We classify aggregation functions with respect to their algebraic properties. Our notation splits
the aggregation in incremental steps and is consistent with related works [17, 59]. We write input
values as lower case letters, the operation that adds a value to an aggregate as @, and the operation
that removes a value from an aggregate as ©. E.g., if we compute a sum, & corresponds to the
arithmetic + and © corresponds to the arithmetic —. We first adopt three algebraic properties used
by Tangwongsan et al. [59]. These properties focus on the incremental computation of aggregates:

(1) Associativity: x @ y) @ z=x® (ydz) Vx,y,z
(2) Invertibility: (xdy)oy=x Vx,y
(3) Commutativity: x®y=y®x V x,y

Stream slicing requires associative aggregate functions because it computes partial aggregates per
slice which are shared among windows. This requirement is inherent for all techniques that share
partial aggregates [5, 17, 42, 43, 59]. Our general slicing approach does not require invertibility or
commutativity, but exploits these properties if possible to increase performance.

We further adopt the classification of aggregations in distributive, algebraic, and holistic [23].
Aggregations such as sum, min, and max are distributive. Their partial aggregates equal the final
aggregates of partials and have a constant size. An aggregation is algebraic if its partial aggregates
can be summarized in an intermediate result of fixed size. The final aggregate is computed from
this intermediate result. For example, an average is algebraic because average=sum/count and
partial aggregates can be represented by a tuple (sum, count). The remainder of aggregations,
which have an unbounded size of partial aggregates, is holistic. An example are quantiles (e.g., the
median) that require to store all input values as part of the intermediate result. General stream
slicing is beneficial for distributive, algebraic, and many holistic aggregations.

4.3 Characteristic 3: Windowing Measure

Windows can be specified using different measures (also called time domains [12] or WATTR [44]).
For example, a tumbling window can have a length of 5 minutes (time-measure), or a length of
10 tuples (count-measure). To simplify the presentation, we refer to timestamps in the rest of this
paper. However, bear in mind that a timestamp can actually be a time, a tuple count, or any other
monotonically increasing measure [17]:

e Time-Based Measures: Common time-based measures are event-time and
processing-time as introduced in Section 2.

e Arbitrary Advancing Measures are a generalization of event-times. Typically, it is irrele-
vant for a stream processor if "timestamps" actually represent a time or another advancing
measure. Examples of other advancing measures are transaction counters in a database,
kilometers driven by a car, and invoice numbers.

o Count-Based Measures (also called tuple-based [44] or tuple-driven [12]) refer to a tuple
counter. For example, a window can start at the 100th and end at the 200th tuple of a stream.
Count-based measures cause challenges when combined with out-of-order processing: If
tuples are ordered with respect to their event-times and a tuple arrives out-of-order, it changes
the count of all other tuples that have a greater event-time. This changes the aggregates of
all count-based windows that start or end after the out-of-order tuple.

If we process multiple queries that use different window-measures, timestamps are represented as
vectors which contain multiple measures as dimensions. This representations allows for slicing the
stream with respect to multiple dimensions (i.e., measures) while slices are still shared among all
queries [13, 17].
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4.4 Characteristic 4: Window Type

We classify window types with respect to the context (or state) which is required to know where
windows start and end. We adopt the classification in context free (CF), forward-context aware
(FCA), and forward-context free (FCF) introduced by Li et al. [44]. Here we present those classes
along with the most common window types belonging to them.

o Context Free (CF). A window type is context free if one can tell all start and end timestamps
of windows without processing any tuples. Common sliding and tumbling windows are
context free because we can compute all start and end timestamps a priori based on the
parameters [ and ;.

e Forward Context Free (FCF). Windows are forward context free, if one can tell all start
and end timestamps of windows up to any timestamp ¢, once all tuples up to this timestamp ¢
have been processed. An example are punctuation-based windows where punctuations mark
start and end timestamps [21]. Once we processed all tuples up to ¢ (including out-of-order
tuples), we also processed all punctuations before ¢ and, thus, we know all start and end
positions up to t.

e Forward Context Aware (FCA). The remaining window types are forward context aware.
Such window types require us to process tuples after a timestamp ¢ in order to know all
window start and end timestamps before t. An example of such windows are Multi-Measure
Windows that define their start and end timestamps on different measures. For example,
output the last 10 tuples (count-measure) every 5 seconds (time-measure) is forward context
aware: we need to process tuples up to a window end in order to compute the window begin.

5 General Stream Slicing

We now present our general stream slicing technique that supports high-performance aggrega-
tion for multiple queries with diverse workload characteristics. General stream slicing replaces
alternative operators for window aggregation without changing their input or output semantics.
Our technique minimizes the number of partial aggregates (saving memory), reduces the final
aggregation steps when windows end (reducing latency), and avoids redundant computation for
overlapping windows (increasing throughput). The main idea behind our technique is to exploit
workload characteristics (Section 4) and to automatically adapt aggregation strategies. Such adap-
tivity is a highly desired feature of an aggregation framework: current non-adaptive techniques
fail to support multiple window types, process in-order streams only, cannot share aggregates
among windows defined on different measures, lack support for holistic aggregations, or incur
dramatically reduced performance in exchange for being generally applicable.

Approach Overview. Figure 3 depicts an overview of our general slicing and aggregation technique.
Users specify their queries in a high-level language, such as a flavor of stream SQL or a functional
API The query translator observes the characteristics of a query (i.e., window type, aggregate
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function, and window measure) as well as the characteristics of input streams (in-order vs. out-of-
order streams) and forwards them to our aggregator. Once those characteristics are given to our
aggregator, our general slicing technique adapts automatically to the given workload characteristics.

More specifically, general slicing detects if individual tuples need to be kept in memory (to ensure
generality) or if they can be dropped after computing partial aggregates (to improve performance).
We further discuss this in Section 5.1. Moreover, the stream slicing component automatically
decides when it needs to apply our three fundamental slicing operations: merge, split, and update
(discussed in Section 5.2). Queries can be added or removed from the aggregator and due to that, the
workload characteristics can change. To this end, our aggregator adapts on the fly. In Section 5.3, we
discuss the workflow for processing input tuples and introduce the required software components.
General slicing has extension points that can be used to implement user-defined window types and
aggregations (discussed in Section 5.4).

We structure the following sections such that we start from an abstract presentation of the
concept and continue towards in-depth explanations of each component. Thus, Section 5 presents
the concept of general stream slicing. Section 6 discusses how general stream slicing works with
forward context aware windows on the example of session windows. The following Sections 7 and 8
then present the involved algorithms in detail, before Section 9 shows programming examples.

5.1

Existing aggregation techniques achieve generality by storing all input tuples and by computing
high-level partial aggregates [5, 59]. Specialized techniques, on the other hand, only store (partial)
aggregates. A general slicing technique needs to decide when to store what, according to workload
characteristics of each of the queries that it serves. In this section, we discuss how we match the
performance of specialized techniques, by choosing on-the-fly whether to keep tuples or to store
partial aggregates only.

For example, consider an aggregation function that is non-commutative (Ix,y : x ® y # y ® x)
defined over an unordered stream. When an out-of-order tuple arrives, we need to recompute
aggregates from the source tuples, in order to retain the correct order of the aggregation. Thus, one
would have to store the actual tuples for possible later use. Storing all tuples for the whole duration
of the allowed lateness requires more memory, but allows for computing arbitrary windows from
stored tuples. The decision tree in Figure 4 summarizes when storing source tuples is required
depending on different workload characteristics.

Storing Tuples vs. Partial Aggregates
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In-order Streams. For in-order streams, we drop tuples for all context free (CF) and forward
context free (FCF) windows but must keep tuples if we process forward context aware (FCA)
windows. For such windows, forward context leads to additional window start or end timestamps.
Thus, we must be able to compute partial aggregates for arbitrary timestamp ranges from the
originally stored tuples.

Out-of-order Streams. For out-of-order streams, we need to keep tuples if at least one of the
following conditions is true:

(1) The aggregation function is non-commutative.
An out-of-order tuple changes the order of the incremental aggregation, which forces us to
recompute the aggregate using source tuples. For in-order processing, the commutativity
of aggregation functions is irrelevant, because tuples are always aggregated in-order. Thus,
there is no need to store source tuples in addition to partial aggregates.

(2) The window is neither context free nor a session window.
In combination with out-of-order tuples, all context aware windows require tuples to be stored.
This is because out-of-order tuples change backward context, which can lead to additional
window start or end timestamps. Such additional start and end timestamps require to split
slices and to recompute the respective partial aggregates from the original tuples. Session
windows are an exception, because they are context aware, but never require recomputing
aggregates, as we will show in Section 6.

(3) The query uses a count-based window measure.
An out-of-order tuple (see definition in Section 2) changes the count of all succeeding tuples.
Thus, the last tuple of each window shifts to its succeeding window.

5.2 Slice Management

Stream slicing is the fundamental concept that allows us to build partial aggregates and share them
among concurrently running queries and overlapping windows. In this section, we introduce three
fundamental operations which we can perform on slices.

Slice Metadata. A slice stores its start timestamp (fs¢art), its end timestamp (fenq), and the times-
tamp of the first (tg.54) and last tuple it contains (f],5¢). Note that the timestamps of the first and last
tuples do not need to conincide with the start and end timestamps of a slice. For instance, consider
a slice A that starts at tga,t(A) = 1 and ends at tenq(A) = 10, but the first (earliest) tuple contained
is timestamped as tg5,5t(A) = 2 and its last/latest one as #],5;(A) = 9. Note that the timestamp can
refer not only to actual time, but to any measure presented in Section 4.3.

We identify three fundamental operations which we perform on stream slices. These operations
are i) merging of two slices into one, ii) splitting one slice into two, and iii) updating the state of a
slice (i.e., aggregate and metadata updates). In the following paragraphs, we discuss merge, split,
and update as well as the impact of our workload characteristics on each operation. We use upper
case letters to name slices and corresponding lower case letters for slice aggregates.

Merge. Merging two slices A and B happens in three steps:

(1) Update the end of A such that tend(A) < tend(B).

(2) Update the aggregate of Asuchthata < a®b.

(3) Delete slice B, which is now merged into A.
Steps one and three have a constant computational cost. The complexity of the second step (a «
a® b) depends on the type of aggregate function. For instance, the cost is constant for algebraic and
distributive functions such as sum, min, and avg because they require just a few basic arithmetic
operations. Holistic functions such as quantiles can be more complex to compute. Except from the
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type of aggregation function, no other workload characteristics impact the complexity of the merge
operation. However, stream order and window types influence when and how often we merge slices.
We discuss this influence in Section 5.3.

Split. Splitting a slice A at timestamp ¢ requires three steps:

(1) Add slice B: tgtart(B)<—t +1 and tepd(B)« tend(A).
(2) Update the end of A such that tepq(A) « 1.
(3) Recompute the aggregates of A and B.

Note that splitting slices is an expensive operation because it requires recomputing slice aggregates
from scratch. Moreover, if splitting is required, we need to keep individual tuples in memory to
enable the recomputation.

We show in Figure 5 when split operations are required. For in-order streams, only forward
context aware (FCA) windows require split operations. For such windows, we split slices according
to a window’s start and end timestamp as soon as we process the required forward context. In out-
of-order data streams, all context aware windows can require split operations because out-of-order
tuples contain backward context. We never split slices for context free windows such as tumbling
and sliding ones.

Update. Updating a slice can involve adding in-order tuples, adding out-of-order tuples, removing
tuples, or changing metadata (ts¢art, tends tarst> and fast)-

Metadata changes are simple assignments of new values to the existing variables. Adding a
tuple to a slice requires one incremental aggregation step (&), with the exception of processing
out-of-order tuples with a non-commutative aggregation function. For this, we recompute the
aggregate of the slice from scratch to retain the order of aggregation steps.

For some workloads we need to remove tuples from slices. Figure 6 depicts when and how we
remove tuples from slices. Generally, a remove operation is required only if a window is defined on
a count-based measure and if we process out-of-order tuples. An out-of-order tuple changes the
count of all succeeding tuples. This requires us to shift the last tuple of each slice one slice further,
starting at the slice of the out-of-order tuple. If the aggregation function is invertible, we exploit
this property by performing an incremental update. Otherwise, we have to recompute the slice
aggregate from scratch. If the out-of-order tuple has a small delay, such that it still belongs to the
latest slice, we can simply add the tuple without performing a remove operation.
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5.3 Processing Input Tuples

The stream slicing and aggregation logic (bottom of Figure 3) consists of four components, which
we show in Figure 7. The Aggregate Store is our shared data structure, which is accessed by the
Stream Slicer to create new slices, by the Slice Manager to update slices, and by the Window
Manager to compute window aggregates.

The input stream can contain in-order tuples, out-of-order tuples, and watermarks. Note that
in-order tuples can either arrive from an in-order stream (i.e., one that is guaranteed to never
contain an out-of-order tuple) or from an out-of-order stream (i.e., one that does not guarantee
in-order arrival). If the the stream is in-order (i.e., all tuples are in-order tuples), there is no need
to ingest watermarks. Instead, we output windows directly, since there is no need to wait for
potentially delayed tuples.

Step 1 - The Stream Slicer. The Stream Slicer initializes new slices on-the-fly when in-order tuples
arrive [42]. In an in-order stream, it is sufficient to start slices when windows start [17]. In an
out-of-order stream, we also need to start slices when windows end, to allow for updating the last
slice of windows later on with out-of-order tuples. We call the beginnings and endings of windows
window edges and the beginnings and endings of slices slice edges. We always keep the timestamp
of the next upcoming window edge in memory and compare in-order tuples with this timestamp.
As soon as the timestamp of a tuple exceeds the stored timestamp, we start a new slice and save
the timestamp of the next edge. This is highly efficient because the majority of tuples do not end a
slice and require just one comparison of timestamps.

The Stream Slicer does not process out-of-order tuples and watermarks but forwards them
directly to the Slice Manager. This is possible because the slices for out-of-order tuples have already
been initialized by previous in-order tuples.

Step 2 - The Slice Manager. The Slice Manager is responsible for triggering all split, merge, and
update operations on slices.

First, the Slice Manager checks whether a merge or split operation is required. We always
merge and split slices such that all slice edges match window edges and vice versa. This guarantees
that we maintain the minimum possible number of slices [13, 17, 64].

In an out-of-order stream, context aware windows can cause merges or splits. In an in-order
stream, only forward context aware windows can cause these operations. Context free windows
never require merge or split operations, as the window edges are known in advance and slices
never need to change.

In-order tuples can be part of the forward context that indicates window start or end timestamps
earlier in the stream. When processing forward context aware windows, we check if the new tuple
changes the context such that it introduces or removes window start or end timestamps. In such
case, we perform the required merge and split operation to match the new slice and window
edges. Out-of-order tuples can change forward and backward context, such that a merge operation
or split operation are required.
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If the new context causes new window edges and, thus, merge or split operations, we notify
the Window Manager, which outputs window aggregates up to the current watermark.

Finally, the Slice Manager adds the new tuple to its slice and updates the slice aggregate ac-
cordingly. In-order tuples always belong to the current slice and are added with an incremental
aggregate update [59]. For out-of-order tuples, we look up the slice that covers the timestamp of the
out-of-order tuple and add the tuple to this slice. For commutative aggregation functions, we add
the new tuple with an incremental aggregate update. For non-commutative aggregation functions,
we need to recompute the aggregate from individual tuples to retain the correct order.

Step 3 - The Window Manager. The Window Manager computes the final aggregates for windows
from slice aggregates.

When processing an in-order stream, the Window Manager checks if the tuple it processes is the
last tuple of a window. Therefore, each tuple can be seen as a watermark which has the timestamp
of the tuple. If a window ended, the window manager computes and outputs the window aggregate
(final aggregation step).

For out-of-order streams, we wait for the watermark (see Section 2) before we output results of
windows that ended before a watermark.

The Slice Manager notifies the Windows Manager when it performs split, merge, or update
operation on slices. Upon such notification, the Window Manager performs two operations:

(1) If an out-of-order tuple arrives within the allowed lateness but after the watermark, the
tuple possibly changes aggregates of windows that were output before. Thus, the Window
Manager outputs updates for these window aggregates.

(2) If a tuple changes the context of context aware windows such that new windows end before
the current watermark, the window manager computes and outputs the respective aggregates.

Parallelization. We parallelize stream processing with key partitioning, which is the common
approach used in stream processing systems [32] such as Flink [16], Spark [6], and Storm [61]. Key
partitioning enables intra-node as well as inter-node parallelism and, thus, results in good scalability.
Since our generic window aggregation is a drop in replacement for the window aggregation operator,
the input and output semantics of the operator remains unchanged. Thus, neither the query interface
nor optimizations unrelated to window aggregations are affected.

5.4 User-Defined Windows and Aggregations

Our architecture decouples the general logic of stream slicing from the concrete implementation of
window types and aggregation functions. This makes it easy to add window types and aggregation
functions, as no changes are required in the slicing logic. In this section, we describe how we
implement aggregation functions and window types.

5.4.1 Implementing Aggregation Functions We adopt the same approach of incremental aggregation
introduced by Tangwongsan et al. [59]. Each aggregation type consists of three functions: lift,
combine, and lower. In addition, aggregations may implement an invert function. We now discuss
the concept behind these functions, and refer the reader to the original paper for an overview of
different aggregations and their implementation.

Lift. The lift function transforms a tuple to a partial aggregate. For example, consider an average
computation. If a tuple (¢, v) contains its timestamp ¢ and a value v, the [ift function will transform
it to (sum «— v, count «— 1), which is the partial aggregate of that one tuple.

Combine. The combine function () computes the combined aggregate from partial aggregates.
Each incremental aggregation step results in one call of the combine function.
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Lower. The lower function transforms a partial aggregate to a final aggregate. In our example,
the lower function computes the average from sum and count: (sum, count) — sum/count.

Invert. The optional invert function removes one partial aggregate from another with an incre-
mental operation.

In this work, we consider holistic aggregation functions, which have an unbounded size of partial
aggregates. A widely used holistic function is the computation of quantiles. For instance, windowed
quantiles are the basis for billing models of content delivery networks and transit-ISPs [20, 33]. For
quantile computations, we sort tuples in slices to speed up succeeding merge operations and apply
run length encoding to save memory [52].

5.4.2  Implementing Different Window Types We use a common interface for the in-order slicing
logic of all windows. We extend this interface with additional methods for context-aware windows.
One can add additional window types by implementing the respective interface.

Context Free Windows. The slicing logic for context free windows depends on in-order tuples
only. When a tuple is processed, the slicing core initializes all slices up to the timestamp of that
tuple. Our interface for context free windows has two methods: The first method has the following
signature:

long getNextEdge(long timestamp)

The method receives a timestamp as parameter and returns the next window edge (begin or end
timestamp) after this timestamp. We use this method to retrieve the next window edge for on-the-fly
stream slicing (Step 1 in subsection 5.3). For example, a tumbling window with length [ would
return timestamp + [ — (timestamp mod [).

The second method triggers the final window aggregation according to a watermark and has the
following signature:

void triggerWin(Callback c, long prevWM, long currWM)

The Window Manager calls this method when it processes a watermark. c is a callback object,
prevWM is the timestamp of the previous watermark and currWM is the timestamp of the current
watermark. The method reports all windows that ended between prevWM and currWM by calling

c.triggerWin(long startTime, long endTime).

This callback to the Window Manager triggers the computation and output of the final window
aggregate.

Context Aware Windows. Context aware windows use the same interface as context free windows
to trigger the initialization of slices when processing in-order tuples. In addition, context aware
windows require to keep a state (i.e., context) in order to derive window start and end timestamps
when processing out-of-order tuples. We initialize context aware windows with a pointer to the
Aggregate Store. This prevents redundancies among the state of the shared aggregator and the
window state. When the Slice Manager processes a tuple, it notifies context aware windows by
calling

window.notifyContext (callbackObj, tuple).

This method can then add and remove window start and end timestamps through the callback
object and the Slice Manager splits and merges slices as required to match window start and end
timestamps. We detect whether or not a window is context aware based on the interface that is
implemented by the window specification.
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6 Stream Slicing for Session Windows

Recently, session windows evolved to a common window type supported by programming models
such as Apache Beam [4] and the Dataflow Model [1]. Many systems implement these models and
process session windows in addition to sliding and tumbling windows [3, 17, 75]. In this section,
we take a close look on session windows and show that session window aggregation benefits from
stream slicing. In the remainder of the paper, we use session windows as one example of a context
aware window type.

6.1 Aggregate Sharing for Session Windows

We show an example for session window stream slicing in Figure 8. The example has four session
windows with the minimum gaps [, = 3, 5, 6, and 7. We make five observations based on our
example:

(1) Multiple session window queries with different gaps can share slices and, thus, partial
aggregates.

(2) Session windows would also share slices with other types of windows.

(3) Sessions of a single query have no overlap. Thus, a single session window query cannot
benefit from aggregate sharing.

(4) Slices can cover the gaps between sessions because gaps do not cover any tuples by definition.
Respectively, a partial aggregate that covers a session and a gap is equal to an aggregate that
covers the session only.

(5) The slicing logic solely depends on one session window - the one with the smallest gap. All
session windows with larger gaps are compositions of the slices made for the session window
with the smallest minimum gap. In our example min(ly) = 3.

We utilize the observations above and create slices with respect to the session window with
the smallest gap only. This allows for creating stream slices with a constant workload, which is
independent from the number concurrent sessions.

6.2 Session Windows on Out-Of-Order Streams

Stream slicing for session windows is more complex than for sliding or tumbling windows, because
session windows are context aware. Thus, we do not know start and end positions of sessions
up front. Instead, start and end positions of sessions depend on the gaps between the tuples we
process.

Out-of-order tuples either belong to an existing session (update), fuse sessions (merge), or form
new sessions (split). We show all cases in Figure 9. Interestingly, we can rewrite all required
split operations to update operations. Thus, we completely prevent expensive slice splits and do
not need to store tuples in additions to aggregates when processing session windows.
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e If an out-of-order tuple belongs to an existing session (Case 1.1) or extends a session at the
session end (Case 1.2), we insert the tuple into the respective slice (one update). Thereby, the
start and end times of slices remain unchanged.

e If an out-of-order tuple extends a session at the session start (Case 1.3), we change session
edges respectively and add the tuple (two updates).

e An out-of-order tuple can also fuse two sessions. This is the case whenever the gap between
sessions shrinks below the minimum session gap (Case 2). Fusing sessions also combines the
slices of the sessions (one merge).

e Finally, an out-of-order tuple can form a new session on its own if its gap on both sides is
larger than the minimum session gap (Case 3). In this case, we split a slice between sessions
(i.e., within the gap). Because gaps contain no data by definition, we can create a new slice
that contains the out-of-order tuple and and update the end of the existing slice without
changing its aggregate (one update).

7 The Stream Slicer

We introduced the architecture and the components of Scotty in Section 5.3 and Figure 7. In the
following sections, we present the algorithms used in the Stream Slicer and the Slice Manager
component of Scotty in detail to deepen the understanding of these components.

7.1 Notations and Terminology

We use the following notation in all algorithms presented in the remainder of the paper:

7.1.1  General Nomenclature
e An event, which can be an in-order tuple, out-of-order tuple, or a watermark.

te(e) The event-time of an event e. Note that this could also be any other window measure as discussed in Section 4.3.

We refer to event-time in the following sections to ease the explanation of the presented algorithms.

l The length of a window as introduced in Figure 1.
I The slide step of sliding window as introduced in Figure 1.
gap The minimum gap which separates sessions as introduced in Section 6.1. If there are multiple session window

queries running concurrently, then gap is the smallest gap [, of all queries (see Figures 1 and 8).
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7.1.2  Window Edges
Any beginning or ending of a window is a window edge. In Scotty, each window edge marks the
start of a new slice. We determine upcoming window edges on-the-fly in the stream slicer.

In general, all event-times of upcoming window edges are known for context free windows. For
example, a query with a tumbling window has two parameters which determine all window edges:
the length [ and the start time ¢, of the query execution. At any time t., we can compute time of the
next window edge after t. as ¢, + [ — (¢, — t;) mod [. A sliding window has the additional parameter
I; defining the slide step. When determining window edges, a sliding window is equivalent with
two tumbling windows: One tumbling window represents all starts of a sliding window (start ,
and length ;) and the other all window ends (start t; + [ and length [).

For context aware windows, windows edges may or may not be known up front and can constantly
change. We allow for declaring the next upcoming window edge in the stream slicer based on the
processed in-order tuples. In addition, the slice manager can remove, shift, and add window edges
for context aware windows.

7.1.3  Slice Separators

We manage window edges as slice separators. A slice separator is placed between two consecutive
tuples and marks the ending of a slice. Thus, several window edges may stick to the same slice
separator, e.g., if two windows end or start at the same time. We distinguish three types of separators:

e Fixed Slice Separators mark the edges of context free windows such as tumbling and sliding
windows. These edges will never be shifted or removed.

e Flexible Slice Separators mark the edges of context aware windows such as session windows.
These edges may be shifted or removed.

o Combined Slice Separators mark coinciding edges of context free and context aware windows,
e.g., a session window and a tumbling window ending at the same time.

This differentiation increases the performance of the Slice Manager when processing out-of-order
tuples later on as the type of slice separator determines the required actions independent of the
underlying window types.

7.2 The Overall Slicing Algorithm

We show the overall algorithm of our Stream Slicer in Algorithm 1. The Stream Slicer operates
based on in-order tuples and adds slice separators to start new slices.

Note that we present all algorithms on the example of sliding, tumbling, and session windows as
representatives for context free and context aware windows. The presented algorithms generalize
to any other window type as well, as they are based on the general concepts of window edges and
slice separators introduced in Section 7.1.

As first step, we check in Line 4 if the current session has timed out. Then, we reset the session
timeout depending on the event-time of the current tuple in Line 5 and continue with tumbling
and sliding windows. The loop starting in Line 7 emits all fixed separators before t.(e).

Possibly, we emit another slice separator at t.(e) that can have any of the three types:

e If a session timed out and a sliding or tumbling window edge lies at t,(e), we emit a combined
separator at t.(e) in Line 14.

o If only a sliding or tumbling window edge lies at t.(e), we emit a fixed separator in Line 15.

o If only a session timed out, there will be a flexible separator at #.(e) in Line 19.

Finally, after emitting all edge separators up to .(e), we forward e to the Slice Manager in Line 22.
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Algorithm 1 Stream Slicing with Scotty.

State:
next_edge : Next edge of a tumbling or sliding window.
session_timeout : Timeout for session window.
gap : Minimum session window gap.

1: upon event e do

2 if e is in-order tuple then

3 // Session window slicing

4 flex_end « (t.(e) > session_timeout);

5: session_timeout « t(e) + gap;

6 // Tumbling and Sliding window slicing

7 while t.(e) > next_edge do

8 emit fixed separator with time next_edge;

9: next_edge < next window edge after next_edge;
10: end while

11: // Emit remaining separator if needed

12: if next_edge == t.(e) then

13: if flex_end

14: then emit combined separator with time ¢, (e);
15: else emit fixed separator with time t(e);

16: end if

17: next_edge < next window edge after next_edge;
18: else if flex_end then

19: emit flexible separator with time ¢, (e);

20: end if

21: end if

22: emit e; // Always forward e (after separators)

23: end

7.3 Optimizing the Stream Slicer

We incorporate several optimizations that reduce the per-tuple complexity and make slicing highly
efficient:

7.3.1  Sessions Window Fusion. We consider the session window with the smallest gap only as
discussed in Section 6.1. This avoids monitoring multiple gaps concurrently.

7.3.2  Tumbling and Sliding Window Fusion. We reduce the number of tumbling window queries
with query fusion whenever the lengths of tumbling windows are multiples of each other. For
example, assume two tumbling windows A and B with the lengths [ and [® and the query start
times ¢ and t2 for which [Z > [4.1f I® mod I* = 0 and (t5 - t2) mod [ = 0, all edges of B coincide
with an edge of A and we can slice based on A only. We apply the same fusion logic for sliding
windows because we represent each sliding window with two tumbling windows (Section 7.1.2).

7.3.3  Windows Edges. We keep the timestamp of the next upcoming window edge in memory for
each query (Algorithm 2). When a tuple arrives, we compare its event-time with the timestamp
of the next window edge to decide if we need to insert a slice separator (Line 7 in Algorithm 1).
This ensures that we compute the time of the next window edge after slice separators only, i.e., just
once per slice, which allows for scaling to high throughputs and hundreds of queries because we
bind the complexity to the number of slices instead of the number of tuples per time (throughput).
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Algorithm 2 Handling Window Edges.

State:
tnext[ ] : Array with next edge time of each tumbling window.
I[]: Array with length of each tumbling window.
next_id : The id of the smallest value in tyext.

// Proceed to the next edge and return the edge timestamp.
function NExT( )
tmp « tpext|next_id];
do
tnext|next_id] <« tpext[next_id] + l[next_id];
next_id « id of smallest timestamp in tpexs;
while t,,¢x¢[next_id] == tmp;
return tyexs[next_id];
end function

R AN A o A

10: // Add a new tumbling window.

11: function ADD_WINDOW(¢; :start time, [y :window length)
12: // Optimization: Query fusion.

13: if 3x : [lyy mod [[x] = 0 A (ts — thext[x]) mod [[x] = 0]

14: then exit; // All edges already covered.

15: end if

16: // Remove windows if the new one covers their edges.

17: Vx where [I[x] mod lyy = 0 A (thext[x] — ts) mod lyy = 0] remove I[x] from [ and tpex¢[x] from
tnext;

18: // Add new window to the arrays.

19: append 5 to thexs;

20: append lyy to [;

21: next_id « id of smallest timestamp in tpexs;

22: end function

To prevent repeated computation, Scotty stores the next upcoming slice edge for each currently
running query. This binds the size of the arrays used in Algorithm 2 to the number of active queries.
We invoke Algorithm 2 in the Stream Slicer (Algorithm 1 in Line 9 and 17).

Algorithm State: The algorithm keeps three variables as state:

(1) thext[ | is an array of edge times. It stores the time of the next upcoming edge for each
tumbling or sliding window. Note that we represent each sliding window with two tumbling
windows as described in Section 7.1.2.

(2) I[ ]is an array which stores the length of each tumbling window. This allows for calculating
the time of the next edge time given the time of the edge before.

(3) next_id stores the the id of the minimum value in f,¢:[ ] in order to enable fast access to
the time of the next upcoming edge.

Adding Queries and Query Fusion:

We add new window queries through the function ADD_WINDOW (see Algorithm 2). The function
receives the start time of the query execution t; and the length of the tumbling window [y, as
parameters. Inside the function, we first check if we can fuse the new query with another one. If
there exists a query that covers all edges of the new query already, we exit the function in Line 14
without a need to save the new query. If the new query covers all edges of a query added earlier,
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Fig. 10. Nomenclature for the discussion of out-of-order processing in the Slice Manager.

we remove the previous query in Line 17. Finally, we add the new query (i.e., the new window) to
the arrays in Lines 19 to 21. Thereby, we update next_id accordingly if the new window causes the
next edge.

Proceeding to the Next Edge:

Whenever we pass the event-time of an edge in the Stream Slicer, we invoke NEXT_EDGE in
Algorithm 2. This function returns the time of the next edge and updates the array of stored
window edges (I,ex:). Within the function, we first remember the time of the current edge. Then,
we update all edges in the array that have the same edge time by adding the lengths of the respective
windows. Finally, we return the event-time of the next edge.

8 The Slice Manager
In this section, we present the Slice Manager of Scotty which has three purposes:

(1) It creates new slices when receiving slice separators.
(2) It adds all tuples to the correct slice.
(3) It updates and creates past slices when processing out-of-order tuples.

The Slice Manager provides the slices to the Aggregate Store which is in charge of aggregating
values for each slice.

8.1 Notations and Terminology

For the discussion of the Slice Manager, we define the following terminology in addition to the
terminology introduce in Section 7.1. We visualize the terminology for the following discussion
in Figure 10. Let S be a slice. We name the end time of the slice t.,4(S) and call the maximum
event-time of any tuple contained in the slice #,,4x(S). The event-time of a tuple e is t.(e) as before.

8.1.1 Active Slice vs. Past Slices

The Slice Manager distinguishes between the active slice and past slices. The active slice starts in the
past but ends in the future. An event-time is in the past if any event processed so far has a larger
event-time. An event-time is in the future if all events processed so far have a smaller event-time.
All slices before the active slice are past slices.

8.1.2 Slice Types

The Slice Manager operates based on slice types instead of window specifications. This decoupling
is important for scalability because it allows for adding queries without increasing the per-tuple
computation effort. We distinguish three types of slices which map to the types of slice separators
introduced in Section 7.1.3:

e @ Fixed Slices: The end times of fixed slices are immutable. This guarantees that the Window
Manager retains slice separations where context free windows (e.g., tumbling and sliding
windows) start or end.

o © Flexible Slices: The end times of flexible slices can change. Thus, the Window Manager can
extend flexible slices, shrink them, and fuse them with their successors. This is required to
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Algorithm 3 Slice Management in Scotty.
State:

s¢ : currently active slice.

gap : minimum session window gap.

1: upon event e do

2 if e is watermark then

3 forward e to the Window Manager

4 else if e is slice separator then

5: set slice type of s to type of e

6 store s. in the Aggregate Store

7 s¢ < new empty slice

8 else if e is in-order tuple or e € s. then
9

add e to s¢
10: else if no session windows or e € active session then
11: add e to the slice which covers t.(e)
12: else // e is out-of-order tuple and we have sessions
13: S « session covering t(e) including succeeding gap
14 if £, 4(S) — Le(€) > gap and 1e(e) — tmax(S) > gap
15: // gaps on both sides of e = new session
16: then split S at t.(e) and add e
17: else if t,,4(S) — te(e) > gap
18: // gap on the right of e = right or simple insert
19: then add e to the slice which covers t.(e)
20: else if to(e) — tmax(S) > gap
21: // gap on the left of e = left insert
22: then move t,,4(S) to t.(e) (excl.) and add e
23: else // no gap separates e = fuse sessions
24: then fuse S with succeeding session and add e
25: end if
26: end if
27: end

update slices when processing out-of-order tuples that change the context of context aware
windows such as session windows.

o @ Combined Slices: Combined slices unite characteristics of fixed and flexible slices. They
occur when the edge of a context free window coincides with the edge of a context aware
window. End times of combined slices are immutable. However, a combined slice also marks
the ending of a context aware window.

8.2 The Overall Slice Management Algorithm

We show the overall algorithm of the Slice Manager in Algorithm 3. The Slice Manager is indepen-
dent from watermarks. Thus, we forward watermarks to the Window Manager in Line 3. In the
following subsections, we discuss how we process slice separators, how we assign tuples to slices,
and how we retain correct slices when tuples arrive out-of-order.

8.2.1 Processing Slice Separators.

The Stream Slicer marks the starts of new slices with slice separators. The Slice Manager processes
slice separators in three steps: First, it sets the type of the currently active slice with respect to
the separator type (fixed, flexible, or combined) in Line 5 of Algorithm 3. Second, after setting the

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2020.



Scotty: General and Efficient Open-Source Window Aggregation for Stream Processing Systems 111:23

slice type, the Slice Manager stores the slice in the Aggregate Store which manages all past slices
(Line 6). Finally, the Slice Manager resets the currently active slice with a new empty slice (Line 7).

8.2.2 Adding Tuples to Slices

In-order Tuples: In-order tuples always belong to the currently active slice because their event-
time cannot be in the past by definition. Thus, we add all in-order tuples to the currently active
slice in Line 9 of Algorithm 3. This has low computational costs because we add tuples to their
slice without a lookup operation for finding the correct slice. Moreover, the costs are independent
from the number of concurrent windows and queries which is crucial for scalability.
Out-of-order Tuples: The computation effort when processing a tuple out-of-order depends on
the delay of the tuple. If a tuple has a small delay but still belongs to the currently active slice, we
can add the tuple to the active slice just like an in-order tuple (Line 9). If the tuple has a larger delay,
we lookup the slice that covers the event-time of the tuple and add the tuple to that slice (Line 11).

8.3 Changing Slices for Out-of-order Tuples

8.3.1 Tumbling and Sliding Windows For tumbling and sliding windows, we know the times of all
window edges a priori. Thus, the Stream Slicer always initiates the correct creation of all slices
for these windows. The Slice Manager ensures to retain correct slices for tumbling and sliding
windows when changing past slices. In the following, we discuss how out-of-order tuples affects
context aware windows on the example of session windows.

8.3.2 Session Windows When we process session windows, an out-of-order tuple might fuse
sessions or add a new session in the past (Recall the discussion of Figure 9 in Section 6.2). Thus, the
Slice Manager possibly adds or changes slices in the past before inserting the out-of-order tuple.

Analogue to the Stream Slicer, the Slice Manager operates based on a single session window
query - the one with the smallest gap. This is sufficient to maintain all slices for session windows
with larger gaps as well (recall Section 6.1).

An out-of-order tuple either belongs to an existing session, fuses sessions, or forms a new session
on its own. We show all three cases with the corresponding slice changes in Figure 9.

o Insert in Existing Sessions: In case the out-of-order tuple e belongs to an existing session, we
insert the tuple in an existing slice. If ¢, (e) lies in the middle of a session (Case 1.1 in Figure 9)
or extends a session at the session end (Case 1.2 in Figure 9), we insert the tuple in the slice S
which covers t.(e). In both cases, the start and end times of slices remain unchanged. If e
extends a session at the start of the session (Case 1.3 in Figure 9), we change f.,4(S) to t.(e)
(exclusive) and add e afterwards.

e Fusing Sessions: Adding e can also fuse two sessions. This is the case whenever adding e
shrinks the gap between sessions below the minimum session gap (Case 2 in Figure 9). Fusing
sessions also combines the slices of the sessions.

o Adding new Sessions: If the gap on both sides of e is larger than the minimum session gap, e
forms a new session on its own. In this case we split the slice which covers f.(e) (Case 3 in
Figure 9). The slice before the split ends at f.(e) (exclusive). The new slice (after the split)
starts at .(e) (inclusive) and ends at the former end of the slice that we split. We can split
S after t,4x(S) (i.e., within the gap) without changing the aggregate of S because the gap
cannot contain any tuples.

Formal Specification: We formalize the rules for all cases depicted in Figure 9 in Algorithm 3. First,
we find the session S which covers f.(e) in Line 13 (including the gap after the session). Then,
we check if there are gaps larger than the minimum gap on both sides of e in Line 14 (Case 3 in
Figure 9). If this is not the case, we check the gap after e in Line 17 (Cases 1.1 and 1.2 in Figure 9).
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Fig. 12. Slice Management for Out-of-order Tuples with Multiple Sliding, Tumbling, and Session Windows.

Finally, we check the gap before e in Line 20 (Case 1.3 in Figure 9). If no gap remains larger than
the minimum gap which separates sessions, we fuse sessions in Line 24 (Case 2 in Figure 9).

8.4 Joint Slice Management for all Window Types
In the following, we discuss how Scotty shares partial aggregates among multiple queries involving
different window types.

8.4.1 Multiple Query Example
For example, consider Figure 11. We slice the stream with respect to a minimum session window

gap of four. In addition, we process a tumbling window with a length of three. This results in slices
of all types. Fixed slices (@) mark the endings of tumbling windows and flexible slices (@) the
endings of sessions. Combined slices (@) mark the coincidence of both.

In general, Algorithm 3 remains unchanged for multi query scenarios. However, S corresponds
to the session which covers t.(e) including the gap after the session. In contrast to the example
in Figure 9, there is no one-to-one mapping between sessions and slices any more. Thus, the
subroutines for fusing (Line 24), splitting (Line 14), and extending sessions (Line 20) change. We
now discuss these subroutines.
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Algorithm 4 Splitting a Session.

Parameter:
e : Tuple to be inserted.
te(e) : Event-time of e.

S « slice which covers t.(e);

if S starts at te(e) then
// Slice before S must be fixed.
change the type of the slice before S to combined;
addeto S;

else /S does not start at te(e).
change t,,,4(S) to te(e) (excluding t.(e) from S);
change type of S to flexible;
add slice in [t.(e),former t,,4(S)] with former type of S.
add e to the new slice.

: end if

R A A T A
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We visualize all cases with examples in Figure 12 and show a formal specification in the form
of an algorithm for each action. The discussion presented here refers to session windows as one
example of a context aware window type. In general, the Slice Manager is agnostic to the window
specifications. Thus, it is irrelevant for the Slice Manager which windows require a slice.

@ Virtual Session Slices: We introduce the concept of virtual session slices to represent sessions
including their succeeding gaps. Such slices are not stored, but we keep an index with their start
and end times. This allows us to find the session which covers t.(e) with negligible latency.

8.4.2 Splitting Sessions

Example: In case an out-of-order tuple e forms a new session on its own, we split a past session
(Line 14 in Algorithm 3). We show the split logic in Figure 12a. We always split a session at t,(e).
For e; and ez, the event-times do not coincide with the start of an existing slice. Thus, we split the
slice covering t.(e). The slice before t.(e) is flexible. The slice after f.(e) inherits the slice type of
the slice we split (@0 @; @=©®). For ¢;, t.(e3) already matches the start of a slice. Thus
we do not need to split a slice. However the slice before e; becomes the end of a session and its
type changes to combined (@=a).

Algorithm: We show the logic for splitting sessions in Algorithm 4. The algorithm receives the
out-of-order tuple e and the event-time t.(e) of that tuple as parameters.

First, we find the slice which covers t.(e) and name it S (Line 1). If S starts at t.(e), there is a
slice separation at t.(e) already and we do not need to split slices. However, we need to split the
session by changing the slice types. The slice before S must be a fixed slice because it is in the
middle of a session where we cannot have combined or flexible slices. When we split the session,
the slice before S becomes the last slice of a session. Thus, we change the type of the slice before S
to combined (Line 4) and add e to S (Line 5).

If S does not start at t.(e), we need to split S at t.(e). Therefore, we first shrink S by changing
tend(S) to t.(e) (Line 7). Then, we change the type of S to flexible, because S marks the end of
a session now (Line 8). Finally, we add a new slice in the gap between t.(e) and the former end
of S (Line 9) and add e to this new slice (Line 10). Thereby, the new slice inherits the former type of S.
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Algorithm 5 Fusing Sessions.

Parameter:
e : Tuple to be inserted.
te(e) : Event-time of e.
S : The session which is fused with its succeeding session.

St « last slice in S;

Sg « first slice in the session after S;

if S; is a combined slice then
change type of St to fixed;

else // Sy is a flexible slice. = remove flexible separator
fuse Sy, and Sf keeping the type of Sf;

end if

add e to the slice covering t.(e);

A AN U

8.4.3 Fusing Sessions

Example: When an out-of-order tuple fuses two sessions (Line 24 in Algorithm 3), we check the
slice type of the last slice in the earlier session. The last slice of a session must be combined or
flexible. If the slice is combined, we cannot fuse it with its succeeding slice because it also marks
the ending of a sliding or tumbling window. Thus, we change the slice type from combined to
fixed which removes the marker for the session end (1. fuse in Figure 12b; @—=@). If the slice is
flexible, we fuse it with its successor. The fused slice inherits its type from the later slice (2. fuse in
Figure 12b; o@=@).

Algorithm: We formalize the logic for fusing sessions in Algorithm 5. The algorithm receives the
out-of-order tuple e, the event-time t.(e) of that tuple, and the session S (which is fused with its
succeeding session) as parameters.

As first step, we find the last slice in the session S and name it Sy (Line 1). Then, we find the first
slice in the session after S and name it Sp (Line 2). In order to fuse S with its succeeding session,
we fuse S; with Sp. If Sy is a combined slice, we cannot remove the separation between Sy and Sg
because Sy marks the start or end of a tumbling or sliding window. In this case, we fuse sessions by
changing the slice type from combined to fixed (Line 4).

If Sy, is not combined, it must be flexible. In this case, we fuse Sy with S (i.e., we merge them to
one partial aggregate). Thereby, we keep the slice type of S¢ (Line 6). Finally, we add e to the slice
which covers t.(e) (Line 8). Note that e does not necessarily belong to Sy, or Sr. t.(e) possibly falls
in another slice preceding S, or succeeding Sr.

8.4.4 Extending Sessions

Example: When we extend a session at its start (Line 20 in Algorithm 3), we check if the slice
which covers f.(e) is the last slice of a session. If so, we check if the slice is combined or flexible. If
it is flexible, we can change its end time to t.(e) (excluding) without changing the slice type (e; in
Figure 12c). If the slice is combined, we cannot move its end and, thus, split it at .(e) in a flexible
and a fixed slice (e; in Figure 12¢; @=>o0@).

In Figure 12d and 12e, we consider the case were we extend a session at its start, but t,(e) is not
within the last slice of a session. In this case, we extend the session in two steps. First, we remove
the former end of the session before the one we extend. Second, we mark the new end at t.(e)
(exclusive). In order to remove the former end of the session which covers t.(e), we require the
last slice of that session. If the last slice is flexible, we fuse it with its succeeding slice (Figure 12d).
Thereby, the fused slice inherits the type of the later slice (@@=@). If the last slice is combined,

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2020.



Scotty: General and Efficient Open-Source Window Aggregation for Stream Processing Systems 111:27

Algorithm 6 Extending a Session at its Start.

Parameter:
e : Tuple to be inserted.
te(e) : Event-time of e.
S : The session which covers t(e).

1: Se « slice which covers t(e);
2: Sp « last slice in S;
3: // Simple case: No fixed slices are involved.
4: if S, == Sp and S, is flexible then
5: change t,,,4(Se) to te(e) (exclusive);
6: add e to the slice succeeding Se;
7: else if Se == S; then //S. is combined.
8: change t,,,4(Se) to te(e) (exclusive);
9: add fixed slice in [t.(e),former t.,4(Se)];
10: add e to the new slice;
11: else //If Se and Sy, are not the same slice, S, is fixed.
12: // Remove former end of S.
13: if Sy is flexible then
14: fuse Sy with succeeding slice (keep type of successor);
15: else // Sy, is combined.
16: change type of Sy, to fixed;
17: end if

18: // Add new end of S.
19: if S, starts at t.(e) then // change slice type.

20: change type of the slice before S, to combined;

21: add e to S¢;

22: else // split slice.

23: change t,,,4(Se) to te(e) (exclusive);

24: change type of S, to flexible;

25: add slice (former type of Se) in [te(e),former t,,4(Se)];
26: add e to the new slice;

27: end if

28: end if

we cannot fuse it and just change its type to fixed (Figure 12e¢; @=@). In order to set the new end
of the session, we require the slice which covers t.(e). If this slice starts at t.(e), we mark the end
of the session by setting the type of the preceding slice to combined (@—=@&). Otherwise, we split
the slice which covers t.(e). The slice before the split is flexible and the one after the split inherits
the type of the slice we split (Figure 12d; @=>o).

Algorithm: We show the logic for extending a session in Algorithm 6. The algorithm receives
the out-of-order tuple e, the event-time t.(e) of that tuple, and the session S which covers t.(e)
as parameters. Note that S corresponds to the virtual session slice covering t.(e) before adding e.
Thus, S is the session before the one we extend.

As first step, we find the slice in the session S which covers t.(e) and name it S, (Line 1). Then,
we find the last slice in S and name it Sy (Line 2).

We check if S, and S; are the same slice. If so, we act depending on the type of S, (i.e., the type
of Sp). Since we look at the last slice of a session, the slice can be flexible or combined. If it is
flexible, we move the slice separation to extend the session after S at its start. Therefore, we change
tend(Se) to t.(e) (exclusive) in Line 5. This automatically shifts the start of the session after S to
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te(e) (inclusive). After extending the session, we add e in Line 6. If S, is combined, we cannot shift
the slice separation. Thus, we need to split S, at t.(e). Therefore, we change t.,4(S.) to t.(e) in
Line 8. Then, we add a new fixed slice between t.(e) and the former end of S, in Line 9. Finally, we
add e to the new slice in Line 10.

If S, and Sy, are not the same slice, S, must be a fixed slice that ends within the gap between two
sessions. In this case, we extend the session after S in two steps: First, we remove the former end of
S. Then, we add the new earlier end of S and, thereby, extend the session after S.

In order to remove the former end of S, we either fuse Sy with its succeeding slice in Line 14 (if
Sy, is flexible) or change the type of Sy to fixed in Line 16 (if S;, is combined).

When we add the new end of S at t.(e), we first check if t.(e) coincides with a slice separation
already. If so, we do not need to split slices. We just mark the end of the session S by changing the
type of the slice that ends at t.(e) from fixed to combined (Line 20) and add e to S, (Line 21).

If no slice starts at t.(e), we split S, at t.(e). Therefore, we change the end of S, to t.(e) (exclusive)
in Line 23 and add a new slice between t,(e) (inclusive) and the former end of S, (Line 25). Finally,
we add e to the new slice (Line 26).

9 Programming Examples

In this section, we show several examples which illustrate how one can use Scotty in different
stream processing systems and how one can extend Scotty with new aggregation functions and
window types.

9.1 Scotty in Different Stream Processing Systems

Based on the General Stream Slicing approach, we provide Scotty as a general purpose window
operator implemented in Java. Scotty is independent of a specific stream processing system. In
principle, every stream processing system can embed Scotty as an operator, which supports stateful
user-defined processing functions in Java. Furthermore, it is important to note that the correctness
guarantees of Scotty, depend on the deliver guarantees of the underlying system. Thus, exactly-once
delivery semantics are required to guarantee correct processing results in a distributed stream
processing system. Such delivery guarantees are regularly provided by stream processing systems:
For example, Flink implements a solution based on asynchronous checkpoints [14, 15]. In case of
failures, the operator state will be set back to a recent complete checkpoint and the stream will
be replayed starting from that checkpoint. As a result, each tuple is reflected exactly-once in the
operator state which yields correct results. Kafka Streams implements a tuple tracking based on
change capture messages and special Kafka topics called changelog topics and offset topics [71]. In
case of failures, operator state can be recovered from the messages stored under these topics. Storm
implements a message tracking based on acknowledgments and allows for replaying a stream
through its reliability API in case of failures [61].

For event-time processing, Scotty can either utilize a system provided timestamp and watermark
or derive the event time from a tuple field. In both cases, the timestamp becomes a field of the tuple
based on which tuples are assigned to slices and windows by Scotty. In this paper, we limit the
discussion to Scotty to allow for discussing algorithms and implementations in detail. However,
we provide pointers to related works in Section 11, which address the issue of distributed setups
where no global (synchronized) timestamp service can be relied on.

Listing 1 shows the interface of the Scotty window operator, which defines two functions.
ProcessElement () consumes a new record from the data stream with a corresponding timestamp
(either, event time, or processing time). For each invocation, Scotty assigns the record to a slice,
adapts the slices if necessary, and updates its corresponding partial aggregate in the aggregation
store. ProcessWatermark() consumes a watermark timestamp and triggers all windows that
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Listing 1. Scotty Window Operator interface

U W

public class ScottyWindowOperator <InputType >{
Processes a new record with a specific timestamp.
public void processElement(InputType element, long ts) {...}
//Processes a watermark and provide results for all windows that are triggered since the last watermark.
public List <AggregateWindow > processWatermark (long watermarkTs) {...}

}

Listing 2. Scotty Embedding in Apache Beam

[ e R - NS NSO R

_ e

PCollection <KV<Integer , Integer >> stream = ...

KeyedScottyWindowOperator <Integer , Integer > scottyWindowDoFn =
new KeyedScottyWindowOperator<Integer , Integer >(0, new Sum());

Adding three window definition for Tumbling, Sliding and Senssion windows.
scottyWindowDoFn .addWindow (new TumblingWindow (WindowMeasure . Time, 5000));
scottyWindowDoFn .addWindow (new SlidingWindow (WindowMeasure . Time, 2000, 1000));
scottyWindowDoFn .addWindow (new SessionWindow (WindowMeasure . Time, 2000));

// Apply Scotty Windowing
PCollection <WindowResults> windowAggregates = stream.apply (ParDo. of (scottyWindowDoFn) ) ;

ended between the last received watermark timestamp and the current watermark timestamp. To
support out-of-order events, Scotty delays the termination of windows by a fixed allowed lateness.
In the future, we plan to integrate window refinements as defined by the Dataflow Model [1] and
adaptive watermark delays [7] to minimize the windowing latency.

To integrate Scotty with a stream processing system, Scotty has to become an (user-defined)
operator in the respective system which can then be used just like any other operator. To this end,
one has to implement a connector class. Such a class is usually a wrapper class instantiating Scotty
and implementing (or extending) the operator class of the stream processing system. Such a class is
usually implemented as an interface or abstract class in Java. The complexity of implementing a
connector depends on the respective stream processing system and its requirements for implement-
ing a custom operator. First, one needs to implement the logic for passing input tuples to Scotty
and results back to the system. Second, it is required to connect the state of Scotty to the state
backup of the respective systems, to be able to recover from node failures. To ease the connection
to different state backends, we made the entire Scotty window operator serializable. A careful study
and implementation of state backups for individual systems can significantly reduce the overhead
caused by state backups upon checkpoints and caused by state recovery upon failures.

The Scotty open-source project provides connectors for Apache Flink [16], Apache Storm [61],
Apache Beam [1], Apache Samza [48], Apache Kafka Streams [40], and Apache Spark Conti-
nous Processing [60, 75]. These connectors implement Flink’s KeyedProcessFunction, Storm’s
BaseBasicBolt, Beam’s DoFn, Samza’s StreamTask, Kafka’s Processor, and Spark’s
FlatMapFunction respectively. Using these connectors, Scotty can directly replace the native
window operator of these stream processing systems. Listing 2 presents an Apache Beam stream
processing pipeline using the Scotty operator. This example, demonstrates the definition of a win-
dow aggregation across multiple different concurrent windows. In line 3 to 9 we create a window
operator, which performs a sum aggregation on three window definitions (i.e., a tumbling-, a
sliding-, and a session-Window). Finally, the Scotty window operator is directly embedded into the
Apache Beam pipeline as any native operator. All connectors expose the same Scotty API through
their addWindow methods. To use Scotty, users first configure the Scotty operator using the same
commands independent of the streaming system. Then, users add the Scotty operator to their
processing pipeline just like any other operator of the respective system. We provide a demo for
each system in the respective connector directory in the Scotty open source project.
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Listing 3. Interface for User-defined Window Aggregations

public interface AggregateFunction<InputType, PartialAggregateType , FinalAggregateType> {
Transforms a tuple to a partial aggregate.
PartialAggregateType lift (InputType inputTuple);
// Computes the combined aggregate from partial aggregates.
PartialAggregateType combine(PartialAggregateType pAggl, PartialAggregateType pAgg2);
// Transforms a partial aggregate to a final aggregate.
FinalAggregateType lower(PartialAggregateType pAgg);

9.2 Extending Scotty with custom Window Aggregations and Types

The Scotty window operator provides several extension points, which allow users to define own ag-
gregation functions and window types. In principle, these extension points follow the description in
Section 5.4. In the following we describe how users can use these extension points programmatically.

Window Aggregations: For the definition of a user-defined window aggregation function,
Scotty provides the interface shown in Listing 3. Each aggregation function definition consists of a
lift, combine, and lower function. Additionally, Scotty provides two interfaces to declare if an
aggregation function is commutative or invertible. This allows for performing the different slicing
decisions for arbitrary aggregation functions as defined in Section 5. Depending on the aggregation
function, the PartialAggregationType stores different data. For a sum aggregation, it only stores
a single number as the current partial window sum. In contrast, for a holistic aggregation, we must
store all records assigned to a slice. Depending on the concrete implementation, this can be a simple
buffer of all records, a tree structure to improve efficiency, or a compressed format to save memory.

Window Types: For the definition of user-defined window types, Scotty provides three inter-
faces, which correspond to the three abstract window types in Scotty (i.e., context-free, forward
context-free, and forward context-aware). For forward context-free and forward context-aware
windows, the user has to implement a window context. The window context can maintain arbitrary
information about the window boundaries and content. For example, a session window maintains a
list of all currently active windows. For each processed record, Scotty updates this window context
and checks if it should fuse two windows, or it has to insert a new window. Consequently, it adapts
the underlying slices according to the rules described in Section 6. Finally, Scotty uses the window
context to trigger the windows if the watermark exceeds the window end. Beside the common
window types (i.e., tumbling-window, sliding-window, and session-window), Scotty provides im-
plementations for further window types, such as Fixed-band Window [51], Punctuation-based
Windows [68], and Slide-By-Tuple Windows [44].

10 Evaluation

In this section, we evaluate the performance of general stream slicing and compare stream slicing
with alternative techniques introduced in Section 3 and built-in techniques of different systems.

10.1 Experimental Setup

Setup. We implement all techniques on Apache Flink v1.3. We run our experiments on a VM
with 6 GB main memory and 8 processing cores with 2.6 GHz.

Metrics. In our experiments, we report throughput, latency, and memory consumption. We mea-
sure throughput as in the Yahoo Streaming Benchmark implementation for Apache Flink [19, 69].
We determine latencies with the JMH benchmarking suite [49]. JMH provides precise latency
measurements on JVM-based systems. We use the ObjectSizeCalculator of Nashorn to determine
memory footprints [50].
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Baselines. We compare an eager and a lazy version of general stream slicing with non-slicing
techniques from Section 3: As representative for aggregate trees, we implement FlatFAT [59]. For
the buckets technique, we use the implementation of Apache Flink [16]. For tuple buffers, we
use an implementation based on a ring buffer array. We also include Pairs [42] and Cutty [17] as
specialized slicing techniques where possible.

Data. We replay real-world sensor data from a football match [47] and from manufacturing
machines [36]. The original data sets track the position of the football with 2000 and the machine
states with 100 updates per second. We generate additional tuples based on the original data
to simulate higher ingestion rates [26]. We add 5 gaps per minute to separate sessions. This is
representative for the ball possession moving from one player to another?. If not indicated differently,
we show results for the football data. The results for other data sets are almost identical because
the performance depends on workload characteristics rather than data characteristics.

Queries. We base our queries (i.e., window length, slide steps, etc.) on the workload of a live-
visualization dashboard that is built for the football data we use [67]. If not indicated differently, we
use the sum aggregation in Sections 10.2 and Section 10.3. In Section 10.4, we use the M4 aggregation
technique [37] to compress the data stream for visualization. M4 computes four algebraic aggregates
per window (i.e., minimum, maximum, first and last value of each window). We show in Section
10.3.2 how the performance differs among diverse aggregation functions. Because we do not change
the input and output semantics of the window and aggregation operation, there is no impact on
upstream or downstream operations. We ensure that windowing and aggregation are the bottleneck
and, thus, we measure the performance of aggregation techniques.

We do not alternate between tumbling and sliding windows because they lead to identical
performance: For example, 20 concurrent tumbling window queries cause 20 concurrent windows
(1 window for each query at any time). This is equivalent to a single sliding window with a window
length of 20 seconds and and a slide step of one second (again 20 concurrent windows). In the
following, we refer to concurrent windows instead of concurrent tumbling window queries. Sliding
window queries yield identical results if they imply the same number of concurrent windows.

Structure. We split our evaluation in four parts. First, we compare stream slicing and alternative
approaches with respect to their throughput, latency, and memory footprint (Section 10.2). Second,
we study the impact of each workload characteristic introduced in Section 4 (Section 10.3). Third, we
integrate general slicing in Apache Flink and show the performance gain for a concrete application
(Section 10.4). Fourth, we compare Scotty with the built-in solutions for window aggregation on
different systems (Section 10.5). Sections 10.2 and 10.3 focus on the performance per operator
instance, Section 10.4 studies the parallelization, and Section 10.5 studies different systems.

10.2 Stream Slicing Compared to Alternatives

We now compare stream slicing with alternative techniques discussed in Section 3. We first study
the throughput for in-order processing on context-free windows in Section 10.2.1. Our goal is
to understand the performance of stream slicing compared to alternative techniques, including
specialized slicing techniques. In Section 10.2.2, we evaluate how the throughput changes in the

2The DEBS 2013 Grand Challenge defines ball possession as follows: "A player (and thereby his respective team) can
obtain the ball whenever the ball is in his proximity and he hits it. A ball is in proximity of the player when it is less than one
meter away from him. The distance of one meter applies to the distance between the sensor within the ball and any of the two
sensors in the player’s shin guards. A ball is hit whenever its acceleration or velocity peaks. A ball will stay in the possession of
a given player until another player hits it, the ball leaves the field, or the game is stopped. Specifically, a ball may leave the
player’s proximity and will still remain in his possession.” [47]

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2020.



111:32 J. Traub, P. M. Grulich, A. R. Cuéllar, S. Bref3, A. Katsifodimos, T. Rabl, and V. Markl

10°
10°

10*

(I
SN NEENNSY

(NN
Y
N N S SSSSSSNNNNSNNANAN

103

1 10 40 80
number of concurrent windows
[ Lazy Slicing JHSEEH Eager Slicing Cutty-Lazy B85 Cutty-Eager
§35550 Pairs #2224 Buckets [ Tuple Buffer [N Agg. Tree

throughput [tuples/s]

Fig. 13. In-order Processing with Context Free Windows.

presence of out-of-order tuples and context-aware windows. In Section 10.2.3, we evaluate the
memory footprint and in Section 10.2.4 the latency of different techniques.

10.2.1  Throughput

Workload. We execute multiple concurrent tumbling window queries with equally distributed
lengths from 1 to 20 seconds. These window lengths are representative of window aggregations
that facilitate plotting line charts at different zoom levels (Application of Section 10.3). We chose
Pairs [42] and Cutty [17] as example slicing techniques because Pairs is one of the first and most
cited techniques and Cutty offers a high generality with respect to window types.

Results. We show our results in Figure 13. All three slicing techniques process millions of tuples
per second and scale to large numbers of concurrent windows.

Buckets achieve orders of magnitude less throughput than slicing techniques and do not scale
to large numbers of concurrent windows. The reason is that we must assign each tuple to all
concurrent buckets (i.e., windows). Thus, tuples belong to up to 1000 buckets causing 1000 redundant
aggregation steps per tuple. In contrast, slicing techniques always assign tuples to exactly one
slice. Similar to buckets, the tuple buffer causes redundant aggregation steps for each window as
we compute each window independently. Aggregate Trees show a throughput which is orders of
magnitude smaller than the one of slicing techniques. This is because each tuple requires several
updates in the tree.

Summary. We observe that slicing techniques outperform alternative concepts with respect to
throughput and scale to large numbers of concurrent windows.

10.2.2 Throughput under Constraints We now analyze the throughput under constraints, i.e.,
including out-of-order tuples and context-aware windows.

Workload. The workload remains the same as before but we add a time-based session window
(I = 1sec.) as representative for a context-aware window. We add 20% out-of-order tuples with
random delays between 0 and 2 seconds.

Results. We show the results in Figure 14. Slicing techniques achieve an order of magnitude higher
throughput than alternative techniques that do not use stream slicing. Moreover, slicing scales
to large numbers of concurrent windows with almost constant throughput. This is because the
per-tuple complexity remains constant: we assign each tuple to exactly one slice. Lazy Slicing has
the highest throughput (1.7 Million tuples/s) because it uses stream slicing and does not compute
an aggregate tree. Eager Slicing achieves slightly lower throughput than Lazy Slicing. This is due to
out-of-order tuples that cause updates in the aggregate tree. Buckets show the same performance
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Fig. 14. Increasing the number of concurrent windows including 20% out-of-order tuples and session windows.

decrease as in the previous experiment. The performance decrease for the Tuple Buffer is intensified
due to out-of-order inserts in the ring buffer array. Aggregate Trees process less than 1500 tuples/s
with 20% out-of-order tuples. This is because out-of-order tuples require expensive leaf inserts
in the aggregate tree (rebalance and update of inner nodes). Eager slicing seldom faces this issue
because it stores slices instead of tuples in the aggregate tree. The majority of out-of-order tuples
falls in an existing slice, which avoids rebalancing. We exemplary show our results on two different
datasets for this experiment. Because the performance depends on workload characteristics rather
than data characteristics, the results are almost identical. We omit similar results for different data
sets in the following experiments and focus on the impact of workload characteristics.

Summary. For workloads including out-of-order tuples and context-aware windows, we observe
that general stream slicing outperforms alternative concepts with respect to throughput and scales
to large numbers of concurrent windows.

10.2.3  Memory Consumption We now study the memory consumption of different techniques
with four plots: In Figures 15a and 15c, we vary the number of slices in the allowed lateness and
fix the number of tuples in the allowed lateness to 50 thousand. In Figures 15b and 15d, we vary
the number of tuples and fix the number of slices to 500. We experimentally compare time-based
and count-based windows. Our measurements include all memory required for storing partial
aggregates and metadata, such as the start and end times of slices.

Results for Time-Based Windows. Figures 15a and 15b show the memory consumption for time-
based windows, which do not require us to store individual tuples. For Stream Slicing and Buckets,
the memory footprint increases linearly with the number of slices in the allowed lateness. The
memory footprint is independent from the number of tuples. The opposite holds for Tuple Buffers
and Aggregate Trees. Slicing techniques store just one partial aggregate per slice, while buckets store
one partial aggregate per window. Tuple Buffers and Aggregate Trees store each tuple individually.
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Fig. 15. Memory Experiments with Out-of-order Streams.

Results for Count-Based Windows. Figures 15¢ and 15d show the memory consumption for count-
based windows, which require individual tuples to be stored. The experiment setup is the same
as in Figures 15a and 15b. The memory consumption of all techniques increases with the number
of tuples in the allowed lateness, because we need to store all tuples for processing count-based
windows on out-of-order streams (Figure 15d). Starting from 1000 tuples in the allowed lateness,
the memory consumed by tuples dominates the overall memory requirement. Accordingly, all
curves become linear and parallel. Buckets show a stair shape because of the underlying hash
map implementation [70]. Slicing techniques start at roughly 10° byte which is the space required
to store 500 slices. The memory footprint of buckets also increases with the number of slices
because more slices correspond to more window buckets (Figure 15¢). Each bucket stores all tuples
it contains which leads to duplicated tuples for overlapping buckets.
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Fig. 16. Output Latency of Aggregate Stores.

Summary. When we can drop individual tuples and store partial aggregates only (Figure 15a
and 15b), the memory consumptions of slicing and buckets depends only on the number of slices
in the allowed lateness. In this case, stream slicing and buckets scale to high ingestion rates with
almost constant memory utilization. If we need to keep individual tuples (Figure 15c and 15d),
storing tuples dominates the memory consumption.

10.2.4 Latency The output latency for window aggregates depends on the aggregation technique,
the number of entries (tuples or slices) which are stored, and the aggregation function. In Figure 16,
we show the latency for different situations.

Distributive and Algebraic Aggregation. For the sum aggregation (Figure 16a), Lazy Slicing and
Tuple Buffer exhibit up to 1ms latency for 10° entries (no matter if 10° tuples or 10° slices). Eager
Slicing and Aggregate Trees show latencies below 5us. Buckets achieve latencies below 30ns.
Lazy aggregation has higher latencies because it computes final aggregates upon request. Eager
Aggregation uses precomputed partial aggregates from an aggregate tree which reduces the latency.
Buckets pre-compute the final aggregate of each window and store aggregates in a hash map which
leads to the lowest latency.
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Fig. 17. Impact of Stream Order on the Throughput.

Holistic Aggregation. The latencies for the holistic median aggregation (Figure 16c) are in the
same order of magnitude and follow the same trends. Buckets exhibit the same latencies as before
because they precompute the aggregate for each bucket. Thus, a more complex holistic aggregation
decreases the throughput but does not increase the latency. The latency of slicing techniques
increases for the median aggregation, because we combine partial aggregates to final aggregates
when windows end. This combine step is more expensive for holistic aggregates than for algebraic
ones.

Summary. We observe a trade-off between throughput and latency. Lazy aggregation has the
highest throughput and the highest latency. Eager aggregation has a lower throughput but achieves
microsecond latencies. Buckets provide latencies in the order of nanoseconds but have an order of
magnitude less throughput.

10.3 Studying Workload Characteristics

We measure the impact of the workload characteristics from Section 4 on the performance of
general slicing. For comparison, we also show the best alternative techniques.

10.3.1  Impact of Stream Order In this experiment, we investigate the impact of the amount of
out-of-order tuples and the impact of the delay of out-of-order tuples on throughput (Figure 17).
We use the same setup as for the throughput experiments in Section 10.2.2 with 20 concurrent
windows.

Out-of-order Performance. In Figure 17a, we increase the fraction of out-of-order tuples. Slicing
and Buckets process out-of-order tuples as fast as in-order tuples. The throughput of the other
techniques decreases when processing more out-of-order tuples.

Slicing techniques process out-of-order tuples efficiently because they perform only one slice
update per out-of-order tuple. Eager slicing also updates its aggregate tree. This update has a low
overhead because there are just a few hundred slices in the allowed lateness and, accordingly,
there are just a few tree levels that require updates. Aggregate Trees on tuples have a much larger
number of tree levels because they store tuples instead of slices as leaf nodes.
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Fig. 18. Impact of Aggregation Types on Throughput.

Buckets have a constant throughput as in the previous experiments. Tuple Buffers and Aggregate
Trees exhibit a throughput decay when processing out-of-order tuples. Tuple Buffers require
expensive out-of-order inserts in the sorted buffer array. Aggregate Trees require inserting past leaf
nodes in the aggregate tree. This causes a rebalancing of the tree and the respective re-computation
of aggregates. Eager Slicing seldom faces this issue (see Section 10.2.2).

Delay Robustness. In Figure 17b, we increase the delay of out-of-order tuples. We use equally
distributed random delays within the ranges specified on the horizontal axis.

All techniques except Tuple Buffers are robust against increasing delays. Slicing techniques
always update one slice when they process a tuple. Small delays can sightly increase the throughput
compared to longer delays if out-of-order tuples still belong to the most recent slice. In this case, we
require no lookup operations to find the correct slice. The throughput of Buckets is independent of
the delay because Flink stores buckets in a hashmap. The throughput of the tuple buffer decreases
with increasing delay of out-or-order tuples, because the lookup and update costs in the sorted
buffer array increase.

Summary. Stream slicing and Buckets scale with constant throughput to large fractions of
out-of-order tuples and are robust against high delays of these tuples.

10.3.2  Impact of Aggregation Functions We now study the throughput of different aggregation
functions using the same setup as before (20 concurrent windows, 20% out-of-order tuples, delays
between 0 and 2 seconds) in Figure 18. We differentiate time-based and count-based windows to
show the impact of invertibility. We implement the same aggregation functions as Tangwongsang
et al. [59]. The original publication provides a discussion of these functions and an overview of
their algebraic properties. We additionally study the median and the 90-percentile as examples
for holistic aggregation. Moreover, we study a naive version of the sum aggregation that does not
use the invertibility property. This allows for making a deduction with respect to not invertible
aggregations in general.

Time-Based Windows. For time-based windows, the throughput is similar for all algebraic and
distributive aggregations with small differences due to different computational complexities of the
aggregations. Holistic aggregations (median and 90-percentile) show a much lower throughput
because they require to keep all tuples in memory and have a higher complexity.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2020.



111:38 J. Traub, P. M. Grulich, A. R. Cuéllar, S. Bref3, A. Katsifodimos, T. Rabl, and V. Markl

—m— Lazy Slicing - e- Eager Slicing —— Buckets —— Tuple Buffer

10T -8 e o . 10°%
E 2
o o
2 10tF 2 10t
3 F 3
a I o
£ f !
E 10° L | | 5 10° | |
10° 10! 107 10° 10 10?
concurrent WindOWS concurrent WindOWS
(a) Football data set [47]. (b) Machine data set [36].

Fig. 19. Throughput for Median Aggregation.

Count-Based Windows. We observe lower throughputs than for time-based windows, which
is because of out-of-order tuples. For count-based windows, an out-of-order tuple changes the
sequence id (count) of all later tuples. Thus, we need to shift the last tuple of each slice to the
next slice. This operation has low overhead for invertible aggregations because we can subtract
and add tuples from aggregates. The operation is costly for not invertible aggregations because it
requires the recomputation of the slice aggregate. Time-based windows do not require an invert
operation because out-of-order tuples only change the sequence id (count) of later tuples but not
the timestamps.

Impact of invertibility. There is a big difference between the performance for different not invert-
ible aggregations on count-based windows. Although Min, Max, MinCount, MaxCount, ArgMin, and
ArgMax are not invertible, they have a small throughput decay compared to time-based windows
(Figure 18). This is because most invert operations do not affect the aggregate and, thus, do not
require a recomputation. For example, it is unlikely that the tuple we shift to the next slice is the
maximum of the slice. If the maximum remains unchanged, max, MaxCount, and ArgMax do not
require a recomputation. In contrast, the sum w/o invert function shows the performance decay
for a not invertible function that always requires a recomputation when removing tuples.

Impact of Holistic Aggregations. In Figure 18, we observe that holistic aggregations have a much
lower throughput than algebraic and distributive aggregations. In Figure 19, we show that stream
slicing still outperforms alternative approaches for these aggregations. The reason is that stream
slicing prevents redundant computations for overlapping windows by sorting values within slices
and by applying run length encoding. In contrast, Buckets and Tuple Buffer compute each window
independently. The machine data set shows slightly higher throughputs because the aggregated
column has only 37 distinct values compared to 84232 distinct values in the football dataset. Fewer
distinct values increase the savings achieved by run length encoding. Aggregate trees (not shown)
can hardly compute holistic aggregates. They maintain partial aggregates for all inner nodes of a
large tree which is extremely expensive for holistic aggregations.

Summary. On time-based windows, stream slicing performs diverse distributive and algebraic
aggregations with similarly high throughputs. Considering count-based windows and out-of-order
tuples, invertible aggregations lead to higher throughputs than not invertible ones.
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Fig. 20. Time for Recomputing Aggregates. Fig. 21. Impact of Different Window Measures.

10.3.3  Impact of Window Types The window type impacts the throughput if we process context-
aware windows because these windows potentially require split operations. Note that context
aware windows cover arbitrary user-defined windows which makes it impossible to provide a
general statement on the throughput for all these windows. Thus, we evaluate the time required to
recompute aggregates for slices of different sizes when a split operation is performed (Figure 20).
Given a context aware window, one can estimate the throughput decay based on the number of
split operations required and the time required for recomputing aggregates after splits. We show
the sum aggregation as representative for an algebraic function and the median as example for a
holistic function.

The processing time for the recomputation of an aggregate increases linearly with the number of
tuples contained in the aggregate. If split operations are required to process a context aware window,
a system should monitor the overhead caused by split operations and adjust the maximum size of
slices accordingly. Smaller slices require more memory and cause repeated aggregate computation
when calculating final aggregates for windows. In exchange, the aggregates of smaller slices are
cheaper to recompute when we split slices.

10.3.4  Impact of Window Measures We compare different window measures in Figure 21. We use
the same setup as before (20% out-of-order tuples with delays between 0 and 2 seconds).

Time-Based Windows. For time-based windows, the throughput is independent from the number
of concurrent windows as discussed in our throughput analysis in Section 10.2.2. The throughput
for arbitrary advancing measures is the same as for time-based measures because they are processed
identically [17].

Count-Based Windows. The throughput for count-based windows is almost constant for up to 40
concurrent windows and decays linearly for larger numbers. For up to 40 concurrent windows,
most slices are larger than the delay of tuples. Thus, out-of-order tuples still belong to the current
slice and require no slice updates. The more windows we add, the smaller our slices become. Thus,
out-of-order tuples require an increasing number of updates for shifting tuples between slices
which reduces the throughput. Tuple buffers are the fastest alternative to Slicing in our experiment.
For 1000 concurrent windows, slicing is still an order of magnitude faster than tuple buffers.

Summary. The throughput of time-based windows stays constant whereas the throughput of
count-based windows decreases with a growing number of concurrent windows.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2020.



111:40 J. Traub, P. M. Grulich, A. R. Cuéllar, S. Bref3, A. Katsifodimos, T. Rabl, and V. Markl

—m— Lazy Slicing - e- Buckets

107 ‘ 800

Fi = 600

= R

5 10° 5

= = 400

a 105 8

) D 200

=} o

e Q

s 10t 0 ! ! ! !

1 2 3 4 6 8 1 2 3 4 6 8

Degree of paralellism Degree of paralellism
(a) Throughput. (b) Processor Load.

Fig. 22. Parallelizing the workload of a live-visualization dashboard (80 concurrent win. per operator instance).

10.4 Parallel Stream Slicing

In this experiment, we study stream slicing on the example of our dashboard application [67] which
uses the M4 aggregation [37]. We vary the degree of parallelism to show the scalability with respect
to the number of cores. We compare Lazy Slicing with Buckets, which are used in Flink.

Results. In Figure 22, we increase the number of parallel operator instances of the windowing
operation (degree of parallelism). The throughput scales linearly up to a degree of parallelism of
four (Figure 22a). Up to this degree, each parallel operator instance runs on a dedicated core with
other tasks (data source operator, writing outputs, operating system overhead, etc.) running on the
remaining four cores. For higher degrees of parallelism the throughput and the CPU load increase
logarithmically, approaching the full 800% CPU utilization (Figure 22b). Slicing achieves an order
of magnitude higher throughput than buckets, because it prevents assigning tuples to multiple
buckets (cf. Section 10.2.1). The memory consumption scaled linearly with the degree of parallelism
for both techniques.

Summary. We conclude that stream slicing and buckets scale linearly with the number of cores
for our application.

10.5 Scotty in Different Stream Processing Systems

We evaluate the throughput of window aggregation on different stream processing systems in
Figure 23. Since Apache Beam provides an API only, we evaluate the Beam API on Flink and Samza.
We keep data, queries, and metrics as introduced in Section 10.2.1. We take the throughput of Scotty
with one concurrent window as baseline (100% throughput) and compare it to the throughput of the
respective built-in techniques. We show how each technique scales when increasing the number of
concurrent windows.

We stick to relative numbers because our experiments are conducted with different hardware
and software setups that impact the absolute throughput. For example, Samza requires to read
data from Apache Kafka as message broker, which requires to also run Apache Zookeeper. The
overhead of these two additional systems contributes to a lower throughput of Samza compared to
Flink. The Beam API added a heavy overhead, which was analyzed in detail by Hesse et al. [29].
This leads to much lower throughput compared to the native APIs of Flink and Samza. We have a
well maintained and tuned setup of Flink which contributes to Flink having the highest throughput
in all experiments. In this paper, we focus on comparing techniques for window aggregation rather
than streaming systems. Karimov at al. provide a solid comparison of systems, which addresses
and carefully analyzes effects like the ones stated above [38].
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Fig. 23. Throughput of Scotty compared to built-in operators on different systems.

Results. Scotty outperforms the respective built-in techniques on all evaluated systems. The
results also confirm Scotty’s scalability to large numbers of concurrent windows which we observed
in previous experiments. For a single window, only Flink’s built-in solution (based on Buckets)
achieves similar throughput than Scotty. However, the throughput of Buckets decreases drastically
when we add more concurrent windows, which is also reflected in the results for Beam on Flink,
Beam on Samza, and Kafka Streams. The built-in techniques of Spark and Storm did not exhibit
such scalability issues. We do not show results for the built-in technique of Samza, because it did
not produce correct results and our request to the mailing list was not answered.

Summary. Scotty provides higher throughput then built-in operators on all tested systems and
scales to large numbers of concurrent windows. The built-in operators of Spark and Storm also
scale to large numbers of concurrent windows but provide lower throughput than Scotty.

11 Related Work

In this section, we discuss additional related work that we did not cover in the previous sections.
First, we summarize alternative approaches for optimizing window aggregations. Then, we discuss
solutions that process streams in batches, before we summarize complementary techniques. Finally,
we present follow-up works published after the short versions of this paper [64, 65].

Optimizing Window Aggregations. Our general slicing techniques utilizes features of existing
techniques such as on-the-fly slicing [42], incremental aggregation [59], window grouping [27, 28],
and user-defined windows [17]. However, general stream slicing offers a unique combination of
generality and performance. One can extend other slicing techniques based on this paper to reach
similar generality and performance. Existing slicing techniques such as Pairs [42] and Panes [43] are
limited to tumbling and sliding windows. Cutty can process user-defined window types, but does not
support out-of-order processing [17]. Several publications optimize sliding window aggregations
focusing on different aspects such as incremental aggregation [10, 22, 59] or worst-case constant time
aggregation [57]. Hirzel et al. conclude that one needs to decide on a concrete algorithm based on the
aggregation, window type, latency requirements, stream order, and sharing requirements because
each specialized algorithm addresses a different set of requirements [31]. Instead of alternating
between different algorithms, we provide a single solution which is generally applicable and allows
for adding aggregation functions and window types without changing the core of our technique.
Our solutions can be integrated in open source streaming systems such as Apache Flink [16],
Spark [75], and Storm [61].

Stream Processing in Batches. In contrast to our techniques, which adopts a tuple-at-a-time
processing approach, several works split streams in batches of data which they process in parallel [8,
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39, 74]. For example, D-Streams [74] processes mini-batches of data, which are combined to windows.
This requires the slide step and range of sliding windows to be multiples of the batch size. SABER
introduces window fragments to decouple slide and range of sliding windows from the batch size [39].
However, in contrast to our work, SABER does not consider aggregate sharing among queries.
Balkesen et al. use panes to share aggregates among overlapping windows [8]. None of these works
addresses the general applicability with respect to workload characteristics.

Complementary Techniques. Weaving optimizes execution plans to reduce the overall computation
costs for concurrent window aggregate queries [27, 28, 53]. We use a similar approach to fuse
window aggregation queries when window edges match. This optimization is orthogonal to the
generalization of slicing which is the focus of this paper. Huebsch et al. study multiple query
optimization when aggregating several data streams which arrive at different nodes [34]. General
stream slicing complements this work with an increased per-node performance. Truviso proposes
an alternative technique based on independent stream partitions to correct outputs when tuples
arrive after the watermark [41]. While our work focuses on slicing streams and computing partial
aggregations for slices, recent publications of Shein et al. further accelerate the final aggregation
step which is required when windows end [54, 55]. Trill [18] is an analytics system that supports
streaming, historical, and exploratory queries in the same system. Trill supports incremental
aggregation and performs aggregations on snapshots, the state of the window at a certain time.

Follow-Up Works. The general stream slicing approach and Scotty have been recognized by
several follow-up works. Benson et al. introduced a distributed window aggregation approach
using an extended version of the Scotty library [9]. Their solutions extends Scotty with in-network
aggregation and pre-aggregation at remote data sources. The NebulaStream platform for data
management in the internet-of-things adopted general stream slicing to enable efficient stream
processing on small devices [76]. Hirzel et al. proposed FiBA, a highly efficient sliding window
aggregation algorithm that optimally handles streams of varying degrees of out-of-orderness [58].
They conclude that this algorithm could serve as a more efficient aggregation store in Scotty to
combine the benefits of stream slicing with faster final aggregation. Furthermore, general stream
slicing was attributed as a promising approach to further improve the processing efficiency of
modern scale-up stream processing system [25, 77, 78].

Stream processing systems regularly receive tuples with event timestamps that have been
assigned at the spots where the respective events have been recorded. For example, in a distributed
processing setting such as the Internet of Things, timestamps may be assigned by sensor nodes such
as smartphones, machines, or connected cars. In such a distributed processing setting, where no
global (synchronized) timestamp service can be relied on, no central stream processing system can
guarantee correctness, because events with the same timestamp may be recorded at different times
due to unsynchronized clocks. We have addressed this issue with the SENSE system for gathering
sensor data tuples with guaranteed time coherence [35, 63, 66]. We have further integrated SENSE
and Scotty into an end-to-end stream processing pipeline [62].

12 Conclusion

Stream slicing is a technique for streaming window aggregation which provides high throughputs
and low latencies with a small memory footprint. We contribute a generalization of stream slicing
with respect to four key workload characteristics: Stream (dis)order, aggregation types, window
types, and window measures. Our general slicing technique dynamically adapts to these character-
istics, for example, by exploiting the invertibility of an aggregation or the absence of out-of-order
tuples. We implemented our general stream slicing technique in Scotty, an open-source operator
that provides efficient and general sliding-window aggregation for stream processing systems under
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the Apache 2.0 license. Scotty also allows for implementing user-defined aggregation functions
and window types without changing the core operations of the technique.

Our experimental evaluation reveals that general slicing is highly efficient without limiting
generality. It scales to a large number of concurrent windows and consistently outperforms state-of-
the-art techniques in terms of throughput. Furthermore, it efficiently supports application scenarios
with large fractions of out-of-order tuples, tuples with high delays, time-based and count-based
window measures, context-aware windowing, and holistic aggregation functions. In general, stream
slicing is beneficial whenever a slice contains at least a few records (~10). Thus, it is not beneficial
for count-based windows with a very small slide step (less than 10 records). We observed that the
throughput scales linearly with the number of processing cores and that latency is in the order of
microseconds. Techniques based on window buckets provide lower latency, but exhibit drastically
lower throughput due to repeated computations for concurrent windows.

Acknowledgments: This work was supported by the German Ministry for Education and Research as BIFOLD (01IS18025A,
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