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Abstract. The digital revolution, rapidly decreasing storage cost, and
remarkable results achieved by state of the art machine learning (ML)
methods are driving widespread adoption of ML approaches. While no-
table recent efforts to benchmark ML methods for canonical tasks exist,
none of them address the challenges arising with the increasing per-
vasiveness of end-to-end ML deployments. The challenges involved in
successfully applying ML methods in diverse enterprise settings extend
far beyond efficient model training.
In this paper, we present our work in benchmarking advanced data
analytics systems and lay the foundation towards an industry standard
machine learning benchmark. Unlike previous approaches, we aim to
cover the complete end-to-end ML pipeline for diverse, industry-relevant
application domains rather than evaluating only training performance. To
this end, we present reference implementations of complete ML pipelines
including corresponding metrics and run rules, and evaluate them at
different scales in terms of hardware, software, and problem size.

1 Introduction

Enterprises apply machine learning (ML) to automate increasing amounts of
decision making. This trend, fueled by advancements in hardware and software,
has spurred huge interest in both academia and industry [36]. Today, the market
for ML technology and services is growing and this trend will even increase in
the coming years [13]. This has lead to the development of a huge variety of
ML tools and systems, which are providing ML functionality at different levels
of abstraction and in different deployment infrastructures. Examples include
recently popularized deep learning systems such as TensorFlow [2], PyTorch [25],
and MXNet [10], which greatly benefit from specialized hardware such as GPUs;
well established Python-based libraries such as scikit-learn [26]; and solutions on
the Java Virtual Machine such as SparkML [23] and Mahout Samsara [33], which
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are based on general-purpose data flow systems and integrate well with common
cloud infrastructures. Additionally, there are many specialized cloud ML services,
which typically address only certain verticals such as machine translation, object
detection, or forecasting.

This diversity makes it increasingly difficult for users to choose between
the options for real-world use cases and has led to one-dimensional methods of
comparison, which either measure the best accuracy achievable or the speed of
the model training in isolation. While both metrics are important, they do not
address the fundamental challenges of ML in practice. In practice, one has to
not only train ML models, but execute end-to-end ML pipelines, which include
multiple phases such as data integration, data cleaning, feature extraction, as well
as model serving. Many of these phases have hyperparameters (e.g., the vector
dimensionality if feature hashing is used), which need to be tuned analogously to
model hyperparameters. All hyperparameters of an ML pipeline will impact both
accuracy and speed of a model, and successfully deploying an ML system requires
to trade-off the two. The artificial restriction on only measuring model training
has led to a narrow focus on a few well researched data sets, such as Netflix [5],
MNIST [20], or ImageNet [19]. While these data sets are highly relevant to the
specific tasks at hand, they are not necessarily representative for end-to-end
real-world ML pipelines “in the wild”, which often include data integration, data
cleaning, and feature extraction as the most tedious tasks.

We discuss some of the neglected challenges in these tedious tasks in the
following: The input data may dramatically vary in size across the pipeline, it could
reside in relational tables that need to be joined, and numerical representations
may be sparse or dense. The emphasis of workloads may vary between exploration
and continuous improvement of model quality and model serving. Furthermore,
the requirements encountered in industrial settings extend beyond model accuracy
as solutions have to scale, be reasonably easy to maintain and adapt, and
experimentation has to adhere to strict budgets. These notable differences between
real-world requirements and offline evaluations on static, pre-processed data sets
also led Netflix to discard the wining solutions the Netflix Prize contest, as “the
additional accuracy gains [...] measured did not seem to justify the engineering
effort needed to bring them into a production environment.” [3]. An industry
standard benchmark for advanced analytics should reflect these trade-offs and
requirements. It should cover complex end-to-end ML pipelines and include a
broad range of use cases beyond well established data sets.

In this paper, we outline ADABench, an end-to-end ML benchmark addressing
these challenges. Unlike previous benchmarks [1,5,19], we cover the complete
ML lifecycle, from data preparation all the way to inference. The benchmark
is built to cover real business requirements and includes different scale ranges,
which are mapped to problem sizes typically found in industry. As a basis, we
use an up-to-date market potential analysis [13], which we intend to convert
into 16 use cases, out of which we present six in this paper. These use cases
are designed to cover various dimensions of analytics in the retail business
vertical. Our benchmark model draws from industry standards as specified from
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the Transaction Processing Performance Council1 (TPC) and the Standard
Performance Evaluation Corporation2 (SPEC). Our core contributions are:

– We propose a novel end-to-end ML benchmark that covers different business
scale factors, and industry relevant metrics (Section 2).

– We specify the first four out of 16 planned use cases that cover a wide range
of industry-relevant ML applications (Section 2.1).

– We detail our reference implementations of the proposed use cases, and report
first performance evaluations for different scale factors (Section 3).

In the following, we will give an overview of the implemented use cases, outline
the benchmark specification, and present first results running our use cases along
several dimensions of scalability, namely software (Python-environment vs. Spark-
environment), hardware (single-node vs. scale-up cluster), and size (MBs vs.
GBs).

2 Machine Learning Benchmark

ADABench covers the complete end-to-end pipeline of ML workloads as described
by Polyzotis et al. [28], which contains several additional steps besides model
training, such as data integration, data cleaning, feature extraction, and model
serving. From a business perspective, it is relevant to consider that people
conducting advanced data analytics usually spend most of their time in tasks
like data preparation [15]. Given this widely agreed-on fact, an ML benchmark
should also consider these phases. In general, each of the phases can be a one-time
action, as in a single prediction; an iterative process, e.g., a daily forecast; or a
continuous process, as in an online recommendation scenario. In the following, we
describe the first four use cases in detail and give details about the core aspects
of the benchmark specification.

2.1 Use Cases

To account for the diversity of real-world scenarios, the ADABench workload
is comprised of multiple ML use cases, each covering a whole pipeline. Our use
cases are derived from retail business applications and analysis tasks common in
online businesses according to their market potential identified by McKinsey [13].
We select the first two cases out of the two highest impact business problem
areas: customer service management and predictive maintenance. The second
two use cases cover prediction and hyper-personalization in form of customer
segmentation. The final benchmark aims to not only provide a specification and a
data generator but also reference implementations for each use case. The current
version includes two such reference implementations for each use case: (a) an
implementation based on Apache Spark [40], and (b) an implementation based on
1 http:\www.tpc.org
2 http:\www.spec.org

http:\www.tpc.org
http:\www.spec.org
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Python libraries such as scikit-learn [26] and pandas [22]. We adapt the Parallel
Data Generation Framework (PDGF) for data generation [31].

Use Case 1: ‘Trip-Type Classification’ The first use case (UC1) is a
classification task that falls into the category of customer service management.
The goal is to identify the type of shopping a customer wants to do, i.e., if a
customer is on a large weekly grocery trip, wants to buy ingredients for a dinner,
or is shopping for clothing. Based on the classification, the shopping experience of
customers can be improved. UC1 is inspired by a Kaggle competition3. However,
the data set and implementation are completely independent. The use case
employs structured data from a transaction database as input. These transactions
include the amount of items bought or returned, the department from which
they originate, a line number, the day of the week, an order ID to distinguish
different sessions, and a trip type. The task is to train a classifier to predict the
trip type based on the transactional data. Our reference implementation is based
on XGBoost[9] for model training, and pandas / scikit-learn and Apache Spark
for general data handling and pre-processing. The pipeline first loads the data
into memory and filters all samples that contain NULL values. Then the features
are extracted. There are three types of features: (a) aggregates, i.e., sum and
absolute sum of items bought or returned per order, (b) a one-hot encoding of
the weekday of the order, and (c) a pivotization of the different departments
occurring in the order, i.e., sum of items bought or returned per department per
order. The basic task is to unstack the data, such that a single order is expressed
as a single vector instead of a set of records. After pre-processing, XGBoost is
trained using softprob as objective function. The key performance metric for
training and serving is throughput while a threshold on the weighted F1-measure
has to be met.

Use Case 2: ‘Predictive Maintenance’ The second use case (UC2) is a
classification task in the category of predictive maintenance. It is inspired by an
approach to predict failures published by Chigurupati et al. [11]. The goal is to
predict hardware failures in advance based on sensor data measured in periodical
time intervals. The key idea is to separate the log data into categories depending
on the timely distance to failure. A proxy for this generic use case is to predict
imminent hard-drive failures based on daily S.M.A.R.T.4 measurements [35]. We
provide semi-structured data from log files as input. As part of the preprocessing
stage, this data needs to be parsed and filtered to be further used for training or
serving. The main challenge is a highly imbalanced data set, i.e., non-failures are
much more common than failures. The characteristics and distributions of the
synthetic data set are inspired by hard drive statistics published by Backblaze5.
The data set contains log entries with a time stamp, an ID (model and serial
number), a series of S.M.A.R.T. attribute values, and a binary label indicating
whether a complete failure occurred. Analogous to the first use case, the reference
implementations for this use case are also based on pandas, scikit-learn, and

3 https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
4 Self-Monitoring, Analysis and Reporting Technology
5 https://www.backblaze.com/b2/hard-drive-test-data.html

https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
https://www.backblaze.com/b2/hard-drive-test-data.html
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Spark. The main tasks of the preprocessing stage are (a) labeling of the training
samples and (b) up-sampling of the minority (failure) class. For that, we split
the training samples into failures, log entries that occurred on the day or one
day before the actual failure, and non-failures, log entries that occurred two
or more days before a failure or log entries of disks that never failed anyway.
Then the samples of the failure class are sampled with replacement until there
are equal amounts of samples for each class, the up-sampled data set is used to
train a support vector machine (SVM). Since imminent failures are predicted to
enable pro-active measures (such as replacing faulty drives before they crash),
the key quality metric here is a low false positive rate at a high true positive rate.
We measure this using area under the receiver operating curve (AUC). The key
performance metric is throughput again in this case.

Use Case 3: ‘Sales Prediction’ The third use case (UC3) is a regression
task in the category of forecasting. The aim is to predict store and/or department
sales from historical sales data, i.e., weekly sales numbers from previous years
are used to find seasonal and regional patterns and forecast future sales. Based
on these predictions stores can optimize their expenditure for sales promotion
and personnel planning. UC3 is borrowing the idea from a Kaggle competition6

but the data generation and implementation are independently built. The data
consists of sales numbers aggregated by stores, departments, and weeks over
several years. Every store has sales data for every department over every week
of the years. Sales peaks are sampled from a normal distribution. Sales curves
between departments follow a similar seasonal pattern. No other additional
information, e.g., product group or amount of sale, is provided. Our data is
generated and then exported into a CSV file. As in the other use cases our
reference implementation uses pandas, scikit-learn, and Spark. In the first step of
our pipeline, the sales numbers are loaded from that CSV. A preprocessing step
is not necessary in this use case, since we already generate aggregated data. In
the training phase, we build a seasonal model for each store and each department
using a Holt-Winters exponential smoothing approach. This model is then used
to predict forecasts for all stores and departments and exported into a CSV file.
The key performance metric is processing time of each step, we measure the
mean squared error as a quality metric.

Use Case 4: ‘Customer Segmentation’ The forth use case (UC4) is a
clustering task. Clustering is an unsupervised machine learning technique. In
customer segmentation, customers are divided into groups based on similar
characteristics. By segmenting users, campaigns can be more efficient, because
they can be directed to the correct target audiences. UC4 performs behavioral
segmentation, as the problem to be solved is finding clusters based on aggregate
features that group customers based on their spending and returning behavior.
The input in this use case consists of order and return transactions. We use
k-means clustering to calculate user clusters based on the data provided. The
patterns in the data are used to identify and group similar observations. First,
we load the data into memory and clean it (we remove unnecessary elements,

6 https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting

https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting
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e.g., duplicates, transactions not assigned to a customer, or cancel orders without
counterpart). The features extracted after that are (a) return ratio, i.e., total
value of the returns divided by the total value of the orders and (b) number of
purchases per customer. The scaled feature vector and the number of clusters are
input for the k-means algorithm used in training. The key performance metric for
training and serving is throughput. The quality metric measures the mean of the
distances of the predicted clusters to the clusters of the reference implementation.

Use Case 5: ‘Spam Detection’ The fifth use case (UC5) is a supervised
classification task in the category of discovering new trends/anomalies. Spam
detection means to find comments, reviews, or descriptions with spam content.
The input in this use case consists of reviews or comments in a retail business. The
problem to be solved is to identify those reviews that are spam. The analysis uses
Naive Bayes. Naive Bayes methods are a set of supervised learning algorithms
based on Bayes’ theorem. The data loaded into memory for training is text
labeled as spam or ham, for serving unlabeled text. After cleaning (e.g., removing
duplicates), the pipeline performs prepocessing to convert the text into a numerical
feature vector (like tokenization of the text, removing stopwords, building n-
grams, and computing the term frequency–inverse document frequency). This
feature vector is fed to the multinomial Naive Bayes algorithm. The output after
serving is an array of label predictions. The performance metric is throughput,
the time that is needed to run through all the steps of reading the data, data
transformation, training and serving. To evaluate the quality of the classification,
the quality metric is F1 Score, since it takes both precision and recall of the
classifications into consideration.

Use Case 6: ‘Product Recommendation’ Use Case 6 (UC6) is a recom-
mendation task in the category of personalization. The aim is to recommend
items to a user based on their and other users previous similar ratings, i.e.,
find next-to-buy recommendations. Proof of concept has been done with the
MovieLens dataset7 that consists of user-item-rating triplets for various movies.
Our data generation and implementation creates similar triplets. Each user is
given a main user category for which the bulk of product ratings are generated.
The rest is filled with ratings from other user categories. Ratings for products in
their main category have a normal distribution around a high mean, ratings in
the other categories have a normal distribution around a low mean. Our data
is generated and exported into a CSV file. We use pandas, scikit-learn, and
Spark for our reference implementation. The actual recommendation is done by
SurPRISE8 in Python and by the collaborative filtering module of Spark9. As the
first step of our pipeline the pre-generated ratings are loaded. In a preprocessing
step in Python we transform the pandas DataFrame in a dataset that SurPRISE
can utilize. The Spark implementation does not need a preprocessing step. The
training phase consists of a matrix factorization done with a singular value
decomposition algorithm in python and an alternating least squares algorithm in

7 https://grouplens.org/datasets/movielens/
8 http://surpriselib.com/
9 https://spark.apache.org/docs/latest/ml-collaborative-filtering.html

https://grouplens.org/datasets/movielens/
http://surpriselib.com/
https://spark.apache.org/docs/latest/ml-collaborative-filtering.html
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Spark. The resulting model is then used to predict the rating for every user-item
pair and lastly to return the top 10 recommendations for every user. The key
performance metric is throughput. As a quality metric we use mean-squared-error
and mean-absolute-error.

For the remaining 10 use cases (which are out of the scope of this paper), we
aim for diversity along several dimensions: the structure of the data (structured vs.
unstructured), type of data (numerical, audio, visual, textual, etc.), business case
(predictive maintenance, customer service management, etc.), and ML methods
and algorithms (classification, regression, recommendation, clustering, deep neural
networks, etc.).

2.2 Benchmark Details

Data Model, Scale Factor, and Execution. The ADABench data model is
structurally related to the BigBench data model [17,4]. Analogous to BigBench,
we design a data warehouse model, which is used as a source for many of the
ML use cases, especially for analyses related to customer management, sales,
and other transactions. Additionally, we add sources such as click logs, text, and
sensor readings. We further extended the data set to capture a broader variety
of data types and demand more preprocessing. Some of the extensions are taken
from the ideas presented in the proposal for BigBench 2.0 [30], i.e., diverse data
types (text, multi-media, graph) and different velocities of data (streaming vs.
batch).

Scale Workload Problem Size (GB) Total Cores Approx.
Extra Small (XS) Small data science projects 100 4-8
Small (S) Traditional analytical tasks 101 8-32
Medium (M) Lower tier big data tasks 103 32-320
Large (L) Big data tasks 105 320-3200
Extra Large (XL) Internet company tasks 107 3200-32000

Table 1: Data size and number of cores for each scale.

ADABench incorporates different data set sizes that are used in industry and
academia. We identified five different classes that are reflected in five scale factors,
XS - XL, which represent data problem sizes of 1 GB to 10 PB respectively,
shown in Table 1. These classes are related to the size of the operations found in
industry. The smallest class, XS, relates to a very small operation typically done
by a single individual at a single location. S represents an operation driven by a
small team at a single location with lightly distributed computing capabilities. At
Scale Factor M the use of a small cluster of commodity hardware is necessary. To
run an L scale, a rather large cluster is required and this kind of setup is typically
found in global organizations handling large amounts of data and transactions.
Finally, we define the XL boundary, which is a quite rare scale factor only seen
at large Internet companies. Data in ADABench is synthetically generated using
tools such as PDGF [32]. The data generation process provides three major
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functionalities. ¶ High data generation velocity that achieves the described scale
factors XS-XL in a reasonable time frame. · Data generation that incorporates
characteristics and dependencies concerning the respective scale factor. As a
result, a higher data volume contains not more of the same information but new,
previously unseen characteristics. Hence the data becomes more complex with
an increasing scale factor. For this, we propose an approach that is build on the
assumption that rare occurrences become more common, in absolute terms, the
more data is generated. For instance in case of UC1 there might be only three
different classes at scale factor XS in the synthetic data set, whereas there might
be 40 at scale factor M. This approach can be generalized for several supervised
learning tasks, by ensuring that certain phenomena have a high probability while
others have a low probability. One artifact of this approach is that the different
classes become more imbalanced with increasing volume, which in turn also
makes the data more realistic. ¸ Introduction of errors into the data to simulate
a real-world production environment. These errors can be, e.g., missing values,
outliers, and wrong data types. While the first functionality eases the utilization
of the benchmark, the other two aim to close the gap between laboratory grade
experiments and real-world application fuzziness. For UC 1 and UC 3 - UC 6
functionality two is highly important because large scale data should contain
previously unseen information. For UC 2 the third functionality is of higher
importance since the false positive rate is the critical measurement and must be
robust to erroneous input data.

In order to cover various business setups and challenge machine learning
deployments in different ways, we specify two general modes of execution: Sequen-
tial execution and parallel execution of the use cases. During sequential execution,
every use case has to be run exclusively from start to end, while in the parallel
execution mode, all use cases can be run in parallel. In both setups, we allow for
a pipelined execution of individual steps within a use case. This is similar to the
TPC’s benchmark execution model (e.g., TPC-DS [27] or TPCx-BB [4]), with
the distinction that we do allow for the parallel execution of different use cases
rather than the parallel execution of streams of all queries.

Metrics. In ADABench, we define individual metrics for each use-case, which
are aggregated (via geometric mean) into one global metric summarizing the
entire benchmark. For each use case, we define individual metrics, which are a
combination of measurements of the stages in a use-case. We use the geometric
mean to weight the diverse use cases equally in the final metric and equally
encourage optimization on all stages. Driven by the industry-oriented scenario
we aim to cover with ADABench, we chose throughput in samples per second as
the main performance measure while defining thresholds for prediction quality
metrics such as accuracy or AUC and latency that have to be met. This is
similar to recent proposals like DAWNBench, which propose a time-to-accuracy
metric [14] and reflects industry requirements. Most use cases define a training
and a serving stage, which we measure separately (TPt and TPs)and summarize
in the total throughput for the use case TPi (see Equation 1). The formula for
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the total throughput is shown in Equation 2.

TPi =
√
TPti ∗ TPsi (1)

TP = n
√
Πn

i=1TPi (2)

The final performance metric, ADASps@SF , is the throughput at a scale factor.
This means that systems can only be compared at the same scale factor. Besides
performance metrics, we also specify price performance and energy performance
metrics. These are defined according to TPC standards [38,37]. This means, the
price performance is defined as the total cost of the execution by a pay-as-you-go
model divided by ADASps@SF . Similarly, the energy performance is defined as
the total consumed energy per benchmark execution divided by ADASps@SF .

3 Evaluation

In this section, we present results of an experimental evaluation of the six use cases
UC1 to UC6 introduced in Section 2.1. While providing valuable insights about
system performance, the experiments also show how the benchmark operates with
respect to metrics and measurements. We evaluate the reference implementations
of both use cases with a focus on the first four scale factors discussed in Section
2.2: XS, S, M, and L. We use two different compute clusters with nodes of the
following specs:

– Small node: 1 Intel Xeon CPU @ 2.10GHz, 10 threads (virtualized) and 64
GB RAM

– Big node: 2 Intel Xeon CPUs @ 2.30GHz, 72 threads and 768 GB RAM

As discussed in Section 2.1, we have two different reference implementations
for each use case: one based on pandas, scikit-learn, named Python and one based
on Apache Spark. The experiments are deployed on one node for Python and on
10 nodes for Apache Spark for both small and big node configurations. Figure 1,
2, 3, 4, 5, and 6 show the results of these experiments for different scale factors.
For each use case and scale factor, we generate three synthetic data sets: one for
training, one for serving, and one for scoring. We use the data sets for training
and serving for the throughput tests and the data set for scoring to measure
model quality. As discussed in Section 2.2, throughput in samples per second is
the main performance measure evaluated in the experiments. The trained models
have to adhere thresholds for model quality: For instance the F-Measure for UC1
was above 0.8 and the AUC for UC2 was higher than 0.95. The other use cases
have similar quality thresholds.

We found that for the trip type classification (UC1), Spark had a higher
throughput during training, starting at a relatively low scale factor of 1 (see
Figure 1, which approximately corresponds to 100,000 orders with an average of
10 line items per order, that is 1,000,000 line items in total. In case of the imple-
mentation based on pandas, scikit-learn, and XGBoost for UC1 approximately
half of the time is spent for pre-processing the data and the remaining half is
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Fig. 1: Throughput measured for the training and serving stage at different scale
factors. The Python-based implementation is shown in blue and red when run
on a small or big node respectively. Analogous the Spark-based implementations
are show in yellow and green.
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Fig. 2: Throughput measured for UC02 training and serving stage as in Figure 1.

spent for the actual model training. Since the pre-processing includes joins and
pivotization, Spark is much better suited for this task and outperforms pandas
using more efficient join strategies. Another reason why Spark performs better
is XGBoost’s parallelization capabilities. Using Spark and hence all 10 nodes of
the cluster also enables XGBoost to leverage the increased computational power,
i.e., distribute the training over all the nodes in the cluster. For the serving stage
of UC1, we observe similar results, yet the tipping point is at a much higher
scale factor. We conclude that serving an XGBoost model does not require much
computational power; hence as long as the data fits into memory, the Python
based implementation has higher throughput than Spark.

In contrast to UC1 where Spark outperforms a single node solution based
on pandas and XGBoost, we see that for UC2 the data size has to be increased
significantly before Spark outperforms the Python-based implementation (see
Figure 2). We attribute this to the fact this use case is light on pre-processing.
Only when the data becomes too big to fit into memory a Spark cluster performs
better. For serving, we see the similar results as in UC1: a Spark cluster is only
reasonable for high volume and/or velocity. One interesting finding is that the
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Fig. 3: Throughput measured for UC03 training and serving stage as in Figure 1.
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Fig. 4: Throughput measured for UC04 training and serving stage as in Figure 1.

serving throughput of the Python implementation for UC2 decreases drastically
with an increasing model size, i.e., more training samples. This probably is
based on the fact that there are more support vectors and it can most likely be
compensated using a form of regularization.

The experiments for UC3 (see Figure 3) show a different characteristic. We can
see that the Holt-Winters implementation for Spark is performing better for the
training as well as for the serving stage. It can observed that with increasing scale
factor the serving throughput decreases for the Python-based implementation.
This is caused by memory pressure, which means that the more data is processed
the lower is the throughput. For UC4, the clustering use-case, illustrated in
Figure 4, we see similar effects as for UC2. As long as the data can be handled
in memory on a single node the Python-based implementation is faster than the
Spark implementation. But the limit, in terms of throughput, is reached rather
fast and the Spark-based implementation is outperforming the Python-based
implementation between scale factor 100 and 1000, depending on the available
memory. Because the k-Means algorithm is highly parallelizable and the Spark
environment has access to ten times as many cores, we see a drastic increase of the
Spark implementation at bigger scale factors. Serving on the other hand does not
require a lot of compute resource and both implementation have not reached their
respective limits for scale factors up to 10000. In spam classification as in UC5
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Fig. 5: Throughput measured for UC05 training and serving stage as in Figure 1.
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Fig. 6: Throughput measured for UC06 training and serving stage as in Figure 1.

(see Figure 5) neither implementation is reaching their throughput limit but for
the training the Spark-based implementation has much better scaling capabilities
than the Python-based one. The inverse is true for serving. The last use-case
UC6 is a recommendation use-case (see Figure 6). It can be observed that with
a higher scale factor and hence a bigger user-item-rating matrix performance
is suffering for the Python-based implementation during training and constant
during serving. Whereas the Spark-based implementation can make use of the
additional computational power and has not reached its throughput limit up to
scale factor L.

Since the main goal of this benchmark is to compare different ML systems for
complete pipelines, we introduce a combined benchmark metric: the ADABench
Metric – ADASps@SF – as defined in Section 2.2. This metric is given by
the geometric mean of all use case metrics, where each use case’s metric is the
geometric mean across the training and serving throughput. Using the geometric
mean weights the use cases and their phases equally and, therefore, is more stable
for diverse workloads. Figure 7 illustrates the ADABench Metric for our reference
implementation and test systems at the different scale factors.

Given this metric, we see that a Spark-based implementation outperforms
the Python-based implementation at high scale factors, while the Python-based



ADABench 13

0

20

40

60

80

100

120

1 10 100 1.000 10.000

AD
AS

ps
@

SF

Scale Factor

Python (small) Python (big) Spark (small) Spark (big)

Fig. 7: ADABench Metric - Combined metric of all stages and use case per systems
and scale factor (higher is better)

implementation clearly dominates at smaller scale factors, with scale factor 100
being the tipping point.

In summary, we can see that our initial set of use cases already captures
a variety of performance characteristics. Some use cases rely heavily on pre-
processing the data before training a model, while others employ algorithms that
are computational more expensive. We can also see that our implementations
in Python and Spark behave differently in scaling. In general, Python is more
efficient for smaller scale factors, while Spark outperforms Python when data
sets do not fit in memory. It has to be noted that in all experiments, Spark has
10 times more hardware resources than Python.

4 Related Work

In this section, we give an overview on benchmarking in the ML space in the
past and previous approaches in benchmarking ML systems. We discuss popular
benchmarks, their focus and metrics, and identify strengths and weaknesses.

In general, the current benchmarking landscape can be divided into three
distinct types of benchmarks [18]: Component-level benchmarks test and compare
only a single component of a system or application. They could, for example,
run a specific operation of an application on different processors. Component
benchmarks are interesting to the developers of the component under study (CUS)
or to select the best instance of the CUS. We found that most of the current
component-level benchmarks are hardware benchmarks in essence, which compare
different hardware components in terms of training or inference performance. A
typical component-level benchmark is DeepBench [24]. System-level benchmarks
tests and compares complete ML systems. Typically, they cover set of different
use cases in their workload and the metrics measure performance over a set of
executions. Algorithmic competitions such as the Netflix Prize [5] or the ImageNet
competition [19] compare different algorithms or models on a constrained problem.
Recent work acknowledges that data preparation time is a major bottleneck for
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many ML applications and discusses a repository of related tasks to foster research
in this area [34].

BigDataBench [16] is a benchmark with 13 representative real-world data
sets and more than 40 workloads that can be characterized in five different
domains: search engines, social networks, e-commerce, multimedia processing and
bioinformatics. Moreover, the workloads have a varied data sources and cover
diverse applications scenarios, including search engines, e-commerce, relational
data queries, basic datastore operations (OLTP), and artificial intelligence (AI).
It also uses two types of metrics: user-perceivable metrics, which are simple
and easy to understand by non-expert users, and architectural metrics, which
provide details targeted for architecture research. It can be categorized as a
system-level benchmark. Unlike ADABench, BigDataBench does not include
dedicated end-to-end scenarios.

AdBench [6] is a proposal system-level end-to-end benchmark with workloads
that are representative of web and mobile advertising. The patterns exhibited
by workloads are often seen in workloads from other sectors, such as financial
services, retail, and healthcare. The benchmark combines workloads for ad-serving,
streaming analytics, streaming ingestion, ML for ad targeting, and other big
data analytics tasks. In addition, AdBench introduces a set of metrics to be
measured for each stage of the data pipeline and scale factors of the benchmark.
Unfortunately, there is no official implementation or complete specification of
AdBench available.

BigBench [17,29,12] was developed can be seen as a basis for ADABench. Its
strengths are that it is inspired by real-world use cases as well as its ease to
use. A major drawback as far as a ML-specific benchmarking is concerned is its
focus on traditional data analytics. BigBench only contains a small number of
machine learning-related queries and features no metrics to compare different
ML implementations.

DawnBench [14] as well as its industry-backed successor MLPerf [1] are bench-
marking deep learning systems in terms of training time. The main contribution
of DawnBench, and MLPerf consequently, is the novel time-to-accuracy metric.
They are a hybrid between a system-level benchmark and an algorithmic compe-
tition. Both consists of a set of different and well-studied ML challenges, such
as image classification, machine translation, sentiment analysis. There are many
more benchmarks or benchmark attempts that are leveraging already existing
competitions or challenges, e.g., convnet-benchmarks10 or MLBench[21], but to
the best of our knowledge, ADABench is the only end-to-end ML benchmark
proposal.

Several studies have researched the performance characteristics of ML al-
gorithms and workloads on specific systems. In contrast to these, we study
end-to-end performance. However, we benefit from the insights of these studies
and, for example, provide single- and multi-node implementations as proposed
by Boden et al. [8,7].

10 https://github.com/soumith/convnet-benchmarks
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5 Conclusion

In this paper, we present our vision towards an industry standard benchmark
for end-to-end machine learning. Our benchmark, ADABench, is comprised of
complete machine learning use cases, which include data preparation and pre-
processing, model training and tuning, as well as model serving. We use up-to-date
market research to identify most relevant scenarios, and create novel machine
learning pipelines for those. As an initial step, we have implemented four use cases
in a Python (pandas, scikit-learn) and a Spark environment. Our evaluations
show the different trade-offs in terms of performance based on data size, choice of
environment, and complexity. We are currently implementing further use cases,
also using deep neural networks. We will continue with the development of our
benchmark with the goal of a wide coverage of machine learning technology and
use cases along the dimensions identified by market research as most relevant,
and aim to establish this proposal as a standard.
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