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Abstract
Modern query engines often use SIMD instructions to speed up query performance. As these instructions are heavily
CPU-specific, developers must write multiple variants of the same code to support multiple target platforms such as AVX2,
AVX512, and ARM NEON. This process leads to logical code duplication, which is cumbersome, hard to test, and hard to
benchmark. In this paper, we make the case for writing less platform-specific SIMD code by leveraging the compiler’s own
platform-independent SIMD vector abstraction. This allows developers to write a single code variant for all platforms as
with a SIMD library, without the library’s redundant layers of abstraction. Clang and GCC implement the platforms’ SIMD
intrinsics on top of their own abstraction, so code written in it is optimized for the underlying vector instructions by the
compiler. We conduct four database operation microbenchmarks based on code in real systems on x86 and ARM and show that
compiler-intrinsic variants achieve the same or even better performance than platform-intrinsics in most cases. In addition,
we completely replace the SIMD library in the state-of-the-art query engine Velox with compiler-intrinsics. Our results show
that query engines can achieve the same performance with platform-independent code while requiring significantly less
SIMD code and fewer variants.

1. Introduction
Numerous databases and query processing engines make
use of vector instructions (SIMD = single instruction, mul-
tiple data) to speed up query processing. By performing
the same operation on multiple data items at once, SIMD
instructions increase the performance of these systems
significantly [1, 2, 3]. However, SIMD instructions are
CPU-specific and come with various register widths and
capabilities. Most modern x86 servers support SSE, AVX,
and AVX2, but while a wide range of Intel servers also
support AVX-512, only the newest AMD servers support
it. With the rise of ARM in the cloud, query engines now
also target NEON vector instructions and will soon likely
target the new scalable vector extension (SVE), which
is available in AWS’ latest ARM servers. Supporting all
of these instruction sets requires many set-specific code
variants, resulting in significant logical code duplication
and checks to select the correct version. Optimizing
performance-critical SIMD code in this setup is cumber-
some, hard to benchmark, and hard to test.

Various SIMD libraries exist to reduce the complexity
of supporting multiple vector instruction sets [4, 5, 6].
These libraries often provide a thin abstraction on top of
the platform-specific SIMD intrinsics (platform-intrinsics).
However, the explicit use of intrinsics directly or via a
library can hinder compiler optimizations, as we show
in our benchmarks. If an operation cannot be expressed
using the library’s abstractions, systems still require mul-

Joint Workshops at 49th International Conference on Very Large Data
Bases (VLDBW’23) — Workshop on Accelerating Analytics and Data
Management Systems (ADMS’23), August 28 - September 1, 2023, Van-
couver, Canada
$ lawrence.benson@hpi.de (L. Benson); richard.ebeling@hpi.de
(R. Ebeling); tilmann.rabl@hpi.de (T. Rabl)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

tiple platform-specific methods to handle special cases
and optimizations. This is the case, e.g., in the query
engine Velox [7], which uses a SIMD library to structure
the vectorized code, but still contains dozens of platform-
specific functions for AVX2 and NEON that implement
the same logic but for different types and sizes.

In this paper, we make the case for writing less plat-
form-specific SIMD code in databases while also remov-
ing redundant layers of abstraction. We show the redun-
dant layers of abstraction by inspecting how x86’s and
NEON’s platform-intrinsics to add two 128-bit vectors
of four 32-bit integers (_mm_add_epi32 and vaddq_s32)
are implemented in compilers and abstracted from in
SIMD libraries. Both Clang and GCC provide platform-
independent vector intrinsics (compiler-intrinsics) [8, 9],
based on C/C++’s primitive types and compiler attributes.
The vector-addition platform-intrinsics are implemented
on top of these compiler-intrinsics, as outlined below.

// Simplified from Clang's <emmintrin.h> header.
// Public 16-byte __m128i type in x86 SIMD API.
typedef long __m128i __attribute__((vector_size(16)));
// Internal 16-byte vector of four integers.
typedef int __v4su __attribute__((vector_size(16)));
__m128i _mm_add_epi32(__m128i __a, __m128i __b) {
return (__m128i)((__v4su)__a + (__v4su)__b);

}

// Simplified from Clang's <arm_neon.h> header.
// int32x4_t is defined analogously to __v4su.
int32x4_t vaddq_s32(int32x4_t __p0, int32x4_t __p1) {
int32x4_t __ret;
__ret = __p0 + __p1;
return __ret;

}

We see that x86’s 16-byte SIMD type __m128i is de-
fined using Clang’s vector type via vector_size. The
internal 16-byte __v4su vector of four integers is de-
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fined in the same way. For both functions, the platform-
intrinsics are just wrappers around the + operator on
vectors of integers. We see that platform-intrinsics are
abstractions on top of compiler-intrinsics. SIMD libraries,
e.g., xsimd as used in Velox, commonly add a layer on
top of these platform-intrinsics to provide a templated,
type- and platform-independent API, as outlined below.

1 template <typename T> struct vec {
2 vec<T> operator+(vec<T> other);
3 }
4 #if __x86_64__ // x86 platform
5 vec<T> vec<T>::operator+(vec<T> other) {
6 return _mm_add_epi32(data, other.data);
7 }
8 #elif __aarch64__ // ARM NEON platform
9 vec<T> vec<T>::operator+(vec<T> other) {

10 return vaddq_s32(data, other.data);
11 }
12 #else ...

Based on a generic vector type (Lines 1–3), libraries
implement C++ operators. In Lines 6 and 10, we show
how the platform-intrinsics are wrapped depending on
the used platform (x86 or NEON) to provide the library’s
C++ type abstraction and platform-independence. SIMD
libraries are abstractions on top of platform-intrinsics,
which in turn are abstractions on top of compiler-intrin-
sics. Instead of an additional API layer around specific
functions, we argue that compiler-intrinsics can be used
directly to structure SIMD code while also providing a
wide range of operations common across SIMD instruc-
tion sets. For our vector-addition code example, compiler-
intrinsics could be used as follows.

1 template <typename T> // Templated 16-byte vector.
2 using vec __attribute__((vector_size(16))) = T;
3
4 // Code structured with compiler-intrinsics.
5 vec<T> foo(vec<T> a, vec<T> b) {
6 vec<T> result = a + b; // Use standard + operator.
7 // ...
8 return result;
9 }

Compiler-intrinsics allow developers to express vector
code once instead of having to implement it 𝑛 times for
𝑛 platforms. Developers can leverage them to write a
single templatable, platform-independent version while
still benefiting from the platform’s vector execution capa-
bilities. By removing platform-intrinsics, developing and
testing also becomes easier because the same code can
be run on different machines, regardless of whether they
support specific instructions or not. Any operation de-
fined on a compiler-vector is guaranteed to be compiled
correctly. As platform-intrinsics are implemented on top
of compiler-intrinsics, both can be used interchangeably
in case specific instructions are required. We argue that
developers should express the logical vector operations
that they need and let the compiler determine the correct

instructions for the given platform, as this is one of the
main tasks of a compiler.

In this paper, we conduct four microbenchmarks on
multiple x86 and ARM servers with both Clang and GCC.
The benchmarks represent query processing operations
(hashing, fingerprinted hash bucket lookups, bit-packing,
column filter scan), based on implementations found in
real systems. We find that in 7 out of 8 benchmark set-
ups, compiler-intrinsics perform on par with or better
than hand-written platform-intrinsics. We also demon-
strate our approach in the state-of-the-art query engine
Velox [7], from which we remove all platform-specific
SIMD code by replacing their SIMD library dependency
with compiler-intrinsics. Our results running Velox TPC-
H on x86 and ARM show that we can remove hundreds of
lines of platform-specific SIMD code while maintaining
equal performance. In summary, we make the following
contributions:

1) We compare the performance of compiler-intrinsics
to scalar, auto-vectorized, and platform-specific SIMD
code in four database operation microbenchmarks.

2) We replace all platform-specific SIMD code in the
query engine Velox with compiler-intrinsics and show
the impact on end-to-end TPC-H workloads.

3) Based on our results, we make the case for platform-
independent SIMD code in databases and discuss open
challenges.

In Section 2, we discuss vectorized processing concepts,
before introducing compiler-intrinsics in Section 3. In
Sections 4 and 5, we present our benchmark results on
various machines, compiled with Clang and GCC. We
discuss our findings in Section 6. We conclude our work
in Section 8 after presenting related work in Section 7.

2. Vectorized Processing
In this section, we give a short overview of SIMD opera-
tions commonly used in databases. We then discuss the
usage of SIMD instructions via intrinsics in C++ code.
Finally, we briefly lay out auto-vectorization efforts in
modern compilers.
SIMD. When using SIMD operations, the program

code operates on vectors of elements and operations
are applied to all elements of a vector. For example, bi-
nary operations such as addition are applied pairwise to
the elements of the vectors. Since multiple vector ele-
ments are processed in a single operation, this yields a
higher throughput in comparison to scalar operations.
Databases often utilize this to speed up computations.
In some cases, specialized data structures or layouts can
help to utilize SIMD operations, e.g., columnar data stor-
age or hash table buckets [10].



template <typename InT>
__m128i x86_half(__m128i data);

template <> __m128i
x86_half<uint32_t>(__m128i data) {
return _mm_cvtepu32_epi64(data);

}

template <> __m128i
x86_half<int32_t>(__m128i data) {
return _mm_cvtepi32_epi64(data);

}

(a) x86 C++

#define VEC_SIZE(n) \
__attribute__((vector_size(n)))

template <typename T>
using Vec VEC_SIZE(16) = T;

template <typename T>
using HalfVec VEC_SIZE(8) = T;

template <typename Out, typename In>
Vec<Out> vec_half(Vec<In> data) {
return __builtin_convertvector(

(HalfVec<In>&)data, Vec<Out>);
}

(b) compiler-intrinsics C++

uint64x2_t
neon_half(uint32x4_t data) {
return vmovl_u32(

vget_low_u32(data));
}

int64x2_t
neon_half(int32x4_t data) {

return vmovl_s32(
vget_low_s32(data));

}

(c) NEON C++

vec/x86_half<unsigned int, unsigned long>(long long __vector(2)):
; Note the z for zero-extend
pmovzxdq xmm0, xmm0
ret

vec/x86_half<int, long>(long long __vector(2)):
; Note the s for sign-extend
pmovsxdq xmm0, xmm0
ret

(d) x86 assembly

vec/neon_half(__Uint32x4_t):
; Note the u for zero-extend
ushll v0.2d, v0.2s, #0
ret

vec/neon_half(__Int32x4_t):
; Note the s for sign-extend
sshll v0.2d, v0.2s, #0
ret

(e) NEON assembly

Listing 1: Code examples for x86, compiler-intrinsics, and NEON to extract lower two 32-bit values from 128-bit register and
either sign- or zero-extending them to two 64-bit values in an 128-bit output register. Compiler-intrinsics produce the same
assembly while using type- and platform-independent code (https://godbolt.org/z/4aoxEv14b)1.

In hardware, a vector is stored as contiguous bits in a
register, so element boundaries inside the vector depend
on the operation. This allows for scenarios where input
data is first shuffled as 8-bit values and then treated as
32-bit integers in the next operation. Common opera-
tions in database contexts are load and store, arithmetic,
comparison, shuffling, gather/scatter, and widening/nar-
rowing. For example, a column scan could load a vector
of attribute values, compare them according to a filter
predicate, and extract the indices of matching elements.
Platform-Intrinsics. There are multiple extensions

to the x86 instruction set that add vector operations: SSE
(Streaming SIMD Extensions) with four major versions
introducing 128-bit registers, followed by AVX (Advanced
Vector Extensions) with 256-bit registers, AVX2, and most
recently AVX-512 with 512-bit registers. AVX-512 has
a modular design based on a foundation specification
and various sub-extensions adding new instructions. For
all these extensions, the specification defines a C API
with mnemonic function names (intrinsics) that allow
using the vector instructions in higher-level languages.
The Intel intrinsics documentation currently lists 6251
intrinsics from the SSE and AVX instruction families [11].

On ARM, the NEON vector extensions allow vector
operations on 128-bit registers. Similar to x86, they define
a C API. The vector types include the element width
for integer types (e.g., uint32x4_t), but due to missing
overloading in C, functions still encode the element type

in their name, e.g., vaddvq_u32 and vaddvq_s32. The
ARM intrinsics guide lists 4344 NEON intrinsics [12].

Auto-Vectorization. Apart from designated vector
operations in the source code, major compilers such as
GCC, Clang, and ICX also perform auto-vectorization as
an optimization step. They attempt to detect patterns in
scalar code that can be vectorized and replace the code
with a vectorized version [13]. Auto-vectorization may
fail, typically either because the pattern is not supported
or because some prerequisite for vectorization cannot
be satisfied. There are commonly supported and docu-
mented approaches to circumvent these problems and
help with auto-vectorization [14].

3. Compiler-Intrinsics
A disadvantage of platform-intrinsics is that they encode
the type in the function name, as C does not support
function overloading. This makes it hard to generically
implement SIMD operations, as developers must use dif-
ferent functions for, e.g., int and long. Additionally,
using platform-intrinsics does not guarantee that the cor-
responding instruction is actually chosen by the compiler.
For example, Clang further merges instructions and per-
forms constant propagation, even when using explicit
x86 intrinsics2.

1We use godbolt.org to support our claims with generated assembly.
2https://godbolt.org/z/M8zaqzj3r
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GCC and Clang provide vector extensions that allow
declaring a vector type of 𝑛 elements of a language base
type, e.g., int [8, 9]. A code example that extracts the
lower two 32-bit integers from a 128-bit register and sign-
or zero-extends them to two 64-bit values is shown in
Listing 1. For both x86 and NEON, we have to define one
function per type, as the intrinsics differ for signed and
unsigned integer. Overall, we end up with four distinct
implementations. With compiler intrinsics, we use tem-
plating and the compiler’s ability to choose appropriate
instructions for each platform. This allows for a single
implementation that can be used on both platforms.

Vectors are defined using GCC-style __attribute__(),
specifying the size in bytes and the element’s type. In this
example, these are 16 byte for Vec and a template type T,
defining a vector of 𝑛 = 16/sizeof(T) elements. The
input vector is cast to a HalfVec to extract the lower 𝑛/2
values. We use the compiler’s builtin convert method
to widen the values to the requested output type, e.g.,
(u)int64_t in our example (specified in OutT template
argument). In Listing 1d) and e), we see that the compiler-
intrinsics produce the same assembly as the platform-
intrinsics, without type- or platform-dependent code.

In Listing 2, we show a more complete code example
from our filtering scan benchmark (Section 4.5). This
code scans an integer column, filters by less-than some
value, and writes matching row ids to an output array.

In Line 2, we first define a vector of four 32-bit inte-
gers. As vectors assume alignment equal to their size, we
specify an unaligned version in Line 4, which we use for
unaligned stores. Clang supports special Boolean vec-
tors, where each entry is only 1 bit (Line 6). Vectors are
loaded and stored using casts (Line 15). Operations are ex-
pressed using common C++ operators, such as arithmetic
or comparison operators (+, <, ==, . . . ), on these types. Op-
erators also support scalar operands, e.g., < filter_val
in Line 16. The ternary operator can be used for element-
wise selection. For some complex operations that have no
matching C++-operator, Clang and GCC provide helper
functions, e.g., __builtin_convertvector() for nar-
rowing or widening (Line 19). We cast the Boolean vector
to a scalar bitmask and mask off the high bits (Line 22).
We then use that bitmask to get row offsets from a lookup
table and add them to the base row id (Lines 25–28). Fi-
nally, we use a cast to perform an unaligned store of the
matching row ids (Lines 31–33).

The compiler lowers these operations to the target plat-
form. The goal of these compiler-intrinsics is to allow
for platform-independent source code that performs well
on all target platforms. Note that with minor templating,
we could extend this method to support arbitrary vector
sizes while maintaining only a single implementation.
Depending on the given size, the compiler would gen-
erate the appropriate instructions for us. If developers
want to use explicit platform-intrinsics, Clang allows us-

1 // 16-Byte vector of 4x uint32_t.
2 using Vec __attribute__((vector_size(16))) = uint32_t;
3 // Same as Vec but without 16-byte alignment.
4 using UnalignedVec __attribute__((aligned(1))) = Vec;
5 // Vector of 4 bools (only available in LLVM).
6 using BitVec __attribute__((ext_vector_type(4))) = bool;
7
8 // Scan integer column and write matching row ids.
9 uint32_t dense_column_scan(uint32_t* column,

10 uint32_t filter_val,
11 uint32_t* __restrict out) {
12 uint32_t num_matches = 0;
13 for (uint32_t row = 0; row < NUM_ROWS; row += 4) {
14 // Load data and compare.
15 Vec values = *(Vec*)(column + row);
16 Vec matches = values < filter_val;
17
18 // Convert comparison result to scalar bitmask.
19 BitVec bitvec = __builtin_convertvector(
20 matches, BitVec);
21 // Upper bits may contain random data
22 uint8_t bitmask = ((uint8_t&) bitvec) & 0xf;
23
24 // Get row offsets using lookup table.
25 Vec row_offsets =
26 *(Vec*) MATCHES_TO_ROW_OFFSETS[bitmask];
27
28 Vec compressed_rows = row + row_offsets;
29
30 // Write matching row ids to output.
31 auto* out_vec = (UnalignedVec*)(out + num_matches);
32 *out_vec = compressed_rows;
33 num_matches += std::popcount(bitmask);
34 }
35 return num_matches;
36 }

Listing 2: Compiler-intrinsics code example for our filtering
integer column scan. Evaluated in Section 4.5 as vec-add.

ing them with compiler-vector types. Operations that
are not natively supported on the target platform can
still be expressed in a canonical fashion. For example, up
to AVX2, there is no intrinsic for the multiplication of
vectors with 64-bit integer elements. Here, programmers
need to fall back to multiplying and combining 32-bit
halves of the input numbers. With compiler-intrinsics,
programmers can use the C++ multiplication operator
and the compiler inserts the required logic.

4. Benchmarks
In this section, we perform four microbenchmarks to
compare platform-specific SIMD code with scalar, auto-
vectorized, and platform-independent variants. We eval-
uate multiply-shift hashing (Section 4.2), a hash bucket
key lookup (Section 4.3), bit-packed decompression (Sec-
tion 4.4), and an integer column filter scan (Section 4.5).
We then present the impact of platform- and compiler-
intrinsics in end-to-end TPC-H benchmarks in Velox, a
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Figure 1: 64-bit multiply-shift hashing (64 values).

state-of-the-art columnar query engine (Section 4.6). Our
results show that in most benchmarks, vector code is
needed to achieve peak performance and that when us-
ing vector code, compiler-intrinsics perform at least as
well as platform-intrinsics. All of our code and all results
can be found in our GitHub repository3.

4.1. Setup and Methodology
The results presented in this section are based on an x86
Intel Icelake CPU (Xeon Platinum 8352Y) and on an M1
MacBook Pro 14" laptop with ARM NEON. We validate
our results on various other x86 and ARM platforms and
discuss this in Section 5. All experiments are performed
using Clang/LLVM4 15 with -march/-mtune=native op-
timizations and -O3. All experiments are run single-
threaded and repeated ten times. We report the aver-
age runtime, the variance for all benchmarks is below
5%. We show the relative speedup of each variant over a
naive scalar implementation without explicit vectoriza-
tion efforts. For all microbenchmarks, we show the naive
baseline (naive), a scalar code version that is optimized
for auto-vectorization (autovec), our compiler-intrinsics
versions (vec-*), and a platform-intrinsics version (sse4-*,
avx2-*, avx512-*, neon-*). The platform-specific variants
use manually selected intrinsics and also represent the us-
age of a SIMD library, which provides a thin abstraction
on top of platform-intrinsics.

In some experiments, the platform-specific variants
perform worse than the ones using compiler-intrinsics.
We note that it is nearly always possible to adapt the plat-
form-intrinsics to match the compiler’s code to achieve
the same performance. However, we keep these worse re-
sults to demonstrate the complexity of manually selecting
instructions from thousands of available ones. In these
cases, we explicitly discuss the responsible instructions.

4.2. Multiply-Shift Hashing
Our first microbenchmark computes the hash values of
the input numbers using multiply-shift hashing [15]. This
is done, e.g., to determine the bucket in a hash index [16].
Each 64-bit input number is multiplied by a 64-bit con-
stant, the result is truncated to 64-bits, and then shifted
3https://github.com/hpides/autovec-db
4We refer to Clang for the C++ frontend and to LLVM for backend
optimizations.

right by a run-time value that is known before the hot
loop starts. Since each input number has the same arith-
metic operations applied and produces exactly one output
number without any data dependencies between loop
iterations, programmers likely expect auto-vectorization
to work well in a naive implementation. LLVM auto-
vectorizes our naive implementation on x86, so we in-
clude an additional scalar bar that shows the naive imple-
mentation with disabled auto-vectorization. The results
are shown in Figure 1.

On x86, the naive, autovec, and vec-512 variants pro-
duce optimal vectorized code. For smaller explicit vector
widths, the performance degrades as we require more op-
erations to process the same input. With 128-bit vectors,
we observe a speedup of only ~10% over scalar.

The avx512 variant does not achieve peak performance
because we use the shifting intrinsic _mm512_srli_epi64

(compiled to vpsrlq), which requires an immediate oper-
and that is known at compile-time. Compile-time con-
stants can generally be used for more aggressive opti-
mization. However, for the vec-512 variant, the compiler
instead chooses the _mm512_srlv_epi64 (vpsrlvq) in-
struction that shifts all elements in input vector 𝑣1 by
the amount specified by the corresponding element in
input vector 𝑣2. The second operand needed in the hot
loop is moved outside the loop, and in this case, the in-
struction that the compiler chooses is ~20% faster than
the instruction with the immediate operand.

With the avx2 and sse4 variants, we observe worse per-
formance than with the corresponding compiler-variants
using the same vector width. Our implementations only
use instructions available in the instruction set that the
code is targeted for. Vector multiplication with 64-bit
integer elements was first introduced in AVX-512, so our
code performs manual multiplication of 32-bit halves
of the input using the approach that is also used in the
vectorclass SIMD library [17]. LLVM is unable to opti-
mize this to the proper multiplication instruction on the
target architecture. This shows a core disadvantage of
platform-specific code. Implementations tailored to a
specific microarchitecture cannot benefit from new in-
structions and optimizations, while generic code can.

When repeating the measurements on a Skylake CPU
without AVX-512 support, we observe that the autovec,
vec-256 and vec-512 variants are still 25% faster than the
handwritten AVX2 implementation using the multipli-
cation from the vectorclass library. The generated code
only differs in how the multiplication is performed. In
this case, using a specialized SIMD library even results
in worse performance than the naive implementation.

On M1, the LLVM cost model does not consider loop
vectorization desirable for the naive implementation. For
the autovec variant, we explicitly instruct the compiler
to vectorize the loop via an annotation. LLVM generates
very similar code for the vec-* variants, with nearly iden-

https://github.com/hpides/autovec-db


na
ive

na
ive

-k
ey

-o
nl

y
au

to
ve

c

ve
c-

by
te

m
as

k

ve
c-

bi
tm

as
k

ss
e4

-b
yt

em
as

k

ss
e4

-b
itm

as
k

av
x5

12
-b

itm
as

k

0
2
4
6

Sp
ee

du
p

5.
9u

s

a) x86 Icelake

na
ive

na
ive

-k
ey

-o
nl

y
au

to
ve

c

ve
c-

by
te

m
as

k

ve
c-

bi
tm

as
k

ne
on

-b
yt

em
as

k

ne
on

-b
itm

as
k

0
1
2
3
4

3.
9u

s

b) M1

Figure 2: Fingerprint + key hash bucket lookup (1024 values).

tical performance5. Our non-portable neon variant uses
a different approach that is marginally faster.

4.3. Hash Bucket Match
In this benchmark, we measure the performance of find-
ing an entry in a hash bucket that stores additional finger-
prints in a metadata block at the beginning of the hash
bucket. A fingerprint is a 1-byte hash value of a key. The
block of fingerprints can then be used to quickly skip
over keys that do not match the search key. This design is
common in index structures and used in, e.g., Facebook’s
F14 hash table, Google’s Abseil hash map, Velox, Dash,
and ART [18, 19, 7, 20, 21]. With vector operations, all
fingerprints can be compared to the fingerprint of the
search key in a single operation, allowing a direct jump
to the first key with a fingerprint match. Our hash bucket
holds 15 entries, each with a fingerprint, an 8-byte key,
and an 8-byte value. Fingerprints are stored in a contigu-
ous 16-byte array that is processed as a 128-bit vector.
The benchmark repeatedly performs key lookups in the
hash bucket with a 50% chance of a successful lookup.

Our benchmark results are shown in Figure 2. The
naive-key-only variant ignores the fingerprints and sim-
ply loops over the keys to find a match. The *-bytemask
variants perform a vector-comparison on the fingerprints
array, resulting in a vector of 16 mask-bytes with either
all one-bits or all zero-bits. They then loop over the
all-one-bytes in this vector and compare the correspond-
ing key. The *-bitmask variants first narrow the 16-byte
mask to a bitmask of 16 bits, allowing the result to fit in a
general-purpose register and simplifying the loop logic.

On both x86 and M1, LLVM correctly auto-vectorizes
the comparison of the 15 fingerprints. However, it gen-
erates suboptimal code when attempting to extract the
16 bytes as a __uint128_t value that could then be used
with the bytemask-logic [22]. The approach of narrowing
the 16 bytes to 16 bits also results in suboptimal code [23].
Overall, while the fingerprint comparison is vectorized as
expected, we are unable to use the comparison result effi-
ciently, so the autovec implementation does not achieve
competitive performance.

With explicit vector operations, the bitmask approach
is better on x86 due to simpler loop logic and a saved

5https://godbolt.org/z/hTjnWMr3n

popcnt instruction. The vec-bitmask and sse4-bitmask
variants are compiled to identical code in the hot loop.
This is also the case for vec-bytemask and sse4-bytemask.
The difference in our measurements here is caused by
code alignment and microarchitecture details.

To highlight again that manually selected intrinsics
are not necessarily translated to the corresponding in-
structions, we briefly discuss how a vector comparison
result is converted to a scalar bitmask on x86. In sse4-
bitmask, we do this using a movemask intrinsic. However,
as we run the experiments on a server with AVX512, we
observe that this intrinsic is translated to an AVX512 vec-
tor compare instruction that directly populates a bitmask
register without the explicit movemask instruction6.

On M1, we observe that the vec-bitmask variant per-
forms significantly worse than its neon counterpart with
LLVM 15 (solid part of the bar). This is due to a missed op-
timization in LLVM ≤ 16 [24] that generates an extract
and multiple or instructions per element to produce a
scalar bitmask from a comparison result vector, causing
bad performance with 16 elements. We have submit-
ted a patch to LLVM that fixes this7 (dashed part of the
bar) [25]. The vec-bitmask variant performs better than
the neon ones. However, this is coincidental, as LLVM
moves the check whether any element matches directly
after the vector comparison, which skips the conversion
to bitmask for unsuccessful lookups.

4.4. Bit-Packed Integer Decompression
In this benchmark, we evaluate the performance of de-
compressing 100k bit-packed integers. The variants are
based on SIMD-Scan [3] and an implementation in Velox
[26]. The input consists of 9-bit packed values, which ex-
pand to 32-bit in the output vector, as in the SIMD-Scan
paper. The results are shown in Figure 3.

The naive variant operates on 9 bits at a time, expand-
ing and storing them, and then shifts in the next 9 bits.
The autovec variant performs a scalar expand+store, but
in a loop over 32 elements without loop-carried depen-
dencies, allowing the compiler to auto-vectorize opera-
tions. The vec/neon/sse4-* variants perform the SIMD-
Scan algorithm for 128 bits as in the original paper. It
loads a 128-bit vector, i) shuffles to move the required
bytes into the lanes, ii) shifts right to move the relevant
bits for each number to the beginning of the lane, and iii)
masks off leftover bits using bitwise-and. The extended
256 and 512-bit variants use the same approach with
wider registers. The avx2-256 variant uses two 128-bit
registers since 256-bit registers are separated into two
128-bit lanes with no support for bytewise shuffles across
lanes. The pdep variant implements the algorithm used

6https://godbolt.org/z/PeWGW6rsj
7Merged, available upstream since cd68e17.

https://godbolt.org/z/hTjnWMr3n
https://godbolt.org/z/PeWGW6rsj
https://github.com/llvm/llvm-project/commit/cd68e17bc2f9b7b54a3d3ab5f917793d41ce17cb
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Figure 3: Bit-packed integer decompression from 9- to 32-bit
integers (100 000 values).

in Velox with the x86 pdep instruction [27] to extract
multiple compressed 𝑛-bit values out of 64-bit data.

LLVM auto-vectorizes better for x86 than for NEON8,
although both achieve the same ~5× speedup. It detects
the pattern on x86 and auto-vectorizes it with gather,
shift, and bitwise-and instructions. For NEON, LLVM
emits unrolled scalar code.

On x86, comparing the vec variants with the platform-
intrinsic variants shows multiple things. The 128-bit vari-
ants perform equally, as they produce identical assembly.
vec-256 is faster than vec-128 due to higher parallelism.
It is also faster than our avx2 variant, as the compiler
selects more efficient instructions than we do. The avx2-
256 variant processes two 128-bit registers to solve the
problem that no cross-lane byte-level shuffle instruction
is available for 256-bit registers in AVX2. For this reason,
it performs the shifting and bit-masking twice as often
compared to an algorithm using a 256-bit register. The
vec-256 variant, on the other hand, is compiled to use
256-bit registers by first performing a cross-lane immedi-
ate permute operation and then using an in-lane shuffle.
Here, LLVM utilizes the fact that for each of our shuffle
operations, all selected indices are from a contiguous 16-
byte range, so it is able to store all required source-bytes
in both 128-bit lanes. Overall, both variants require the
same number of instructions for shuffling, but the vec-256
variant uses half as many for shifting and masking.

The avx512 variant outperforms its vec-512 counter-
part, as Clang inserts an and-instruction to mask the
shuffle input in the frontend, which the backend cannot
remove, resulting in more instructions in the tight loop.
The vec-256 and avx512 variants perform equally, as the
CPU retires twice as many 256-bit instructions per cycle
as 512-bit, compensating for the lower parallelism.

The vec implementation of SIMD-Scan outperforms
sse4-pdep found in Velox, while not using any platform-
specific code. Overall, we again see that the vec-* variants
perform on par with the platform-intrinsic variants.

With NEON, we see that the 128- and 256-bit compiler-
intrinsics outperform the NEON-intrinsics, as the com-
piler combines the two shift instructions with compile-
time constants that are executed independently in the
neon variant9. During instruction selection, LLVM recog-
nizes the vector shift operations in our vec variant and

8https://godbolt.org/z/ef7WMPMT4
9https://godbolt.org/z/5bsv3qWT6
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Figure 4: Filtering integer column scan (32 000 values).

combines them with a platform-independent optimiza-
tion. However, when using the NEON-intrinsics, these
map to different LLVM op-codes, which are not detected
in this optimization step, resulting in worse code. This
shows that the compiler can detect the optimization for
two shifts in general, but it currently cannot detect it
when the developer explicitly requests NEON-intrinsics.

The 256-bit variant is compiled to two 128-bit oper-
ations with equal performance, while the 512-bit vari-
ant produces inefficient scalar code and performs signifi-
cantly worse on NEON.

4.5. Filtering Integer Column Scan
In our final microbenchmark, we show the performance
of an integer scan with a filter on 32k values, inspired
by implementations in Velox [28] and Hyrise [29]. All
values in the column are represented as 32-bit integers
and we filter by 𝑣𝑎𝑙 < 𝑥 with a selectivity of 50%. The
matching 32-bit RowIDs are written to an output vector.
The results are shown in Figure 4.

The naive variant implements a for-loop and writes to
the output vector if the filter matches. The autovec vari-
ant does the same but uses a branchless implementation,
i.e., out_idx += val < x. This always writes to the out-
put but overwrites the current value in the next iteration
if it did not match. The *-shuffle variants create a bitmask
(4-bit in 128, 16-bit in 512) from the comparison result
vector and perform a table lookup (24 or 216 entries)
with that mask to retrieve the indices with which the
current iteration’s RowIDs are shuffled. If positions 1 and
3 match, (ids[1], ids[3], ∘, ∘) is written to the output,
where the ∘’s are overwritten in the next iteration. The
*-add variants do not shuffle but use the bitmask to look
up which RowIDs must be added to the current iteration’s
start RowID 𝑟. If positions 1 and 3 match, (𝑟+1, 𝑟+3, ∘,
∘) is written. This saves one shuffle instruction but only
works for contiguous input RowIDs. The vpcompressd
variants use the AVX-512 vpcompressd [30] instruction
that shifts all matching values to the beginning of the
SIMD register and stores them to memory. We also eval-
uate a version with the SSE4 pext [31] instruction, but
this is slower than the more general approaches.

Unlike the other benchmarks, auto-vectorization and

https://godbolt.org/z/ef7WMPMT4
https://godbolt.org/z/5bsv3qWT6


compiler-intrinsics do not achieve the performance of
platform-intrinsics on x86. The special vpcompressd
instruction performs the required logic and achieves sig-
nificantly better results by combining the lookup and
shuffle in a single instruction. However, there is cur-
rently no way to make LLVM produce this instruction
using auto-vectorization or compiler-intrinsics [32, 33].

autovec significantly outperforms naive because of
branchless execution. The compiler unrolls the naive
loop five times but converts the write inside an if-branch
into five branches in assembly, resulting in high runtime
cost for branch mispredictions10.

For the *-shuffle/add variants, the 512-bit variants out-
perform the 128-bit ones by only 2×. The higher paral-
lelism is counterbalanced by the need for a bigger lookup
table of up to 4 MB that causes cache misses. With the
compress variants, we observe a 3.4× speedup from 128-
to 512-bits, as there is no lookup table and the 128- and
512-bit instructions have the same latency and through-
put [30], benefiting the higher parallelism of the 512-bit
variant. For the 128-bit add-based variants, LLVM gen-
erates slightly better assembly with three fewer instruc-
tions when using compiler-intrinsics instead of SSE.

For NEON, we see that the vec-128 variants achieve the
same performance as the NEON implementation with
our patched LLVM [25]. Without the patch, both suffer
from the conversion-to-bitmask problem as in the hash
bucket lookup (Section 4.3). For the shuffle variant, LLVM
also generates worse shuffle code that uses element-wise
insertion. We submitted an LLVM patch to fix this using
NEON’s TBL instruction11 (dashed part of bar) [34]. As
NEON does not have 512-bit registers, the improved con-
version to bitmask and shuffle cannot be used in vec-512,
resulting in worse assembly.

4.6. SIMD in Velox
In this benchmark, we evaluate the performance of com-
piler-intrinsics in an end-to-end system setup, running
TPC-H queries in Velox [7]. To show the difference
between platform- and compiler-intrinsics, we replace
Velox’ xsimd [4] dependency with Clang’s vector intrin-
sics. We run 18 out of 19 supported TPC-H queries in
Velox12 with scale factor 1. All queries are executed ten
times with Velox’s default TPC-H configuration of four
threads and we report the average runtime. We compile
with Clang/LLVM 15 on x86 and with our patched ver-
sion on M1, using -O3 and -march/mtune=native flags.
The results are shown in Figure 5.

For both x86 and M1, our vec implementation performs
equally to Velox’s original xsimd code. The average run-

10https://godbolt.org/z/h96P7s173
11Merged, available upstream since 267d6d6.
12We omit Q21 as Velox produces wrong results with scale factor

10 [35]. Overall, SF10 shows the same performance trends as SF1.
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Figure 5: End-to-end TPC-H benchmark (19 supported
queries) with SF1 from Parquet in Velox on x86 and M1.

time differs by 1.3% on Icelake and around 0.13% on M1.
However, the difference on Icelake is not caused by SIMD
code changes but by code alignment issues [36]. Explic-
itly adding eight nop padding bytes before a single hot
loop in a scan operator reduces the performance differ-
ence to 0.1%. Code-alignment optimizations are highly
platform-specific and out of scope of this work. We use
them to illustrate that performance differences at this
level have various causes that must be considered when
optimizing. Overall, there is no performance impact
when switching from platform- to compiler-intrinsics.

We also perform a run without any explicit SIMD pro-
cessing by replacing all compiler-intrinsics with fixed-
sized array operations. This decreases the overall perfor-
mance by 4%, i.e., explicit SIMD code in Velox achieves
4% performance gains for TPC-H on average. However,
these gains are not distributed uniformly. While some
queries are not affected at all, one drops by 24.9%. In
Table 1, we show Q15, Q16, and Q18, which exhibit the
largest differences to the xsimd baseline when disabling
all SIMD code (novec).

Q15 Q16 Q18
novec vec novec vec novec vec

x86 –5.0% –3.4%* –3.8% +0.2% –24.9% –0.1%
M1 +0.1% +0.2% –2.5% +0.2% –14.3% –0.2%

Table 1: Performance difference from xsimd TPC-H baseline
to no SIMD code (novec) and compiler-intrinsics (vec).

For Q15, vectorization does not impact M1, i.e., all
three variants perform similarly. On x86, the vec vari-
ant is 3.4% slower with the default code alignment but
only 0.3% slower with the hot loop padding (marked * in
Table 1). For Q16, novec is worse than xsimd, while vec
performs marginally better on both x86 and M1. Q18 is a
query with high vectorization benefits. On both x86 and
M1, vec achieves the same performance as the handwrit-
ten xsimd variant, closing the 25% and 14% gaps. Overall,
vec performs better than xsimd in 7/18 queries on x86
(with padding), and in 5/18 on M1.

https://godbolt.org/z/h96P7s173
https://github.com/llvm/llvm-project/commit/267d6d665cf2379ebfcc65fa385a35529c83a7d0


Intel
Icelake

Intel
Cascadelake

Intel
Skylake

AMD
Rome

naive 1 (145 µs) 1 (152 µs) 1 (162 µs) 1 (128 µs)
autovec 5.8x 6.4x 6.3x 5.6x
vec-128 13.8x 10.7x 9.4x 7.4x
vec-256 16.6x 14.1x 10.4x 9.9x
vec-512 13.7x 0.5x 0.3x 0.3x

sse4-128 13.8x 10.7x 9.1x 7.4x
avx2-256 13.9x 10.7x 7.3x 7.4x

sse4-pdep 6.5x 7.0x 5.7x 0.1x
avx512 16.2x - - -

(a) x86 platforms.

M1 Graviton 2 Graviton 3 Rasp. Pi
naive 1 (87 µs) 1 (181 µs) 1 (145 µs) 1 (344 µs)

autovec 4.8x 4.7x 7.3x 4.3x
vec-128 14.3x 7.3x 9.1x 4.2x
vec-256 14.2x 8.1x 11.4x 4.5x
vec-512 0.3x 0.2x 0.2x 0.1x

neon 10.9x 5.4x 8.5x 3.0x

(b) NEON platforms.

Table 2: Bit-packed integer decompression results on multiple
platforms for x86 and NEON. Speedup relative to naive.

In the process of replacing xsimd, we removed 54
platform-specific functions across ten function groups,
guarded via #ifdef <PLATFORM> directives. Of these ten
groups, five had multiple implementations for different
data types (e.g., int32_t and int64_t), averaging at 3.6
type-specific implementations per group. Overall, our
templatable compiler-intrinsics code removed hundreds
of lines of code and most type-specific variants while
achieving the same performance. We also discovered
a bug, in which an optimized x86 bit-packing decoder
algorithm was not used instead of a scalar fallback, as a
platform-specific macro was not included correctly [37].
This highlights the complexity of correctly handling mul-
tiple platforms and target CPUs in query engines, which
can be avoided with compiler-intrinsics.

5. Performance Generalizability
In Section 4, we focus on two machines and LLVM to per-
form our evaluation in depth. To support our claims and
show the applicability of our approach to a wider range
of setups, we show performance results across various
x86 and ARM machines in Section 5.1. In Section 5.2, we
show results for GCC as an additional major compiler
that offers compiler-intrinsics.

5.1. Across Platforms
In this section, we discuss the generalizability of our
results across multiple platforms to avoid the impact of
measurement bias. While developing the benchmarks,

we occasionally encountered performance outliers of up
to 100%. Our microbenchmarks contain very tight loops
with only a few instructions, so code alignment has a
large performance impact. In one case, the loop was
aligned to 32 bytes before a change and 16 bytes after
a change. Due to this alignment, Intel’s micro-op cache
could not fully cache the hot loop, leading to higher
pressure on the instruction decoder.

These alignment issues are highly system-specific [36]
and such large outliers could invalidate our conclusions,
so we run the benchmarks on multiple x86 and multiple
ARM servers for validation. For x86, we run the experi-
ments on the Intel Icelake server mentioned in Section 4.1,
on an Intel Cascadelake CPU (Xeon Gold 5220R), on an
Intel Skylake laptop CPU with AVX2 (i5-6200U), and on
an AMD Rome CPU with AVX2 (EPYC 7742). For NEON,
we run on a M1 MacBook Pro (see Section 4.1), a Graviton
2 CPU (t4g.xlarge), a Graviton 3 CPU (c7g.xlarge), and
a Raspberry Pi 4 (ARM Cortex-A72). All NEON bench-
marks are compiled with a current LLVM version (April
’23, commit cd68e17), which contains our patches. We
show the results for the bit-unpacking benchmark in Ta-
ble 2. The other benchmarks show similar trends, so we
omit them for space reasons.

For x86, we see that the performance trends discussed
for Icelake also hold for other x86 machines. Across all
systems, we see that most vec-* variants achieve the same
or better performance than the x86-specific ones. Sys-
tems that do not have the necessary AVX512 instructions
perform poorly with vec-512, as the logic is not easily
translatable to AVX2 instructions. On all servers, ex-
plicit vectorization outperforms naive and autovec. On
AMD Rome, the sse4-pdep variant, as used in Velox, per-
forms significantly worse than any other variant. This is
caused by the pdep instruction being significantly slower
on AMD than on Intel CPUs [38].

On ARM, we see a wider absolute performance range.
The Raspberry Pi naive baseline is 4× slower than M1,
while the Graviton CPUs are 1.5–2× slower. Regardless
of absolute performance, all machines benefit from vec-
torization. As NEON does not have 256-bit registers, the
vec-256 code is split into multiple 128-bit instructions.
Graviton 2 does not scale well here, as it has only two
SIMD units per core, while M1 and Graviton 3 have four.

Overall, the results show that our insights and con-
clusions hold on a wider range of systems. We see that
in nearly all cases, our compiler-intrinsics approach per-
forms on par with or outperforms the platform-intrinsics.

5.2. Across Compilers
In our evaluation, we focus on Clang/LLVM. While many
projects focus on one compiler, it is common to use mul-
tiple compilers for testing. If features and built-in func-
tions diverge, developers have to write multiple compiler-

https://github.com/llvm/llvm-project/commit/cd68e17bc2f9b7b54a3d3ab5f917793d41ce17cb


Intel
Icelake

AMD
Rome M1 Graviton 3

naive 1 (112 µs) 1 (123 µs) 1 (61 µs) 1 (110 µs)
autovec 3.4x 1.4x 1.2x 1.2x
vec-128 7.3x 5.2x 7.9x 7.2x
vec-256 10.9x 10.9x 0.5x 1.1x
vec-512 8.7x 0.4x 0.5x 0.9x

sse4-128 6.0x 7.7x - -
avx2-256 7.3x 5.2x - -

sse4-pdep 5.6x 0.1x - -
avx512 8.7x - - -

neon - - 7.8x 6.5x

(a) Bit-packed integer decompression.

Intel
Icelake

AMD
Rome M1 Grav. 3

naive 1 (156 µs) 1 (143 µs) 1 (97 µs) 1 (99 µs)
autovec 8.2x 7.4x 8.6x 5.0x

vec-128-shuffle 7.9x 8.1x 9.1x 3.9x
vec-128-add 8.1x 8.7x 10.2x 4.4x

vec-512-shuffle 7.8x 1.9x 3.4x 1.9x
vec-512-add 7.9x 4.7x 5.6x 2.5x

sse4-128-shuffle 14.0x 18.0x - -
sse4-128-add 14.1x 19.8x - -

vpcompressd-512 38.2x - - -
neon-shuffle - - 12.3x 6.0x

neon-add - - 12.8x 6.0x

(b) Filtering column scan.

Table 3: Results for compilation with GCC on multiple x86
and NEON platforms. Speedup relative to naive.

dependent versions instead of platform-dependent ones,
reducing the benefit of compiler-intrinsics. In this sec-
tion, we discuss the portability across compilers.

The vector extensions using the vector_size attribute
were initially specified by GCC and later adopted by
Clang. Additionally, Clang supports a ext_vector_type
attribute that allows specifying bitmask types. As of June
2023 (version 19.35), Microsoft’s MSVC compiler does
not support the vector_size attribute. Intel’s ICX com-
piler is based on LLVM and supports both vector_size
and ext_vector_type. As of June 2023 (version 13.1),
GCC does not support the ext_vector_type attribute
and thus offers no way to natively express conversions
from or to bitmasks.

We repeat our benchmarks using GCC 12.2 to test if
other performance problems occur. The results of the
integer decompression and filtering column scan bench-
marks for a selection of platforms are shown in Table 3.
The other benchmarks exhibit similar characteristics, so
we omit them here for space reasons.

With the bit-packed integer decompression bench-
mark, the results are similar to the results observed with
LLVM with a few subtle differences. GCC’s auto-vectori-
zation performs worse on Rome and the ARM platforms.

Also, GCC produces slower code for the vec-256 variants
on the ARM platforms.

On Icelake, the 512-bit variants vec-512 and avx512
perform 20% worse than vec-256. Code inspection shows
that these variants produce identical assembly except for
vector width and offset values. Thus, we attribute the
lower performance of the 512-bit variants to microarchi-
tectural details. With LLVM, these variants are compiled
to a slightly different instruction order, where vec-256
and avx-512 achieve similar performance.

On Rome, vec-128 performs a bit worse than sse4-128.
This is caused by differing instruction selection. In vec-
128, we use a shift-operation on vectors to align the num-
bers inside the lanes, which GCC compiles to a vector-
shift instruction. In handwritten code, this corresponds to
the _mm_sllv_epi32 instruction, which is only available
in AVX2. So we instead use a multiplication instruction
(_mm_mullo_epi32) in sse4-128, which is slightly faster.
An improvement of GCC’s instruction selection would
remove this difference.

For the filtering column scan, computing the match-
ing element bitmask is a fundamental operation. As
described above, GCC does not support vector-bitmask
types, and thus does not allow expressing bitmask-con-
versions. We circumvent this by accessing all bitmask-
related logic through a helper function that uses the
NEON-approach of bitwise masking and horizontal com-
bining if compiled with GCC. In isolation, this approach
does not result in good performance on x86 platforms that
have native movemask operations13. In a performance crit-
ical path, programmers would have to implement bitmask
conversion for each platform.

The code generated by our generic implementation
causes a significant performance drop compared to the
platform-specific variants. On x86, the sse4-128 variants
outperform the vec-128 variants by 1.7× on Icelake and
2.2× on Rome. Our function to compute bitmasks scales
in complexity with the number of vector elements. For
a 128-bit vector of 32-bit integers, GCC compiles it to 8
instructions, while requiring 40 for a 512-bit vector. Due
to this additional overhead, the vec-512 variants do not
outperform the vec-128 ones.

On ARM, the compiler-intrinsics and platform-intrin-
sics differ by a smaller, but still significant amount. The
handwritten NEON-variants are 30% and 40% faster on
M1 and Graviton 3, respectively. GCC correctly converts
the shuffle to a TBL instruction, but struggles with the
bitmask, as for x86.

6. Discussion
Our results show that in most of the evaluated database
operations, platform-specific SIMD code does not achieve

13https://godbolt.org/z/azh9fE3zW

https://godbolt.org/z/azh9fE3zW


better performance than platform-independent SIMD
code. In 7/8 microbenchmarks, compiler-intrinsics per-
form on par with or better than platform-intrinsics. Auto-
vectorization alone does not achieve this, providing good
performance in only 2/8 benchmarks. We conclude that
with state-of-the-art compilers, explicit SIMD code is nec-
essary to achieve high performance, and we show that
this is possible without implementing multiple versions
of the same code for different platforms and data types.

6.1. Using Compiler-Intrinsics
There are cases in which platform-intrinsics are neces-
sary. Therefore, we recommend approaching writing
SIMD code as follows. First, developers should try to
rely on auto-vectorization, because this code is the most
portable and often easiest to understand. If this does not
yield good results or is not possible, compiler-intrinsics
should be used to a) structure the overall SIMD code and
b) write portable SIMD algorithms. Only in cases where
the desired logic cannot be expressed portably, devel-
opers should use platform-intrinsics as small, localized
performance fixes.

We show this approach in a small example in Listing 3,
in which we store matching values based on a filter pred-
icate, similar to the benchmark in Section 4.5. In our
benchmarks, we observe that AVX512’s compressstore
is very efficient in storing only matching values. To lever-
age this via compiler-intrinsics, developers can write a
single platform- and type-independent templated method
for the general filtering logic (Lines 1–13). In our exam-
ple, the same function can be used for integers, floats,
and longs in 16-, 32-, or 64-byte vectors on x86, ARM, and
other platforms. We distinguish between platforms and
types only for the special compressstore instruction
in Line 10. Depending on the platform, we choose the
AVX512 implementation (Lines 16–26) or a fallback im-
plementation (Lines 28–32). Even in this small example,
we see that supporting all variants of compressstore
leads to many code paths, i.e., three vector sizes and mul-
tiple element sizes. However, this complexity is localized
and does not leak into the filtering operation.

6.2. Advantages of Compiler-Intrinsics
The approach described in Section 6.1 is also achievable
via SIMD libraries due to their vector abstractions and
implemented as such, e.g., in Velox. However, relying
on compiler-intrinsics over libraries has three key ad-
vantages. First, development and testing becomes easier.
When relying on a SIMD library that wraps platform-
intrinsics, functions can only be compiled on machines
that support these intrinsics, e.g., testing AVX512 code
on an AVX2 server is not possible in general. When ex-
pressing the logic via compiler-intrinsics, it is possible

1 template <typename T, typename FilterOp>
2 void filter(T* in, T filter_val, T* out, FilterOp op) {
3 int num_elements = sizeof(Vec<T>) / sizeof(T);
4 for (int i = 0; i < N; i += num_elements) {
5 // Vec<T> is a templated version of Vec (Listing 2)
6 Vec<T> vals = (Vec<T>&) in[i];
7 // Filter is platform-independent and templatable.
8 Vec<T> matches = op(val, filter_val);
9 // n variants only needed for special instructions.

10 uint64_t mask = compress_store(vals, matches, out);
11 out += std::popcount(mask);
12 }
13 }
14
15 #ifdef __AVX512F__ // We can use compressstore.
16 template <typename T> uint64_t
17 compress_store(Vec<T> vals, Vec<T> matches, T* out) {
18 uint64_t mask;
19 // When T is 32-bit
20 if constexpr (sizeof(Vec<T>) == 16) {
21 mask = _mm_movepi32_mask(matches);
22 _mm_mask_compressstoreu_epi32(out, mask, vals);
23 } else if (sizeof(Vec<T>) == 32) { // _mm256...
24 } else if (sizeof(Vec<T>) == 64) { // _mm512...
25 } return mask;
26 }
27 #else // We can't use compressstore.
28 template <typename T> uint64_t
29 compress_store(Vec<T> vals, Vec<T> matches, T* out) {
30 // Fallback shuffle + store similar to Listing 2.
31 ...
32 }
33 #endif

Listing 3: Use compiler-intrinsics to structure code, represent
vectors, and for common operations. Only switch to localized
platform-intrinsics for specific instructions without multiple
variants for the same filtering logic.

to test the generic 512-bit “AVX512” vector logic on an
AVX2 or even an ARM server. While the generated code
may be inefficient, the compiler guarantees to generate
valid code for the given input regardless of the available
instructions. Second, as our benchmarks show, staying
in the compiler’s own type domain allows for better op-
timization in some cases. Third, with minimal code over-
head, developers can structure SIMD code according to
their needs without adapting to the interface given by
the library or relying on a third-party dependency at all.

As SIMD code is written for high performance, devel-
opers still need to benchmark and evaluate their code
continuously. Even with compiler-intrinsics, the com-
piler should be instructed to generate optimized code via
-march/mtune flags, and the code should be profiled and
updated if new compiler versions offer new functionality.
This is also the case when using platform-intrinsics but
without the benefit of automatically adapted instructions
on new platforms.



6.3. Open Challenges
Compiler-intrinsics perform well in our experiments and
Velox, but a few things still require improvement. GCC’s
missing support for vector-to-bitmask conversion forces
us to use workarounds with suboptimal performance.
LLVM does not generate good vectorized code for some
common (x86-) patterns. For example, an x86 gather
is detected in some cases, but not in others, while an
analogous scatter is not detected at all14. Clang sup-
ports the ternary operator for element-wise selection
but LLVM does not yet combine it with mask-able in-
structions available in, e.g., AVX51215. Overall, compiler-
intrinsics support x86 better than NEON due to wider
adoption. The documentation of compiler-intrinsics is
not as broad as that of platform-intrinsics, as they are
mostly used internally. Better instruction selection and
documentation as well as more features will increase the
applicability of compiler-intrinsics, further reducing the
need for platform-intrinsics.

SVE and RISC-V V implement vector length agnos-
tic programming approaches where vector sizes may be
determined at runtime. C++ code using the proposed
compiler-intrinsics can conceptually be written to sup-
port arbitrary vector sizes. However, when this is done
using templating, the compiler still typically computes
constants such as loop increments at compile time. The
programming model of variable length vectors also em-
phasizes usage of predicate/mask registers to decouple
the available input element count from actual vector sizes.
This allows removing any epilogue logic handling left-
over elements. To our knowledge, there is currently no
way to express runtime dynamic vector sizes or predi-
cated vector operations with compiler intrinsics in GCC
and Clang. With wider adoption of variable length vector
instructions, we expect compilers to add more support
for these concepts.

Platform-independent vector extensions provided by
major compilers are not widely known in the database
community, and thus, they are not widely used. We
believe that higher adoption will lead to more features
and better instruction selection, solving some of the open
challenges. Our results show that platform-dependent
SIMD code is often not needed, so we encourage database
developers to use compiler-intrinsics in their code.

7. Related Work
In this section, we briefly discuss related work on SIMD
programming in databases and on SIMD libraries.

SIMD in Databases. There is a wide range of research
on vectorization in databases [5, 1, 39, 3, 40, 41, 2, 42].

14https://godbolt.org/z/ven54M5ea
15https://godbolt.org/z/4333j6xEb

This research shows that vectorization is beneficial and
serves as a motivation for our work. Based on some of
it, we conduct microbenchmarks and show that they can
often be implemented with platform-independent SIMD
code. In general, research on database vectorization is
orthogonal to our work and we think that it should con-
sider platform-independent optimizations in the future.
Some work makes use of many platform-specific instruc-
tions [43, 44], making it hard to fit into our platform-
independent approach. There are cases where this is ben-
eficial, but we recommend using these platform-specific
algorithms only if they have shown to be better.
SIMD Libraries. Various SIMD libraries exist that

help developers to write platform-independent code by
hiding the platform-specific intrinsics behind an abstrac-
tion layer [4, 45, 46, 5, 6, 17]. To varying degrees, they
cover the standard operations supported on all platforms
and additional interfaces for platform-specific instruc-
tions. Some of these libraries also provide higher-level
functions that combine instructions to offer more fea-
tures, which is orthogonal to our work. However, all
of these libraries add a layer of abstraction on top of
the compiler’s platform-intrinsics. In contrast, we pro-
pose to remove a layer of abstraction and work directly
with compiler-intrinsics instead. Our approach reduces
code complexity and occasionally benefits from better
compiler optimizations.

Another approach is to add a SIMD abstraction to the
programming language’s standard library [47, 48, 49].
This supports our claim that SIMD programming should
be platform-independent.

8. Conclusion
In this paper, we make the case for writing less platform-
specific SIMD code in databases. Instead of requiring
multiple platform-specific implementations for the same
logic, compiler vector intrinsics allow developers to write
a single version that is optimized by the compiler for
every target platform. Our evaluation shows that this ap-
proach achieves the same or better performance in most
of our microbenchmarks and a real system. While chal-
lenges remain, adopting compiler-intrinsics in databases
leads to less logical code duplication and fewer platform-
specific SIMD variants.
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