Data Streams

Alessandro Margara, Tilmann Rabl

Synonyms

Information Flows, Event Streams.

Definitions

A data stream is a countably infinite
sequence of elements. Different models
of data streams exist, that take different
approaches with respect to the muta-
bility of the stream and to the structure
of stream elements. Stream processing
refers to analyzing data streams on-
the-fly to produce new results as new
input data becomes available. Time is
a central concept in stream processing:
in almost all models of streams, each
stream element is associated with one
or more timestamps from a given time
domain that might indicate for instance
when the element was generated, the

Alessandro Margara

Politecnico di Milano, Milano, Italy, e-mail:
alessandro.margara@polimi.it)
Tilmann Rabl

TU Berlin, Berlin,
rabl@tu-berlin.de

Germany, e-mail:

validity of its content, or when it became
available for processing.

Overview

A data stream is a countably infinite se-
quence of elements and is used to repre-
sent data elements that are made avail-
able over time. Examples are readings
from sensors in an environmental mon-
itoring application, stock quotes in fi-
nancial applications, or network data in
computer monitoring applications.

A stream-based application analyzes
elements from streams as they become
available to timely produce new results
and enable fast reactions if needed [Bab-
cock et all (2002); |(Cugola and Margara
(2012).

In the last decade, several tech-
nologies have emerged to address the
processing of high-volume, real-time
data without requiring custom code
Stonebraker et al| (2005). They are com-
monly referred to as stream processing
systems, and they are the topic of this
section on “Big Stream Processing”.

In the remainder of this introductory
chapter, we overview the main models
of data streams and stream processing
systems, and we briefly introduce some
central concepts in stream processing,
namely time and windows. Furthermore
we summarize the main requirements of
stream processing.

Stream models

Streams can be structured or unstruc-
tured. In a structured stream, elements
follow a certain format or schema that

alessandro.margara@polimi.it
rabl@tu-berlin.de

allows for additional modelling of the
stream. In contrast, unstructured streams
can have arbitrary contents often re-
sulting from combining streams from
many sources (these are also referred
to as event showers or event clouds
Doblander et all (2014)).

There are three major models for
structured streams, which differentiate
in how the elements of the stream are
related to and influence each other:
the turnstile model, the cash register
model, and the time series model. The
most general model is the turnstile
model. In this model, the stream is
modelled as a vector of elements and
each element s; in the stream is an
update (increment or decrement) to an
element of the underlying vector. The
size of the vector in this model is the
domain of the stream elements. This
model is also the model typically used
in traditional database systems, where
there are inserts, deletes, and updates to
the database. In the cash register model,
elements in the stream are only additions
to the underlying vector, but elements
can never leave the vector again. This
is similar to databases recording the
history of relations. Finally, the time
series model treats every element in the
stream §; as a new independent vector
entry. As a result the underlying model
is a constantly increasing vector and
generally unbounded vector. Because
each element can be processed individ-
ually in this model, it is frequently used
in current stream processing engines.

Time

Time is a central concept in many stream
processing applications, either because

Alessandro Margara, Tilmann Rabl

they are concerned with updating their
view of the world by taking into account
recent data received from streams, or be-
cause they aim to detect temporal trends
in the input streams.

For this reason, in most models
of stream and stream processing data
elements are associated with some
timestamp from a given time domain.
Common semantics of time include
event time, which is the time when the
element was produced, and processing
time, which is the time when the stream
processing system starts processing the
element Akidau et al| (2015)).

Different time semantics introduce
different problems in terms of order and
synchronization. Intuitively, while event
time and processing time should ideally
be equal, in practice unsynchronized
clocks at the producers as well as
variable communication and processing
delays produce a skew between event
time and processing time which is not
only non-zero, but also highly variable
Akidau| (2015). On the one hand, pro-
cessing elements in event time order
is necessary in many application sce-
narios. On the other hand, this requires
waiting for out-of-order elements and
reorder them before processing. This is
a non-trivial problem, which is analyzed
in detail in the chapter related to “Time
management”.

Windows

Windows are one of the core building
blocks of virtually all stream processing
systems. They define bounded portions
of elements over an unbounded stream.
They are used to perform computations
that would be impossible (non terminat-

Data Streams

ing) in the case of unbounded data, such
as the computing the average value of all
the elements in a stream of numbers.

The most common types of windows
are count-based and time-based win-
dows. The former define their size in
terms of the number of elements that
they include, while the latter define
their size in terms of a time frame,
and include all the elements with a
timestamp included in that time frame.

In both cases, we distinguish between
sliding windows, which continuously
advance with the arrival of new el-
ements, thus always capturing new
elements, and tumbling windows, which
can accumulate multiple elements
before moving Botan et al| (2010).

More recently, new types of windows
have been defined to bettr capture the
needs of applications. They include ses-
sion and data-defined windows that are
variable in size and define their bound-
aries based on the data elements: for in-
stance, in a software monitoring appli-
cation, a window can include all and
only the elements that refer to a session
opened by a specific user of that soft-
ware |Akidau et al| (2015).

Stream Processing

Several types of stream processing sys-
tems exist that are specialized on differ-
ent types of computations |Cugola and
Margara) (2012).

Data stream management systems
are designed to update the answers of
continuous queries as new data becomes
available. They typically adopt declar-
ative abstractions similar to traditional
database query languages that they
enrich with constructs such as windows

to deal with the unbounded nature of the
input data Arasu et al| (2006)).

Complex event processing systems,
instead, aim to detect (temporal) pat-
terns over the input streamd of elements
Etzion and Niblettl (2010); Luckham
(2001). These systems are discussed in
the chapter on “Event recognition”.

Modern Big Data stream processing
systems, such as Flink |Carbone et al
(2015)), provide general operators to
transform input streams into output
streams, thus offering the possibility
to implement heterogeneous stream-
ing applications by integrating these
operators. These systems are designed
to scale to multiple processing cores
and computing nodes, and persist in-
termediate results for fault tolerance.
Flink and other systems are discussed
in several chapters within this section of
the encyclopedia. The “Introduction to
stream processing” chapter overviews
the main classes of algorithms for
stream processing.

General Requirements of
Stream Processing

Data streams could theoretically be
stored and processed with traditional
database systems or other analytics
solutions. However, real-time pro-
cessing of streams introduces specific
requirements that stream processing
systems need to satisfy Stonebraker et al
(2005). Although the following require-
ments are not necessarily fulfilled by
all current stream processing systems,
they are frequently necessary in stream
processing applications.

In order to do advanced analytics
on streams, which involve more than a

4

single operation, a stream processing
system needs to integrate (pipeline) ba-
sic operations with each other. This can
be done by (micro-)batching the stream,
that is, splitting it in small chuncks such
that each operator processes a chunck at
a time, or by true streaming, where each
element is processed individually.

Because streams are often generated
in a distributed fashion, for example in
sensor networks, a streaming system
must handle small inconsistencies in
the stream, such as out-of-order data,
missing values, or delayed values.
This is related to the topic of time
management, discussed earlier. Even if
a stream contains small inconsistencies,
the result of the stream processing
needs to be predictable. This demands
for clear semantics of the operations
available and for robust mechanisms
that guarantee deterministic results.

A high-level interface to specify
stream processing jobs is desirable. The
section on stream processing languages
and abstractions gives an overview of
current solutions.

An area of active research is the
combination of streaming and batch
data. Interestingly, this combination
forms the missing link between database
systems and streaming systems. Early
attempts to address this challenge have
led to the idea of a lambda architecture,
which consists of separate systems
for streaming and batch processing
Marz and Warren| (2015). However,
especially problems with robustness and
model mismatches call for an integrated
solution. Current streaming systems
address this by enabling advanced
state management [Carbone et all (2017)
Affett1 et al (2017).

Alessandro Margara, Tilmann Rabl

Future Directions of Research

Streaming is a very active area of
research. Each of the following chapters
will highlight interesing future direc-
tions of research. However, there are
several topics that have found limited
attention in current research but will
be increasingly important for future
applications and systems. Here, we will
highlight two areas that found little
attention so far.

Current stream processing systems
frequently differentiate themselves
from database systems in that they see
all streams and all analytics jobs as
conceptionally unbounded. However,
in many scenarios, streams as well as
the analytics jobs on them are bounded.
Furthermore, both can arrive at high
frequencies, which is a challenge for
current systems.

Another challenge, not solved by
current systems is transactional guaran-
tees. Current stream processing systems
provide basic guarantees like processing
each stream element exactly once or
at least once, but have no concept of
transactions that span multiple stream
elements or operations |Affetti et al
(2017).

Summary

In this chapter, we presented an
overview on stream processing and
introduced some concepts and terminol-
ogy. In the following chapters, further
details will be given on important topics
in big stream processing.

Data Streams

References

Affetti L, Margara A, Cugola G (2017) Flowdb:
Integrating stream processing and consistent
state management. In: Proceedings of the In-
ternational Conference on Distributed and
Event-based Systems, ACM, DEBS ’17, pp
134-145, DOI 10.1145/3093742.3093929

Akidau T (2015) The workld beyond batch:
Streaming 101

Akidau T, Bradshaw R, Chambers C, Chernyak
S, Fernandez-Moctezuma RJ, Lax R,
McVeety S, Mills D, Perry F, Schmidt
E, Whittle S (2015) The dataflow model:
A practical approach to balancing cor-
rectness, latency, and cost in massive-
scale, unbounded, out-of-order data
processing. VLDB 8(12):1792-1803,
DOI 10.14778/2824032.2824076

Arasu A, Babu S, Widom J (2006) The
cql continuous query language: Se-
mantic foundations and query exe-
cution. VLDB 15(2):121-142, DOI
10.1007/s00778-004-0147-z

Babcock B, Babu S, Datar M, Motwani R,
Widom J (2002) Models and issues in data
stream systems. In: Proceedings of the Sym-
posium on Principles of Database Systems,
ACM, PODS 02, pp 1-16, DOI 10.1145/
543613.543615

Botan I, Derakhshan R, Dindar N, Haas L,
Miller RJ, Tatbul N (2010) Secret: A
model for analysis of the execution seman-
tics of stream processing systems. VLDB
3(1-2):232-243, DOI 10.14778/1920841.
1920874

Carbone P, Katsifodimos A, Ewen S, Markl V,
Haridi S, Tzoumas K (2015) Apache flink:
Stream and batch processing in a single en-
gine. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering
36(4)

Carbone P, Ewen S, Féra G, Haridi S, Richter
S, Tzoumas K (2017) State management in
apache flink®: Consistent stateful dis-
tributed stream processing. Proceedings of
VLDB 10(12):1718-1729, DOI 10.14778/
3137765.3137777

Cugola G, Margara A (2012) Processing flows
of information: From data stream to com-
plex event processing. ACM Computing
Surveys 44(3):15:1-15:62, DOI 10.1145/
2187671.2187677

Doblander C, Rabl T, Jacobsen HA (2014)
Processing big events with showers and
streams. In: Rabl T, Poess M, Baru C, Jacob-
sen HA (eds) Specifying Big Data Bench-
marks, Springer, pp 60-71

Etzion O, Niblett P (2010) Event Processing in
Action. Manning Publications

Luckham DC (2001) The Power of Events: An
Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-
Wesley

Marz N, Warren J (2015) Big Data: Princi-
ples and Best Practices of Scalable Realtime
Data Systems. Manning Publications

Stonebraker M, Cetintemel U, Zdonik S (2005)
The 8 requirements of real-time stream pro-
cessing. SIGMOD Rec 34(4):42-47, DOIL
10.1145/1107499.1107504

Cross References

e Management of Time

e Stream Processing Languages and
Abstractions

e Introduction to Stream Processing

	Data Streams
	Alessandro Margara, Tilmann Rabl
	Synonyms
	Definitions
	Overview
	Stream models
	Time
	Windows
	Stream Processing
	General Requirements of Stream Processing

	Future Directions of Research
	Summary
	References
	Cross References

