
Materialized Views in Cassandra

Tilmann Rabl #†, Hans-Arno Jacobsen #

Middleware Systems Research Group, University of Toronto
† IBM Canada Software Laboratory, CAS Research

Abstract
Many web companies deal with enormous data
sizes and request rates beyond the capabilities of
traditional database systems. This has led to the de-
velopment of modern Big Data Platforms (BDPs).
BDPs handle large amounts of data and activity
through massively distributed infrastructures. To
achieve performance and availability at Internet
scale, BDPs restrict querying capability, and pro-
vide weaker consistency guarantees than traditional
ACID transactions. The reduced functionality as
found in key-value stores is sufficient for many web
applications.

An important requirement of many big data sys-
tems is an online view of the current status of the
data and activity. Typical big data systems such
as key-value stores only allow a key-based access.
In order to enable more complex querying mecha-
nisms, while satisfying necessary latencies materi-
alized views are employed. The efficiency of the
maintenance of these views is a key factor of the
usability of the system. Expensive operations such
as full table scans are impractical for small, fre-
quent modifications on Internet-scale data sets. In
this paper, we present an efficient implementation
of materialized views in key-value stores that en-
ables complex query processing and is tailored for
efficient maintenance.

1 Introduction
In recent years, many companies have realized the
value of user activity data. As a result, increasing
amounts of data have to be processed and stored.
Because of the scalability issues of ACID com-

Copyright c© 2014 IBM Corp. Permission to copy is hereby
granted provided the original copyright notice is reproduced in
copies made.

pliant database systems, more and more simpli-
fied data management systems are being devel-
oped. Many of these systems are following the
principal design choices of Google’s BigTable [2]
and Amazon’s Dynamo [5]. Core features of these
systems are a high degree of distribution, key-value
access, and relaxed consistency requirements. Due
to the form of data management and data access,
typically driven by a global key, these systems are
called key-value stores.

Use cases like application performance manage-
ment [8] or smart traffic management require the
high performance data insertion and data access as
they are provided by key-value stores. However,
they also require an on-line view on certain con-
ditions of the managed system, that goes beyond
simple key-value lookups. In this paper, we present
our research on materialized views in key-value
stores. In contrast to previous work in this area
(e.g., [6, 10]), our views can be organized in hier-
archies and thus materialize complex SQL queries.
The rest of the paper is organized as follows. In
the next Section, we give an overview of key-value
stores and the general data and query model that
is basis of this work. In Section 3, we describe
the different types of views and view maintenance
within our model.Section 4 describes our imple-
mentation in Cassandra. We conclude with future
work in Section 5.

2 Key-Value Stores
In this section, we review the characteristics of
common key-value stores. We use the following
notation in the rest of this paper. A base table B
contains a number of records that can be addressed
by an arbitrary key. The key must be unique within
the table. Therefore, a record can be represented by

a tuple (k, v), where k is the key and v is the value.
We do not place any restrictions on the value. In
an analogy to relational database systems, we say
B has the schema B(K,V). In our model, we also
consider records that have more than one value, e.g.
consider the tableB′(K,V1, V2) which contains up
to 2 values per key. Furthermore, we assume that
a key can consist of multiple attributes, e.g. table
B′′(K1,K2, V). Although many current key-value
stores actively support these types of schemas they
can also be mapped to a pure key-value store. We
will consider the so called extensible record stores
in the rest of this paper [1], which allow multiple
values per key. These systems store a schema with
each value. As mentioned above, the same func-
tionality can be achieved in pure key-value stores
by encoding the information in the key and the
value. Examples for extensible record stores are
BigTable [2], and Cassandra [7], examples for pure
key-value stores are Dynamo [5], and LevelDB [4].
Most systems provide the following basic API, al-
though, as the systems mature more and more com-
plex operations are added.

get(key) Retrieve a value or row from the store.
This is the primary way of accessing data.
Typically, the function is efficiently imple-
mented in key-value stores.

insert(key,values) Insert a value or row with key
in the store. This function often does not
consider duplicates. Therefore, if previous
values were written for a certain key, the
value will be overwritten. In case of ex-
tensible record stores, an insert with addi-
tional attributes will extend the previously
stored value. Consider for example a row
(401E,401,E) with schema (Key, Number, Di-
rection), if a row (401E,EAST,Ontario 401
Express) with schema (Key, Direction, Name)
is inserted only the value of attribute Direc-
tion is overwritten. The resulting row will be
(401E,401,EAST,Ontario 401 Express).

delete(key) Delete a value or row and the accord-
ing key from the store. Typically, rows are
not deleted in a key-value store right away
but marked as deleted. The actual delete
is then asynchronously performed by some
sort of garbage collection process. Extensible
record stores also allow deleting only speci-
fied columns of a row.

Road Sensor
Key Address

401DE0070DEC 401-EC - E OF ALLEN ROAD
401DE0020DET 401-ET - E OF ALLEN RD
401DE0060DWC 401-WC - E OF ALLEN

Sensor Reading
Sensor Date Time

401DE0070DEC 2013-11-27 14:46:00.0
401DE0020DET 2013-11-27 14:46:00.0
401DE0060DWC 2013-11-27 14:46:00.0

Speed
81
93

102

Occupancy
4
1
3

Road
Number Name

401 Ontario 401 Express
401 Ontario 401 Express
407 Express Toll Route

Direction
EAST
WEST
EAST

Key
401E
401W
407E

Road
401E
401E
401W

Key
401DE0070DEC-2013-11-27- 14:46:00.0
401DE0020DET-2013-11-27- 14:46:00.0
401DE0060DWC-2013-11-27- 14:46:00.0

Figure 1: Example Schema

update(key,values) Change the value/row that is
stored under a given key. As mentioned above,
this function is often not different from the in-
sert command. Thus, not all key-value stores
implement the command separately. How-
ever, it is important to consider the different
semantics of new insert and update in materi-
alized views.

The majority of key-value stores are designed for
large data sets and are, therefore, inherently dis-
tributed. However, there are also single node key-
value stores, such as LevelDB [4]. In the follow-
ing, we will concentrate on distributed stores that
persist data on disk or SSD.

Two architectures of distributed key-value stores
are prevalent, BigTable-like architectures, which
distribute data in horizontal partitioned shards, and
Dynamo-like systems, that use the principle of dis-
tributed hash tables (DHT) as distribution strat-
egy. Systems in the former group are BigTable
and HBase, in the later group are Cassandra, and
Project Voldemort. An interesting in-between ar-
chitecture is Riak, which distributes data in ranges,
which then are distributed in DHT fashion.

An important characteristic of key-value stores
is their alternative way of dealing with consistency.
In traditional databases, all data is typically consis-
tent, while in key-value stores, the state of a repli-
cated table might be outdated for a certain period
of time. This eventual consistency is a challenge
for view maintenance.

3 Materialized Views in Key-
Value Stores

There are multiple different types of materialized
views. These can be classified by the basic query
operators that they materialize. To visualize the
different classes of views, we will use a simplified
traffic monitoring example shown in Figure 1. We

will first discuss views that only a single query op-
erator.

Projection View A projection view materializes
the projection π in relational algebra. It typ-
ically removes attributes in the query result.
Depending on the implementation, it does a
duplicate reduction as the relational algebra
operator does or not as common in SQL im-
plementations.

Index View An index view is not based on a rela-
tional operator but is a special case of a pro-
jection. In the index view, another attribute
or set of attributes is used as key. Thus, the
index view allows fast access using non-key
attributes.

Selection View The selection operator σ filters
rows based on selection criteria (predicates).
Only rows for that the selection criteria hold
are part of the selection.

Aggregation View An aggregation view material-
izes a grouping and aggregate of an attribute
such as the sum, average, minimum, maxi-
mum, or median.

Join View The join view materializes a relational
join between tables. Our implementation is
generic and can emulate different types of
joins, e.g., equi-joins, outer-joins, and semi-
joins.

Hierarchical View Often it is more desirable to
have multiple views dependent on each other
rather than having a single view implement-
ing a specific query. This way, multiple differ-
ent complex queries can be based on the same
underlying basic materialized views. This is
highly related to multi-query optimization [9]
and can lead to substantial performance im-
provements due to the de-duplication of query
operations. An example of a hierarchy of
views can be seen in Figure 2.

In our prototype, we have implemented the index
view and the join view and the possibility of creat-
ing hierarchical views. In our implementation, all
views are read-only. Our prototype is built by ex-
tending Cassandra, however, the same extensions
can easily be applied to other systems like HBase.

Road Sensor
Key Address

401DE0070DEC 401-EC - E OF ALLEN ROAD
401DE0020DET 401-ET - E OF ALLEN RD
401DE0060DWC 401-WC - E OF ALLEN

Road
Number Name

401 Ontario 401 Express
401 Ontario 401 Express
407 Express Toll Route

Direction
EAST
WEST
EAST

Key
401E
401W
407E

Road
401E
401E
401W

⋈

Sensor Road Join
Key Values

401E
401W

Sensor_401DE0070DEC:Address Sensor_401DE0020DET:Address
401-ET - E OF ALLEN RD

401-WC - E OF ALLEN

407E Road_407E:Direction
EAST

Road_407E:Name
Express Toll Route

401-EC - E OF ALLEN ROAD
Sensor_401DE0060DWC:Address Road_401W:Direction

WEST

Road_401E:Direction
EAST

Road_401W:Name
Ontario 401 Express

Road_401E:Name
Ontario 401 Express

Road_401E:Number
401

Road_401W:Number
401

Road_407E:Number
407

Sensor Road Join Index
Key Values

401
401

Sensor_401DE0070DEC:Address Sensor_401DE0020DET:Address
401-ET - E OF ALLEN RD

401-WC - E OF ALLEN
407 Road_407E:Direction

EAST
Road_407E:Name
Express Toll Route

401-EC - E OF ALLEN ROAD
Sensor_401DE0060DWC:Address Road_401W:Direction

WEST

Road_401E:Direction
EAST

Road_401W:Name
Ontario 401 Express

Road_401E:Name
Ontario 401 Express

Road_401E:Number
401

Road_401W:Number
401

Road_407E:Number
407

EAST
WEST
EAST

Figure 2: Example of a Hierarchy of a Join and
Index View

〈statement〉 ::= CREATE VIEW view name OF 〈table defs〉;

〈table defs〉 ::= 〈table def 〉
| 〈table def 〉 AND 〈table defs〉

〈table def 〉 ::= table name[〈key list〉]

〈key list〉 ::= 〈column name〉
| 〈column name〉,〈key list〉

〈column name〉 ::= column name
| KEY

Figure 3: Grammar for the Creation of Material-
ized Views in CQL

4 Implementation in Cassandra
The presented technique for managing materialized
views in key-value stores was fully implemented
in Cassandra, Version 2.0. Below, we present de-
tails of the changes in the architecture as well as in
the query language. Cassandra features a SQL-like
query language, the Cassandra Query Language
(CQL). We extended CQL to enable the creation
of materialized views. The grammar for creating a
view is shown in Figure 3.

The extension integrates seamlessly with CQL’s
data modeling language [3]. An example for the
creation of an index view can be seen in Listing 1.
The listing creates a view that indexes sensors by
the roads that they are installed on. The view will
be updated automatically whenever the base table
is updated.

CREATE VIEW Sensor_Road_Index OF
Sensor[Road];

Listing 1: Creation of an Index View

The syntax for creating join views can be seen
in Listing 2. The command creates a column fam-

ily (named Sensor Road Join), which stores all
combinations of Sensors and Roads with matching
Road. It is an instance of a key-value join, which is
indicated by the keyword key on the left side of the
join. Joins can be key-key joins, key-value joins,
and value-value joins.

CREATE VIEW Sensor_Road_Join OF
Road[key] AND Sensor[Road];

Listing 2: Creation of a Join View

It is also possible to create views with multiple
columns as index or views materializing joins that
join multiple columns an example can be found in
Listing 3. The view shown will group roads with
same number and direction. In the case of joins the
number of joined columns must be equal on both
sides and the order determines the join partners.

CREATE VIEW Road_Index OF
Road[Number,Direction];

Listing 3: Creation of an Index View with Multiple
Indexed Colums

Finally, it is possible to join more than two ta-
bles and it is also possible to do self-joins. Fur-
thermore, our implementation supports hierarchi-
cal views, i.e., views that have views as input ta-
bles. An example can be seen in Listing 4, it cre-
ates two hierarchical views as presented in Figure
2. Tables Road and Sensor are joined on the road
key and an index is created on the road number and
direction.

CREATE VIEW Sensor_Road_Join OF
Road[key] AND Sensor[Road];

CREATE VIEW Sensor_Road_Join_Index
OF
Sensor_Road_Join[Number,Direction];

Listing 4: Creation of an Index View on a Join
View

All views are read-only, therefore, the only way
of updating a view is updating the base table. Due
to their dependency to the base table, the views are
also implemented with cascade drop. If a base ta-
ble is dropped, all depending views are dropped as
well.

5 Conclusion
In this paper, we present our research on materi-
alizing complex SQL queries in key-value stores.
We have shown that using the basic index view and

join view and the possibility to create hierarchies of
views, complex SQL queries can be materialized.
Our technique is fully implemented in a prototype
that is based on the Apache Cassandra key-value
store.

In future work, we will address the creation of
views during run time as well as dynamic material-
ization of queries based on a cost model.

References
[1] R. Cartell. Scalable SQL and NoSQL Data Stores.

SIGMOD Record, 39(4):12–27, 2010.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh,
D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R. E. Gruber. Bigtable: A Distributed Storage
System for Structured Data. In OSDI, pages 205–
218, 2006.

[3] DataStax, Inc. Apache Cassandra Docu-
mentation. http://www.datastax.
com/documentation/cassandra/2.
0/webhelp/index.html, 2013.

[4] J. Dean and S. Ghemawat. LevelDB - A fast
and lightweight key/value database library by
Google. https://code.google.com/p/
leveldb/, 2011.

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kaku-
lapati, A. Lakshman, A. Pilchin, S. Sivasubrama-
nian, P. Vosshall, and W. Vogels. Dynamo: Ama-
zon’s Highly Available Key-Value Store. In SOSP,
pages 205–220, 2007.

[6] C. Jin, R. Liu, and K. Salem. Materialized
Views for Eventually Consistent Record Stores. In
ICDEW, pages 250–257, 2013.

[7] A. Lakshman and P. Malik. Cassandra: a Decen-
tralized Structured Storage System. SIGOPS Oper-
ating Systems Review, 44(2):35–40, 2010.

[8] T. Rabl, M. Sadoghi, H.-A. Jacobsen, S. Gómez-
Villamor, V. Muntés-Mulero, and S. Mankowskii.
Solving Big Data Challenges for Enterprise Ap-
plication Performance Management. PVLDB,
5(12):1724–1735, 2012.

[9] T. K. Sellis. Multiple-Query Optimization. ACM
Transactions on Database Systems, 13(1):23–52,
1988.

[10] A. Silberstein, J. Terrace, B. F. Cooper, and R. Ra-
makrishnan. Feeding Frenzy: Selectively Material-
izing Users’ Event Feeds. In SIGMOD, pages 831–
842, 2010.

