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ABSTRACT
Modern data analysis tasks often involve control flow state-

ments, such as the iterations in PageRank and K-means.
To achieve scalability, developers usually implement these
tasks in distributed dataflow systems, such as Spark and
Flink. Designers of such systems have to choose between
providing imperative or functional control flow constructs
to users. Imperative constructs are easier to use, but func-
tional constructs are easier to compile to an efficient dataflow
job. We propose Mitos, a system where control flow is both
easy to use and efficient. Mitos relies on an intermediate
representation based on the static single assignment form.
This allows us to abstract away from specific control flow
constructs and treat any imperative control flow uniformly
both when building the dataflow job and when coordinating
the distributed execution.

1 Introduction
Modern data analytics typically achieve scalability by re-

lying on dataflow systems, such as Spark [23] and Flink [8].
Besides this scalability need, many data analysis algorithms
require support for control flow statements. For example,
many graph analysis tasks are iterative, such as PageRank
and computing connected components by label propagation.
Other data science pipelines are also mainly composed of it-
erative programs. K-means clustering and gradient descent
are two commonly occurring iterative tasks. Additionally,
control flow can get more complex: An iterative machine
learning training task can be inside another loop for hyper-
parameter optimization. Nested loops also appear inside a
single algorithm, such as the coloring algorithm for com-
puting strongly connected components [18]. Programs may
contain if statements inside loops, such as in simulated an-
nealing.

However, despite that control flow statements are at the
core of modern data analytics, supporting control flow is still
a weak spot of dataflow systems: They either suffer from
poor performance or are hard to use. On the one hand, in
some systems, such as Spark, users express iterations inside

1

Work done while the author was at TU Berlin.
*© 2021 IEEE. This is a minor revision of the paper entitled
“Efficient Control Flow in Dataflow Systems: When Ease-of-Use
Meets High Performance” in IEEE 37th International Conference
on Data Engineering (ICDE), 2021, IEEE. DOI: https://doi.
org/10.1109/ICDE51399.2021.00127

Ex
ec

ut
io

n 
tim

e 
(s

)

0

1250

2500

3750

5000

24 machines

Spark Flink

~11x

while day <= 365 do 
… // Loop body 
end while

Imperative Control Flow

easy-to-use

iterate( 
 initialDay, initialCounts, 
 (day, yesterdayCounts) => { 
 … // Loop body function 
 })

Functional Control Flow

hard-to-use

1

Figure 1: Imperative vs. functional control flow.

the driver program, using the standard, imperative control
flow constructs. Although this imperative approach is easy
to use, it launches a new dataflow job for every iteration step,
which hurts performance because of a high inherent job-
launch overhead and lost optimization opportunities. On
the other hand, some other systems, such as Flink and Na-
iad [17], provide native control flow support [10], i.e., users
can include iterations in their (cyclic) dataflow jobs. This
removes the job-launch overhead, which is present in Spark,
resulting in much better performance. However, this high
performance comes at a price: Users have to express itera-
tions by calling higher-order functions, which are harder to
use than the imperative control flow of Spark.

To illustrate this problem, we ran an experiment with
Spark and Flink, using a program that computes the visit
counts from a year of page visit logs. This program has a
loop that reads a different file at each iteration step and
compares the visit counts with the previous day. Figure 1
shows the results of this experiment. We observe that Spark
is more than an order of magnitude slower than Flink be-
cause it does not support native iterations. Spark launches
a new dataflow job for every iteration step, incurring a high
overhead. However, Flink is harder to use than Spark. In
Flink, users call the iterate higher-order function and give
the loop body as an argument. The loop body is a function
that builds the dataflow job fragment representing the ac-
tual loop body operations. This API is hard for non-expert
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users, such as data scientists,2 who prefer the imperative
control flow of Spark, similar to, e.g., Python, R, or Matlab.

Ideally, the system should allow users to express control
flow using simple imperative control flow statements, while
matching the performance of native control flow. In other
words, we want a system that marries the ease-of-use of
Spark with the high efficiency of Flink. This is challeng-
ing because normally a dataflow job is built from just the
method calls (e.g., map, join) that the user program makes
to the system. However, to build a complete cyclic dataflow
job from imperative control flow, the system also needs to
inspect other parts of the user code, such as the control flow
statements: It also has to insert special nodes and edges into
the dataflow job for such parts of the code.

We propose Mitos, a system where control flow support
matches Spark’s ease-of-use, and that significantly outper-
forms both Spark and Flink. Specifically, it outperforms
Spark because of native iterations, and it outperforms Flink’s
native iterations because of loop pipelining. Mitos uses
compile-time metaprogramming to parse an imperative user
program into an intermediate representation (IR) that is
based on static single assignment form (SSA). The IR ab-
stracts away specific control flow constructs and thus facili-
tates the building of a single (cyclic) dataflow job from any
program with imperative control flow. At runtime, Mitos
coordinates the distributed execution of control flow using
a novel coordination algorithm that also leverages our IR to
handle any general imperative control flow. In summary, we
make three major contributions:

(1) We propose a compilation approach based on metapro-
gramming to build a single dataflow job of a distributed da-
taflow system from a program with general imperative con-
trol flow statements. Specifically, we use Scala macros [7] to
rewrite the user program’s abstract syntax tree. (Sec. 4)

(2) We devise a mechanism that coordinates and commu-
nicates the control flow decisions between machines. The
mechanism supports any imperative control flow uniformly
(since it relies on the SSA representation of control flow),
and enables two optimizations: loop pipelining, i.e., overlap-
ping iteration steps, and loop-invariant hoisting, i.e., reusing
loop-invariant (static) datasets during subsequent iteration
steps. (Sec. 5)

(3) We experimentally evaluate Mitos using a real task and
microbenchmarks. We mainly compare its performance to
Flink (as a system supporting native control flow), and Spark
(as a system providing ease-of-use). Mitos is more than one
order of magnitude faster than Spark, and, surprisingly, it
is also up to 10.5× faster than Flink. (Sec. 6)

2 Motivating Example
We now show an example to illustrate the problems of

current dataflow systems with imperative control flow. Con-
sider a program that computes the visit counts for each page
per day in a year of page visit logs. Assume that the log of
each day is read from a separate file, and each log entry is
a page ID, which means that someone has visited the page.

2A simple search on stackoverflow.com for the terms Flink
iterate or TensorFlow while loop shows that many users are
indeed confused by such a functional control flow API.

1: for day = 1 .. 365 do
2: visits = readFile(“PageVisitLog ”+ day) // page IDs
3: counts = visits.map(x => (x,1)).reduceByKey( + )
4: counts.writeFile(“Counts ” + day)
5: end for
We cannot express this simple program in Flink’s native it-
erations, because Flink does not support reading and writing
files inside native iterations. However, not using native iter-
ations would cause each step to launch a new dataflow job,
which has an inherent high overhead (see Spark in Figure 1).

This simple program can easily become more complicated.
Imagine that instead of just writing out the visit counts for
each day separately, we want to compare the visit counts of
consecutive days. We replace Line 4 with the following:

4: if day != 1 then
5: diffs =
6: (counts join yesterdayCounts)
7: .map((id,today,yesterday) => abs(today - yesterday))
8: diffs.sum.writeFile(“diff” + day)
9: end if
10: yesterdayCounts = counts

If it is not the first day, we join the current counts with the
previous day’s counts (Line 6). We then compute pairwise
differences (Line 7), sum up the differences (Line 8), and
write the sum to a file. At the end, we save the current
counts so that we can use them the next day (Line 10). We
can see that it is natural to use an if statement inside the
loop. On top of that, we could replace the computation of
visit counts (Line 3) with a more complex computation that
itself involves a loop, such as PageRank. This would result in
having nested loops. Unfortunately, Flink does not provide
native support for either nested loops or if statements inside
loops. On the other side, Spark does not have native support
for any control flow at all.

Yet, this program can become even more complex. Imag-
ine we are interested only in a certain page type. As the logs
do not contain this information, we have to read a dataset
containing the page types before the loop. Inside the loop,
we then add the line below before Line 3, which joins the
visits and page types, and filters based on page type:

3: visits = (visits join pageTypes).filter(p => p.type=...)

It is worth noting that the pageTypes dataset does not change
between iteration steps, i.e., it is loop-invariant. This clearly
opens an opportunity for optimization: Even though the join
method is called inside the loop, we can build the hash table
of the join only once before the loop and probe it at every it-
eration step. This is only possible if the system implements
the loop as a native iteration. This is because all iteration
steps are in a single dataflow job, which enables the join
operator to keep the hash table throughout the entire loop.
Nevertheless, we cannot express this program using Flink’s
native iterations because of the aforementioned issues.

Note that iterations are at the core of machine learning
training algorithms and hyperparameter search. This makes
Mitos an important piece in modern analytics, such as the
ones targeted by Agora [21].

3 Mitos Overview
Mitos compiles a data analysis program with imperative

control flow statements into a single dataflow job for dis-
tributed execution on a dataflow system.

Figure 2 illustrates the general architecture of Mitos. A
user provides a data analysis program in a high-level lan-
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Figure 2: Mitos’ architecture.

guage with imperative control flow support. The language
has a scalable collection type (akin to RDD), which we call
bag henceforth. Given an imperative program, Mitos first
simplifies it to make each assignment statement have only a
single bag operation (e.g., a map). It then parses this simpli-
fied imperative program to an intermediate representation
(IR). From there, it creates a dataflow job of a distributed
dataflow system (Sec. 4). Finally, Mitos sends the job for ex-
ecution on the underlying dataflow system, and coordinates
the distributed execution of control flow (Sec. 5).

Generality for Backends. Although we use Flink as our tar-
get dataflow system, Mitos is general: It only requires a
dataflow system that allows for arbitrary stateful computa-
tions in the dataflow vertices, and supports arbitrary cycles
in the dataflow graph. Examples of systems that support cy-
cles are Flink, Naiad [17], Dandelion [20], and TensorFlow.
Note that, for Mitos’ loop pipelining to have a significant
effect, the system should support pipelined data transfers.

Generality for Languages. Although we use the Emma lan-
guage [2, 1] for Mitos, one could use other high-level data
analytics languages that have imperative control flow sup-
port. Importantly, the language should provide the system
with means to get information about the imperative control
flow statements. In the case of Emma, this is achieved by
compile-time metaprogramming. Specifically, we use Scala
macros [7]. Julia [4] and Python also have the required
metaprogramming capabilities. Alternatively, SystemDS [5]
could also be integrated with Mitos. SystemDS’ language is
an external [1] domain-specific language, and thereby Sys-
temML’s compiler can naturally inspect the control flow.

Background (Compiler Concepts). We rely on a couple of ba-
sic compiler concepts: static single assignment form (SSA)
and basic blocks. SSA [19] is often used in compilers to rep-
resent imperative control flow. When a program is in SSA,
each variable has exactly one assignment statement. An-
other important characteristic of SSA is that it abstracts
away from specific control flow constructs: The program is
divided into so-called basic blocks. A basic block is a con-
tiguous sequence of instructions with no control flow instruc-
tions, except at the end, where they conditionally jump to
the beginning of a basic block. For example, consider a loop
body consisting of a single basic block. The last instruction
jumps either back to the beginning of the loop body block
or to the basic block that is after the loop.

4 Dataflows Jobs from Imperative Programs
Our goal is to produce a single dataflow job from a user’s

imperative program that has arbitrary imperative control
flow constructs. Doing so is far from being a trivial task.
We need to inspect control flow statements and add extra
edges. For example, in iterative algorithms, there is typically
a dataflow node near the end of the loop body whose output
has to be fed into the next iteration step. A more specific
example is passing the current PageRanks from one step to
the next. Additionally, we need to include non-bag variables
into our dataflow jobs.

We leverage compile-time metaprogramming to overcome
the above-mentioned challenges and hence create a dataflow
job containing all the operations of an imperative program.
Specifically, we leverage Scala macros [7] to inspect and
rewrite the user program’s abstract syntax tree. In more de-
tail, we first simplify the imperative program (Sec. 4.1), and
then parse it into an intermediate representation (Sec. 4.2).
Both of these facilitate the translation of the user’s program
into a single dataflow job (Sec. 4.3).

4.1 Simplifying an Imperative Program
First, we split those assignment statements that have more

than one operation on their right-hand side. For example, we
split b = a.map(...).filter(...) into two assignments: tmp =
a.map(...); b = tmp.filter(...). For instance, Lines 8 & 9 in
Figure 3a are the splitted version of Line 3 in Sec. 2.

Next, we take care of non-bag variables, e.g., an Integer
loop counter or a Double learning rate. We wrap all these
variables into one-element bags. This normalization step
simplifies later dataflow-building by ensuring that we need to
deal with only bag operations instead of introducing special
cases for non-bag variables.

4.2 Intermediate Representation for General
Control Flow

To handle all imperative control flow statements uniformly,
Mitos transforms the program into an SSA-based IR [19].
SSA introduces a different variable for each assignment state-
ment: if a variable in the original program had more than
one assignment statement, we rename the left-hand sides of
all these assignments to unique names. At the same time, we
update all references to these variables with the new names.
However, this updating step is not directly possible if there
are different control flow paths that assign different values
to a variable. In this case, the different assignments in the
different control flow paths are renamed to different names
and hence there is no single name to change a reference into:

1: if ... then
2: a = ...
3: else
4: a = ...
5: end if
6: b = a.map(...)

Note that after we change the left-hand sides of the assign-
ments in Line 2 and 4 to different names, we cannot sim-
ply change the variable reference in Line 6 to just one of
them at compile time. Therefore, we have to choose the
value to refer to at runtime, based on the actual control
flow path that the program execution takes. SSA makes this
runtime choice explicit by introducing Φ-functions (Line 6):



1: if ... then
2: a1 = ...
3: else
4: a2 = ...
5: end if
6: a3 = Φ(a1,a2)
7: b = a3.map(...)

We explain how Mitos tracks the control flow and thus how
Φ-functions choose between their inputs in Sec. 5.

By relying on SSA, we abstract away from specific control
flow constructs, and thus handle all control flow uniformly:
Control flow constructs are translated into basic blocks and
conditional jumps at the end of basic blocks.

4.3 Translating an Imperative Program to a
Single Dataflow

After simplifying an imperative program and putting it
into our intermediate representation, the final step to build
a dataflow job is now simple: We create a single dataflow
node from each assignment statement and a single dataflow
edge from each variable reference. For example, from
c = a join b, we create a join node, whose two input edges
come from the nodes of the a and b variables.

To better illustrate this final translation step, we use our
Visit Count running example program (Sec. 2). Figure 3a
shows the program’s intermediate representation, with the
basic blocks as dotted rectangles, and Figure 3b shows the
corresponding Mitos dataflow. Note that the join with the
page types is not included for simplicity. As explained in
Sec. 4.1, we wrap non-bag variables in one-element bags.
We show the extra code for this in italic in Figure 3a. The
corresponding nodes in Figure 3b have thin borders. We
also create the nodes with the black background from as-
signments whose right-hand sides are Φ-functions (Lines 4–
5). Unlike other nodes, the origins of their inputs depend
on the execution path that the program has taken so far:
In the first iteration step, they get their values from outside
the loop (Lines 1 & 2), but then from the previous itera-
tion step (Lines 18 & 19). This choice is represented by
Φ-functions of the SSA form. The blue node corresponds to
the ifCond variable (Line 10), and the brown node to the
loop exit condition (Line 20). These condition nodes deter-
mine the control flow path. Edges with corresponding colors
are conditional edges. A condition node determines whether
a conditional edge with the same color transmits data in a
certain iteration step, as we explain in the following section.

5 Control Flow Coordination
Once a job is submitted for execution in an underlying

dataflow system, Mitos has to coordinate the distributed
execution of control flow constructs. It communicates con-
trol flow decisions between worker machines, gives appro-
priate input bags to operators for processing, and handles
conditional edges. We achieve this via two components: the
control flow manager and the bag operator host. The control
flow manager communicates control flow decisions among
machines (with one instance per machine). Next, each op-
erator is wrapped inside a bag operator host, which imple-
ments the coordination logic from the operators’ side. We
refer to these two components together as the Mitos runtime
(runtime, for short), and we detail them in the following.
Before diving into the runtime, we first give some pre-

liminaries. We will use the terms “logical” and “physical”

1: yesterdayCnts1 = EmptyBag
2: day1 = newBag(1)
3: do
4: yesterdayCnts2 = Φ(yesterdayCnts1,yesterdayCnts3)
5: day2 = Φ(day1,day3)
6: fileName = day2.map(x => “pageVisitLog” + x)
7: visits = readFile(fileName)
8: visitsMapped = visits.map(x => (x,1))
9: counts = visitsMapped.reduceByKey( + )
10: ifCond = day2.map(x => x != 1)
11: if ifCond then
12: joinedYesterday = counts join yesterdayCnts2
13: diffs = joinedYesterday.map(...)
14: summed = diffs.reduce( + )
15: outFileName = day2.map(x => “diff” + x)
16: summed.writeFile(outFileName)
17: end if
18: yesterdayCnts3 = counts
19: day3 = day2.map(x => x + 1)
20: exitCond = day3.map(x => x ≤ 365)
21: while exitCond

(a)
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day1

yesterdayCnts2

day2

visits

joinedYesterday

diffs

summed

writeFile

yesterdayCnts3

day3

exitCond

visitsMapped

counts

ifCond

fileName
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Figure 3: (a) SSA representation of Visit Count and (b) its
Mitos dataflow: The basic blocks are marked with dotted
rectangles; The small rectangles are dataflow nodes, corre-
sponding to variables in SSA; The variables corresponding to
the thick-bordered nodes are bags; The colored nodes make
control flow decisions and influence the same-colored edges.
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to refer to parallelization: A dataflow system parallelizes a
dataflow graph (job) by creating multiple physical instances
of each logical operator. A logical edge between two logical
operators is also multiplied into physical edges. Note that if
an operator requires a shuffle (e.g., joins), then one physi-
cal instance of the operator has many physical input edges
corresponding to one logical input edge.

5.1 Challenges for the Runtime
Challenge 1. Input elements from different bags can get mixed.
Mitos performs loop pipelining, i.e., different iteration steps
can potentially overlap. That is, at a certain time, different
operators or different physical instances of the same opera-
tor may be processing different bags that belong to different
iteration steps. An example is the Visit Count program’s



while ... do
x = ...
while ... do
y = ...
z = x join y

end while
end while

(a)

while ... do
...
if ... then
x1 = ...
y1 = ...

else
x2 = ...
y2 = ...

end if
x3 = Φ(x1, x2)
y3 = Φ(y1, y2)
z = x3 join y3

end while

(b)

Figure 4: Programs with non-trivial control flow structures.
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file reading: When any instance of the file-reading operator
is done reading the file of the current iteration step, the in-
stance can start working on the file that belongs to the next
step. The difficulty is that the output from these different
instances get mixed when the next operator is connected by
a shuffle. This is because in case of a shuffle, each instance
of the next operator receives input from all instances of the
previous operator. This means that the runtime has to sep-
arate input elements that belong to different steps, so that
appropriate inputs are used for computing an output bag.

Challenge 2. The matching of input bags of binary operators
is not always one-to-one. In the case of binary operators
(e.g., join), the runtime gives a pair of bags to an operator
at a time. To form a pair, we have to match bags arriv-
ing on one logical input edge to bags arriving on the other
logical input edge. This matching is not always one-to-one,
e.g., sometimes one bag has to be used several times, each
time matching it with a different bag. The example program
in Figure 4a demonstrates such a case. Input x of the join is
from outside the loop, while input y is from inside the loop.
This means that when the runtime provides the join with
pairs of input bags, it has to use a bag from x several times,
matching it with different bags from y each time.

Challenge 3. First-come-first-served does not work for choos-
ing the input bags to process. Even when the matching of
bags between the two logical input edges is one-to-one, the
following naive algorithm for matching them up does not
work: Assume we order bags in the same order as their first
elements arrive. In this case, we could match bags from each
of the inputs in the order they arrived, i.e., match the first
bag from one input with the first bag from the other input,
then match the second bags from both inputs, and so on.
However, doing so might lead to errors. Suppose that the
control flow in Figure 4b reaches the basic blocks in the fol-
lowing order: ABDACD. It is then possible that, due to
irregular processing delays, the operator of x3 gets data from
x1 first and then from x2, while the operator of y3 gets data
from y2 first and then from y1. This can happen because
the operators in the different if branches are not synchro-
nized, i.e., they do not agree on a global order in which to
process bags. This would clearly lead to an incorrect result:
The operator of z has to match the bag that originates from
x1 with the bag that originates from y1, and match the bag
that originates from x2 with the bag that originates from
y2. Note that this issue can arise only if we perform loop
pipelining. Otherwise, all operators finish the processing of
one step before any operator starts the next step.

5.2 Coordination Based on Bag Identifiers
We tackle the aforementioned challenges by introducing a

bag identifier (Sec. 5.2.1). We make sure that the same bags
and same bag identifiers are created during the distributed
execution as they would be in a non-parallel execution. More
specifically, we show how a physical operator instance can
determine during a distributed execution: (i) the identifier
of the output bag that it should compute next (Sec. 5.2.2);
(ii) the identifier of the input bags that it should use to
compute a particular output bag (Sec. 5.2.3), and; (iii) on
which conditional output edge it should send a particular
output bag (Sec. 5.2.4). Note that the Mitos runtime is
designed for allowing operators to start computing an output
bag as soon as its inputs start to arrive. This enables loop
pipelining, i.e., an operator can start a later step while other
operators are still working on a previous step.

5.2.1 Bag Identifiers with Execution Paths
A bag identifier encapsulates both the identifier of the log-

ical operator that created the bag and the execution path of
the program up to the creation of the bag. The execution
path is a sequence of basic blocks that the execution reached.
In a distributed execution, the execution path is determined
by the condition nodes. A condition node appends a basic
block to the path when it evaluates its condition. Condi-
tion nodes let all other operators know about these decisions
through the control flow manager. The local control flow
manager broadcasts the decision to all remote control flow
managers through TCP connections (which are independent
from dataflow edges). This way every physical instance of
every operator knows how the execution path evolves. The
bag identifiers are also used to separate elements that belong
to different bags (Challenge 1): we tag each element with
the bag identifier that it belongs to.

5.2.2 Choosing Output Bags
By watching how the execution path evolves, operators

can choose the identifiers of output bags to be computed:
When the path reaches the basic block of the operator, the
operator starts to compute the bag whose bag identifier con-
tains the current path. For example, in Challenge 3, this
means that the physical operator instances of both x3 and
y3 choose to compute the output bag with path ABD in its
identifier first, and then ABDACD.

5.2.3 Choosing Input Bags
When an operator O2 decides to produce a particular out-

put bag g2 next, it also needs to choose input bags for it
(Challenges 2 & 3). This choice is made independently for
each logical input.

In a non-parallel execution, the operator would use the lat-
est bag that was written to the variable that the particular
input refers to. We mirror this behavior in the distributed
execution, by examining the execution path while keeping in
mind the operator’s and input’s basic blocks. More specifi-
cally, for a logical input i of O2, let O1 be the operator whose
output is connected to i, b1 and b2 be the basic blocks of O1

and O2, and c be the execution path in the identifier of
g2. To determine the identifier of a bag coming from i to
compute an output bag g2, we consider all the prefixes of
c. Among these prefixes, we choose the longest one such
that it ends with b1. For example, in Figure 4a when we are
computing z and choosing an input bag from x, we always
choose the bag that the latest run of the outer loop com-



puted. Concretely, if we are computing the bag with the
path ABBABBB, then the prefix we choose is ABBA.

5.2.4 Choosing Conditional Outputs
Operators look at how the execution path evolves after a

particular output bag, and send the bag on such conditional
output edges whose target is reached by the path before
the next output bag is computed. Specifically, let O1 be an
operator that is computing output bag g, e be a conditional
output edge of O1, O2 be the operator that is the target
of e, b1 be the basic block of O1, b2 be the basic block of
O2, and c be the execution path of the identifier of g. Note
that the last element of c is b1. O1 should examine each
new basic block appended to the execution path and send
g to O2 when the path reaches b2 for the first time after c
but before it reaches b1 again. This means that instances of
O1 can discard their partitions of g once the execution path
reaches such a basic block from which every path to b2 on
the control flow graph goes through b1.

5.3 Optimization: Loop-Invariant Hoisting
We now show how to incorporate loop-invariant hoisting

into our dataflows. That is, we show how to improve perfor-
mance when an iteration involves a loop-invariant (static)
dataset, which is reused without updates during subsequent
iteration steps. We can see an example of this in our run-
ning example in Sec. 2: The pageTypes dataset is read from
a file outside the iteration and is used in a join inside the
iteration. Another example is any iterative graph algorithm
that joins with a static dataset containing the graph edges.

It is a common optimization to pull those parts of a loop
body that depend on only static datasets outside of the loop,
and thus execute them only once [10, 6, 9]. However, launch-
ing new dataflow jobs for every iteration step prevents this
optimization in the case of binary operators where only one
input is static. For example, if a static dataset is used as the
build-side of a hash join, then the system should not rebuild
the hash table at every iteration step. Mitos operators can
keep such a hash table in their internal states across itera-
tion steps. We make this possible by having a single dataflow
job, where operator lifetimes span all the steps.

We now show how to incorporate this optimization into
Mitos. Normally, the bag operators drop the state that they
have built up during the computation of a specific output
bag. However, to perform loop-invariant hoisting, the run-
time lets the bag operators know when to keep their state
that they build up for an input (e.g., the hash table of a hash
join). Assume, without loss of generality, that the first input
of the bag operator is the one that does not always change
between output bags, and the second input changes for every
output bag. Between two output bags, the runtime tells the
operator whether the next bag coming from the first input
changes for the next output bag. If it changes, the operator
should drop the state built up for the first input. Other-
wise, the operator implementation should assume that the
first input is the same bag as before. For our example in
Figure 4a, the first input bag changes at every step of the
outer loop, but not between steps of the inner loop.

6 Evaluation
We implemented Mitos on Java 8 and Scala 2.11 and used

Flink 1.6 as an underlying dataflow system.
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Figure 5: Strong scaling for Visit Count.

6.1 Setup
Hardware. We ran our experiments on a cluster of 26 ma-
chines, each with 2×8-core AMDOpteron 6128 CPUs, 32GB
memory, 4×1TB disks, Gigabit Ethernet, on Ubuntu 18.04.
Tasks and Datasets. We used the Visit Count example intro-
duced in Sec. 2, where we compare visit counts of subsequent
days. We used two versions: one with and one without the
join of the pageTypes dataset. We have generated random
inputs, with the visits uniformly distributed.
Baselines. We performed most of our experiments against
Spark 3.0 and Flink 1.6, with both running on OpenJDK 8.
We stored input data on HDFS 2.7.1. We also performed
microbenchmarks against Naiad [17] and TensorFlow [22].
Repeatability. We report numbers for the average of three
runs. We also provide the code for Mitos3.

6.2 Strong Scaling
We start by evaluating how well Mitos scales with respect

to the number of worker machines, and how it performs vis-
a-vis two state-of-the-art systems: Spark and Flink.

Figure 5 shows the results for the Visit Count task. The
size of the input for one day is 21 MB, and there are 365
days, i.e., the total input size is 7.6 GB. We observe that Mi-
tos scales gracefully with the number of machines. However,
Spark and Flink show a surprising increase in execution time
as we give more machines to the system. This is because of
their overhead in each iteration step increases with the num-
ber of machines, and thereby becoming a dominant factor
in the execution time. We study this iteration overhead in
Sec. 6.4. In particular, we observe that with the maximum
number of machines, Mitos is 10× faster than Spark and 3×
faster than Flink. The latter is an interesting result as Flink
provides native control flow support. Our system improves
over Flink because it performs loop pipelining.

6.3 Scalability With Respect to Input Size
Our goal is now to analyze how well Mitos performs with

different input dataset sizes for Visit Count. Figure 6 shows
the results of this experiment. We observe that our system
significantly outperforms Spark and the performance gap
increases with the dataset size: it goes from 23× to more
than two orders of magnitude. This is because of the loop-
invariant hoisting optimization (see Sec. 6.5 for a detailed
evaluation). Mitos outperforms also Flink, by 3.1–10.5×,
while being easier to use due to its imperative control flow
interface. The surprisingly large improvement factor over
Flink for small data sizes is due to Flink’s native iteration
having a large per-step overhead due to a technical issue4.

3https://github.com/ggevay/mitos
4https://issues.apache.org/jira/browse/FLINK-3322

https://github.com/ggevay/mitos
https://issues.apache.org/jira/browse/FLINK-3322
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Figure 7: Log-log plot for the per-step overhead.

6.4 Iteration Step Overhead
We isolate the step overhead from the actual data pro-

cessing in a microbenchmark: a simple loop with minimal
actual data processing in each step. In this experiment, we
also considered TensorFlow and Naiad as baselines to better
evaluate the efficiency of Mitos. Figure 7 shows the results.
We observe that the native iteration of Mitos is about two
orders of magnitude faster than launching new jobs for each
step, i.e., Spark and Flink (separated jobs). It is interesting
to note that the job launch overhead increases linearly with
the number of machines. Importantly, this means that scal-
ing out to more machines makes the step overhead problem
of Spark worse. Furthermore, we can also see that Mitos
matches the performance of other systems with native itera-
tions, i.e., Flink, TensorFlow, and Naiad, despite being able
to handle more general control flow.

6.5 Loop-Invariant Hoisting
We proceed to evaluate the loop-invariant hoisting opti-

mization in Mitos. For this, we used the version of the Visit
Count example that has the join with the loop-invariant
pageTypes dataset at every iteration step. Figure 8 shows
the results when varying the size of the loop-invariant dataset,
while keeping the other part of the input constant (13 GB).
We observe that increasing the loop-invariant dataset size
has very little effect on Mitos and Flink. This is because
they perform the loop-invariant hoisting optimizations i.e.,
they build the hash table for the join only once and then
just probe the hash table at every iteration step.

On the other hand, the execution time of Spark linearly
increases because Spark does not perform this loop-invariant
hoisting optimization. As a result, Mitos is up to 45× faster
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Figure 8: Varying the loop-invariant dataset size.
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Figure 9: Loop pipelining with varying machine count.

than Spark. Note that, in our Spark implementation, we
manually inserted a repartitioning of the pageTypes dataset
once before the loop.

To isolate the effect of loop-invariant hoisting from other
differences between Spark and Mitos, we also ran Mitos with
loop-invariant hoisting switched off. In this case, its execu-
tion time increases linearly with the size of the loop-invariant
dataset, similarly to Spark. Therefore, Mitos is up to 11×
faster than Mitos without loop-invariant hoisting.

6.6 Loop Pipelining
We now analyze the loop pipelining feature of Mitos, which

allows it to outperform Flink. Recall that, even though Flink
also provides native iteration support, our system is up to
3× faster in Figure 5, 3.1–10.5× faster in Figure 6, and 5–6×
faster in Figure 8. As one might think that this performance
difference could come from other factors, we ran an exper-
iment to better isolate the effect of loop pipelining. We
ran Visit Count (without the pageTypes dataset) in Mitos
with and without the loop pipelining optimization. Figure 9
shows the results. Overall, we clearly observe the benefits
of loop pipelining: Our system can be up to 4× faster with
than without loop pipelining, which is made possible by our
control flow coordination mechanism.

7 Related Work
Arvind et al. [3] include control flow into dataflow graphs

through the switch andmerge primitives (operations), which
TensorFlow recently adopted [22]. Mitos, in contrast to Ten-
sorFlow, applies to general data analytics in addition to ma-
chine learning. The recent AutoGraph [16] and Janus [15]
systems compile imperative control flow to TensorFlow, which
makes them not directly applicable for general data analyt-
ics. Hirn et al. [13, 14] compile from PL/SQL’s imperative



control flow to recursive SQL queries. Gévay et al. [12] sur-
vey the literature on how various distributed dataflow sys-
tems handle control flow. Matryoshka [11] adds control flow
support to the flattening technique for nested parallelism.

Several systems natively support a limited number of con-
trol flow constructs, such as Flink [10], and Naiad [17]. How-
ever, they rely on functional-style APIs, where each con-
trol flow construct is a higher-order function. For exam-
ple, in TensorFlow, users call the while loop method and
provide two functions: one for building the dataflow of the
loop body and another for building the dataflow of the loop
exit condition. Similarly, in Flink, users call the iterate
method and supply the loop body as a function that builds
the dataflow job fragment representing the loop body. A
simple search for these Flink and TensorFlow methods on
stackoverflow. com shows many users being confused by
this API. Mitos allows users to write imperative control flow
statements, such as regular while-loops and if statements,
which makes it more accessible.

Other works have added iteration to systems that do not
support control flow natively. HaLoop [6] and Twister [9] ex-
tend MapReduce to provide support for iterations. Nonethe-
less, in contrast to Mitos, the programming model of these
systems is directly based on MapReduce rather than build-
ing complex programs using a collection-based API.

Although loop-invariant hoisting is a well-known optimiza-
tion in the context of distributed data analytics [10, 17, 6,
9], none of these works supports programs with imperative
control flow constructs. SystemDS [5] does, but it cannot
perform it on a binary operator having only one static in-
put, e.g., the hash join that we used in Sec. 5.3.

8 Conclusion
Modern data analysis requires complex control flow con-

structs, yet dataflow systems either suffer from poor perfor-
mance for programs with control flow or are hard to use.
We presented Mitos, a system that allows users to express
control flow by easy-to-use imperative constructs, and still
executes these programs efficiently as a single dataflow job.
Mitos uses an intermediate representation based on SSA,
which abstracts away from specific control flow constructs.
Relying on SSA allows us to handle all imperative control
flow in a uniform way, both when building a dataflow job,
and when coordinating the distributed execution of control
flow statements. Our coordination mechanism enables loop
pipelining and loop-invariant hoisting.
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