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ABSTRACT
Companies increasingly rely on stream processing engines (SPEs) to
quickly analyze data and monitor infrastructure. These systems en-
able continuous querying of data at high rates. Current production-
level systems, such as Apache Flink and Spark, rely on clusters of
servers to scale out processing capacity. Yet, these scale-out systems
are resource inefficient and cannot fully utilize the hardware. As
a solution, hardware-optimized, single-server, scale-up SPEs were
developed. To get the best performance, they neglect essential fea-
tures for industry adoption, such as larger-than-memory state and
recovery. This requires users to choose between high performance
or system availability. While some streaming workloads can afford
to lose or reprocess large amounts of data, others cannot, forcing
them to accept lower performance. Users also face a large perfor-
mance drop once their workloads slightly exceed a single server
and force them to use scale-out SPEs.

To acknowledge that real-world stream processing setups have
drastically varying performance and availability requirements, we
propose scale-in processing. Scale-in processing is a new para-
digm that adapts to various application demands by achieving high
hardware utilization on a wide range of single- and multi-node
hardware setups, reducing overall infrastructure requirements. In
contrast to scaling-up or -out, it focuses on fully utilizing the given
hardware instead of demanding more or ever-larger servers. We
present Darwin, our scale-in SPE prototype that tailors its execution
towards arbitrary target environments through compiling stream
processing queries while recoverable larger-than-memory state
management. Early results show that Darwin achieves an order of
magnitude speed-up over current scale-out systems and matches
processing rates of scale-up systems.

1 INTRODUCTION
Today’s large-scale Internet companies use stream processing en-
gines (SPEs) to process up to terabytes of incoming data per sec-
ond [1]. However, recent studies show that widely used SPEs such as
Apache Flink and Spark Streaming do not fully utilize the underly-
ing hardware and are resource inefficient [26, 27]. Thus, companies
must scale-out their analytics jobs to millions of cores and tens of
thousands of commodity servers. At this scale, large infrastructure
teams are necessary to optimize analytics pipelines to maintain
such a high level of processing capacity.

We briefly illustrate the required scale with an example from
Alibaba’s 2020 Singles’ Day. At its peak, they processed 4 billion
events per second in a Flink cluster with 1.5 million CPUs [1].
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Running a general purpose VM (e.g., ecs.g6.4xlarge) with 16 cores
on Alibaba’s cloud currently costs $1/hour [2]. Scaling this to 1.5
million cores with 93,750 VMs totals at $93,750/hour or $2.25 million
for the entire day, just in nominal infrastructure cost.

To overcome resource inefficiency, new scale-up SPEs were pro-
posed that, e.g., use query compilation [11], optimize for NUMA-
awareness [28], or utilize GPU-CPU co-processing [16], promising
up to hundreds of millions of events per second on a single node.
To showcase the stark contrast of scale-up to scale-out system per-
formance, we assume a scale-up system with 100 million events
per second in our Alibaba example. With this system, the workload
could run on 40 VMs with 52 cores each (e.g., ecs.g6.26xlarge at
$6/h) for a total of $5760/day [2], resulting in a nearly 400× reduc-
tion in price. While this calculation is simplified, it clearly shows
the huge gap between what is achieved with current scale-out SPEs
and what is possible with proposed scale-up systems.

However, the price to pay for this high performance and reduced
infrastructure cost lies in a reduced feature set. While scale-up
systems utilize the hardware more efficiently, they lack support
for larger-than-memory state and crash recovery, which limits
their use in production setups. When the server or application
crashes, all state is lost and must be reprocessed. For workloads
with small windows, reprocessing includes only a few hours of old
data. For unbounded or large-window streaming jobs with global
state, reprocessing may span days or weeks of old data, which
quickly becomes infeasible.

In our example, additional problems arise that limit the use of
scale-up systems. Even with modern high speed networks, it is
currently not possible to ingest TB of data per second into a single
server. To overcome this limitation, large-scale pipeline must build
on scale-out systems, accepting the performance penalty they entail.
Thus, we see a huge performance gap between workloads that fit
onto a single server and can run in scale-up systems and ones that
do not fit onto a single server and must retreat to scale-out SPEs.

In addition to the limitations discussed above, most companies
simply do not operate at Internet-scale and process significantly
less data. These smaller companies often cannot afford large infras-
tructure teams to optimize and tune their multi-node pipelines. Due
to the resource inefficiency of current systems, this puts them at
the disadvantage of still needing clusters or large machines to ana-
lyze smaller data volumes. And even for large companies, reducing
these costs is highly beneficial as infrastructure is the dominant
cost factor in cloud environments [10].

Also, regardless of scale, various business workloads require
high availability and cannot afford a full reprocessing after all in-
memory data is lost due to a crash in scale-up systems. This again
forces users to chose inefficient scale-out systems over highly tuned
scale-up SPEs, as production-grade scale-out systems support per-
sistent, larger-than-memory state and crash recovery. However,
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Table 1: Feature set of existing SPEs with regard to resource efficiency and state management.

System Scale Language State Recovery Hardware Resource Efficiency
Flink [4] out JVM in-memory + persistent ✓ –

Spark Streaming [25] out JVM in-memory + persistent ✓ –
Drizzle [23] out JVM in-memory + persistent ✓ –

Hazelcast Jet [9] out JVM distributed in-memory ✓ cooperative multi-threading
Briskstream [28] up JVM in-memory – NUMA-aware scheduling

Saber [16] up JVM in-memory – CPU/GPU co-processing
Trill [5] up C# in-memory – query compilation, row/column layout

StreamBox [20] up C++ in-memory – NUMA-aware, lock-free
Grizzly [11] up C++ in-memory – adaptive query compilation, NUMA-aware

scale-out SPEs rely on slow secondary storage for this, further
decreasing overall system performance. Recent developments in
storage technology significantly improve the performance of per-
sistent storage devices, allowing us to reduce the gap between
high-performance and persistent state in SPEs. Persistent Memory
(PMem) offers byte-addressability at close-to-DRAM speed with
SSD-like capacity [7, 24] and modern NVMe SSDs achieve up to
7 GB/s and two million random IOPS [13]. Efficiently incorporating
these technologies into streaming applications has the potential to
radically shift the way SPEs interact with persistent state.

Following both efficient hardware utilization and durable state
management, we observe that systems support either one or the
other, but not both. In this space, we identify three key challenges
current SPEs face, resource inefficiency, state management, and over-
all system optimization. Overcoming these challenges heavily im-
pacts SPE performance and constitutes an important step towards
industry adoption and system maturity.

Based on these challenges, we propose scale-in stream process-
ing, a new paradigm that adapts to varying application demands by
achieving high hardware utilization on a wide range of hardware
setups, reducing overall infrastructure requirements. In contrast to
scaling-up or -out, it focuses on fully utilizing the given hardware
instead of demanding more or ever-larger servers. Scale-in process-
ing combines scale-out and scale-up concepts to efficiently process
streaming data without sacrificing larger-than-memory state, crash
recovery. To scale-in, we adapt common scale-up approaches that
optimize for the underlying hardware and common scale-out ap-
proaches that enable large state management. On the one hand, this
allows scale-in SPEs to support large-scale processing when raw
processing power is needed. On the other hand, when data volumes
are low and infrastructure cost is more important than performance,
scaling-in reduces the hardware requirements, resulting in lower
infrastructure cost and operational complexity, while still offering
key functionality such as crash recovery. Compared to the current
performance drop when switching from scale-up to scale-out SPEs,
scale-in allows for graceful scaling when workloads exceed single
server by optimizing for both single- and multi-node setups.

To this end, we introduce Darwin, our scale-in SPE prototype.
Darwin leverages query compilation and modern storage to fully
utilize the underlying hardware and handle large recoverable state.
In summary, we make the following contributions.

1) We propose scale-in stream processing, a new paradigm that
adapts to varying application demands by achieving high hard-
ware utilization on a wide range of hardware setups, reducing
overall infrastructure requirements.

2) We present Darwin, a scale-in SPE prototype that optimizes for
high overall hardware utilization while supporting recoverable
larger-than-memory state.

The remainder of this paper is structured as follows. In Section 2,
we present current challenges in SPEs. In Section 3, we present
scale-in processing and its opportunities. We introduce our scale-in
SPE prototype Darwin in Section 4 before concluding in Section 5.

2 CURRENT SPE CHALLENGES
Recent work in stream processing focuses either on scale-up or
scale-out concepts. Scale-up systems optimize for high system uti-
lization while scale-out systems focus on application stability and
efficient large state management. Both areas show promising ad-
vancements, but combining them has received little attention. In
Section 2.1, we compare nine SPEs to see how they offer resource ef-
ficiency and state management. From this comparison, we observe
that numerous challenges remain in the intersection of scale-up
and scale-out systems. In Sections 2.2 to 2.4, we present three ma-
jor challenges that current SPEs face, resource inefficiency, state
management, and overall system optimization.

2.1 Focus of Existing Systems
In this section, we briefly discuss the feature sets of common SPEs
with regard to resource efficiency and state management. We show
the comparison in Table 1. For most features, we observe a clear
distinction between scale-up and scale-out systems. While scale-out
systems support recoverable, larger-than-memory state with persis-
tent or distributed state management, all scale-up systems support
only in-memory state without recovery. Instead, scale-up systems
offer optimizations for higher hardware resource utilization on a
single server. These include query compilation, NUMA-awareness,
lock-free data sharing, and GPU co-processing. Except for NUMA-
awareness, none of these are exclusive to large servers and are
applicable optimizations also in commodity machines. They rep-
resent a large area of improvement for scale-out systems, which
currently offer very little hardware optimization.
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Finally, all selected scale-out systems target the JVM with man-
aged languages. The group of scale-up systems is not as homoge-
neous, spanning managed languages and C++. The recent scale-
up SPE Grizzly demonstrates large performance gains by using a
system language such as C++, outperforming other scale-up and
JVM-based systems by orders of magnitude [11]. Thus, using a
system-level language is highly advantageous to achieve high uti-
lization when targeting the underlying hardware.

Overall, we observe distinct characteristics for scale-up and scale-
out systems. While none of the scale-up systems offer recoverable
state management, the scale-out systems neglect hardware opti-
mizations. To achieve high performance and resource efficiency,
future SPEs must focus on combining these features. Scaling-up
should not come at the price of data loss and scaling-out should
not come at the price of poor hardware utilization.

2.2 Resource Inefficiency
Recent studies show that widely used scale-out SPEs do not fully
utilize the underlying hardware [26, 27]. When designing future
SPEs, overcoming this resource inefficiency has great potential to
reduce cost and improve performance. Higher resource utilization
leads to higher system performance, i.e., higher throughput or
lower latency. However, when processing smaller data volumes,
scalability is not the primary concern for many users. Efficient
server use allows users to reduce the number of required servers
while still satisfying their performance needs. This not only reduces
infrastructure cost but also overall system complexity.

2.3 State Management
Recent scale-up SPEs focus on maximizing hardware utilization
through, e.g., query compilation [11], CPU-GPU co-processing [16],
or NUMA-awareness [28]. Yet, none of these systems support larger-
than-memory state or crash recovery, both important features for
industry adoption. We identify efficient state management as a
largely uninvestigated topic in scale-up SPEs compared to numer-
ous computational improvements.

Common scale-out SPEs such as Apache Flink use persistent
state backends (e.g., RocksDB) to handle larger-than-memory state.
However, general-purpose key-value stores do not always fit stream-
specific state access patterns [14]. They treat state as a black box,
while many streaming-specific patterns are known in advance. Also,
currently used general-purpose stores are not optimized for emerg-
ing storage technology. Research on modern storage-aware systems
shows significant performance gains compared to traditional ap-
proaches [3, 17]. Storage-aware and streaming-specific state man-
agement presents a wide range of research challenges to improve
the overall performance of modern SPEs.

2.4 Overall System Optimization
Database systems show that optimizing the overall system brings
large performance benefits. Databases are commonly implemented
in system languages such as C and C++, which compile to machine
code. They are highly tuned towards the underlying system for
maximum performance and offer, e.g., hardware-conscious joins
and indexes, CPU-optimized scans, or NUMA-aware scheduling.

On the other hand, many widely used SPEs are written in high-
level languages such as Java and Scala, targeting the JVM. Especially
memory-management has a high performance impact due to, e.g.,
garbage collection overhead. Also, common SPEs often do not opti-
mize internal operators at the level known from databases. Overall,
we observe a major gap between optimization levels in SPEs and
database systems. With the increasing maturity of SPEs, reducing
this gap is essential to improve the performance of future applica-
tions. Fortunately, many operations are similar in databases and
SPEs, allowing us to benefit from database optimization research.

3 SCALE-IN STREAM PROCESSING
To overcome the current challenges in stream processing and ac-
knowledge the fact that real-world setups have drastically varying
performance and availability requirements, we propose scale-in pro-
cessing. Scale-in processing is a new paradigm that adapts to vary-
ing application demands by achieving high hardware utilization
on a wide range of hardware setups, reducing overall infrastruc-
ture requirements. In contrast to scaling-up or -out, it focuses on
fully utilizing the given hardware instead of requiring more or ever-
larger servers. We identify six opportunities for scale-in SPEs, based
on the challenges discussed in Section 2. In Section 3.1, we discuss
how query compilation and specialized network communication
aid in overcoming general resource inefficiency. In Section 3.2, we
present three opportunities to improve state management in scale-
in systems: emerging persistent storage media, crash recovery, and
streaming-specific access patterns. To increase the overall system
performance, we discuss CPU-aware optimizations in Section 3.3.

To achieve high performance, scale-up systems commonly op-
timize for large high-end servers and scale-out SPEs commonly
add more commodity servers. Solving performance limitations by
adding more machines results in neglected individual server perfor-
mance and poor resource utilization in scale-out systems. On the
other hand, current scale-up systems are confined to a single server
and require ever-larger machines to overcome performance issues.
By combining both scale-up and scale-out concepts, scale-in SPEs
treat every machine as a server that requires optimization, even
if it contains only off-the-shelf components. To this end, scale-in
systems adapt their execution to the underlying hardware and the
specified queries. For large workloads, scale-in systems achieve the
raw performance known from scale-up systems and for medium
or small pipelines, they reduce hardware requirements while still
offering key functionality such as crash recovery.

3.1 Opportunities for Resource Inefficiency
In this section, we discuss how query compilation and network
communication aid in overcoming general resource inefficiency.

Query Compilation. At the core of scale-in processing, query
compilation allows for hardware-conscious optimization on each
server. This has many advantages, which are clearly demonstrated
in previouswork on SPEs [11] and database systems [21]. Compiling
queries allows the compiler to optimize the execution for the given
CPU without pre-compiling the runtime engine for all possible
systems. This enables compiler features such as auto-vectorization
and architecture-aware tuning without any development overhead.
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To highlight this advantage, we run a short experiment with
CPU-specific optimization enabled and disabled.We execute a query
in-memory based on Nexmark Q3, containing an auction-like setup
with a join and aggregation. We first compile the query generi-
cally, i.e., no CPU-aware compiler flags. This represents the general
case in which we do not target the underlying hardware and use
a generic implementation for all servers. We then enable CPU-
optimizations via -march=native. On an Intel Xeon Gold 5220S
CPU, adding the CPU optimizations achieves a 12% higher through-
put without any changes to the code. This shows that even without
explicitly writing CPU-optimized code, automatically targeting the
underlying hardware is very beneficial.

Additionally, query compilation allows us to integrate query
information as compile-time information, enabling additional opti-
mizations. A push-based execution model improves data locality
and reduces the number of virtual method calls compared to in-
terpreted execution by compiling the entire execution into a tight
loop [21]. Overall, query compilation allows us to tailor the execu-
tion exactly to the given query, system, and user requirements. It is
the foundation for numerous other optimizations that we describe
below, such as CPU optimization and state management.

Network Communication. An important component of scale-
out SPEs is network communication between the servers. Recent
work shows that the network constitutes a performance bottleneck
and causes resource inefficiency on the servers [15]. In their study,
the authors show that scale-out systems like Flink reach network
limits long before they reach the actual saturating data rate. When
performing a distributed aggregation across multiple nodes with 1
GBit LAN, Flink sustains only 1.2 million events/s, which amount to
only 40 MB or 1/3 of the network bandwidth. While this constitutes
the main bottleneck in 1 GBit LAN, today even medium-sized cloud
instances have 10 or more GBit/s network connections, matching
or surpassing SSD storage bandwidth. Managing this bandwidth
with techniques like late merging [26] to reduce data shuffling or
user-space networking to reduce TCP/IP overhead [18], enables
higher effective bandwidth utilization even for smaller workloads.

For large-scale workloads, advances in network technology dras-
tically improve cross-server communication performance via high
bandwidth Infiniband and RDMA connections of up to 200 GBit/s
per network card [19]. Current research demonstrates that SPEs ben-
efit from RDMA for data ingestion [26] and that RDMA-based mes-
sage passing achieves very high throughput with low latency [22].
These two findings show that there is a large potential for opti-
mizing SPEs through fast RDMA connections. Especially in combi-
nation with modern byte-addressable storage, such as PMem, this
opens new opportunities for more efficient checkpointing, state
migration, and recovery approaches.

3.2 Opportunities for State Management
In this section, we present three opportunities to improve state man-
agement in scale-in systems: emerging persistent storage media,
crash recovery, and streaming-specific access patterns.

Persistent Storage. Scale-out systems use persistent storage to
handle larger-than-memory state. This entails a large performance
decrease as storage access is significantly slower than DRAM access.
However, new persistent storage technology is closing the gap
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between slow secondary storage and fast volatile memory. Recent
work on PMem storage systems shows that persistency can be
achieved with less than 2× performance decrease [3]. Also, fast
NVMe SSDs are used in modern database systems to extend storage
capacity while still offering close-to-DRAM performance [17].

We show the performance of modern storage systems in Figure 1.
We choose Intel’s TBB concurrent hash map as a representative
of in-memory state management, as it is used in recent scale-up
SPEs [11, 20]. We choose RocksDB as a representative of a classical
generic byte-based key-value store, as it is used in Apache Flink.
Finally, we choose Viper as a representative of modern storage-
aware key-value stores, which is based on a hybrid DRAM-PMem
index and log structure [3]. Viper stores records directly in a PMem
logwithout intermediate buffering in DRAM. To leverage the higher
random access performance of DRAM compared to PMem for index
updates, its index is located in DRAM. This hybrid design achieves
4× higher insert rates than PMem-only stores.

We prefill 100 million 50 Byte records before measuring another
100 million inserts/gets with 32 threads. Viper slightly outperforms
TBB for inserts and is only ~2× slower for gets. We note that re-
cent work shows TBB to not be the fastest concurrent in-memory
storage system [6], but it is used in common scale-up SPEs [11, 20]
and serves as an in-memory reference. The clear gap between
Viper/TBB and RocksDB shows the major shift in persistent stor-
age performance that systems can leverage. Unlike existing scale-
out systems, storage-aware scale-in systems do not need to trade
performance for persistence. Fast storage enables both efficient
recoverability and high overall throughput.

Recovery. Considering server-local state is necessary when
restarting an application after a crash and highly beneficial for reg-
ular application restarts. Scale-up systems run on high-end servers
that contain hundreds of GBs of state. For specialized hardware,
replacing the server is not always possible and transferring its state
to another server quickly becomes a recovery bottleneck. In this
case, state recovery must occur on the same server. Additionally,
current scale-out SPEs use server-local state when restarting an
application on the same node without a crash, e.g., when re-scaling
or deploying a newer version. For both recovery and restarting, it
is essential to have persistent state that outlives the application.

We show the advantage of using modern storage technology to
achieve efficient checkpointing and recovery in Figure 2. In this
microbenchmark, we store 200 million 50 Byte records, i.e., 10 GB
raw data, in three different storage instances. As representatives
of their respective system classes, we again use TBB, Viper, and
RocksDB. To persist TBB’s data, we store all entries in a tightly
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packed byte array in a file stored on SSD. We see that the persistent
systems RocksDB and Viper perform a checkpoint very efficiently.
RocksDB must only flush its volatile write buffer and Viper must
persist only metadata. TBB takes significantly longer, as all in-
memory data is converted and copied to secondary storage, which
is I/O-bound. For recovery, we see that RocksDB performs best, as it
reads only metadata and immediately accepts requests. Viper must
recover its volatile index, which depends on the number of entries.
TBB reads all data from storage and re-creates its in-memory state,
which takes significantly longer than the other two systems.

This experiment shows a large difference in the recovery perfor-
mance of volatile and persistent state. Expanding on this is a key
element of scale-in stream processing, as it impacts both runtime
performance while checkpointing and start-up time after a crash.
With state in the order of TBs, re-creating in-memory state from
secondary storage becomes infeasible.

Streaming-specific State Access. In addition to storage-aware
state management, streaming-specific access patterns improve per-
formance even on slow storage media. We demonstrate this based
on current behavior in Apache Flink. In Flink, windowed opera-
tions store incoming events in a list of records belonging to a given
window. When using the RocksDB backend, the operator gets the
current value, deserializes it, appends the new value, and serializes
the updated list back to its byte representation. This incurs an un-
necessarily high overhead for each record. As the records are not
needed immediately and are accessed only as a list, they can be
buffered in small in-memory lists before writing to RocksDB.

We show the effects of buffering records in Figure 3. In this ex-
periment, we prefill 100 million 50 Byte records before performing
another 100 million inserts with 32 threads. We distinguish between
a shared instance, in which all threads operate on the same store,
and individual instances, in which each thread has its own store.
We store the records in small blocks, consisting of up to 50 records.
We observe that Viper outperforms TBB for individual instances
but performs worse for the shared one. This difference is important
when designing streaming state, as it can either be shared across
operator instances, e.g., in Grizzly [11], or partitioned by key, e.g.,
in Flink. Our results show that depending on the underlying stor-
age and chosen system, one or the other is more beneficial. More
importantly, RocksDB performs between 14–20× worse than TBB
when storing individual records, showing the high overhead of per-
sistent storage. However, compared to individual records in TBB, 50
grouped records are only 2–3× slower in RocksDB. This shows that
streaming-specific access significantly improves state performance,
even for low-end storage media.

3.3 Opportunities for System Optimization
In this section, we discuss CPU-aware optimizations to increase
the overall system performance.

CPU-aware Optimization. Poor CPU utilization is a major
contributor to resource inefficiency in current scale-out SPEs [27].
To overcome this, scale-in SPEs target the system’s CPU to achieve
higher overall utilization. Recent work shows the potential of adapt-
ing OLAP queries towards a given workload and system setup [12].
Exploring different computation modes, such as compiled or vector-
ized execution, is heavily researched in databases. However, they
have received little attention in SPEs so far. Transferring these con-
cepts to SPEs has the potential to further increase the overall system
performance. For example, storing network-buffered records in a
row or column format depending on the data and query allows for a
performance trade-off between processing time and ingestion rate,
while also enabling scalar or vectorized execution modes.

Another optimization is based on simultaneous multithreading
(SMT). Depending on the workload, using SMT hides memory
access latency while not using it improves cache locality. When
multiple operators have low CPU consumption, they are placed on
the same core to achieve better utilization. When CPU utilization
is high, features such as explicit SIMD instructions achieve higher
throughput with the same utilization. While query compilation
generally targets the underlying CPU, explicit optimizations and
domain knowledge additionally improve performance.

4 INTRODUCING DARWIN
In this section, we present Darwin, our scale-in SPE prototype. Dar-
win treats each server it runs on like a scale-up system by fully
utilizing the given hardware configuration. To this end, it uses
query compilation to generate efficient execution plans for each
query targeting the server’s hardware. This targeting currently
includes storage-aware state management and CPU-specific opti-
mizations. As Darwin is still in early stages, we plan to add support
for more opportunities discussed in Section 3, e.g., network-aware
data transfer to achieve efficient multi-server processing or efficient
checkpointing and recovery mechanisms.

4.1 Darwin Architecture
In this section, we present Darwin’s high-level architecture, com-
ponents, and execution flow, as shown in Figure 4.

Data Pipeline. Users create queries via a data pipeline object,
which currently offers an SQL-like API inspired by Apache Flink’s
Table API [8]. Additionally, the user configures runtime options
such as the compiler to use, which storage medium to use for state,
and which architecture to optimize for. To run on heterogeneous
hardware without manually adapting for each server, this config
also auto-detects system characteristics.

Query Plan. From the query, a query plan is created. The query
plan represents the logical version of the query, similar to rela-
tional algebra for classical database queries. Compared to relational
algebra, it requires a few additions, e.g., for windowing logic or
external I/O. The query plan is the first step in the execution in
which optimizations are performed, e.g., predicate push-down.
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Figure 4: Darwin’s architecture and execution flow.

Operator Graph. Together with the config, the query plan is
translated to an operator graph. We briefly describe the transla-
tion based on the query plan shown in Figure 4. Starting from the
sink, each node recursively translates its input node. The resulting
operator graph represents the physical operators, i.e., the specific
implementation chosen for the given query, system, and config. As
start and end nodes, source and sink operators require special treat-
ment. They contain buffering logic, e.g., for external network-based
I/O, and either have no input or output operators. After the source
is translated, the selection node is translated to an equality-filter
operator. The translation of window nodes requires reordering, as
windowing logic impacts the operator order. The tumbling window
assignment and trigger run before the aggregation, but count-based
triggers run afterward. Thus, window translation requires splitting
and distributing certain nodes across the operator graph. For the
aggregation, the translator chooses a hash-based sum aggregation
operator with state in PMem, as specified by the user.

QueryGenerator.The query generator takes the operator graph
and generates a C++ string representation of the actual query. In
Figure 4, we show a pseudo-code version of the produced code.
When the FilterOperator is called, it receives a record with schema
information. From this, it generates a conditional statement with
the correct predicate (e.g., equality) based on the filtered attribute
(e.g, e.a). Depending on the predicate and execution model, the
filter operator can also produce vectorized or SIMD-based filters,
allowing for more fine-grained hardware optimization. Afterward,
it calls the downstream tumbling assigner. The assigner generates
code to assign the record to a tumbling window by mapping the
record’s timestamp to a window key. This process is continued until
all operators are called and the query is fully generated.

As thewindowed aggregation buffers data, it represents a pipeline
breaker [11, 21]. The sink operator is executed after the aggregation
is complete, i.e., when the window is triggered. The query generator
creates a new function for the sink, which represents a new pipeline
that can be executed independently. Splitting pipelines allows us to
independently scale sources, sinks, and other operators.

As the query generation contains runtime information such as
data types or filter conditions, the generated query is optimized
accordingly. The SumOperator knows the key and value types, so
it instantiates a state object with them. This is an advantage over
key-value store interfaces such as RocksDB in Flink, which operate
on generic byte representations. Storing records with explicit type

information removes serialization and deserialization overhead and
allows the compiler to optimize data move instructions, e.g., by
issuing SIMD loads/stores instead of regular 8 Byte movs [3].

Query Compiler. Once the query code is generated, the query
compiler compiles it. It uses information in the config to target
the underlying hardware, e.g., by enabling vectorization features
of the CPU. As the compiler runs independently of Darwin, users
can specify a different compiler than was used to compile Darwin.
Darwin can be compiled once and distributed while still providing
flexibility towards the system it executes queries on. The code is
compiled into a shared library that is dynamically loaded by Darwin
during execution. This allows Darwin to interact with the query,
e.g., when passing allocated memory, data, or other resources.

Query Execution. In the last step, the query is loaded and ex-
ecuted. Depending on the generated pipeline and specified par-
allelism, multiple source, sink, and operator instances are started.
During execution, Darwinmonitors the performance of the query to
allow for changes in parallelism and thread placement. If pipelines
have low utilization, they are merged to free resources. If pipelines
are creating backpressure, Darwin splits them to keep up with the
data rate. This approach allows for some flexibility during run-
time when data loads vary or are skewed. It also supports adaptive
changes to the query if gathered performance metrics and data
characteristics allow for more aggressive optimization [11].

4.2 Performance
We compare the performance of Darwin with the state-of-the-art
scale-up SPE Grizzly [11] and the widely used scale-out SPE Apache
Flink [4]. In this experiment, we run a 60-second tumbling window
sum aggregation on 32 Byte records with 15000 unique keys. Our
server contains an Intel Xeon Gold 6240L CPU with 18 cores, 96 GB
DRAM, and 1.5 TB (6× 256 GB) Intel Optane DC Persistent Memory
100 Series. The experiments are run with 32 threads. For the in-
memory version, Grizzly and Darwin use the TBB concurrent map.
For the persistent version, Darwin uses the hybrid DRAM-PMem
key-value store Viper [3] and Flink uses RocksDB.

We show the results in Figure 5. On the left, we see that Dar-
win performs equally to Grizzly for in-memory processing, as both
systems are limited by TBB to store the aggregations. We note
that this is not the highest performance that Grizzly can achieve,
but the additional optimizations proposed by the authors are or-
thogonal to the basic concept and could also be applied to Darwin.
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Figure 5: Throughput of Darwin, Grizzly, and Flink.

On the right, we see that Darwin outperforms Flink by over an
order of magnitude (12×). Additionally, in-memory Darwin is only
1.7× better than the persistent version, which is in line with the
PMem–DRAM gap presented in the Viper paper [3]. This shows
that modern storage significantly closes the gap between volatile
and existing durable state management, enabling us to efficiently
support larger-than-memory state. Overall, our results show that
Darwin achieves both state-of-the-art scale-up performance and an
order of magnitude improvement over existing larger-than-memory
scale-out systems.

5 CONCLUSION
To bridge the gap between performance and core features, we pro-
pose scale-in stream processing and present our prototype system
Darwin. By achieving high hardware utilization on a wide range
of hardware setups, scale-in systems adapt to application-specific
demands. Combining scale-out concepts with advancements in per-
sistent storage and scale-up concepts that focus on the underlying
hardware, scale-in processing achieves high system utilization with-
out sacrificing key features for industry adoption, such as recover-
able, larger-than-memory state. Our scale-in SPE prototype Darwin
uses query compilation and storage-aware state management to
match state-of-the-art scale-up performance while outperforming
existing scale-out systems by an order magnitude. Scale-in process-
ing enables application-proportional scaling of server requirements,
making it economical for all levels of performance needs.
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