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Abstract— Computing aggregates over windows is at the core
of virtually every stream processing job. Typical stream pro-
cessing applications involve overlapping windows and, therefore,
cause redundant computations. Several techniques prevent this
redundancy by sharing partial aggregates among windows. How-
ever, these techniques do not support out-of-order processing and
session windows. Out-of-order processing is a key requirement
to deal with delayed tuples in case of source failures such as
temporary sensor outages. Session windows are widely used to
separate different periods of user activity from each other.

In this paper, we present Scotty, a high throughput operator
for window discretization and aggregation. Scotty splits streams
into non-overlapping slices and computes partial aggregates per
slice. These partial aggregates are shared among all concurrent
queries with arbitrary combinations of tumbling, sliding, and
session windows. Scotty introduces the first slicing technique
which (1) enables stream slicing for session windows in addition
to tumbling and sliding windows and (2) processes out-of-order
tuples efficiently. Our technique is generally applicable to a
broad group of dataflow systems which use a unified batch and
stream processing model. Our experiments show that we achieve
a throughput an order of magnitude higher than alternative state-
of-the-art solutions.

I. INTRODUCTION

Streaming window aggregation is a crucial building block
for virtually every streaming application. Typical examples for
window aggregations are: computing revenues over the past
hour, monitoring the average speed of a car, or providing user
statistics per browser session. Out-of-order streams [1] are now
supported by many modern stream processing systems such
as Millwheel [2], Apache Flink [3], and Apache Spark [4],
as well as programming models such as Google Dataflow [5]
and its open source implementation, Apache Beam [6].

In an out-of-order stream, tuples arrive in a different order
than they are produced by sources such as sensor nodes [7].
This disorder is due to sensor failures, transmission errors, or
other network issues, which cause tuples to arrive delayed. At
the same time, streaming systems extend their window types
beyond tumbling and sliding time windows with other types
such as session windows. Sessions separate periods of user
activity from each other. Typical examples of sessions are taxi
trips, browser sessions, and interactions with an ATM.

Both, out-of-order streams and session windows, make win-
dow aggregation challenging. First, out-of-order processing
requires to update previously computed results in case tuples
arrive late. Second, unlike tumbling and sliding windows, the
start and end times of session windows are not known a priori.
Tuples arriving out-of-order can modify the start and end of
sessions, fuse sessions, and introduce new sessions.

Aggregate sharing is a common optimization technique
which prevents redundant computations for overlapping win-
dows. Such aggregate sharing techniques have been proposed

for general window aggregation [8], [9]. These techniques
store a tree of partial aggregates, which they use to calcu-
late aggregates for arbitrary time intervals. Although general
aggregation techniques facilitate diverse window types they
come at a high memory cost: they store aggregate trees in
addition to all tuples for the duration of the longest window
requested by any query.

On the other side of the spectrum, more specialized tech-
niques propose optimizations for tumbling and sliding win-
dows [10], [11] as well as user-defined windows [12]. These
techniques compute partial aggregates for non-overlapping
subsets of the data, called slices. They use those partial ag-
gregates as intermediate results for the aggregation of multiple
overlapping windows and queries. Since they store one partial
aggregate per slice only, those techniques are considerably
more memory efficient than general aggregation techniques.

However, none of the existing techniques can be used
for aggregating out-of-order streams and session windows
efficiently. More specifically, current techniques either suffer
from a high memory footprint (FlatFAT [9]), have a heavy
update complexity for out-of-order tuples (B-INT [8]), do not
consider out-of-order processing (Cutty [12], SABER [13]),
or do not support session windows (Panes [11], Pairs [10],
Fragments [13]). As a result, current systems with support for
out-of-order streams and sessions [3], [5], [6] cannot utilize
any of the existing aggregate sharing techniques. Instead, they
buffer incoming tuples in a separate bucket per window [1]
and perform the aggregation when the session window has
been finalized. This is suboptimal because i) it limits the
throughput because it executes redundant aggregate calcula-
tions for overlapping windows, ii) it leads to a high memory
consumption because tuples are stored several times in buckets
of overlapping windows, and iii) it causes a high result latency
because aggregates are computed lazily when windows end.
In this paper, we make the following contributions:

1) We present Scotty, an operator for efficient streaming
window aggregation which enables stream slicing, pre-
aggregation, and aggregate sharing for out-of-order data
streams and session windows.

2) We show that stream slicing, pre-aggregation, and aggre-
gate sharing are beneficial for combinations of different
session windows as well as combination of session,
sliding, and tumbling windows.

3) We design a Slice Manager which retains the minimum
number of slices for tumbling, sliding, and session win-
dows when processing tuples out-of-order.

4) We experimentally show that Scotty achieves the highest
throughput compared to state-of-the-art techniques.



Fig. 1: Window Aggregation with Stream Slicing.

II. BACKGROUND

Window Types. The Dataflow Model [5], defines three
window types: tumbling, sliding, and session windows. A
tumbling (or fixed) window splits the time into segments of
equal length l. The end of one window marks the beginning
of the next window. Sliding windows define a slide step of
length ls in addition to the length l to determine how often a
new window starts. Consecutive windows overlap when ls is
smaller than l. A session window covers a period of activity
followed by a period of inactivity. Thus, a session window
times out (ends) if no tuple arrives for some time gap lg .

Notion of Time. We consider two notions of time: event-
time and processing-time. The event-time is the time when
an event is captured. Processing-time is the time when an
operator processes a tuple. We focus on event-time windows
because applications typically define windows based on event-
time instead of processing-time [3], [5].

Unordered Data Streams. Stream tuples may arrive at the
stream processing system in non-chronologically order with
with respect to their event-times [1]. In the remainder of the
paper, we distinguish in-order tuples and out-of-order tuples.
A tuple is out-of-order if at least one tuple processed before
has a greater event-time. Otherwise it is considered in-order.

Partial Aggregation. Partial window aggregation (bottom
of Figure 1) reduces the memory consumption and the latency.
Instead of computing aggregates when a window ends, we
update partial aggregates incrementally when tuples arrive [9].
At the end of a window, only a few final aggregation steps
remain (top right of Figure 1). This reduces the output latency
compared to a naive solution which buffers all tuples and
aggregates upon window ends only.

Aggregate Sharing. We share partial aggregates among
overlapping windows to avoid redundant computations. We
compute the partial aggregate only once per slice and re-use
it for all windows covering this slice. In Figure 1, dashed
arrows mark multiple uses of partial aggregates.

III. IN-ORDER VS. OUT-OF-ORDER STREAM SLICING

Stream slicing reduces the memory footprint, the processing
latency, and the CPU load of streaming window aggregation.
The core idea of stream slicing is to divide (i.e., slice)
a data stream into non-overlapping and finite chunks of
data (i.e., slices). The system computes a partial aggregate
for each slice. At the end of a window, the system computes
the overall aggregate for that window by combining the partial
aggregates of slices. Overall, Stream slicing is beneficial for
three reasons: (1) it enables partial aggregation, (2) it facilitates
aggregate sharing, and (3) it allows for compressing data
within slices (store just one pre-aggregated value per slice
instead of buffering all tuples).

Fig. 2: Session Window Aggregate Sharing.

The goal of a Stream Slicer is to produce as few slices
as possible in order to save memory and to reduce the final
aggregation steps when windows end (reduce latency). The
key difference between in-order and out-of-order processing is
in the finalization of slices: When processing in-order tuples
only, slices and their aggregates cannot change once a slice
ended. Thus, past slices are final. When processing out-of-
order tuples, we wait for late tuples before we output window
aggregates. An out-of-order tuple possibly belongs to a slice in
the past which leads to updating past slices. Thus, past slices
are not final. For in-order processing, it is sufficient to separate
slices whenever a window starts as shown by Carbone et
al. [12]. For out-of-order processing, we also need to separate
slices when windows end to allow for updating slices from
the past with out-of-order tuples. As a result, in-order slicing
produces no more slices than there are windows because slices
start when windows start. Out-of-order processing requires a
maximum of twice as many slices than there are windows
because window start and end separate slices. There are fewer
slices when window edges coincide. According to the above
observations, Scotty produces the minimum amount of slices.

IV. STREAM SLICING FOR SESSION WINDOWS

Stream slicing for session windows is more complex than
for sliding or tumbling windows because we do not know
the event-times of window edges up front. Instead, the start
and end times of sessions depend on the processed tuples.
Thus, we must monitor the differences between the event-
times of consecutive tuples (i.e., the gaps between tuples) in
order to detect session timeouts. We show an example for
session window stream slicing in Figure 2. The example has
four session window queries with the minimum gaps lg = 3,
5, 6, and 7. Our example leads to five observations:
1) Multiple session window queries with different gaps benefit
from aggregate sharing.
2) Session windows would also share aggregates with concur-
rent sliding and tumbling windows.
3) Sessions of a single query have no overlap. Thus, a single
session window query cannot benefit from aggregate sharing.
4) Slices can cover the gaps between sessions because gaps do
not cover any tuples by definition. Respectively, a slice which
covers a session and a gap is logically equivalent to a slice
which covers the session only.
5) The slicing logic solely depends on one session window -
the one with the smallest gap. All session windows with
larger gaps are compositions of the slices made for the session
window with the smallest minimum gap (lg).

Scotty utilizes the observations above and produces slices
with respect to the session window with the smallest gap only.
This guarantees a constant workload for stream slicing which
is independent from the number concurrent session windows.



Fig. 3: Architecture Overview.

V. ARCHITECTURE OF SCOTTY

In Figure 3, we provide an overview of the architecture of
Scotty, which consists of four main components: A Stream
Slicer, a Slice Manager, an Aggregate Store, and a Window
Manager. We now discuss the components in more detail.

Stream Slicer. The Stream Slicer splits the stream into
non-overlapping slices for which we compute pre-aggregates.
It receives the raw input stream, which consists of in-order
tuples, out-of-order tuples, and watermarks. Watermarks are
annotations embedded in the stream which propagate the
progress in event time. Watermarks control how long we wait
for out-of-order tuples before outputting a result [3], [5], [6].
When receiving a watermark with timestamp x, we output the
aggregates of all windows which ended before x.

We determine the start of new slices based on the in-order
tuples and enrich the stream with Slice Separators respectively.
Slice Separators are annotations in the stream which mark
the start of a new slice. The Stream Slicer forwards out-of-
order tuples and watermarks without further processing, but
preserves the order of its input stream. Note that we distinguish
between watermarks and Slice Separators. Watermarks tell the
Window Manager when to output window aggregates. Slice
Separators tell the Slice Manager when to start a new slice.

Slice Manager. The Slice Manager performs three tasks:
(i) It notifies the Aggregate Store about the start of a new
slice when it receives a Slice Separator from the Stream
Slicer. (ii) It appends in-order tuples to the latest slice in the
Aggregate Store. (iii) As its most complex task, it updates past
slices when out-of-order tuples arrive. This includes adding
slices, fusing slices, changing the start and end timestamps
of slices, and updating partial aggregates. We will discuss
managing out-of-order tuples in more detail in the next section.

Aggregate Store. The Aggregate Store computes aggre-
gates, stores partial aggregates for slices, and buffers tuples.
We implement and evaluate different Aggregate Stores. Each
store keeps at least one pre-aggregate per slice (lazy aggrega-
tion). In addition, stores can keep aggregates for combinations
of multiple slices in an aggregate tree (eager aggregation).

Window Manager. The Window Manager combines pre-
aggregates to final aggregates (results for windows).

VI. THE SLICE MANAGER

In this section, we provide a high-level architecture
overview of the Slice Manager of Scotty.

A. Adding Tuples to Slices
In-order Tuples. Adding in-order tuples to slices has low

computational costs because it does not require a lookup
operation for finding the correct slice. In-order tuples always
belong to the most recent slice which also makes processing
costs independent from the number of windows and queries.

Out-of-order Tuples. The computation effort when pro-
cessing a tuple out-of-order depends on the delay of the tuple.
If a tuple has a small delay but still belongs to the most recent

Fig. 4: Out-of-order Processing with Session Windows.

slice, we can add the tuple just like an in-order tuple. If the
tuple has a larger delay, we lookup the slice which covers the
event-time of the tuple and add the tuple to that slice. When
processing session windows, an out-of-order tuple might fuse
sessions or add a new session in the past. Thus, the Slice
Manager possibly adds or changes slices in the past.

B. Changing Slices for Out-of-order Tuples
Tumbling and Sliding Windows. For tumbling and sliding

windows, we know the times of all window edges a priori.
Thus, the Stream Slicer always initiates the correct creation
of all slices for these windows. The Slice Manager ensures to
always retain correct slices for tumbling and sliding windows.

Session Windows. The Slice Manager operates based on the
session window query with the smallest gap (cf. Section IV).
An out-of-order tuple either belongs to an existing session,
fuses sessions, or forms a new session. We show all cases
in Figure 4. If an out-of-order tuple belongs to an existing
session (Case 1.1) or extends a session at the session end (Case
1.2), we insert the tuple into the respective slice. Thereby, the
start and end times of slices remain unchanged. If an out-of-
order tuple extends a session at the session start (Case 1.3), we
change session edges respectively and add the tuple afterwards.

An out-of-order tuple can also fuse two sessions. This is
the case whenever the gap between sessions shrinks below the
minimum session gap (Case 2). Fusing sessions also combines
the slices of the sessions. Finally, an out-of-order tuple can
form a new session on its own if its gap on both sides is
larger than the minimum session gap (Case 3). In this case,
we split a slice between sessions (i.e., within the gap). This is
possible because gaps contain no data by definition.

VII. EVALUATION

Techniques. We compare the throughput of four techniques
which support out-of-order processing and session windows
on Apache Flink (v1.3; Commit b0cd48d): (i) a lazy version
of Scotty which stores slices in an ordered list, (ii) an eager
version of Scotty which stores an aggregate tree on top of
slices, (iii) Buckets as implemented in Flink [3], and (iv) eager
aggregation without stream slicing (FlatFAT [9]).

Setup and Workload. We run experiments with 8 GB
main memory and an Intel Core i5 processor with 2.4 GHz.
We measure throughput exactly like the Yahoo Streaming
Benchmark implementation for Apache Flink [14], [15]. We
replay real-world sensor data recorded at a football match [16]



and generate additional tuples based on the original data to
simulate high ingestion rates. We add 5 gaps per minute which
separate sessions. This is representative for the ball possession
moving from one player to another. We base our queries on
the workload of a live-visualisation dashboard [17].

Concurrent Windows. In Figure 5a, we increase the
number of concurrent windows. Window lengths are equally
distributed from 1 to 20 seconds. This is representative for
window aggregations which facilitate plotting line charts at
different zoom levels in a dashboard [17], [18]. In addition,
we run a session window query to separate ball possessions
(lg=1s). Note that the performance depends on the number of
concurrent windows only. This makes tumbling and sliding
windows exchangeable: 20 concurrent tumbling windows are
equivalent to a single sliding window with l=20s and ls=1s
(again 20 concurrent windows). We simulate 20% out-of-order
tuples with equally distributed delays between 0 and 2 seconds.

Scotty achieves an order of magnitude higher throughput
than alternative techniques which do not use stream slic-
ing. Moreover, Scotty scales to large numbers of concurrent
windows with almost constant throughput. Scotty-Lazy has
the highest throughput (1.9 Million tuples/s) because it uses
stream slicing and does not compute an aggregate tree. The
throughput remains constant when increasing the number of
concurrent windows, because the per-tuple complexity remains
constant: we assign each tuple to exactly one slice. Scotty-
Eager achieves an 8% lower throughput than Scotty-Lazy,
because out-of-order tuples cause updates in the aggregate
tree. Buckets achieve orders of magnitude less throughput than
Scotty and do not scale to large numbers of concurrent win-
dows. With Buckets, we must assign each tuple to all buckets
(i.e., windows) which cover the timestamp of the tuple. Thus,
tuples belong to up to 1000 buckets causing 1000 redundant
aggregation steps per tuple. In contrast, Scotty assigns tuples
to exactly one slice. FlatFAT processes less than 2000 tuples/s,
because out-of-order tuples require expensive leave inserts in
the aggregate tree (aggregate updates & rebalancing).

Out-Of-Order Processing. In Figure 5b, we increase the
fraction of out-of-order tuples and fix the number of concurrent
windows to 20. All other settings remain as before. Scotty and
Buckets process out-of-order tuples nearly as fast as in-order
tuples. FlatFAT exhibits a throughput decay when we increase
the fraction of out-of-order tuples.

Scotty processes out-of-order tuples efficiently because
there are just a few hundred slices. This makes it fast to find
the correct slices for tuples. The aggregate tree in Scotty-Eager
stores slices only. It has few levels which leads to fast updates
for past slices. Buckets have a constant throughput which
is independent from out-of-order tuples. Our implementation
stores buckets in a hash map which allows for assigning out-
of-order tuples to buckets as fast as in-order tuples. FlatFAT
exhibits a throughput decay when processing out-of-order
tuples because it requires inserting past leave nodes in the
aggregate tree. This causes a rebalancing of the tree and the re-
computation of partial aggregates. Scotty-Eager seldom faces
this issue because it stores slices instead of tuples in the
aggregate tree. The majority of out-of-order tuples falls in an
existing slice which prevents rebalancing.

Memory. Out-of-order processing with Scotty requires
roughly twice as many slices than in-order processing with
Cutty (cf. Section III). We refer to the Cutty paper [12] for a
discussion of space complexities of all other techniques.
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Fig. 5: Throughput Experiments - Scotty outperforms state-of-
the art when processing out-of-order tuples and sessions.

VIII. CONCLUSION
Stream slicing is a key technique for efficient window

discretization and aggregation. We present Scotty, an operator
that applies stream slicing for arbitrary combinations of con-
current tumbling, sliding, and session windows. Scotty shares
partial aggregates among all queries and window types and
incorporates efficient processing of out-of-order tuples.

Scotty increases the throughput of window discretization
and aggregation by an order of magnitude. Moreover, Scotty
retains a high throughput for large numbers of queries and
high fractions of out-of-order tuples.
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