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Abstract: The last decade has been characterized by the
collection and availability of unprecedented amounts of
data due to rapidly decreasing storage costs and the om-
nipresence of sensors and data-producing global online-
services. In order to process and analyze this data deluge,
novel distributed data processing systems resting on the
paradigm of data flow such as Apache Hadoop, Apache
Spark, or Apache Flink were built and have been scaled to
tens of thousands of machines. However, writing efficient
implementations of data analysis programs on these sys-
tems requires a deep understanding of systems program-
ming, prohibiting large groups of data scientists and ana-
lysts from efficiently using this technology. In this article,
we present some of the main achievements of the research
carried out by the Berlin Big Data Cente (BBDC). We
introduce the two domain-specific languages Emma and
LARA, which are deeply embedded in Scala and enable
declarative specification and the automatic paralleliza-
tion of data analysis programs, the PEEL Framework for
transparent and reproducible benchmark experiments of
distributed data processing systems, approaches to foster
the interpretability of machine learning models and finally
provide an overview of the challenges to be addressed in
the second phase of the BBDC.
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1 Introduction
The last decade was marked by the digitization of virtu-
ally all aspects of our daily life and our work. Due to the
decline in the price of disk storage and the increasing pop-
ularity of cloud storage, businesses, communities, house-
holds, and public institutions as well as all the sciences
are facing a deluge of digital data. This sparked exten-
sive developments of systems and tools to organize these
vast amounts of data and to enable complex analyses.
However, applying this technology requires a solid back-
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ground in programming large-scale distributed systems.
In 2014 the Berlin Big Data Center1 (BBDC) started
with the goal to overcome this limitation and to enable
large-scale data analysis without requiring deep under-
standing of distributed systems. The BBDC is a compe-
tence center for big data, funded by the German Federal
Ministry of Education and Research. The BBDC’s prin-
cipal goal is to develop declarative ways of doing scalable
data analysis and machine learning and, thus, empow-
ering data scientists with limited or no background in
systems programming to do large-scale data analysis. To
achieve this goal, the BBDC unites researchers from var-
ious disciplines of computer science, in particular data
management and machine learning. In the context of this
paper, we present some of the major results and achieve-
ments of the research efforts as well as outline research
questions that we intend to address in the second phase
of the BBDC which will span the next three years.

An important aspect of the BBDC has been the
further development of Apache Flink [1], a system
which originated from a preceding research project called
Stratosphere2. Apache Flink was introduced into the
BBDC as a basis technology. It is a distributed data anal-
ysis system for batch and stream processing workloads.
It offers the user a reduced level of complexity through
the integration of traditional database concepts such as
declarative query languages and automatic query opti-
mization. Flink provides a programming model that pro-
vides support of iterative algorithms and complex user-
defined functions which simplifies the process of creating
data analysis programs in comparison with other tech-
nologies. Today, Flink is considered one of the most im-
portant and most promising projects within the Apache
Big Data Stack and has acquired both a significantly in-
creased number of community as well as numerous well-
known new users over the past two years. The most im-
portant pioneers of data-driven and digital business mod-
els such as Amadeus, Zalando, ResearchGate, Alibaba,
Uber or Netflix use Flink as early adopters. We dis-
cussed Apache Flink and its application in various re-
search projects in detail in a prior article [15] and will

1 http://www.bbdc.berlin
2 http://stratosphere.eu/
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thus focus on other research achievements of the BBDC
in this contribution.

2 Declarative Data Processing:
Emma and LARA

Second generation distributed data flow systems such as
Apache Flink 3 or Apache Spark4 have alleviated the ma-
jor shortcomings of Apache Hadoop, namely the inability
to efficiently execute iterative algorithms and a simplis-
tic programming model lacking essential data transforma-
tion operations as second-order primitives such as join.
Both Spark and Flink are based on a distributed collec-
tion type equipped with second-order functions that en-
capsulate parallelism as a principle programming abstrac-
tion [20, 8]. While Apache Spark only supports acyclic
dataflows and executes iterative computations by lazily
unrolling and evaluating dataflows from a Scala-driven
loop, Apache Flink provides a native iteration operator
which enables Flink’s runtime to introduce special feed-
back edges into the data flow, which allows it to cache
loop invariant data but requires the use of a dedicated
construct at the API level. In Spark, the programmer has
to encode the decision to materialize an intermediate re-
sult explicitly with a cache primitive. Both systems allow
the user to compose complex data flows using a broad
range of transformations on these collections. However,
a thorough understanding of the underlying execution
model and system internals is still essential in order to
write efficient programs. Take the well know example of
counting the frequency of words in text documents known
as word count as an example: a straightforward, general
and intuitive implementation in Spark is as follows:

val words = Array("Lorem", "ipsum", "dolor")
val wordsRDD = sc.parallelize(words)

val counts = wordsRDD.map(word => (word, 1))
.groupByKey()
.map(tuple => (tuple._1, tuple._2.sum))
.collect()

(Note that tuple._1 and tuple._2 refer to the first
and second element inside a tuple respectively.) However,
this implementation strategy turns out to be quite ineffi-
cient, as no local pre-aggregation is performed and all key-

3 https://flink.apache.org/
4 https://spark.apache.org/

value pairs have to be shuffled prior to aggregation. Spark
provides a special reduceByKey() operator for these par-
allel aggregates in order to avoid a global shuffle of all
tuples and rather to combine outputs with a common
key on each partition before shuffling the data.

val counts = wordsRDD.map(word => (word, 1))
.reduceByKey(_ + _)
.collect()

There still exists quite a high entry barrier due to the
required level of understanding of the underlying execu-
tion model when programming these systems. The user
code is comparatively hard to maintain and read due
to the low-level abstractions used and there are several
missed opportunities for automatic optimization of the
data flows due to hard-coded physical execution strate-
gies. For example, multi-way joins have to be written as a
concatenation of binary join function applications, which
prohibits join order optimization being carried out.

In order to address these shortcomings and to provide
truly declarative specifications of data analysis programs,
BBDC researchers developed Emma5 [2, 3], a domain-
specific language (DSL) deeply embedded in Scala which
enables parallel collection processing through comprehen-
sions - a declarative syntax akin to SQL. In contrast to
Spark and Flink, the core abstraction exposed by Emma
is a generic type DataBag. To illustrate this concept, con-
sider the aforementioned WordCount example in Emma:

@emma.lib
object WordCount {

def apply(docs: DataBag[String]):
DataBag[(String, Long)] = {

val words = for {
line <- docs
word <- DataBag[String](line.split("\\W+"))
if word != ""

} yield word

val counts = for {
group <- words.groupBy(identity)

} yield (group.key, group.values.size)

counts
}

}

5 http://emma-language.org/
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The DataBag abstraction serves as a coarse-grained
contract for data-parallel computation. The deep em-
bedding in Scala gives Emma the ability to manipulate
the entire data analysis program at compile time, which
has several key benefits: First, Emma reuses Scala’s for-
comprehension syntax for declarative, SQL-like dataflow
definitions. Second, Emma is able to decompose the data
analysis program into a sequential driver part and and
multiple parallel dataflow fragments. These fragments can
then be optimized jointly and then translated and exe-
cuted on parallel dataflow engines like Apache Spark or
Flink. With this, Emma exposes a high-level collection
processing API to the user who wants to parallelize a data
analysis program, while hiding the notions of parallelism
associated with the underlying dataflow engines.

As is depicted in Figure 1, Emma first lifts the Ab-
stract Syntax Tree (AST) of the data analysis program to
be parallelized to a suitable intermediate representation
(IR) and performs logical as well as physical optimiza-
tions.

This rewritten intermediate representation is then
lowered and compiled as a driver with abstract dataflow
expressions. At runtime, these dataflow expressions are
translated Just in Time (JIT) and evaluated on the target
dataflow engines Apache Flink or Spark. These algebraic
rewrites and physical optimizations lead to competitive
performance compared to hand-tuned low-level code [2]
while hiding the notions of parallelism associated with the
underlying dataflow engines from the user. For example,
Emma will also transparently place primitives like broad-
cast and cache that influence physical execution aspects
of the data flow that would have to be specified by the
programmer themselves.

While Emma relieves the programmer from having
to understand systems internals of the chosen execution
engine the DataBag abstraction may still make it unneces-
sarily complicated to encode complex data analysis and
machine learning algorithms. To ease the encoding and
improve the readability and interpretability of these algo-

Fig. 1. The Emma compilation pipeline.

rithm, BBDC researchers developed LARA [11] a deeply
embedded language in Scala which adds two abstract data
types for linear algebra, called Matrix and Vector, on top
of the DataBag type provided in Emma. Thus, it unifies
aspects of relational algebra and linear algebra. LARA
provides explicit operations to convert a Databag to a
Matrix and vice versa. The Matrix abstraction provides
all common operations on matrices and is strongly in-
fluenced by R’s matrix package. Similar to Emma, data
analysis programs written in Lara are compiled to an in-
termediate representation and then optimized, this time
enabling optimizations across linear and relational alge-
bra.

One example of such an optimization considers the
partitioning of matrices in distributed data flow engines
like Spark and Flink, which traditionally implement rela-
tional operators on row-partitioned datasets. Linear alge-
bra operators tend to use block-partitioned matrices for
efficiency reasons. A holistic optimization approach over
pipelines combining both kinds of operators can actually
avoid expensive re-partitioning steps by fusing relational
and linear algebra operations into a specialized physical
operator called BlockJoin [12], a distributed join algo-
rithm, which directly produces block-partitioned results.

3 Benchmarking Distributed Data
Processing Systems: PEEL

Another very important consideration in the context of
distributed data processing systems but also scalable ma-
chine learning applications is the reproducibility of exper-
iments and evaluations. The experiments published in sci-
entific publications associated with distributed data pro-
cessing systems such as Spark [20] or Stratosphere [1] are
only of limited use when it comes to adequately assessing
and comparing the performance of different approaches
and paradigms. Different evaluation workloads and imple-
mentations, usage of potentially system-specific libraries,
different or custom pre-processed data sets and differing
hardware configurations make it hard if not impossible
to leverage the published experiments for such a compar-
ison.

In order to foster transparent, transferable and, thus,
repeatable and reproducible experiments and benchmarks
of distributed data processing systems, the BBDC re-
searchers developed a framework called PEEL6 [5] de-

6 http://peel-framework.org/
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Fig. 2. The Peel process

signed to define, execute, analyze, and share experiments.
PEEL introduces a unified and transparent process of
specifying experiments illustrated in Figure 2, including
the actual experiment workload code, all relevant system
configuration parameters for all systems involved (e.g.
distributed file system, distributed data processing sys-
tem, data generators) and the experiment description in-
cluding all parameters to be varied as part of the ex-
periment. PEEL automatically orchestrates all specified
benchmark experiments and handles setup, configuration,
deployment, tear-down and cleanup of all required sys-
tems and automatically collects all relevant logs from the
remote machines involved.

Next to specifying systems experiments to evaluate
distributed data processing systems, PEEL is also a use-
ful tool to organize the scalable machine learning algo-
rithms that have been developed in the context of the
BBDC. We have successfully used PEEL to develop and
conduct comprehensive benchmark experiments to eval-
uate distributed data flow systems for scalable machine
learning workloads. Results indicate that while they do
exhibit the desired scaling behavior with respect to the
number of compute nodes and data set sizes, distributed
data flow systems introduce substantial runtime overhead
compared to efficient single machine implementations [6]
and tend to struggle with training high-dimensional mod-
els [7].

4 Scalable Machine Learning
Besides the research work focusing on scalable data man-
agement, the Berlin Big Data Center also produced many
interesting results in the fields of scalable machine learn-
ing [9, 18] and the associated use cases in the fields of

video mining, text analytics, information-based medicine,
and material science.

For example, in the application area of material sci-
ence, BBDC researchers developed a data-analysis tool
for the recognition of the similarity among crystal struc-
tures and for the prediction of the difference in for-
mation energy among them based on the Novel Mate-
rials Discovery (NOMAD7) Archive. Nomad is a large
open-access repository for computational materials sci-
ence data that contains several millions of crystal config-
urations. The similarity-recognition algorithm, based on
descriptors that encode the proper symmetries of a well-
behaved physical representation and makes use of linear
and non-linear low-dimensional embedding methods, pro-
duces a 2-dimensional map that assigns to separate re-
gions perfect and distorted configurations, for given pairs
of crystal structures. The algorithm predicting the differ-
ence in formation energies selects the model out of thou-
sands of candidates, by means of a compressed-sensing
based method [10].

In the context of video mining, BBDC researchers
worked on human action recognition algorithms that work
in the compressed video domain [19]. These algorithms
are extremely efficient, because they only require a par-
tial decoding of the video bit stream. An important
part of this work is to make the decisions of these ap-
proaches interpretable to humans. To enable this, BBDC
researchers developed Layer-Wise Relevance Propagation
(LRP)[4, 14], an approach to understand the contribution
of a single pixel of an image to the prediction made by a
classifier in an image classification or human action recog-
nition task. This method has also been applied to un-
derstand and interpret action recognition algorithms and
apply it to a state-of-the-art compressed domain method
based on Fisher vector encoding and SVM classification
[13], visualizing what exactly makes the algorithm decide
for a particular action class.

5 Vision and Challenges of BBDC
Phase II

The Berlin Big Data Center has recently been extended
for a second phase lasting another three years. In this sec-
tion we will sketch the challenges to be addressed during
this phase. In general the research goals are grouped into
four core areas:

7 https://www.nomad-coe.eu/
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– declarative machine learning in selected applications;
– machine learning on heterogeneous data and data

streams;
– scalable processing of heterogeneous, geographically

distributed data streams; and
– near real-time processing of millions of data sources.

The selected application domains include the analysis of
distributed bio-medical mass data, the analysis of hetero-
geneous data in cancer research, learning on compressed
stream data and near real-time language processing. In
the context of machine learning on heterogeneous data
and data streams, work will focus on reproducible [16]
as well as secure machine learning, data security and pri-
vacy as well as the automatic integration of heterogeneous
data. The work on scalable processing of heterogeneous,
geographically distributed data streams will address geo-
distributed, declarative data analysis, consistent state
management resource management optimized processing
of semantic graphs, error analysis of data analysis pro-
grams as well as system integration and performance
analysis [17]. Finally the area of near real-time processing
of millions of data sources will include data stream anal-
ysis through Software-Defined Networking (SDN), data
stream processing on modern hardware as well as dealing
with millions of sensors

6 Conclusion
In this article, we introduced several key results of the
Berlin Big Data Center including the domain-specific lan-
guage Emma, which is deeply embedded in Scala and
enables parallel collection processing through for com-
prehensions and LARA which offers abstract data types
for both relational and linear algebra processing. Next
to these scalable data management approaches, we also
presented work on interpretability of machine learning
models and sketched the key challenges to be addressed
during the second phase of the Berlin Big Data Center.
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