
Efficient Multi-Model Management
Nils Strassenburg1 Dominic Kupfer2 Julia Kowal2 Tilmann Rabl1

1Hasso Plattner Institute, University of Potsdam 2TU Berlin
{nils.strassenburg, tilmann.rabl}@hpi.de {dominic.kupfer, julia.kowal}@tu-berlin.de

ABSTRACT
Deep learning models are deployed in an increasing number of
industrial domains, such as retail and automotive applications.
An instance of amodel typically performs one specific task, which
is why larger software systems use multiple models in parallel.
Given that all models in production software have to be managed,
this leads to the problem of managing sets of related models, i.e.,
multi-model management. Existing approaches perform poorly
on this task because they are optimized for saving single large
models but not for simultaneously saving a set of related models.

In this paper, we explore the space of multi-model manage-
ment by presenting three optimized approaches: (1) A baseline
approach that saves full model representations and minimizes
the amount of saved metadata. (2) An update approach that re-
duces the storage consumption compared to the baseline by sav-
ing parameter updates instead of full models. (3) A provenance
approach that saves model provenance data instead of model
parameters. We evaluate the approaches for the multi-model
management use cases of managing car battery cell models and
image classification models. Our results show that the baseline
outperforms existing approaches for save and recover times by
more than an order of magnitude and that more sophisticated
approaches reduce the storage consumption by up to 99%.

1 INTRODUCTION
Today, deep learning (DL) is widely used in research and produc-
tion software. In both cases, it is necessary to manage the DL
models, especially when they fulfill safety-critical tasks [8, 9].

A DL model usually goes through two phases: (1) the model
development phase, where the initial model is developed and
trained, and (2) the model deployment phase, where the model
is deployed to devices and locally updated. The model develop-
ment phase starts with researchers exploring the capabilities
of new DL model architectures. They evaluate the models’ pre-
diction performance on a fixed or standardized dataset using
loss- and accuracy-based metrics. The models are often large,
require resources-intense training, and are highly optimized to
achieve very good performance on the evaluation dataset. Indus-
try adapts the findings to develop initial use-case-specific models
on real-life data. However, due to resource constraints on the
target devices, the models are often optimized for inference and
are smaller than the ones developed in research.

In the model deployment phase, companies deploy their best-
performingmodel to production and continuously update it based
on local data. This leads to thousands of frequently updated mod-
els sharing the same architecture. Examples are mobile phone
applications where individual models are adapted to user require-
ments, smart devices in health applications where models are
adjusted to patients’ behavior, or recommendation systemswhere
models are adjusted to usage characteristics.

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-092-9 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: Multi-Model Management

One DL model performs one well-defined task, for example,
to predict the behavior of a specific real-world entity. In the case
of multiple equivalent entities in one device or location, multiple
models with the same architecture run on the same device. One
practical example is the modeling of electric car battery systems.
Electric car batteries can consist of thousands of individual cells,
each possibly being associated with its own DL model that has
thousands of parameters and predicts the cell’s behavior. DL
models are used because they can be evaluated and continuously
updated with a comparably low computational cost [4, 14]. It is
beneficial to use one model per battery cell instead of one single
model for the entire battery because individual models provide a
spatial resolution regarding, for instance, temperature evolution,
cell aging, or current distribution.

Regardless of the phase and use case, all DL models need to
be managed. We distinguish between single-model management,
where we save single models at a time, and multi-model manage-
ment, where we save sets of models. In the model development
phase, we run individual experiments and manage the associated
models, which requires single-model management. In the model
deployment phase, in many real-life use cases, we manage sets
of different and frequently updated models sharing the same
architecture. Here we apply multi-model management.

Multi-model management is a common and very relevant
model management scenario because (1) multi-model manage-
ment is critical during the deployment phase, which is the phase
a model is primarily used in, and (2) multi-model management is
resource intense because of the large number of models and the
high update frequency.

In this paper, we focus on multi-model management in the
deployment phase, as presented in Figure 1. We have 𝑛 (𝑛 >>

1000) individual models sharing the same architecture. Over time
the model performance decreases, and the models are partially or
fully updated on locally collected data. We save every model ever
generated for analytical and archival purposes but only recover
a selected number of models, for example, after an accident.

Existing model management approaches [6, 11, 13, 15] do
not cover multi-model management or perform poorly in this



scenario. They focus on experiment management for the model
development phase or save single models with snapshot sizes
dominated by millions of parameters.

In this paper, we make the following contributions:
(1) We define and analyze the multi-model management use

case to identify optimization opportunities not utilized by
related model/experiment management approaches.

(2) Based on our analysis, we develop three approaches that
are optimized for multi-model management: the Baseline
approach that minimizes the overhead of redundantly
saved information, the Update approach that only saves
updated parameters, and the Provenance approach that
saves model provenance information instead of model
parameters.

(3) We evaluate all approaches for the use cases of managing
deep learning-based car battery models and image classifi-
cation in terms of storage consumption, time-to-save, and
time-to-recover. We find that our Baseline approach out-
performs existing baselines significantly in all evaluated
metrics and that the Update approach and the Provenance
approach additionally reduce the storage consumption
by up to 86% and 99%, respectively but come with an in-
creased time-to-recover. Based on the results, we discuss
the tradeoffs of every approach and recommend what ap-
proach to choose under what conditions.

The rest of the paper is structured as follows. In Section 2, we
provide some background on DL and afterward present relevant
related approaches. In Section 3, we present three different ap-
proaches optimized for multi-model management. We evaluate
the approaches for the example use cases of managing battery cell
models and image classification in Section 4 before we conclude
our work in Section 5.

2 BACKGROUND
In this section, we will first introduce the foundations of DL that
are essential to understand the presented approaches. Afterward,
we give an overview of related work.

2.1 Deep Learning
On a very high level, a DL model takes a given input, performs
computations, and produces an output. For example an image
classification model, takes a picture’s pixel matrix as input and
predicts the probability for each predefined image class. For the
example of modeling car battery cells, we employ electrical DL
models that take the current, temperature, and charge informa-
tion as inputs and predict the voltage response.

The behavior of a DL model is defined by the model architec-
ture and themodel parameters. Themodel architecture represents
the computational structure of the model and defines what type
of computation is performed. It consists of different layers, each
defining a part of the overall architecture. The model parameters
consist of weights and biases that parameterize the computation
defined by the architecture [3, 11]. To make a model learn a given
task, we adjust its parameters based on training data using a
variation of a stochastic gradient descent algorithm. The model
architecture remains unchanged.

Throughout the lifecycle of a DL model, its performance de-
grades. In the car battery use case, for example, this is because the
battery cell that it represents ages. To prevent the model’s perfor-
mance from degrading, it is common practice to take the current
state of the model as a starting point and: (1) retrain the entire

model, which adjusts all model parameters, or (2) retrain single
layers of the model which adjusts only a subset of the model.
We follow previous work’s definitions [11] and name the model
before adjustment base model, a model that was retrained entirely
fully updated model version, and a model that was retrained only
partially partially updated version.

2.2 Related Approaches
Looking at related approaches in the domain of model manage-
ment, we find that none of them target the multi-model man-
agement use case. Most related work focuses on experiment
management and either (1) saves model metadata, but no repre-
sentation that allows us to recover the model from it, or (2) saves
model snapshots in a naive way. Runway [12] and ModelKB [2]
belong to category (1), ModelDB [13] and MLflow [15] belong to
category (2).

The approaches closest to the multi-model management use
case are ModelHub [6] and MMlib [11]. ModelHub’s parameter
archival storage (PAS) is designed to optimize the storage foot-
print and to provide short model query latency with a minimal
loss of accuracy. The authors do not consider the multi-model
management use case and the proposed algorithms to save mod-
els have worse than quadratic run time, whichmakesModelHub’s
approach orthogonal to our work.

The model management library MMlib includes three ap-
proaches: a baseline approach, a model provenance approach,
and a parameter update approach. The baseline approach saves
models as full snapshots, while the parameter update approach
and the model provenance approach optimize storage consump-
tion by considering that derived models are related. The model
provenance approach is based on the idea that one can exactly
reproduce model training by tracking model provenance infor-
mation and avoiding non-deterministic computations. The prove-
nance information consists, for example, of seeds, detailed soft
and hardware information, and the source code of the training
pipeline. The model provenance approach saves models by sav-
ing its provenance information instead of the model parameters
and retrieves models by repeating its training based on the prove-
nance information starting from the last fully saved model.

The parameter update approach compares related models on
a layer granularity and only saves the delta between models’
parameters. For the parameter update approach, the authors con-
sider the immediate base model for computing the delta and
only save the very first model as a full model snapshot. This
leads to recursively increasing recovery times that can be pre-
vented by saving intermediate model snapshots using the base-
line approach. Bhattacherjee et al. [1] discuss more advanced
delta-based algorithms in the related field of dataset versioning.
They present multiple algorithms to address different constraints
for the storage-recreation trade-off and mainly focus on their
runtime complexity.

The main contribution of the MMlib paper is that the authors
evaluate every approach’s performance in terms of storage con-
sumption, time-to-save, and time-to-recover for differently sized
models. This allows them to discuss the trade-offs in the field of
model management and to give recommendations on when to
use which approach. But, only MMlib’s baseline approach can
be used for multi-model management, and since all of MMlib’s
approaches are designed and optimized for single-model man-
agement, the baseline approach performs poorly for multi-model
management.



3 APPROACH
In this section, we first present opportunities for optimization in
the multi-model management scenario. Based on this, we develop
three approaches to efficiently manage thousands of DL models
with the same architecture but different parameters, as it is the
case for multi-model management in the deployment phase. We
assume that all trained models are saved but only occasionally
recovered for purposes such as post-accident analysis. We focus
on reducing storage consumption and time-to-save and assume
the time-to-recover as least important metric.

3.1 Optimization Opportunities
Assume the following generic multi-model management scenario
with 𝑛 models that share the same architecture and – except for
the training data – the same training pipeline, but have different
parameters. Existing approaches are not optimized for this and
save everymodel individually.We see the following opportunities
for improvement:

(O1) Redundant Model Data. When saving 𝑛 models individu-
ally, we save all data that is not dependent on the model param-
eters redundantly. This includes, for example, the model archi-
tecture, parameter dictionary keys, and metadata. This overhead
is significant when saving thousands of small models, which
gives us the opportunity to optimize the storage consumption
for multi-model management.

(O2) Redundant Provenance Data. MMlib’s provenance app-
roach saves models individually and includes, next to the training
pipeline information, a snapshot of the training dataset for the
update. This means that when we save a set of models using the
provenance approach, we save all pipeline information redun-
dantly. Additionally, the training data is often saved regardless of
the model management (either by the manufacturer for analytical
or by the user for backup purposes). Here we see an opportunity
to optimize storage consumption further by saving the prove-
nance information only once and by referencing the used dataset
instead of saving a duplicate of it together with the model.

(O3) Write Overhead. Existing model management approaches
save metadata, parameters, and code in different services or lo-
cations. Saving 𝑛 models results in 𝑛 individual writes to every
service and a long time-to-save. By saving the models as a set,
we can significantly reduce the time-to-save, depending on the
target services and location.

3.2 Baseline
Our Baseline approach (Baseline) is our first approach optimized
for multi-model management and represents a set of models by
three types of data: metadata, model architecture, and parameters.
With Baseline, we address the optimization opportunities O1
(redundant model data) and O3 (write overhead) while being able
to recover every set of models independently.

When saving the model set, we only save the metadata and the
model architecture for the first model. This reduces the storage
consumption and is possible because all models in the set have
the same architecture. For the model parameters, we iterate over
all models, concatenate the floating-point numbers representing
the parameters, and save them to one binary file. This reduces
the overhead of saving the layer names for every model and the
overhead that comes with serializing and saving every model’s
parameter dictionary separately. Representing the set of models

by three artifacts instead of thousands – as it would be when
saving all models individually – reduces the the number of writes
to metadata and file stores.

To recover the model set, we first load the model metadata and
architecture, which defines how many parameters each model
and layer has. According to that information, we read the pa-
rameters sequentially from the parameter file to fully recover all
models.

3.3 Update Approach
Our Update approach (Update) is an improved version of our
Baseline and, thus, also addresses O1 (redundant model data) and
O3 (write overhead). To further optimize Baseline, we make use
of the fact that per update cycle (1) not all models are updated,
and (2) some of the updated models are only partially updated.

Using Baseline in this scenario results in saving parameters
that have not changed and, thus, in redundantly saved data. We
improve this with Update, by only saving the updated parameters
of the updated models in a binary format instead of full model
snapshots for all models.

For an initial model set, we use Baseline’s logic and addition-
ally save the hash of every model’s layers. We save all subsequent
model sets by performing the following steps: (1) We save a ref-
erence to the base model set and other metadata. (2) We calculate
the parameter hashes for every model and layer and save them.
(3) We identify all changed parameters based on the hash infor-
mation of the previous model set and document the changes in a
list. (4) We concatenate all changed parameters and save them to
a single binary file.

To recover a set of models, we recursively load the base model
set and apply the parameter updates based on the diff list and
the binary file representing the model parameters.

3.4 Provenance Approach
The overall idea for the Provenance approach (Provenance) is to
save detailed provenance information that is sufficient to recover
a set of models by retraining them instead of model parameters.
Provenance is based on MMlib’s provenance approach but we ad-
dresses O2 (redundant provenance data) and O3 (write overhead).

For the initial model set, we save complete model representa-
tions using Baseline’s logic. For derived model sets, we save the
provenance for the set of models. In detail, we save the model
metadata, training info, and the environment only once. For the
training data, we save one reference per model. These data are
sufficient to represent all models because of two implicit assump-
tions derived from our scenario: (1) the training procedure for
updating the models differs only by the used data, and (2) the
training data are saved regardless of the model management.

To recover a given set of models, we recover the training infor-
mation and update every model by deterministically repeating
its training on the associated dataset.

4 EVALUATION
In this section, we evaluate our approaches. We first describe
our evaluation setup and afterward evaluate the approaches’
performance on storage consumption in Section 4.2, on time-
to-save (TTS) in Section 4.3, and on time-to-recover (TTR) in
Section 4.4. Finally, we discuss the results in Section 4.5.



4.1 Setup
We evaluate our approaches on the metrics of storage consump-
tion, time-to-save (TTS), and time-to-recover (TTR). The storage
consumption measures the amount of storage needed to save a
set of models; it does not include the storage consumption of
referenced models. The TTS is the time it takes to collect and
prepare the data to represent a set of models and persist it. The
TTR represents the time to load all data and to recover a set of
models from it. We use MMlib’s baseline approach (MMlib-base)
as a reference point and integrate our approaches into MMlib to
guarantee a fair comparison1. For the TTS and TTR, we present
the median times of five individual runs; the storage consumption
is constant.

For all experiments, we use PyTorch version 1.7.1 and run one
of two setups. Unless stated otherwise, we use the server setup,
which is a server with an AMD Threadripper PRO 3995WX 64
Core CPU and 64 GB of RAM. To show the performance on a
second, less powerful setup, we also use the M1 setup, which
consists of a machine with the Apple M1 Pro processor (10-Core
CPU, 16-Core GPU), 32 GB of RAM, and built-in SSD storage.

As the default scenario, we follow our running example of
car battery cell models as described in Section 1. We evaluate all
approaches on a fixed sequence of use cases shown in Figure 2.
We start with one iteration of 𝑈1, in which the initial models are
managed. We assume new batteries with 5000 individual cells,
each associated with a small DL model. Following 𝑈1, we have
multiple iterations of𝑈32 where the models are fully or partially
updated. We do not update all models within one iteration of𝑈3
but assume that only a subset of models has diverged significantly
from their expected behavior and needs updating. We assume
that for 5% of all models, a partial update of the parameters is
necessary, and for another 5%, a full update.

By default, we run our experiments using one of the best-
performing model architectures out of a study on battery electric
modeling conducted by Heinrich et al. from Volkswagen [4].
The architecture consists of four fully connected layers and a
total of 4,993 parameters. Throughout the paper, we refer to this
architecture as FFNN-48.

Our initial training data consists of 342M training samples
containing information on 352 dynamic discharge cycles. We
generate the data using a second-order equivalent circuit model
of a 18650 battery cell, which maps an input current to the voltage
response, cell temperature, and cell charge [7]. For input currents,
we use records of real-world driving discharge cycles provided
by Steinstraeter et al. [10]. To increase the data diversity, we
generate each cycle with slightly altered model parameters. To
create the training data for the use cases, we decrement the state
of health (SoH) of the batteries every update cycle. This leads to
different aging trends from the initial SoH until the battery’s end-
of-life. Additionally, we corrupt the data by adding measurement
noise to prevent models from training with equal data. Before
training, we normalize the data to provide an equal feature scale.

If not stated otherwise, the experiments are conducted as
described above. To gain additional insights, we vary the exper-
iments in the following ways: (1) To see the effect of different
model update rates, we change the percentage of updated models
from 10% to 20% and 30%. (2) To observe the effect of a larger
model, we execute our experiments using a model (FFNN-69)

1you can find the source code under https://github.com/hpides/mmlib-multi
2naming to be consistent with MMlib

Figure 2: Sequence of use cases used for evaluation

U1 U3-1 U3-2 U3-3
Use case

0

50

100

St
or
ag
e
co
ns
um

p.
in

M
B

0.1
6

0.1
6

0.1
6

MMlib-base
Baseline

Update
Provenance

Figure 3: Storage consumption per use case

with 10,075 parameters, that is, except for the number of param-
eters per layer, identical to FFNN-48. (3) To evaluate the effect
of data and model from a different domain, we also evaluate
our approaches using a convolutional model (CIFAR) performing
image classification on CIFAR-10 [5] with 6,882 parameters. (4)
To investigate the effects of different hardware, we use the M1
instead of the server setup.

4.2 Storage Consumption
In this section, we evaluate the amount of storage used to save
a set of 5000 models following the FFNN-48 architecture. Fig-
ure 3 shows the storage consumption across the use cases in MB.
For 𝑈1, we see that Baseline and Provenance consume the least
storage. All approaches save all 4,993 parameters per model rep-
resented by 4 Byte floats which add up to approximately 99.9 MB.
This shows that Baseline and Provenance come with a storage
overhead for model architecture and metadata of approximately
4 KB. MMlib-base additionally saves the model architecture, the
layer names, the model code, and the environment information
for every model accumulating to an overhead of approximately 8
KB per model and 40.4 MB in total. Thus, Baseline and Provenance
outperform MMlib-base by 29%. Due to slightly different envi-
ronment information, the improvements are on the M1 setup
with 33% even larger. Update uses the same logic as Baseline and
Provenance for 𝑈1. Its increased storage consumption is caused
by saving the parameter hash information used to detect changes
without having to load the full representation of the previous
model.

For𝑈3, Update and Provenance outperform both baseline app-
roaches, whose storage consumptions do not change compared to
𝑈1. Provenance shows a 99.89% lower storage consumption than
MMlib-base and an improvement of 99.84% over Baseline. It is
because Provenance saves only the references to the training data
and the provenance information for one model. For Update, we
find a 90% lower storage consummation compared toMMlib-base
and 86% compared to Baseline. Update only saves the updated
model parameters and the models’ hash info. In every iteration

https://github.com/hpides/mmlib-multi


of𝑈3, we update 250 (5%) models fully and 250 (5%) models par-
tially. Additionally, we save hash info which adds up to a storage
consumption of approximately 14 MB for all𝑈3s. ForMMlib-base
and Baseline, the storage consumption does not change compared
to𝑈1 because both approaches always save complete representa-
tions of all models and do not take similarities between derived
models into account.

In addition to the 10% update rate from above, we also run ex-
periments for 20% and 30%, respectively. Comparing the results to
the 10% update rate, we see that only the performance of Update
changes noticeably and correlates to the update rate. This is ex-
pected, because with a higher update rate, there are more model
changes and more updated parameters to save.MMlib-base’s and
Baseline’s performance does not change because they always
save entire snapshots of all models. The storage consumption of
Provenance does not change significantly because the additional
information we have to save per iteration is 500 (for 20%) or 1000
(for 30%) additional references to datasets.

To analyze the effects of saving larger models, we also ran the
10% update rate experiment using FFNN-69. The higher number
of parameters increases the storage consumption forMMlib-base,
Baseline, and Update while the storage consumption for Prove-
nance is not affected.MMlib-base’s storage consumption increases
by 1.7×. The reason for the increase not being exactly 2.0× is
that MMlib-base saves a lot of redundant metadata, whose size
is independent of the number of model parameters. For exam-
ple, the amount of storage consumed for saving the keys of the
parameter dictionaries is only dependent on the number of lay-
ers, but not on the number of parameters per layer. Baseline and
Update minimize the amount of redundant metadata, which is
why, for these approaches the storage consumption increases by
approximately 2.0×. The storage consumption for Provenance is
not affected by the larger model because the training pipeline for
both models is independent of the number of model parameters
which leads to almost identical provenance data.

Comparing the storage consumption for CIFAR to the one for
FFNN-48, we find the same trends to the comparison of FFNN-48
and FFNN-69 but scaled to the difference in number of parameters
between FFNN-48 and CIFAR. The reason is that the storage
consumption for all approaches except for Provenance depends
almost exclusively on the number of model parameters, but not
on the type of model architecture or training data.

4.3 Time to Save
Figure 4 shows the TTS across approaches and use cases. In
Figure 4a, we see thatMMlib-base has the highest and Baseline the
lowest TTS across all use cases. The reason forMMlib-base’s long
TTS is that it saves all models of a given set individually leading
to a high number of writes to the disk and to the document store.
In contrast, all other approaches save all models’ metadata and
parameters bundled. Update uses the same logic to save models as
Baseline but additionally generates and saves parameter hashes
which leads to an overhead in TTS. In𝑈1, Provenance saves the
model using Baseline’s logic. The shorter TTS in𝑈3 is caused by
the drastically reduced storage consumption and the comparably
low overhead of saving the provenance information.

Looking at Figure 4b, we also see significant speedups for all
our approaches compared to MMlib-base. The main differences
we notice for the server setup compared to the M1 setup is a
significantly reduced TTS for MMlib-base in all use cases. The
reason is the faster connections to the document store on the

10
20
30

MMlib-base
Baseline

Update
Provenance

U1 U3-1 U3-2 U3-3
Use case

0

5

M
ed
ia
n
TT

S
in

s

0.3
5

0.3
6

0.3
3

0.3
5

0.3
1

0.0
5

0.0
5

0.0
5

0.3
5

0.3
6

0.3
3

0.3
5

0.3
1

0.0
5

0.0
5

0.0
5

(a) M1 setup

4
6

U1 U3-1 U3-2 U3-3
Use case

0.0

2.5

M
ed
ia
n
TT

S
in

s

0.4
4

0.4
5

0.4
5

0.4
5

0.4
3

0.0
1

0.0
1

0.0
1

0.4
4

0.4
5

0.4
5

0.4
5

0.4
3

0.0
1

0.0
1

0.0
1

(b) server setup

Figure 4: Median time-to-save per use case

server setup, which significantly reduces the overhead of saving
individual models. Analyzing the TTS for the largermodels FFNN-
69 and CIFAR, we find the same trends but slightly increased
numbers for FFNN-69 because of the larger amount of data to
persist.

4.4 Time to Recover
Figure 5 shows the TTR across approaches and use cases. To
reduce the training time for the recovery process of Provenance,
we – exclusively for this approach – only train one model with
reduced data per iteration of 𝑈3. This leads to the same trends
for the TTR but enables us to run multiple runs of the same
experiment in a reasonable amount of time. At the end of this
section, we provide the reader with some intuition on numbers
for a more realistic training.

Figure 5 shows the TTR across approaches and use cases. For
the M1 setup, we see in Figure 5a that Baseline’s TTR outper-
forms all other approaches and is constant across all use cases.
MMlib-base’s TTR is also close to constant across the use cases
but is significantly higher than all other approaches’ TTR.

The constant TTR for Baseline andMMlib-base is because both
approaches save the models in one use case independently of
those models saved in other use cases. This implies that we can
recover models independently of the models in other use cases.
The reason forMMlib-base’s long TTR is the same as for its long
TTS. Every model is saved separately, significantly increasing
the overhead of disk and document store accesses.

For 𝑈1, Update and Provenance have a TTR close to Baseline
that increases with every iteration of the𝑈3 following a staircase
pattern. For Update, this is because to recover a given model set
saved in iteration 𝑖 of𝑈3, we have to recover the model saved in
the previous iteration to apply the saved differences in param-
eters. But, the model from the previous iteration may also be
dependent on a previous model, which makes recovering models
a recursive process. For Provenance, recovering a model is also a



recursive process that is similar to the one for Update. The dif-
ference is that instead of applying the updates in every iteration,
we reproduce the training of all the models that were updated.

For the server setup and the FFNN-48 model, the FFNN-69
model, and the CIFAR model, we find the same overall trends as
for the M1 setup. In Figure 5b, we see for the server setup that
both MMlib-base and Baseline show close to constant numbers
while Update and Provenance show a staircase pattern because
of their recursive recovery process. The TTS for all approaches
is lower than on the M1 setup, which is mostly due to faster
connections to the metadata store. MMlib-base is the approach
most benefiting from this, which is why the improvements over
MMlib-base are smaller but still significant.

To get an intuition for the duration of the recovery process,
we executed one run of all use cases for Provenance with an
extensive training considering over 90,000 training samples and
ten epochs. For the first iteration of𝑈3, we measured a TTR of
approximately six hours. For further iterations of𝑈3, the numbers
follow the discussed staircase pattern leading to approximately
12h for iteration two and 18h for iteration three.

Compared to the TTR of the other approaches, these numbers
are orders of magnitude higher. But, we have to consider two
aspects: (1) The pipeline we executed for model training is not
optimized in any way. For example, the data pre-processing is
done online on a single thread and not parallelized. In addition,
we execute the pipeline on a CPU instead of a GPU. But, the only
effect of the non-optimized pipeline are higher inference and
training times which means that the presented numbers for the
provenance approach are conservative and that the statistical
relevance of the results is not influenced. By fully optimizing the
pipeline for the given workload, we can significantly reduce the
training time and, with this, the TTR.

(2) As mentioned above, we train for ten epochs and over
90,000 data points. Performing additional experiments, we saw
that using fewer data and a lower number of epochs leads to
similar model performance.

Since the actual run time of a model training is use case, im-
plementation, and hardware dependent, we leave an in-depth
analysis of different configurations as future work. Nevertheless,
both aspects discussed above put the high TTR into perspective
and show that Provenance is a reasonable choice.

4.5 Discussion
Overall, our evaluation shows that our Baseline approach out-
performs non-multi-model management approaches in terms of
storage consumption, TTS, and TTR. The approaches Update and
Provenance further reduce storage consumption but come with
an increased TTR.

Considering that our highest priority is storage consumption
and we assume model recoveries to happen rarely, Provenance is
the best approach. However, Provenance comes with the draw-
back of a long and compute-intensive model recovery process. If
this is not acceptable, Update is the next best approach; it has a
lower storage consumption but only slightly increases the TTR.
If the storage consumption is not important and TTR has the
highest priority, Baseline is the best approach.

Discussing the approaches’ performance, we find that there
is no single best choice. Thus, we have to carefully consider the
tradeoffs when choosing the best approach for a given scenario.
Currently, this is a manual choice, but as part of future work,
we plan to develop heuristic-based approaches that dynamically

50

100

MMlib-base
Baseline

Update
Provenance

U1 U3-1 U3-2 U3-3
Use case

0

25

M
ed
ia
n
TT

R
in

s

(a) M1 setup

U1 U3-1 U3-2 U3-3
Use case

0

10

20

M
ed
ia
n
TT

R
in

s
(b) server setup

Figure 5: Median time-to-recover per use case

choose the most suitable strategy for a given scenario. As part of
this, we also plan to include other promising related approaches
that come with different specific trade-offs.

Another direction of future work is to evaluate if it is beneficial
to integrate compression techniques into our approaches and
with what trade-offs different algorithms come. With Update, we
deduplicate exact same parameters and represent each by 4 Bytes.
Related work [6] shows that the storage consumption can be
reduced using delta encoding and other compression techniques.

5 CONCLUSION
In this paper, we define and analyze the problem of managing
multiple different models in the model deployment phase.

We discuss why existing approaches perform poorly in this
scenario and present three optimized approaches: (1) Baseline
saving full model representations using a binary format and
reducing the amount of saved metadata, (2) Update additionally
saving only changed parameters, and (3) Provenance savingmodel
provenance data instead of model parameters to recover the
model by reproducing its training.

We evaluate all our approaches for the two use cases of man-
aging deep learning based car battery models and image classifi-
cation models in terms of storage consumption, time-to-save, and
time-to-recover. Next to the use case, we vary the size of the mod-
els, the percentage of updated models, and the hardware setup.
We find that Baseline outperforms existing approaches for TTS
and TTR by more than one order of magnitude while reducing
the storage consumption by up to 29%. Update and Provenance
reduce the storage consumption additionally by up to 86% and
99%, respectively.

ACKNOWLEDGMENTS
This work was partially funded by the German Ministry for
Education and Research (01IS18025A/01IS18037A), the German
Research Foundation (414984028), and the European Union’s
Horizon 2020 research and innovation programme (957407).



REFERENCES
[1] Souvik Bhattacherjee, Amit Chavan, Silu Huang, Amol Deshpande, and Aditya

Parameswaran. 2015. Principles of dataset versioning: Exploring the recre-
ation/storage tradeoff. In Proceedings of the VLDB Endowment. International
Conference on Very Large Data Bases, Vol. 8. 1346.

[2] Gharib Gharibi, Vijay Walunj, Sirisha Rella, and Yugyung Lee. 2019. ModelKB:
Towards Automated Management of the Modeling Lifecycle in Deep Learning.
In 2019 IEEE/ACM 7th International Workshop on Realizing Artificial Intelligence
Synergies in Software Engineering (RAISE). 28–34.

[3] Google. 2021. Machine Learning Glossary. https://developers.google.com/
machine-learning/glossary

[4] Felix Heinrich, Patrick Klapper, and Marco Pruckner. 2021. A comprehensive
study on battery electric modeling approaches based on machine learning.
Energy Informatics 4, 3 (2021), 1–17.

[5] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
(2009).

[6] Hui Miao, Ang Li, Larry S Davis, and Amol Deshpande. 2017. Modelhub: Deep
learning lifecycle management. In 2017 IEEE 33rd International Conference on
Data Engineering (ICDE). IEEE, 1393–1394.

[7] Steven Neupert and Julia Kowal. 2018. Inhomogeneities in Battery Packs.
World Electric Vehicle Journal 9, 2 (Aug. 2018), 20. https://doi.org/10.3390/
wevj9020020 Number: 2 Publisher: Multidisciplinary Digital Publishing Insti-
tute.

[8] Sebastian Schelter, Felix Bießmann, Tim Januschowski, David Salinas, Stephan
Seufert, and Gyuri Szarvas. 2018. On Challenges in Machine Learning Model
Management. IEEE Data Eng. Bull. 41, 4 (2018), 5–15.

[9] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and
Dan Dennison. 2015. Hidden technical debt in machine learning systems.
Advances in neural information processing systems 28 (2015), 2503–2511.

[10] Matthias Steinstraeter. 2020. Battery and Heating Data in Real Driv-
ing Cycles. (Oct. 2020). https://ieee-dataport.org/open-access/
battery-and-heating-data-real-driving-cycles Publisher: IEEE Type: dataset.

[11] Nils Strassenburg, Ilin Tolovski, and Tilmann Rabl. 2022. Efficiently Managing
Deep Learning Models in a Distributed Environment. In Proceedings of the
25th International Conference on Extending Database Technology (EDBT 2022)
Edinburgh, UK, March 29 - April 1. OpenProceedings.org, 234–246. https:
//doi.org/10.48786/edbt.2022.12

[12] Jason Tsay, Todd Mummert, Norman Bobroff, Alan Braz, Peter Westerink, and
Martin Hirzel. 2018. Runway: machine learning model experiment manage-
ment tool.

[13] VertaAI. 2021. ModelDB: An open-source system for Machine Learning model
versioning, metadata, and experiment management. https://github.com/
VertaAI/modeldb

[14] Billy Wu, W. Dhammika Widanage, Shichun Yang, and Xinhua Liu. 2020.
Battery digital twins: Perspectives on the fusion of models, data and artificial
intelligence for smart battery management systems. Energy and AI 1 (Aug.
2020), 100016. https://doi.org/10.1016/j.egyai.2020.100016

[15] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong,
Andy Konwinski, Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani
Parkhe, et al. 2018. Accelerating the machine learning lifecycle with MLflow.
IEEE Data Eng. Bull. 41, 4 (2018), 39–45.

https://developers.google.com/machine-learning/glossary
https://developers.google.com/machine-learning/glossary
https://doi.org/10.3390/wevj9020020
https://doi.org/10.3390/wevj9020020
https://ieee-dataport.org/open-access/battery-and-heating-data-real-driving-cycles
https://ieee-dataport.org/open-access/battery-and-heating-data-real-driving-cycles
https://doi.org/10.48786/edbt.2022.12
https://doi.org/10.48786/edbt.2022.12
https://github.com/VertaAI/modeldb
https://github.com/VertaAI/modeldb
https://doi.org/10.1016/j. egyai.2020.100016

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Learning
	2.2 Related Approaches

	3 Approach
	3.1 Optimization Opportunities
	3.2 Baseline
	3.3 Update Approach
	3.4 Provenance Approach

	4 Evaluation
	4.1 Setup
	4.2 Storage Consumption
	4.3 Time to Save
	4.4 Time to Recover
	4.5 Discussion

	5 Conclusion
	Acknowledgments
	References

