
TPC-DI: The First Industry Benchmark for Data Integration

Meikel Poess
Server Technologies
Oracle Corporation

Redwood Shores, California
USA

mpoess@oracle.com

Tilmann Rabl,
Hans-Arno Jacobsen

Middleware Systems
Research Group

University of Toronto
Canada

tilmann.rabl@utoronto.ca
jacobsen@eecg.toronto.edu

Brian Caufield
InfoSphere DataStage

IBM
San Jose, California

USA
bcaufiel@us.ibm.com

ABSTRACT
Historically, the process of synchronizing a decision support sys-
tem with data from operational systems has been referred to as Ex-
tract, Transform, Load (ETL) and the tools supporting such pro-
cess have been referred to as ETL tools. Recently, ETL was re-
placed by the more comprehensive acronym, data integration (DI).
DI describes the process of extracting and combining data from a
variety of data source formats, transforming that data into a uni-
fied data model representation and loading it into a data store. This
is done in the context of a variety of scenarios, such as data ac-
quisition for business intelligence, analytics and data warehousing,
but also synchronization of data between operational applications,
data migrations and conversions, master data management, enter-
prise data sharing and delivery of data services in a service-oriented
architecture context, amongst others. With these scenarios rely-
ing on up-to-date information it is critical to implement a highly
performing, scalable and easy to maintain data integration system.
This is especially important as the complexity, variety and volume
of data is constantly increasing and performance of data integra-
tion systems is becoming very critical. Despite the significance of
having a highly performing DI system, there has been no indus-
try standard for measuring and comparing their performance. The
TPC, acknowledging this void, has released TPC-DI, an innovative
benchmark for data integration. This paper motivates the reasons
behind its development, describes its main characteristics including
workload, run rules, metric, and explains key decisions.

1. INTRODUCTION
The term data integration (DI) covers a variety of scenarios, pre-

dominantly data acquisition for business intelligence, analytics and
data warehousing, but also synchronization of data between oper-
ational applications, data migrations and conversions, master data
management, enterprise data sharing and delivery of data services
in a service-oriented architecture context, amongst others. Each of
these scenarios requires the extraction of data from one or multiple
source systems and data transformation and writing the data to one
or more target systems.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

While small DI deployments tend to be implemented using col-
lections of customized programs or database procedures, medium
to large sized DI deployments are usually implemented using gen-
eral purpose DI tools. These deployments often must integrate data
from many disparate data sources with various formats requiring
complex formatting and data transformations prior to loading into
one or more target systems. General purpose DI tools can sig-
nificantly increase developer productivity by providing commonly
used functionality for system connectivity and for standard data
transformations. They further improve the availability and mainte-
nance of the DI processes by visualizing connections, transforma-
tions and progress of running tasks. A non-exhaustive list of com-
mercially available tools includes, for example, Ab Initio1, IBM In-
foSphere Information Server for Data Integration2 Microsoft SSIS3,
and Oracle Warehouse Builder4.

Ever since vendors started implementing and marketing general
purpose DI tools, they started making competitive and performance
claims. With no standard DI benchmark available, todays situation
is similar to that of 1980s, when many system vendors due to the
the lack of standard database benchmarks practiced what is now
referred to as benchmarketing, a practice in which organizations
make performance claims based on self-designed, highly biased
benchmarks. Today, a large number of world record claims have
been made for DI systems (e.g., [8, 10, 12]). These are of no value
to customers who would like to evaluate DI performance across
vendors. Having realized this void the Transaction Processing Per-
formance Council (TPC) released the first version of its data inte-
gration benchmark, TPC-DI, in January 20145. TPC-DI is modeled
using the data integration processes of a retail brokerage firm, fo-
cusing on populating a decision support system with transformed
data from a variety of desparate systems, including a trading sys-
tem, internal Human Resource (HR) and Customer Relationship
Management (CRM) systems. The mixture and variety of opera-
tions being measured by TPC-DI are not designed to exercise all
possible operations used in DI systems. And they are certainly not
limited to those of a brokerage firm. They rather capture the variety
and complexity of typical tasks executed in a realistic data integra-
tion application that are characterized by:

1http://www.abinitio.com/
2http://www-03.ibm.com/software/products/en/
infoinfoservfordatainte
3http://technet.microsoft.com/en-us/library/
ms141026.aspx
4http://www.oracle.com/technetwork/
developer-tools/warehouse/overview/
introduction/index.html
5http://www.tpc.org/tpcdi/default.asp

• The manipulation and loading of large volumes of data,
• A mixture of transformation types including error checking,

surrogate key lookups, data type conversions, aggregation
operations, data updates, etc.,
• Historical loading and incremental updates of a decision sup-

port system using the transformed data,
• Consistency requirements ensuring that the integration pro-

cess results in reliable and accurate data,
• Multiple data sources having different formats, including,

multi-row formats and XML
• Multiple data tables with varied data types, attributes and

inter-table relationships.

Following TPC’s core philosophy, TPC-DI is technology agnos-
tic, i.e., TPC-DI defines a set of functional requirements that can
be run on any DI system, regardless of specific hardware or soft-
ware. This enables the performance evaluation of a broad spec-
trum of hardware and software tools to be conducted in a fair and
open way. However, it also increases the complexity of develop-
ing a benchmark specification as all functional requirements, such
as specific transformations, timings and durability characteristics
need to be expressed in a hardware and software neutral way. Also,
being technology agnostic renders it almost impossible to provide a
kit that can be downloaded and run unmodified. Hence, each ven-
dor using a specific hardware/software solution needs to develop
its own implementation of the TPC-DI specification and to submit
proof that the implementation meets all benchmark requirements.

The contributions of this paper can be summarized as follows:
TPC-DI is the first industry standard benchmark that enables hard-
ware and software vendors, hereafter referred to as benchmark spon-
sors, to showcase the performance, price-performance, and energy
efficiency of their systems in a comprehensive, competitive, fair,
and open way. The benchmark specification as well as a detailed
disclosure report for every benchmark is available for anybody to
verify the results. With benchmark TPC-DI results becoming avail-
able customers, who would like to evaluate different DI solutions
under a controlled workload, are able to do so. This paper describes
the entire benchmark in a deep and comprehensive way, discusses
alternative designs where possible and gives reasons behind design
decisions. It further analyzes the workload and presents results ob-
tained on a test system.

The remainder of this paper is structured as follows. Section 2
introduces the source and target data model. Section 3 presents the
characteristics of the data sets used to populate the source model
and explains the technical details of how the data sets are generated
and scaled. In Section 4, the transformations of the DI workload
are explained. They form the core workload of the benchmark.
Section 5 presents the execution rules and metric used to govern
how the transformations have to be executed, timed, and weighted
to compute the ranking of DI systems. Special emphasis is put on
explaining the metric and the decisions that led to its definition. A
performance study is presented in Section 6. The paper concludes
with future work in Section 8.

2. THE DATA MODEL
The data model of TPC-DI is designed to exercise much of the

functionality typically used in today’s DI systems. It consists of
two main parts, the source data model and the target data model.
The source data model represents the input data set to the data in-
tegration process. It resembles data from online trading operations
combined with other internal data sources, i.e., a human resource
and a customer management system, externally acquired data, fi-
nancial newswire data, and customer prospect data. The target

data model resembles a dimensional decision support system fol-
lowing common practice in the industry [3]. It consists of multiple
fact tables sharing various types of dimensions. This snowflake
schema variant enables easy and efficient responses to typical busi-
ness questions asked in the context of a retail brokerage firm. There
are other ways to define a decision support system, but this format
provides a well understood structure in the benchmark while also
allowing for an appropriate variety of data transformations to be
exercised in the core workload.

Figure 1 outlines the conceptual model of the TPC-DI bench-
mark. The top portion displays the six data sources. While in real
world scenarios it is necessary to extract data from these sources in-
cluding different database vendors and file structures, the actual ex-
traction from physical systems of these types is out of scope of the
benchmark. While it would be desirable to include the extraction
from these often heterogeneous source systems, it is an intractable
problem from a benchmark logistics point of view given the tech-
nology agnostic specification of the benchmark. And it is often for-
bidden in the end-user license agreement of commercially available
products. Hence, TPC-DI models an environment where all source
system data has been extracted into flat files in a staging area be-
fore the timed portion of the DI process begins. TPC-DI does not
attempt to represent the wide range of data sources available in the
marketplace, but models abstracted data sources and measures all
systems involved in moving and transforming data from the stag-
ing area to the target system. The use of a staging area in TPC-DI
does not limit its relevance as it is common in real world DI appli-
cations to use staging areas for allowing extracts to be performed
on a different schedule from the rest of the DI process, for allowing
backups of extracts that can be returned to in case of failures, and
for potentially providing an audit trail. The following two subsec-
tions describe the source and target data models more in detail.

The lower part of Figure 1 shows the benchmarked system, com-
monly referred to as the system under test (SUT). It consists of
three conceptually different areas, which may reside on any number
of physical or logical systems. The staging area holds the source
data that is read by the data transformations. No manipulations are
allowed on the files after they are generated by the data generator
and placed into the staging area. This guarantees that all methods
used to speed up the execution of the data transformations, e.g.,
sorting the data or splitting data into multiple files, are performed
in the following timed portion of the benchmark. The data trans-
formations read the source data and perform all necessary modifi-
cations so the target system can be populated. The data transfor-
mations are described in detail in Section 4. The target system can
be a business intelligence, a data warehouse, a business analytics
system, or a master data management system. We refer to it as the
decision support system.

2.1 Source Data Model
Typical DI applications support two integration processes with

different characteristics and performance requirements. One pro-
cess performs an initial load of the target system, the historical
load. A second process performs periodic trickle updates into it,
i.e., incremental updates. The concepts of historical load and incre-
mental updates are described comprehensively in Section 5.2. For
the most part, the general structures of the data models for these
two concepts are identical. However, there are differences in the
use of input files in each of the two types of load. In the remainder
of this section, we will introduce the various input files, their pur-
pose in the context of the DI process, what part of transformations
they enable, how they are populated, and how they scale.

As mentioned above, TPC-DI’s source data model is based on

Figure 1: Benchmarked System and Workflow

internal data of the operational system of the fictitious retail bro-
kerage firm, externally acquired marketing data and reference data.
The operational system is comprised of an online transaction pro-
cessing database (OLTP DB) for the online trading department sys-
tem, a human resource system (HR) and a customer relationship
management system (CRM). The externally acquired data is com-
prised of financial data (FINWIRE) of publicly traded companies,
delivered by a newswire system, and customer prospect data, ac-
quired through a marketing firm (PROSPECT). The reference data
contains static information, only required to be loaded during the
historical load, such as date/time, industry segments, tax rates, and
trade types.

The OLTP DB represents a relational database with transactional
information about securities market trading. It contains the fol-
lowing tables: (i) customers (ii) accounts (iii) brokers (iv) account
balances (v) securities (vi) trade details (vii) market information.
Files used in the historical load are full extracts containing all rows
in the corresponding table of the source system. Files used in the
incremental update are change data capture (CDC) extracts, and as
such they contain additional flags, i.e. CDC FLAG and CDC DSN
columns at the beginning of each row. The CDC FLAG is a single
character I, U or D that tells whether the row has been inserted (I),
updated (U) or deleted (D) since the previous state. For updates
there is no indication as to which values have been changed. Rows
that have not changed since the last extract will not appear in the
CDC extract file. A row may change multiple times in the course
of a day6. In this case, the DI process needs to merge all change
records to determine the values of the record to be inserted. The
CDC DSN is a sequence number, a value whose exact definition

6day is the refresh interval for incremental updates

is meaningful only to the source database, but is monotonically in-
creasing in value throughout the rows in a file. The rows in a file
are ordered by the CDC DSN value, which also reflects the time
order in which the changes were applied to the database.

The HR system contains employee data of the fictitious retail
brokerage firm including employee name, job description, branch
location, contact information, and management chain. The HR
database is represented by a single extract file, HR.csv. There is
no CDC on this data source; it is modeled as a full table extract for
the historical load.

The CRM system, an OLTP source, contains customer contact
information and information about their accounts. Data from this
system is presented in form of an XML file. Its structure is hierar-
chical to represent data relationships between customers and their
accounts. Each record in this file represents an action performed
in the CRM system, i.e. New (new customer), AddAcct (add a new
account), UpdAcct (update an existing account), UpdCust (update
an existing customer), CloseAcct (close an existing account),Inact
(inactivate an existing customer). This data is only used in the his-
torical load.

Data for the two external sources are also represented by file ex-
tracts. Prospect represents data that is obtained from an external
data provider. Each file contains names, contact information and
demographic data of potential customers. Since the data is coming
from an independent source, it cannot be guaranteed that it is du-
plicate free, i.e., some person in the prospect file might already be
a customer of the brokerage firm. The DI tool needs to account for
duplicates. This file is modeled as a full daily extract from the data
source. This also means that there is no indication as to what has
changed from the previous extract.

Finwire data represents financial records from companies that
have been recorded over three month periods. Data for each three
month period is grouped together in one file, e.g. FINWIRE2003Q1
for data of the first quarter of 2003. Each of these files can contain
records of the following type CMP = company, SEC = security, FIN
= financial. Each record type has its own distinct schema. The type
of record in this variable length data extract is indicated in the first
three bytes.

The reference data provided in, Date.txt, Time.txt, Industry.txt,
StatusType.txt, TaxRate.txt and TradeType.txt is loaded only dur-
ing the historical load. While one expects these tables to change in
the lifetime of a real-world system, they are kept static in TPC-DI.

Data from the above described sources is generated by a TPC
provided data generator, DiGen, which is implemented using PDGF,
the Parallel Data Generation Framework, developed at the Univer-
sity of Passau [6]. More on the data generator in Section 3.3.

Table 1 summarizes all source input files used during the histor-
ical and incremental loads. The first column denotes the file name,
the second the file format. The third and fourth columns denote
whether a file is used as input for the historical or/and incremental
load phases.

2.2 Target Data Model
The target data model is organized as a snowstorm schema, an

extension to the well-known star schema. It is similar to that de-
ployed in TPC’s latest decision support benchmark, TPC-DS [5].
In general, a star schema includes a large fact table and several
small dimension (lookup) tables. The fact table stores frequently
added transaction data such as security trades and cash transactions.
Each dimension table stores less frequently changed or added data
supplying additional information for fact table transactions, such
as customers who initiated a trade. An extension to the pure star
schema, the snowflake schema, separates static data in the outlying

Source Table Format H I
Account.txt CDC X
CashTransaction.txt DEL/CDC X X
Customer.txt CDC X
CustomerMgmt.xml XML X
DailyMarket.txt DEL X X
Date.txt DEL X
Time.txt DEL X
FINWIRE Multi-record X
HoldingHistory.txt DEL X X
HR.csv CSV X
Industry.txt DEL X
Prospect.csv CSV X X
StatusType.txt DEL X
TaxRate.xt DEL X
TradeHistory.txt DEL X
Trade.txt DEL/CDC X X
TradeType.txt DEL X
WatchItem.txt DEL/CDC X X

Table 1: Source Files with Type (DEL=Full Data Dump,
CDC=Change Data Capture, XML=Extensible Markup Lan-
guage, CSV=Comma Separated Value) and Load Usage

dimension tables from the more dynamic data in the inner dimen-
sion tables and the fact tables. That is, in addition to their relation
to the fact table, dimensions can have relations to other dimensions.
Combining multiple snowflake schemas into one schema results in
a snowstorm schema. Usually, fact tables of a snowstorm schema
share multiple dimensions. In many cases joins between two or
more fact tables are possible in a snowstorm schema making it very
interesting for writing challenging queries and transformations.

The design goal for the TPC-DI target schema is to realistically
model what real world customers currently use as part of their data
integration processes. There are other ways to define a decision
support system, but the snowstorm model provides a well under-
stood structure while also allowing for an appropriate variety of
data transformations to be exercised as part of the main task in
TPC-DI. Figure 2 shows a simplified ER diagram of the target data
schema.

TPC-DI defines seven dimension tables:(i) Date (ii) Time (iii) Cus-
tomer (iv) Account (v) Broker (vi) Security and (vii) Company.
These dimensions provide details for six fact tables: Holding (i) Trade
(ii) Cash Balances (iii) Market History (iv) Watches and (v) Prospects.
The schema also includes five reference tables that have no relation
to any of the fact or dimension tables. Their purpose is to pro-
vide additional information during the transformation. These are:
(i) Trade (ii) Type (iii) Status Type (iv) Tax Rate (v) Industry and
(vi) Financial.

3. DATA SET
The data set for a particular benchmark is driven by the need

to challenge the performance of all components it measures, hard-
ware and software. In the case of TPC-DI, these are reading and
interpreting of source data from a staging area, and data transfor-
mations and data loading into the target decision support system
for both the historical and incremental load phases. In this context,
a well designed data set stresses the statistic gathering algorithms,
the data interpretation and transformation engines, data placement
algorithms, such as clustering, vertical or horizontal partitioning as
well as insert strategies for bulk and trickle loads. A good data set

Figure 2: Target Data Schema

design includes proper data set scaling, both domain and tuple scal-
ing. Like in other TPC benchmarks, a hybrid approach of domain
and data scaling is used for TPC-DI. The data domains for tables
are very important. While pure synthetic data generators have great
advantages, TPC-DI follows a hybrid approach of both synthetic
and real world based data domains. Synthetic data sets are well
understood, easy to define and implement. However, following the
TPCs paradigm to create benchmarks that businesses can relate to,
a hybrid approach to data set design has many advantages over both
pure synthetic and pure real world data.

3.1 Real World Relevance of the Data Set
The data set used in TPC-DI resembles very closely that of a real

brokerage firm. This complex data set requires a sophisticated data
generator that is able to create patterns apparent in real life data
sets, i.e., address changes occurring in a certain time order, trade
transactions that affect multiple accounts, such as account balances
and security holdings, or trades that go through a series of states
from placement to fulfillment. These data characteristics can be
formalized as intra row, intra table and inter table dependencies [7].
Intra row dependencies occur when some fields of the same row
exhibit some sort of dependencies. For instance, in the US, value
added tax (VAT) varies by state and within some states by county.
Hence, the VAT depends on the location of the purchase. Intra table
dependencies occur when values of different rows within the same
table have dependencies as it often occurs in history-keeping di-
mensions. Inter table dependencies occur if rows in different tables
need to be related to each other, like for referential integrity when
multiple tables are updated as part of an event, e.g., a security trade.

The following paragraphs illustrate the complexity of TPC-DI’s
data set and its real world relevance using security trades as an
example. Securities are equities or debentures of publicly traded
companies that fluctuate in value over time. Trading securities can
either be an equity (cash account) or debenture (margin account)
and is done usually via a brokerage firm, either through a regis-
tered representative or without a broker through an online broker-
age trading firm. Cash accounts require all transactions to be paid
for in full by the settlement date three days after the trade execu-
tion. Margin accounts allow the investor to borrow money for the
purchase of securities in hopes that they will not go down in price
and a margin call for the difference is demanded by the brokerage

Figure 3: State Diagram for the Order Data Creation of the
Historical Load

firm. TPC-DI models security trades fulfilled by a cash account and
done by a registered representative brokerage firm.

When trades occur four tables are affected. Rows in the trade,
trade history, holding history, and cash transaction tables are tightly
interconnected using all three of the above mentioned type of data
dependencies. Additionally, the content of other input tables, e.g.,
security.txt and customer.txt need to be consulted to assure that only
valid customers trade existing securities, which is not trivial as new
customers and security symbols are added over time. The trade ta-
ble contains information about each customer trade. The holding
contains information about customer securities holding positions
that were inserted, updated, or deleted and which trades caused
each change in holding. The cash transaction table holds data about
cash transaction of customer accounts. These cash transaction usu-
ally follow a trade fulfillment. Figure 3 shows the state diagram of
trades for the historical load. An order enters the system either as
a market order or a limit order. Market orders are executed at the
current market price. Limit orders are executed at the price spec-
ified or canceled. Market order transitions create an entry in the
Trade History table immediately after they enter submitted state.
Within five minutes they transition to completed where they create
another entry in the Trade History table, an entry in the Holding
History table and in the Trade table. Within five days they transi-
tion to settled where they create an entry in the Cash Transaction
table. Limit orders on the other hand transition immediately after
they are placed to the pending state where they create an entry in
the Trade History table. Then they transition either to the submitted
state or they transition to the canceled state. When they transition
to submitted they follow the path of the market order or to canceled
where they create entries in the Trade History and Trade tables.

3.2 Data Set Scaling
Being able to scale a data set is pertinent for any benchmark

because of two main reasons. Firstly, for a benchmark to be rele-
vant to real world problems, it needs to reflect data sizes used in
real world systems. Ultimately, the customers of TPC-DI bench-
mark results are end-users trying to evaluate the performance and
price performance of DI solutions. Customer data sets tend to vary
greatly from one business to another and, therefore, those who pub-
lish benchmark results must be able to size their benchmark pub-
lication to the customers they are catering to. Secondly, systems
and data sets tend to grow rapidly over time. A benchmark with
a static data set size will become obsolete within a few years due
to the compute power used by real world applications. Hence, a
benchmark needs to be able to adapt to different data sizes.

Source Table Size in Bytes Number of rows
Date.txt 3372643 25933
Time.txt 4060800 86400
Industry 2578 102
StatusType 83 6
TaxRate. 16719 320
TradeType 94 5

Table 2: Reference Source Files Size and Rowcount Informa-
tion

Data set scaling has two orthogonal aspects, determining the car-
dinality of each individual relation of a schema based on a common
scale factor SF and expanding a base data set to reach the cardinal-
ities desired. Using the same scale factor SF to determine all table
cardinalities helps in creating a coherent data set. Additionally, us-
ing the cardinality of a particular entity modeled in the data set as
the scale factor SF helps understanding the data size resulting from
a particular scale factor, e.g., number of customers or number of
ticker symbols. There are two approaches in defining SF :(i) con-
tinuous scaling, i.e. SF ∈ N, or (ii) fixed scaling, i.e., a limited
number of predefined scale factors SF ∈ {C1, C2, ..., Cn}. Con-
tinuous scaling requires that performance of results obtained from
different scale factors are comparable. ”Comparable” in this con-
text means that the workload scales linearly, i.e., data sizes and
amount of work required by transactions. It is understood that not
all algorithms scale linearly with data sizes and work required by
transactions. However, for the purpose of comparing results with
continuous scaling it is sufficient that the following is met: As-
suming throughput metric PS,BM (SF) when run system S using
benchmark BM , then PS,BM (SF) = ε ∗ PS,BM (SF ′) for small
increments from SF to SF ′. Fixed scaling avoid this issue by only
requiring comparability of results obtained with the same scale fac-
tor.

TPC-DI uses continuous scaling based on the number of cus-
tomers of the fictitious brokerage firm. The number of unique cus-
tomers UCH that are present in the historical data set can be com-
puted as UCH(SF) = SF ∗ 5000. Each incremental load makes
changes to or adds customers in the decision support system at a
rate of 5 ∗ SF customers per update.

Data set expansion can take on two different characteristics. In
one case, the number of tuples in the base data set is expanded, but
the underlying value sets (the domains) remain static. The business
analogy here is a system where the number of customers remains
static, but the volume of transactions per year increases. In the
other case, the number of tuples remains fixed, but the domains
used to generate them are expanded. For example, there could be
a new ticker symbol introduced on wall street, or it could cover a
longer historical period. Clearly there are valid reasons for both
types of scaling within a dataset, just as there are valid reasons to
stress a hardware or software systems to highlight particular fea-
tures or concerns, and often a test will employ both approaches to
expanding the dataset. As has been proven beneficial for other TPC
benchmarks, such as TPC-DS, in the case of TPC-DI, the choice
was made to use a hybrid approach. Most table columns employ
data set expansion instead of domain expansion, especially fact ta-
ble columns. Some columns in small tables employ domain expan-
sion. The domains have to be scaled down to adjust for the lower
table cardinality.

Source data for fact tables and most dimension tables scale lin-
early with SF . Therefore, the size sizeF of input file F at scale
factor SF can be expressed as sizeF (SF) = SF ∗ SF , with
SF being a factor specific for table F . Similarly, we can express

Source Table SH SI RH RI

CashTransaction.txt 10.58 0.0065 120.30 0.0663
CustomerMgmt.xml 2.87 N.A. 107.66 N.A.
DailyMarket.txt 30.02 0.0499 541.55 0.7619
FINWIRE 9.70 N.A. 49.32 N.A.
HoldingHistory.txt 2.66 0.0023 120.47 0.0663
TradeHistory.txt 10.31 N.A. 326.56 N.A.
Trade.txt 12.56 0.0175 130.00 0.1801
WatchItem.txt 13.37 0.0383 300.00 0.6896
Account.txt N.A. 0.0007 N.A. 0.0100
HR 0.3914 N.A. 5 N.A.
Customer N.A. 0.0099 N.A. 0.0050
Prospect N.A. 0.9958 N.A. 4.994

Table 3: Source Files Scaling Information

Figure 4: Aggregated Source Data Sizes for Historical and In-
cremental Loads in GB

the number of rows rowsF of input file F at scale factor SF as
rowsF (SF) = SF ∗ RF . With RF again being a factor specific
for Table F . Other tables, such as date and time, do not scale with
SF , they remain static.

Table 3 summarizes the scaling of all source data files that scale
with the scale factor both for the historical load (H) and incremental
loads (I). Columns labeled SH and SI list the table specific factors
to calculate the size [GB] and columns labeled RH and RI list the
table specific factors to calculate the number of rows for both the
historical load (H) and incremental loads (I). Table 2 summarizes
the sizes of all static tables.

3.3 Data Generation with PDGF
Since its first incarnation, the parallel data generation framework

PDGF, which was developed at the University of Passau [6], has
been improved and extended with many features. Its portable and
high performance data generation methods are very configurable
and extensible, allowing the generation of data for any kind of rela-
tional schema, while hiding the complexity of parallel data gener-
ation on today’s massive scalable systems and drastically reducing
the development time for a data generator. All these features con-
vinced the TPC to choose PDGF for the development of DiGen.
Since 2013 PDGF is being commercialized by bankmark7.

PDGF is configurable using two XML configurations files. And
its rich plug-in system enables Java knowledgeable programmers
to extend it very easily. Performance tests have shown that it is

7http://www.bankmark.de

equally fast in generating TPC-H data as dbgen, TPC’s C-based
custom built reference implementation. It uses a special seeding
strategy to exploit the inherent parallelism in pseudo random num-
ber generators. By incrementally assigning seeds to tables, columns,
and rows the seeding strategy keeps track of the random number
sequences for each value in the data set. This makes it possible to
re-calculate values for references and correlations rather than stor-
ing them. This makes PDGF highly scalable on multi-core, multi-
socket, and multi-node systems, i.e. for scale-up and scale-out.

PDGF hides all reference, update, and general random number
generation in an abstraction layer called update black box. Generic
generators for numbers, strings, text, and references use the black
box to get the correct random number sequences. The data gener-
ation itself is performed by worker threads that generate blocks of
data and optionally sort it using a cache. The generated data can be
further formatted using a post-processing system that enables elab-
orate transformations of the generated data. Users specify the data
model in form of an XML configuration file. The data model con-
sists of tables, columns, and generators, which contain the semantic
of the data model. Furthermore, users can specify transformations
in a second XML file. These transformations can be simple format-
ting instructions, but also complex merging or splitting of tables.

Due to the complex dependencies in the TPC-DI specification
additional forms of repeatable data generation had to be developed
in PDGF. One of the biggest challenges was the generation of con-
sistent updates to the historical load. An example is the table Cus-
tomer. Customers can be inserted, updated, and deleted. While
creating new customers in updates is relatively easy and is essen-
tially the same process as writing the historical table, updates are
written as full records, repeating historic or previously updated val-
ues. Also, updates and deletes cannot be generated for previously
deleted records. To support this tracking of change, an abstract no-
tion of time was introduced to PDGF [1]. In each abstract time
step, a row or record can either be inserted, updated, or, deleted. A
row’s life cycle thus starts by its insertion, potentially followed by
updates, and ends with its deletion. To keep track of the changes a
set of permutations is used as described in [1].

One of the most complex parts of the TPC-DI data set is the
model of security trades. The trades have a live cycle that is shown
in Figure 3. The different states of trades are stored across multiple
tables and these tables store the history of trades, meaning that all
states have to exist and be consistent already in the historical ta-
bles. To achieve this level of detail at the required performance, a
specialized update black box was implemented, which completely
implements the trade life cycle. Essentially, all trade relevant in-
formation is modeled in a single table, which is split up during the
generation. Technically, the data will not be split up during gener-
ation, but only the required values will be generated. To ensure the
time consistency, all trade related tables are built of many updates,
in which each record can be transferred into a new state. Depend-
ing on the time granularity of the tables the time unit is fraction of
days to quaters of years.

PDGF supports all file formats required by TPC-DI, such as
CSV, text, multi format, and XML. PDGF supports this using an
output system that transforms data from row oriented data to any
other representation. PDGF comes with several output plug-ins
such as character separated value data (e.g., CSV), XML formats,
and a generic output that can be scripted using Java code. Inter-
nally, the workers generate blocks of data for each table or set of
tables that is currently scheduled. The output system receives the
internal representation and uses the output plug-in to transform the
data. Besides the formatting, it is possible to merge or split tables
in the output, although this functionality can also be achieved by

0

20

40

60

80

100

120

140

0 5 10 15 20 25 35 40 45

Throughput

Real Cores Hardware Threads

MB/s

30

Figure 5: DiGen Scale-Out Performance

changing the model, it is desirable to have a clean and understand-
able model and keep pure formatting separated. The output system
enables separate formatting per set of tables, it is also possible to
generate tables in multiple formats. Using a property system, the
format can also be determined at run time.

Figure 5 shows the scale-out performance of DiGen. We gen-
erated data for scale factor 100 on a system with 2 E5-2450 Intel
CPUs,i.e. 16 cores and 32 hardware threads. The data was gen-
erated repeatedly by increasing the number of workers from 1 to
42. The generation scales almost linearly with the number of cores.
Data generation continues to increase beyond the number of threads
(32), but slows down after 38 threads.

4. TRANSFORMATIONS
TPC-DI’s transformations define the work that must be com-

pleted to prepare and load data into the data warehouse. In essence,
they provide a mapping of data in the source tables to data in the tar-
get tables. TPC-DI defines two transformations for each of the fact
and dimension tables of the target decision support system as de-
scribed in Figure 2, one for the historical and one for the incremen-
tal loads. The transformations are not explicitly named, but since
there are two for each target table, they can be referred to by us-
ing a combination of the name of the target table that they populate
and name of their load phase. For instance, the transformation that
populates the DimAccount table during the historical load is named
TH,DimAccount. Each transformation stresses particular character-
istics of a DI system. While not all transformations cover disjunct
characteristics, taken together, all transformation cover most work
performed during typical DI transformations. Their characteristics
are summarized in Table 4. The first column labels the charac-
teristic so that we can refer to it later, the second column briefly
describes it.

There are a total of 18 transformations defined, each of which is
defined in English text. Unlike well established languages to de-
scribe query result sets, such as Structured Query Language (SQL)
or XQuery, to date there is no common language to describe DI
transformations. DI transformations are defined in terms of the
data warehouse table(s) they populate. For each field of the data
warehouse table(s), the source data field(s) and any transformations
required to be performed on the source data are specified in English
text. While it allows for a wide degree of freedom in implement-
ing and optimizing the workload, it also imposes challenges to the
benchmark specification to assure a ”level playing field” for ev-
erybody. To guarantee that all benchmark sponsors interpret the
English text in the same way, i.e., get the same result and do not
over-optimize or cut corners, TPC-DI defines a qualification test. It
provides an input data set, i.e., SF=5 DIGen data, and a correspond-
ing dump of the decision support system after all transformations

Label Description
C1 Transfer XML to relational data
C2 Detect changes in dimension data, and applying appro-

priate tracking mechanisms for history keeping dimen-
sions

C3 Update DIMessage file
C4 Convert CSV to relational data
C5 Filter input data according to pre-defined conditions
C6 Identify new, deleted and updated records in input data
C7 Merge multiple input files of the same structure
C8 Convert missing values to NULL
C9 Join data of one input file to data from another input file

with different structure
C10 Standardize entries of the input files
C11 Join data from input file to dimension table
C12 Join data from multiple input files with separate struc-

tures
C13 Consolidate multiple change records per day and iden-

tify most current
C14 Perform extensive arithmetic calculations
C15 Read data from files with variable type records
C16 Check data for errors or for adherence to business rules
C17 Detect changes in fact data, and journaling updates to

reflect current state

Table 4: Transformation Characteristics

have been executed.The TPC-DI specification cannot provide qual-
ification output for all scale factors because of its continuous scal-
ing model. The qualification tests must be performed on the SUT
using the same hardware and software components as the perfor-
mance test and configured identically to those of the performance
test. The content of the decision support tables must match that
of the provided qualification output, with the exceptions of specific
fields, like surrogate keys, and precision of calculations. The same
technique has been successfully applied to other benchmarks, such
as TPC-H and TPC-DS.

To assure that the transformations are defined within a DI tool,
the specification defines the minimum requirements the data inte-
gration system must meet. These common characteristics of DI
tools are specified at a high level, e.g., the ability to read and write
data to and from more than one data store and provide data trans-
formation capabilities. In addition, the specification requires the DI
system to translate a DI specification into a DI application.

The order in which transformations are executed is left to the
benchmark sponsor provided that all functional dependencies be-
tween tables of the decision support system are honored. This
means when a dependent table column refers to a column in a
source table, any rows in the source table that would change the
outcome of processing a row in the dependent table must be pro-
cessed before the dependent row. For instance, DimCustomer is
fully processed before DimAccount because the account records
refer to customer records. The specification defines these depen-
dencies precisely.

The benchmark requires that at the end of each phase, all trans-
formations must have completed successfully and their output data
must be committed into the decision support system. Starting from
the first incremental update phase, the decision support system must
be operational and accessible to any user of the DI system.This im-
plies that data that has been committed must remain visible to any
other user.

DSS Table Characteristics of Transformations
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

TH,DimAccount X X X X X X
TH,DimBroker X X
TH,DimCompany X X X X X X X X
TH,DimCustumer X X X X X X X X X
TH,DimDate X
TH,DimSecurity X X X X X X X X X
TH,DimTime X
TH,FactTrade X X X X X X
TH,FactCashBalances X X X
TH,FactHolding X X X X X X
TH,FactMarketHistory X X X X X X
TH,FactWatches X X X X X X
TH,Industry X
TH,Financial X X X X X
TH,FactProspect X X X
TH,StatusType X
TH,TaxRate X
TH,TradeType X

Table 5: Transformations and Their Characteristics

4.1 History Keeping Dimensions
History keeping dimension tables retain information about changes

to its data over time, while also allowing easy querying of current
information. This is accomplished using both the primary key of
the source system table, which is constant over time, and a sur-
rogate key that is updated for each recorded change plus two addi-
tional fields, EndDate and IsCurrent. While EndDate would be suf-
ficient to identify the most current record, in practice an additional
field IsCurrent is added to simplifiy query writing. The EndDate
of the current record is set when updated information is received,
which essentially expires it. When querying a dimension to find
the valid record for a given time, a condition like EffectiveDate ≤
my time < EndDate could be used. Using a NULL value for
EndDate complicates these sorts of queries as these conditions will
be UNKNOWN on current records, so additional logic would need
to be added to account for that. To avoid this complication, a date
far off into the future is used as the EndDate for current records,
which allows a basic date range search to work for all records. Fact
tables that reference a history keeping dimension include a foreign
key reference to the surrogate key, not the natural key. The concept
of a history keeping dimension is common in the industry, and is
sometimes referred to as a type 2 changing dimension or a type 2
slowly changing dimension. Any transformation that inserts data
into a history keeping dimension must execute one of the following
two steps. When a record with a business key K does not exist in
the dimension table the following transformations are performed:
• A unique surrogate key value must be assigned and included

in the inserted record, i.e. a dense sequence number.
• IsCurrent is set to TRUE to indicate that this is the current

record corresponding to the natural key.
• The EffectiveDate field is set to a value specified by the trans-

formation, or Batch Date if no value is specified.
• The EndDate field is set to December 31, 9999.

When a record with a business key K already exists in the dimen-
sion table the following transformations are performed:
• Update the existing dimension table record for that natural

key where IsCurrent is set to TRUE (these updates are known
as Expiring the record): (i) The current indicator field, Is-
Current, is set to FALSE to indicate that this is no longer the

current record corresponding to the natural key and (ii) The
EndDate field is set to the EffectiveDate of the new record.
• After expiring the existing record in the dimension table, a

new record is inserted into the dimension table following the
same transformation steps as those for inserting a new record
above.

4.2 Example: DimAccount Transformations
Two of the more complex transformations are specified for the

DimAccount table. The transformation for the historical load is
different from the transformation for the incremental loads as data
for the historical load is obtained from the CustomerMgmt.xml
file while data for the incremental loads is obtained from the ac-
count.txt file. In this section we discuss the transformation for the
historical load. For a description of the transformation in pseudo
code see Algorithm 1. We refer to specific data elements in the
XML document using XPath notation8. All references are relative
to the context of the associated Action (/Action) data element.

Customer/Account/@CA ID9 is the natural key for the account
data. New accounts may have missing information in which case
the DI process has to insert a NULL value in DimAccount. Updated
account information contains only partial data, i.e., all properties
that are missing values retain their current values in the DimAc-
count. All changes to DimAccount are implemented in a history-
tracking manner.

When processing data from the XML-file we have to differen-
ciate between the six different actions associated with customers
and accounts, i.e. New (new customer), AddAcct (add a new ac-
count), UpdAcct (update an existing account), UpdCust (update an
existing customer), CloseAcct (close an existing account),Inact (in-
activate an existing customer). For new accounts a new record with
information from AccountID, AccountDesc and TaxStatus are filled
with the corresponding XML elements. Status is set to ’ACTIVE’.
SK Broker ID and SK Customer ID are set by obtaining the associ-
ated surrogate keys by matching Customer/Account/CA B ID with
DimBroker.BrokerID and Customer/@C ID with DimCustomer.-
CustomerID where the date portion of ./@ActionTS >= Effect-
iveDate and the date portion of ./@ActionTS <= EndDate. The
8http://www.w3.org/TR/xpath
9refers to the CA ID of the account for customer

if @ActionType=NEW or ADDACCT then
AccountID← Customer/Account/@CA ID;
AccountDesc← Customer/Account/@CA NAME;
TaxStatus← Customer/Account/@CA TAX ST;
SK BROKER ID←

SELECT BrokerID
FROM DimAccount,DimBroker
WHERE Customer/Account/@CA D ID =
DimBroker.BrokerID ;

SK CUSTOMER ID←
SELECT C ID
FROM DimAccount,DimCustomer
WHERE Customer/Account/@C ID=
DimCustomer.CustomerID
AND @ActionTS BETWEEN EffectiveDate AND
EndDate ;

Status← ACTIVE;
else if @ActionType=UPDACCT then

foreach source field with data do
the same as for NEW and ADDACCT;

end
foreach source field without data do

retain current values;
end

else if @ActionType=CLOSEACCT then
Status← INACTIVE;

else if @ActionType=UPDCUST then
foreach account held by customer do

SK CustomerID← updated customer record;
end

else if @ActionType=INACT then
SK CustomerID← updated customer record;
Status← INACTIVE;
foreach account held by customer do

SK CustomerID← updated customer record;
Status← INACTIVE;
IsCurrent, EffectiveDate, and EndDate← according to
algorithm to history keeping dimensions

end
Algorithm 1: DimAccount Historical Load Transformation

BrokerID and CustomerID matches are guaranteed to succeed. In
case where updates to an existing account are received, fields that
exist in the source data are transformed to the target fields as done
for new accounts. Fields that do not exist in the source data retain
their values from the current record in DimAccount. For accounts
that are closed Status is set to ’INACTIVE’. In addition, a trans-
formation rule is defined that requires that changes to a Customer
also result in an update to all associated account records. These are
implied changes to the account, i.e., there is nothing in the source
data that specifies which accounts must be updated. It is up to the
implementation to identify the correct accounts and perform the re-
quired transformations. When an associated customer is updated,
the SK CustomerID field must be updated to the new customer sur-
rogate key. In addition if an associated customer is set to inactive,
the account must also be set to inactive. All of these changes to the
account table must be handled as history keeping changes.

5. METRIC AND EXECUTION RULES
The execution rules and metric are two fundamental components

of any benchmark definition and they are probably the most contro-
versial when trying to reach an agreement between different ven-

Figure 6: Execution Phases and Metric

dors. The execution rules define the way individual pieces of a
benchmark are executed and timed, while the metric emphasizes
them by specifying their weight in the final metric. We describe
metrics and execution rules in one section since they are intrinsi-
cally connected to each other and they are equally powerful in how
they control performance measurements. Both can change the fo-
cus of a benchmark because only those parts of a system that are
executed, as described in the execution rules, can be measured in
the metric. Conversely, even though a part is executed, if it is not
timed and included in the metric, it remains unnoticed. For in-
stance, TPC-H’s execution rules mandate the measurement of the
initial database load. However, the primary metric (QphH) does not
take the load time into account. Consequently, little consideration
is given to it when running the benchmark. The following Section
5.1 describes TPC-DI’s execution rules followed by Section 5.2,
which describes the TPC-DI’s metrics.

5.1 Execution Rules
TPC-DI benchmark models the two most important workloads

of any mature DI system, one variant performs a historical load at
times when the decision support system is initially created or when
it is recreated from historical records, e.g. decision support system
restructuring. The second variant performs periodic incremental
updates, representing the trickling of new data into an existing de-
cision support system. These two phases have very different perfor-
mance characteristics and impose different requirement to the deci-
sion support system as it does not need to be queryable during the
historical load, but it does need to be queryable during each incre-
mental load. There are many different rates at which incremental
updates may occur, from rarely to near real-time. Daily updates are
common, and are the model for the TPC-DI benchmark. The com-
bination of these two workloads constitutes the core competencies
of any DI system. The TPC has carefully evaluated the TPC-DI
workload to provide a robust, rigorous, and complete means for the
evaluation of systems meant to provide that competency.

TPC-DI’s execution model consists of the following timed and
un-timed parts. It is not permitted to begin processing of a phase
until the previous phase has completed: (i) Initialization Phase -
untimed (ii) Historical Load Phase - timed (iii) Incremental Update
1 Phase - timed (iv) Incremental Update 2 Phase - timed (v) Auto-
mated Audit Phase - untimed

The preparation phase contains setting up the system, installing
all necessary software components and setting up the staging area.
Before starting a measurement run the test sponsor chooses a scale
factor that result in an elapsed time of each incremental update
phase of 3600 seconds or less.

5.2 Metric
TPC is best known for providing robust, simple and verifiable

performance data. The most visible part of the performance data
is the performance metric and the rules that lead to it. Producing
benchmark results is expensive and time consuming. Hence, the
TPC’s goal is to provide a robust performance metric, which al-
lows for system performance comparisons for an extended period
and, thereby, preserving benchmark investments. A performance

metric needs to be simple such that easy system comparisons are
possible. If there are multiple performance metrics (e.g. A, B, C),
system comparisons are difficult because vendors can claim they
perform well on some of the metrics (e.g. A and C). This might still
be acceptable if all components are equally important, but without
this determination, there would be much debate on this issue. In
order to unambiguously rank results, the TPC benchmarks focus
on a single primary performance metric, which encompass all as-
pects of a systems performance weighting the individual compo-
nents. Taking the example from above the performance metric M
is calculated as a function of the three components A,B and C (e.g.
M=f(A,B,C)). Consequently, the TPCs performance metrics mea-
sure system and overall workload performance rather than individ-
ual component performance. In addition to the performance met-
ric, the TPC also includes other metrics, such as price-performance
metrics.

TPC-DI defines one primary performance metric and one pri-
mary price-performance metric. The performance metric is a through-
put metric. It represents the number of rows processed per second
as the geometric mean of the historical and the incremental loading
phases. In order to calculate throughput numbers, we need to define
the measurement interval and what we mean by rows processed. As
indicated in Figure 6 TPC-DI defines four completion time stamps
(CTs) to be taken at a precision of 0.1 second (rounded up), e.g.
0.01 is reported as 0.1. The number of rows processed in each
phase is provided by TPC-DI’s data generator, DIGen. The metric
is then incrementally calculated as:

• CT0: Complection of the Initialization
• CT1: Completion of the Historical Load
• CTi: Completion of Incremental Load i ∈ {1, 2}
• RH : Rows loaded during the Historical Load
• RIi: Rows loaded during Incremental Load i ∈ {1, 2}.
EH = CT1 − CT0;EIi = CT(i+1) − CTi; i ∈ {1, 2} (1)

TH =
RH

EH
;TIi =

RIi

max(TEi, 1800)
; i ∈ {1, 2} (2)

TPC DI RPS = b(
√
TH ,min(TI1, TI2))c (3)

5.3 Metric Discussion
Defining the elapsed time of a phase between the completion

time stamps (CT) of its preceeding phase and it’s own CT assures
that all work defined in the benchmark is timed. The execution
rules of TPC-DI define the historical and two incremental loads as
functionally dependent, i.e. work done in one phase has to be com-
pleted before the succeeding phase can start. Defining the start time
of a phase as the completion time of its preceeding phase assures
that all work that should be attributed to that phase is indeed timed.
For instance, if the historical load phase reports all rows loaded, but
indexes are still being maintained, the following incremental up-
date phase either waits until all indexes have been maintained or it
starts without using them suffering performance as a consequence.

The metric encourages the processing of a sufficiently large amount
of data during the execution of the benchmark. The actual amount
of data depends on the system’s performance. The higher the per-
formance of a system the more data it needs to process. The def-
inition of the incremental load throughputs (see equations 2) en-
tices the benchmark sponsor to achieve elapsed times TIii ∈ {1, 2}
close to 1800s. The benchmark rules allow elapsed times less than
1800s, however, with a negative impact on the reported perfor-
mance number. This is due to the max function in the denomina-
tor of the throughput functions TI1, TI2. It calculates the number
of rows processed per second by dividing the actual rows loaded

Figure 7: Scaling with Incremental Load Time

by the elapsed time of the load, but by at least 1800. Assuming
that a system is capable of delivering load performance linear with
data size, i.e. TIi(1) = TIi then TIi(SF) = nIi ∗ SF ∗ TIi, i ∈
{1, 2}, nIi > 1, and TH(1) = TH then TH(SF) = nH ∗ SF ∗
TH , nH > 1, then TI1 and TI2 increase linearly until an overall
elapsed time of 1800s is achieved and stay flat thereafter. Figure
7 shows the flattening effect on the primary performance metric
TPC DI RPS. On the x-axis its shows the elapsed time for the in-
cremental load phase and on the y-axis it shows the main metric
(rows

s
). The graph shows that the metric increases until an elapsed

time of 1800s is reached for the incremental load phase.
The metric entices good performance during both types of loads,

historical and incremental. This is achieved by using the geometric
mean to combine the historical and incremental throughputs into
one meanigful number. Because by its definition the geometric
mean treats small and large numbers equally. Hence, engineers are
enticed to improve the performance of all phases of the benchmark
regardless what their overall elapsed times are. This is especially
important if there is a large elapsed time discrepancy between the
historical load and incremental loads. For instance, reducing a the
historical load from 100s to 90s, i.e. 10% has the same effect on
the final metric as if the incremental load with the smaller elapsed
times is reduced from 10s to 9s. The above is not true when applied
to ”absolute” improvements.

The metric encourages a constant incremental load performance.
Production systems execute many more than the two incremental
load phases defined in TPC-DI. It would be prohibitive to mandate
the execution of many incremental load phases as part of a bench-
mark due to time constraints. However, TPC-DI ensures that there
is no negative performance effect of executing multiple incremen-
tal load phases, i.e. a slow down from one incremental load phase
to the next by only including the lower of the two throughputs (see
min in primary performance metric - Equation 3).

The metric scales linearly with system size. A very important
feature of a performance benchmark metric is that it allows to show-
case the scalability of a system (scale-out and scale-up), i.e. a sys-
tem with double the number of resources, e.g. sockets, cores, mem-
ory etc. should show double the performance in TPC-DI. However,
this is only true if for each system size a scale factor is chosen that
results in an incremental elapsed time of 1800s. Figure 8 shows
that the primary performance metric increases linearly if the scale
factor is adjusted for achieving an elapsed time of 1800s in the
incremental load phase. On the x-axis it shows system size as num-
ber of cores and on the y-axis its shows the metric. The graph with
the square labels shows the metric when increasing the number of

Figure 8: Linear Scaling with Adjusted Elapsed Time

cores and keeping the scale factor constant. In this case the scale
factor was chosen such that an elapsed time of 1800s was achieved
with 1 core. As the number of cores is increased and elapsed times
decrease the overall performance increases only slighly. If, how-
ever, the scale factor is adjusted for the increase in system size, the
primary performance metric increases linearly as indicated by the
triangular graph.

6. PERFORMANCE STUDY
As of this writing, there are no published results of TPC-DI.

However, implementations are being developed and have been used
to evaluate various aspects of the benchmark. The following sec-
tions discuss performance related topics based on observations made
from real implementations of the workload.

6.1 Scalability
In order for a benchmark to have longevity, it must provide a

workload that can scale as hardware and software systems become
increasingly powerful. An implementation of the workload may
have bottlenecks or the system it is run on may have constraints
that limit its scalability, but the definition of the workload must
not contain any requirement that inherently prevents scaling of im-
plementations. Workload requirements that force implementations
into bottlenecks can create situations where hardware and software
components can not be adequately utilized during a benchmark run.

Using an implementation from IBM, the TPC-DI workload was
run on the same system with linearly increasing scale factors. Fig-
ure 9 shows the results. The x-axis shows the normalized Source
Data Set size, and the y-axis shows the normalized time. Using the
normalized numbers, it is easy to see as the source data set increases
by a factor of 2, the elapsed time increases correspondingly.

This demonstrates that the implementation is scaling up as ex-
pected. It was also observed that when the hardware resources were
scaled to match the data set scaling, the execution time remained
flat. This indicates the implementation is able to scale out to utilize
available hardware resources. While these results are specific to
this implementation, it indicates that the workload definition itself
is scalable, i.e. it allows for scalable implementations to be created.

6.2 Estimating Benchmark Execution time
The TPC-DI workload consists of 3 measured phases, the his-

torical load and two incremental updates. The historical load phase
has a set of required transformations, and processes more and larger
files. There is no time limit for this phase. The transformations
required for each incremental update phase are identical, and the

Figure 9: Total Elapsed Time Scaling

Figure 10: Relative Phase Time

input data sets are different but similar in size. When planning for
a benchmark run, there may be a question as to how long it will
take for the benchmark run to complete.

Figure 10 shows the relative amount of time spent processing
each phase, for a specific implementation at 4 different scale fac-
tors. The historical load phase fairly consistently represented 80%
of the overall time running the benchmark, while each incremen-
tal update made up about 10%. This information can be used to
project how long it will take for a full benchmark to complete from
a small sample run. Because the incremental update phases are go-
ing to run somewhere between 30 and 60 mins and will be 20% of
the overall runtime, the expectation would be that execution time
for a full volume benchmark run would be between 5 and 10 hours
for this implementation. This can be expressed in a simple for-
mula, 1800/p < et < 3600/p, where et is the expected time (in
seconds) and p is the proportion of time spent in an incremental
update phase. While the portion of time spent in the phases may
not be match this specific implementation, any implementation that
is scaling well can use to method to estimate the time for a full
volume run.

6.3 Phase Throughput
Each of the 3 benchmark phases is made up of a set of trans-

formations, and a validation query that executes at the end of the
batch. So, although the throughput for each phase is calculated a

Throughput Time Weighted (Th ∗ t)
10000 3000 30,000,000
17000 18000 306,000,000

2000 2700 5,400,000
8000 4200 33,600,000

0 900 0

Table 6: Throughput Metric Example

single number (total rows/total time), the actual throughput of the
system at any given point during the run may vary greatly from
the final calculated throughput. In fact, within a given phase the
calculated throughput could be considered to be the average of the
achieved system throughputs, weighted by the amount of time the
system was sustaining each throughput. For example, assume the
historical load has 375 million records to process and completes in
8 hours (28800s), with the breakdown of the significant through-
puts given in the chart below. The calculated throughput of the
phase would be 13020.8 TPC DI RPS.

The weighted average of the throughputs yields 375000000
28800

=
13020.8. This demonstrates an important characteristic of the met-
ric. While higher throughputs are rewarded and lower throughputs
have a negative impact, short-lived spikes of either kind are not sig-
nificant. The throughputs that are sustained for the longest periods
of time have the greatest impact. The segment with throughput 0
represents the batch validation query that is executed at the end of
each phase. In terms of throughput, the time spent in this segment
is pure overhead, i.e. it is not possible to process any rows during
this phase so the time spent can only lower the overall throughput.
Therefore, it is in the test sponsors interest to configure the data
warehouse such that this query performs as efficiently as possible.
This is especially important for the incremental update phases. Test
runs have shown that the execution time of the batch validation
query remains fairly constant between the measured phases. While
a 900 second run time is relatively small for a 28800 second histor-
ical load, incremental update phases have a maximum time of 3600
seconds, so a 900 second run time would 25% of the overall time
or more for the phase.

Also, the incentive for an incremental update to run at least 30
mins (1800 seconds) can be understood using a similar analysis.
Since the minimum amount of time that can be reported is 1800
seconds, a run that ends in N seconds less than 1800, effectively
has 0 throughput sustained for N seconds. As the difference from
1800 gets larger, the more significance the 0 throughput has to the
calculated throughput.

7. RELATED WORK
There has been little research for benchmarks for ETL systems.

Today, most systems are tested with rather simple workloads such
as loading TPC-H data (c.f., [2, 10, 12]). A more involved pro-
posal was presented by Manapps [4]. In this benchmark, 11 inde-
pendent ETL jobs were used to compare 5 ETL systems. These
jobs included simple loading, joining two tables, and aggregations.
This is a typical example of a component benchmark, which sin-
gularizes certain features of the system under test. While this is
beneficial to understand the bottlenecks in a ETL workload, it does
not necessary related to real world performance, since the interplay
of operations has a significant impact on the performance. There-
fore, TPC-DI was developed as a full end-to-end benchmark with a
complex workload, giving a realistic view of the end-to-end system
performance.

Vassiliadis et al. characterized patterns in ETL workflows, as
well as metrics and parameters a ETL benchmark should cover

[11]. These were extended to a complete ETL workload based
on TPC-H [9]. In contrast to TPC-DI, this benchmark contains
only simple transformations that can be handled with regular SQL
constructs and, therefore, do not necessarily stress elaborate ETL
systems.

8. CONCLUSION
In this paper, we present TPC-DI, the first industry standard

benchmark for data integration. Like previous TPC benchmarks,
TPC-DI is a technology agnostic, end-to-end benchmark modeled
after the real-world scenario of a retail brokerage firm’s information
system, where five different data sources have to be integrated into
a decision support system. The data sources feature different for-
mats, granularities, and constraints in a highly realistic data model.
Target systems of the benchmark are DI systems that enable data
transformation and integration. The benchmark was accepted by
the TPC in January 2014.

9. REFERENCES
[1] M. Frank, M. Poess, and T. Rabl. Efficient Update Data

Generation for DBMS Benchmark. In ICPE ’12, 2012.
[2] Informatica Corporation. Informatica And Sun Achieve

Record-Setting Results In Data Integration Performance And
Scalability Test.
http://www.informatica.com/ca/company/
news-and-events-calendar/press-
releases/06062005d-sun.aspx, 2005.

[3] R. Kimball and M. Ross. The Data Warehouse Toolkit: The
Complete Guide to Dimensional Modeling. John Wiley and
Sons, Inc., 2nd edition, 2002.

[4] Manapps. Etl benchmarks. Technical report, 2008.
[5] M. Pöss, R. O. Nambiar, and D. Walrath. Why You Should

Run TPC-DS: A Workload Analysis. In VLDB, pages
1138–1149, 2007.

[6] T. Rabl, M. Frank, H. M. Sergieh, and H. Kosch. A Data
Generator for Cloud-Scale Benchmarking. In TPCTC ’10,
pages 41–56, 2010.

[7] T. Rabl and M. Poess. Parallel data generation for
performance analysis of large, complex RDBMS. In DBTest
’11, page 5, 2011.

[8] SAS Institute Inc. New release of sas enterprise etl server sets
performance world record. http://callcenterinfo.
tmcnet.com/news/2005/mar/1126716.htm, 2005.

[9] A. Simitsis, P. Vassiliadis, U. Dayal, A. Karagiannis, and
V. Tziovara. Benchmarking ETL Workflows. In TPC TC ’09,
pages 183–198, 2009.

[10] Syncsort Incorporated. Syncsort and vertica shatter database
etl world record using hp bladesystem c-class.
http://www.prnewswire.co.uk/news-
releases/syncsort-and-vertica-shatter-
database-etl-world-record-using-hp-
bladesystem-c-class-152940915.html, 2008.

[11] P. Vassiliadis, A. Karagiannis, V. Tziovara, and A. Simitsis.
Towards a benchmark for etl workflows. In QDB, pages
49–60, 2007.

[12] L. Wyatt, T. Shea, and D. Powell. We loaded 1tb in 30
minutes with ssis, and so can you.
http://technet.microsoft.com/en-
us/library/dd537533(v=sql.100).aspx, 2009.
Microsoft Cooperation.

