
Analysis of TPC-DS - the First Standard Benchmark for
SQL-Based Big Data Systems

Meikel Poess
Server Technologies - Oracle

Corporation
Redwood Shores, California, USA

meikel.poess@oracle.com

Tilmann Rabl
DIMA Group - TU Berlin

Munich, Germany
rabl@tu-berlin.de

Hans-Arno Jacobsen
Application and Middleware Systems

Group - TU Munich
TU Munich, Germany
jacobsen@in.tum.de

ABSTRACT
The advent of Web 2.0 companies, such as Facebook, Google, and
Amazon with their insatiable appetite for vast amounts of structured,
semi-structured, and unstructured data, triggered the development
of Hadoop and related tools, e.g., YARN, MapReduce, and Pig, as
well as NoSQL databases. These tools form an open source soft-
ware stack to support the processing of large and diverse data sets
on clustered systems to perform decision support tasks. Recently,
SQL is resurrecting in many of these solutions, e.g., Hive, Stinger,
Impala, Shark, and Presto. At the same time, RDBMS vendors are
adding Hadoop support into their SQL engines, e.g., IBM’s Big
SQL, Actian’s Vortex, Oracle’s Big Data SQL, and SAP’s HANA.
Because there was no industry standard benchmark that could mea-
sure the performance of SQL-based big data solutions, marketing
claims were mostly based on “cherry picked” subsets of the TPC-DS
benchmark to suit individual companies strengths, while blending
out their weaknesses. In this paper, we present and analyze our work
on modifying TPC-DS to fill the void for an industry standard bench-
mark that is able to measure the performance of SQL-based big
data solutions. The new benchmark was ratified by the TPC in early
2016. To show the significance of the new benchmark, we analyze
performance data obtained on four different systems running big
data, traditional RDBMS, and columnar in-memory architectures.

CCS CONCEPTS
• Information systems → Database performance evaluation;

KEYWORDS
TPC-DS, benchmark, big data

ACM Reference Format:
Meikel Poess, Tilmann Rabl, and Hans-Arno Jacobsen. 2017. Analysis of
TPC-DS - the First Standard Benchmark for SQL-Based Big Data Systems.
In Proceedings of ACM Symposium of Cloud Computing conference, Santa
Clara, California USA, September 25-27 (SoCC’17), 13 pages.
https://doi.org/10.475/123_4

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SoCC’17, September 25-27, Santa Clara, California USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

1 INTRODUCTION
The big data revolution, triggered by the availability of power-
ful yet affordable commodity hardware running open source soft-
ware stacks, is starting to provide a viable alternative to traditional
RDBMS technologies. Initially, only large Web 2.0 companies, such
as Facebook, Google, and Amazon deployed systems based on
Hadoop and related tools, such as YARN [31], MapReduce [9],
Pig [23], and NoSQL databases. The amount of coding necessary
to perform decision support tasks on these systems, such as data
mining, predictive analytics, text analytics and statistical analysis,
prevented a wide commercial adaptation of these technologies.

Only when higher level languages were added on top of Hadoop
and MapReduce the wide adaptation of these technologies in deci-
sion support installations was triggered. Many big data solutions
are moving away from the pure NoSQL model to a not-only-SQL
approach resulting in an explosion of SQL-based implementations,
which are designed to support big data on the Hadoop ecosystem,
e.g., Hive [27], Stinger [14], Impala [6], Shark [32], Presto [11], and
Spark [17]. Many RDBMS vendors are following suit by adding
Hadoop support into their SQL engines, e.g., IBM’s Big SQL [1],
Oracle’s Big Data SQL [2], and SAP’s Vora [3].

Many reasons drive the use of SQL in big data solutions. It is
intuitive to write data analysis queries in SQL, because most users
think about data as being organized in two dimensional tables, i.e.,
spreadsheets. The declarative nature of SQL increases developer
productivity and code maintainability, because writing a query in
SQL requires the description of a result set rather than the algorithm
to compute it.

In need for benchmarks to showcase the performance of their big
data SQL engines many vendors used custom benchmarks, which
they derived from the first version of the Transaction Processing
Performance Council’s (TPC) benchmark TPC-DS (V1). Rather than
formally running an entire TPC-DS V1 according to its specification
and publishing fully certified results, vendors cherry-picked those
portions of the TPC-DS V1 benchmark that made their particular
brand of technology excel, ignoring the general use case TPC-DS
V1 was designed to test. Many marketing publications used a subset
of the schema and queries, executed the benchmark in a special way,
and reported a metric that positions a system in the best possible
light [8, 10, 13, 19]. This kind of "benchmarketing" is not new to
the industry and it is precisely what triggered the founding of the
TPC 25 years ago.

Instead of questioning the credibility of these highly customized
claims and fining vendors for violating its fair use polices, we re-
designed the existing TPC-DS V1 to create a fair and comprehensive
benchmark that specifically targets the performance measurement

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

SoCC’17, September 25-27, Santa Clara, California USA Meikel Poess, Tilmann Rabl, and Hans-Arno Jacobsen

of big data SQL systems. The TPC branded the new benchmark
TPC-DS V2 to enhance market recognition. TPC-DS V2 specifically
addresses the domain of SQL-based big data systems.

The major contributions of this paper are: (i) to present TPC-
DS V2, a new TPC benchmark for measuring the performance of
SQL based big data solutions, (ii) to provide a deep analysis of V2
with emphasis on its key features, design decisions and workload
differences to V1, and (iii) to analyze the run time behavior (elapsed
times and resources consumption) of all 99 queries during single- and
multi-user runs on four different setups that resemble the diversity
of systems being deployed in big data solutions.

The remainder of this paper is organized as follows. The following
section presents related benchmarks. Section 3 touches on the key
features of TPC-DS V2, necessary to understand the remainder of
the paper, to motivate the major changes in Version 2, that allow it
to measure the performance of SQL based big data solutions and to
analyze its major challenges. Section 4 provides experimental results
of four solutions that are deployed in the big data use case TPC-DS
V2 aims to address, including a detailed analysis of the experimental
results. The paper concludes with Section 5.

2 RELATED WORK
TPC-DS V2 is the first industry standard benchmark for measuring
the performance of SQL-based big data systems. It is based on TPC-
DS V1, which has been widely used in academia and industry to
analyze analytic features of SQL-based database engines. While
there have been two publications describing TPC-DS V1 [21, 25],
they describe early versions of the benchmark specifications and do
not contain modifications made to the query set, metric, executions
rules, and the update model, before TPC-DS V1 was ratified as
an industry standard benchmark. This paper describes the second
version of the TPC benchmark in its released form and touches on
the difference to Version 1.

Several other benchmarks have been proposed for big data bench-
marking. In the following, we discuss only benchmarks directly
related to TPC-DS V2. We do not discuss other types of big data
benchmarks, e.g., domain specific benchmarks (graph-based bench-
marks [5, 20]) or benchmarks targeted only at a single type of sys-
tems (MapReduce [16] or Spark [17]).

TPC-DS V2 is not the first big data benchmark released by the
TPC. Having identified the need for big data benchmarking, the TPC
released TPCx-HS, a benchmark based on the Hadoop/MapReduce
Terasort implementation, as a stopgap solution [22]. TPCx-HS was
the TPC’s first kit-based benchmark and as such has a fully im-
plemented kit that can be easily run on publicly available Hadoop/
MapReduce distributions. Unlike most TPC benchmarks, TPCx-HS
is not an application level benchmark that simulates a use case real-
istically, but a component benchmark that targets mainly the storage
system and sorting engine.

Another big data benchmark, recently released by the TPC, is
TPCx-BB, which is based on BigBench [12, 26], which in turn
is partially based on TPC-DS V1. Instead of stressing the SQL
capabilities of an engine, it allows for non-SQL implementations
and engine specific optimizations. BigBench has only 30 queries, 10
of which are based on TPC-DS V1 queries. The remaining queries
address use cases that are difficult to be expressed in standard SQL.

BigBench targets read-only big data platforms in general with some
SQL aspects, while TPC-DS V1 is specifically designed for an in-
depth read/write performance testing of SQL engines.

Most other benchmarks for big data systems are suites of small
workloads which are much less complex than the workloads of
TPC-DS and TPCx-BB. Popular examples are Pavlo’s benchmark
[24] and its successors HiBench [15] and the AMPLab Benchmark
[4]. These benchmarks consist of dependent workloads with only
small SQL parts, comprised of simple filter and aggregation queries.
Today, TPC-DS V2 is the most comprehensive and most complex
benchmark, not only for SQL-based big data systems but any kind
of SQL engines as well.

3 BENCHMARK ANALYSIS
This section presents and analyzes the key features in the new version
of TPC-DS (V2), while highlighting the differences to the old version
(see [29] for the complete specification).

3.1 Paradigm Shift in Data Ownership
Big data systems, many of which are based on the Hadoop ecosystem,
introduced a paradigm shift in data ownership. Traditionally, only
one system had control over a given data set, namely the DBMS.
This control enables the use techniques and algorithms to implement
performance enhancements and to enforce data correctness that rely
on persistent auxiliary data structures. For instance, the uniqueness
of primary keys in a table is usually guaranteed by enforcing a
constraint, which in turn uses a primary key index for efficiency.

Big data systems follow an open data approach, in which all prod-
ucts in its ecosystem, including MapReduce, can access and modify
the same full-fidelity data sets, mostly saved in HDFS. While this
approach eliminates the costly process of copying and converting
data into different formats, it makes concepts like enforcement of
constraints impractical because the query engine does not necessar-
ily know immediately when the table data is modified by another
product. TPC-DS V2 allows constraints to be non-enforced, because
query optimizers of most SQL engines rely on understanding basic
data characteristics, such as primary-foreign key relationships and
not-null constraints, so that they generate reasonable query plans.
Being able to operate on raw data also blurs the definition of what
constitutes a database load (see Section 3.5).

3.2 Goodbye ACID - Welcome BASE
TPC-DS V1 requires full ACID compliance. It must be demon-
strated before any benchmark result can be published by running
functional tests on a similar, but much scaled-down database. Due
to de-coupling of the ownership of data from the processing of data,
big data solutions are inherently not ACID, but BASE compliant
(Basically Available, Soft state, Eventual consistency), i.e., they
guarantee some level of data accessibility through data mirroring.

Instead of ACID, TPC-DS V2 requires a more relaxed version
of durability, which it refers to as data accessibility. To satisfy data
accessibility a system must continue executing queries and data inte-
gration functions with full data access during and after a permanent
irrecoverable failure of any single durable medium containing any
database objects, e.g., tables, explicit auxiliary data structures, or
metadata. With large cluster configurations being common in big

Analysis of TPC-DS - the First Standard Benchmark for
SQL-Based Big Data Systems SoCC’17, September 25-27, Santa Clara, California USA

data installations, including a node failure test seems obvious. How-
ever, since the benchmark does not require multi-node configurations
and ACID is required to recover transactions from complete system
failures, a node failure is not included in TPC-DS V2.

3.3 Periodic Data Integration Workload
A DS refresh process usually involves data extraction, data trans-
formation, and data load commonly referred to as data integration
(DI). The data extraction step extracts pertinent data from production
OLTP databases or other relevant data sources. The transformation
step cleans the extracted data. The data load step performs the actual
insertion, modification, and deletion of decision support database
table data.

TPC-DS V1’s required a full implementation of a DI process for
all non-static tables, i.e., refresh of history and non-history keeping
dimension, inserts into fact tables, and deletes from fact table. Real-
izing that typical big data implementations of DSS do not necessarily
undergo such a rigid data integration process, the TPC decided to
focus on the adding and removing of fact table data in TPC-DS
V2. Not requiring the maintenance of dimension tables eliminates
the need for update statements, which would have forced big data
systems without native support for update statements to implement
them as deletes and inserts. Due to its slow execution, implement-
ing updates as deletes and inserts would have put big data systems
at a significant disadvantage and, consequently, discouraged rapid
adoption of the benchmark by new technologies.

The remaining insert and delete operations on fact tables are
believed to be sensible and adequate enough for analyzing the perfor-
mance of data integration operations currently deployed in big data
implementations of DSS. The insert and delete operations logically
delete old facts, e.g., old sales transactions to make room for new
fact data, i.e., new sales transactions. The intention of these opera-
tions is to exercise both range and scattered deletes. The deletion
of fact table data can be implemented by dropping database objects,
(files in case of Hadoop-based systems), if the corresponding data
is clustered based on date ranges. Inserts then simply recreate the
deleted database objects with new content. On the other hand, the
delete operations on returns fact table are always scattered since
returns can occur in a three month window after their corresponding
sales and clustering.

3.4 Query Workload
TPC-DS utilizes a generalized query model that addresses the va-
riety of queries found in today’s big data systems. The queries
cover the interactive and iterative nature of on-line analytical pro-
cessing (OLAP), long-running, complex data mining tasks, knowl-
edge discovery, and frequent reports. Amalgamating these different
query types, especially ad-hoc and reporting into one benchmark
is achieved by allowing ddl-driven performance enhancement tech-
niques, such as partitioning or materialized views, only on a subset
of the data. Queries referencing tables with performance enhancing
techniques are then classified as reporting queries, others are ad-hoc
queries.

While most queries are carried over from TPC-DS V1 to TPC-
DS V2, some were modified. Most of the modification address
inconsistencies between the functional query definition (SQL text)

Table 1: Query modifications applied to V2

Queries Modification

10, 35
Rewrote disjunctions of exist predicates into exist predicates of unions,
e.g. exists (SubQuery1) OR exists (SubQuery2) into
exists (SubQuery1 UNION ALL SubQuery2)

34,
56,
64,
73,
75, 76

Added additional columns in order by to make query output deterministic

59
Corrected wrong ratio tue_sales1/tue_sales1 into
tue_sales1/tue_sales2

77
Added group by cr_call_center_sk to
catalog_returns common subexpression

78

Refered to coalesce expression in ORDER BY by
name rather than repeating the expression, change
coalesce(ws_qty,0)>0 and coalesce(cs_qty, 0)>0
to (coalesce(ws_qty,0)>0 or coalesce(cs_qty,
0)>0) and (coalesce(ws_qty+cs_qty,1) to
(coalesce(ws_qty,0)+coalesce(cs_qty,0))
and correced wrong join clause left join
cs on (cs_sold_year=ss_sold_year
and cs_item_sk=cs_item_sk and
cs_customer_sk=ss_customer_sk) to left
join cs on (cs_sold_year=ss_sold_year
and cs_item_sk=ss_item_sk and
cs_customer_sk=ss_customer_sk)

84
Added explicit coalesce around columns in concatenation expressions
due to some query engines evaluating columns concatenations to NU LL
if one part of the expression is NU LL

Figure 1: High Level Execution Rules

and the business description in the specification, non-deterministic
query results, bugs and equivalent rewrites to allow more big data
products to run the queries. Table 1 lists the major query changes.

3.5 Metric and Execution Rules
The execution rules and the metric of a benchmark specification are
intrinsically connected to each other and they are equally powerful
in how they emphasize performance aspects of a system and, ulti-
mately, drive performance innovation. To establish an unambiguous
ranking of result, each TPC benchmark specification is required to
contain only one primary performance metric. The execution rules
and metric in V2 have been redesigned to emphasize the performance
characteristics of big data systems.

Figure 1 illustrates the timed and the un-timed phases of the execu-
tion of a TPC-DS V2 benchmark run. The generation of the raw data

SoCC’17, September 25-27, Santa Clara, California USA Meikel Poess, Tilmann Rabl, and Hans-Arno Jacobsen

Table 2: Differences between TPC-DS V1 and V2

TPC-DS V1 TPC-DS V2

Data ownership Inside DBMS Outside DBMS

Database load
Conversion into pro-
prietory format

Simple text copy

Transactional properties ACID BASE
Node failure required Yes No
Number of queries 99 99, 12 modified
Updates Most tables Fact tables only
Trickle updates Optional Disallowed
Cloud pricing No Yes
Performance metric Arithmetic mean Geometric mean

set, i.e., flat files (Step 1) and the preparation of the System Under
Test (SUT) in Step 2 are not timed. The size of the raw data is deter-
mined by the scale factor SF ∈ 100, 300, 1000, 3000, 10000, 30000, 100000,
which represents the data size in GB. The timed portion starts with
the execution of the load test (Step 3), followed by the single-user
test, aka power test, (Step 4) and two pairs of multi-user tests, aka
throughput tests, (Step 5) and data integration test (Step 6). Steps
5 and 6 are executed twice to measure the impact of updates to the
system after the first data integration test.

The load test (TLoad) entails all steps necessary to prepare the
SUT to execute the subsequent performance tests. Due to TPC-DS
V2 being technology agnostic, the individual steps of the load test are
not explicitly listed. However, validation of unenforced constraints,
if defined, and all requirements to assure BASE properties, including
synchronizing loaded data on RAID devices and taking database
backups, if necessary, are part of the load test. Additionally, the open
data paradigm (see Section 3.1) questions whether a load time is
necessary at all. One could argue that systems that efficiently query
ext data, i.e., without performing costly conversions into secondary
formats (Parquet, AVRO, JSON, etc.) have a load time of zero.
However, because the load time is part of the geometric mean metric,
it could cause the metric to increase dis-proportionally if the load
time approaches zero, essentially breaking the metric. TPC-DS V2
counters this problem by defining the notion of a database location,
e.g., HDFS, and including the time it takes to place text data into the
database location into the load time. Consequently, at a minimum,
the load test performs the placing of the TPC-DS V2 flat files into
the database location, which, on many big data platforms, translates
into copying data to HDFS.

The single-user test (TSinдleU ser) executes all 99 queries consec-
utively in a single session, measuring a system’s ability to maximize
system utilization and minimize query response time. The multi-user
test (TMultiU sern , with n ∈ 1, 2) is followed by the data integra-
tion test. Both are executed twice. Each multi-user test executes
s concurrent sessions, which in turn each executes all 99 queries
consecutively (s must be an even number). Each session executes
queries in a different permutation to prevent the use of unrealistic
data caching. The multi-user tests measure a system’s ability to di-
vide resources among concurrent sessions to maximize overall query
throughput.

The data integration tests consist of inserting new sales/returns
data and deleting old sales/returns data. The data integration test
measures the systemâĂŹs ability to periodically ingest new data and

purge old data. It is run immediately after each multi-user run to
reveal any query performance implications in the following multi-
user run that may occur due to the maintenance of auxiliary data
structures, a different data layout or changes in statistics. The elapsed
time of the data integration tests are denoted as TDataInteдrationn ,
with n ∈ 1, 2.

Data and query result caching techniques are not explicitly pro-
hibited in TPC-DS V2, because their use is in general extremely
difficult to police and to some extend desirable as a performance
differentiator. However, the queries and execution rules are designed
to make such caching unprofitable beyond its typical use in real
world systems. Selectivity predicates for each query Qi, j generated
from template Ti are generated at random to cover the entire range
of possible values, thereby limiting the use of data and query result
caching.

The performance metric in Version 2, QphDS@SF , has been
changed from an arithmetic mean to a geometric mean of the four
elapsed times of the above tests, despite the pros and cons of using
geometric means to calculate a single number to represent perfor-
mance [7]. This change was done to address concerns by some
TPC member companies that the original metric could, for some
implementations, be dominated by data maintenance and load.

QphDS@SF =

⌊
SF ∗Q

4√TPT ∗TTT ∗TDI ∗TL

⌋
(1)

The nominator is the SF multiplied by the total number of queries,
executed by all Sq concurrent users, Q = Sq ∗ 99. The denomina-
tor is the geometric mean of the elapsed times of all performance
tests: TPT = TSinдleU ser ∗ Sq , TTT = TMultiU ser1 +TMultiU ser2 ,
TDI = TDataMaintenance1 +TDataMaintenance2 , and TL = 0.01 ∗
Sq ∗TLoad . The elapsed times for the load and single-user tests are
multiplied by the number of concurrent users, Sq , to avoid for the
multi-user component to become the dominant contributor to the
metric for large Sq .

4 EXPERIMENTAL RESULTS
We run our tests against four different setups, which resemble the
diversity of systems being used to run DSS workloads. Because of
licensing restrictions of the commercial systems we are evaluating in
this study, we cannot disclose absolute numbers. Hence the results
are anonymized: Setup A and Setup B are big data systems with
their own storage engine on top of HDFS. Both setups use identical
hardware, namely nine nodes, each with 96GB of RAM, 12 high
capacity SAS drives, 2 sockets with 8 cores and 16 threads. The
total configuration has 864GB of RAM, 108 SAS drives and 288
threads. Setup C is a traditional RDBMS system using its own
storage format. This setup uses 14 nodes, each with 256GB of RAM,
13 high performance SAS drives, 2 sockets with 6 cores and 12
threads each. The total configuration has 3.5TB of RAM, 168 high
performance SAS drives and 336 threads. Setup D is a columnar
organized in-memory solution. It runs on a single SMP system with
2TB of RAM, 24 high capacity SAS disks and 8 sockets, each with
18 cores and 36 threads (288 threads total). Using data compression
this configuration is capable of keeping the entire 3000GB database

Analysis of TPC-DS - the First Standard Benchmark for
SQL-Based Big Data Systems SoCC’17, September 25-27, Santa Clara, California USA

Figure 2: Upper Bound of Data
Figure 3: Minimum Maximum Data Ac-
cess Figure 4: Sorted Elapsed Times

in RAM. All setups are able to perform intra-query as well as inter-
query parallelism and provide mechanisms to spill intermediate
result sets to disks that are too big to keep in memory.

We do not claim to be experts in tuning all of the above setups.
To conduct a fair comparison among these setups, we perform our
measurements “out of the box”. We measure the performance imme-
diately after installation without any configuration, modification, or
creation of auxiliary data structures. The numbers presented in this
section are the best out of three runs.

4.1 Data Scan Analysis
One of the main system factors of resource consumption in answer-
ing big data queries is the sifting through vast amounts of data in
order to identify those parts that are required to answer them. Mini-
mizing the amount of data scanned, avoiding reading data multiple
times, and performing the remaining scans quickly are key differen-
tiators among big data solutions. The following paragraphs establish
lower and upper bounds for the amount of data the entire TPC-DS
V2 query workload requires.

The amount of data that is needed to compute a given query
result depends not just on the complexity of the query, but also
on how optimally the generated query plan can be executed on a
given system, whether the system supports horizontal table pruning
to eliminate unnecessary rows, e.g., partitioning and indexing, and
whether the system supports vertical pruning of tables to eliminate
unnecessary columns, e.g., columnar access.

We establish an estimate for the upper bound of data needed to
compute a query result by assuming all tables referenced by the
query are accessed fully, i.e., no vertical or horizontal table pruning
and disregarding common subexpression elimination of with clauses,
which may result in multiple reference counts of the same table in a
given query. We discount join methods that may result in multiple
scans of the same table, e.g., nested loop join without index. Since
traditional indexing is not common in big data solutions, this is a
fair assumption. Denoting TQi as the subset of tables accessed by
query i, ARL(t) as the average row length for table t in bytes and
C(t) as the cardinality of table t , then the amount of data required by
a given query is the sum of all table references multiplied by their
sizes in bytes of raw data, i.e., uncompressed data as generated by
the data generator, dsdgen. We estimate the upper bound of data that
is required to answer all 99 queries as:

99∑
i=1

∑
t ∈TQi

ARL(t) ∗C(t) ≈ 260, 000GB (2)

We establish an estimate for the lower bound of data needed
to compute a query result by assuming tables are accessed after
horizontal table pruning, only referenced columns are accessed in
each table and each table’s data is only accessed once. The minimum
amount of data a query accesses for any table it references is the
table cardinality after horizontal table pruning multiplied by the sum
of the average raw column length in bytes of all columns referenced.
Denoting Ct as the set of columns referenced in table t , Chp (t) as
the cardinality of a table t after horizontal pruning and ACL(c) as
the average column length of column c, then we can estimate the
lower bound for the amount of data read to answer all 99 queries as:

99∑
i=1

∑
t ∈TQi

∑
c ∈Ct

ACL(c) ∗Chp (t) ≈ 50, 000GB (3)

Figure 2 summarizes the upper bound of data needed to answer
each of the 99 queries at scale factor 3000 (bar chart with y-axis on
the left). Please note that these should not be treated as actual bounds
or min/max values, but as estimates. The range of data scanned in
each query varies widely from 394MB to 30TB. 17 queries access
less than 0.5TB each, 11 queries access between 0.5TB and 1TB
each, 29 queries access between 1TB and 2TB each, 25 queries
access between 2TB and 3TB each, 5 queries access between 3TB
and 5TB each, 7 queries access between 5TB and 10TB each and 5
queries access up to 30TB each. The line chart (y-axis on the right)
shows the cumulative data amount accessed by all queries.

Figure 3 shows the amount of data the four different systems read
during the execution of all 99 queries and compares that to the theo-
retical Maximum established in earlier paragraphs. Setup A reads
162,987GB, Setup B reads 126,974GB, Setup C reads 118,808GB
and System D reads 90,208 GB. Because none of the systems reads
the theoretical maximum of about 260,000GB during query execu-
tion, it is to assume that each system performs some data pruning
technique. However, none of the system reduces the amount of data
read to the theoretical minimum of about 50,000GB. We should
also note that there is a very large discrepancy between the system
reading the most and that reading the least amount of data of about
70,000GB.

SoCC’17, September 25-27, Santa Clara, California USA Meikel Poess, Tilmann Rabl, and Hans-Arno Jacobsen

4.2 Single-User Test Analysis
The single-user test, a.k.a., the Power Test, executes queries consecu-
tively in one session. Its purpose is to measure how well a particular
system is able to minimize the aggregated query elapsed times. For
a benchmark query set to be considered meaningful with respect to
a single-user run, it not only needs to challenge all resources of a
system, but it also needs to be diverse enough to be able to reveal a
system’s particularities. Queries that execute in similar elapsed times
on systems need to be further investigated whether they provide ad-
ditional value to the benchmark. First, we discuss the distribution of
query elapsed times of the four setups.

In our implementation of the power test we assign all available
resources of a setup to the execution of one query at any given time.
Setup A finishes the power test in 39,763s, Setup B in 14,392s, Setup
C in 6,222s and Setup D in 4,261s.

Figure 4 shows the sorted elapsed times of all four setups on
a logarithmic scale. The elapsed times of Setup A vary between
21s and 3,178s. The elapsed times of Setup B vary between 7s and
2,236s and those of Setup C vary between 2s and 1,531s. While
Setup D outperforms all other setups for most queries, two of its
queries perform equally long as on the other systems.

Although the graphs of the four setups never cross, we cannot
conclude that Setup D executes each query faster than the other
setups, as the queries are sorted on elapsed time. However, from
the graphs we can establish a total elapsed time ranking among the
setups and conclude that the elapsed times vary dramatically on each
setup, between just a few seconds to over one hour, indicating that
the benchmark is doing a good job in making each system struggle
to execute some queries.

Ultimately, the queries must be able to categorize systems in
meaningful ways and to reduce the overhead of running the bench-
mark, the set should be minimalistic. To determine whether the
queries are able to assess today’s systems with respect to a single
user test, we analyze the data we collected on each system using:
(i) Coefficient of Variation Analysis, (ii) K-means Cluster Analysis,
and (iii) Normalized Elapsed Time Analysis.

4.2.1 Intra Setup Coefficient of Variation Analysis. To mea-
sure how much the single-user elapsed times fluctuate, we calculate
their coefficient of variation for each setup. Because the coefficient
of variation is a unit-free measure of relative variability, we can use
it to assess the variation of the elapsed times of one system, as well
as the elapsed time variations across multiple systems.

The coefficient of variation of the query elapsed time distribution
of Setup s is defined as the ratio of the standard deviation σ to the
mean µ of all elapsed times (CV=σ

µ). The coefficient of variation of
the elapsed time distributions of Setup A is 1.36, of Setup B it is 1.64,
of Setup C is 2.49, and of Setup D is 4.37, which means that query
elapsed times on Setup D vary the most, namely, 4.37 times from
the mean. Because all systems show a coefficient of variation larger
than 1, their elapsed times distribution is considered statistically
high-variance. This is a good indication that the query set in its
entirety is diverse enough to challenge systems in different ways. As
a comparison, the coefficient of variation of the top published TPC-
H result for each scale factor (100GB, 300GB, 1000GB, 3000GB,
10000GB, 30000GB and 100000GB) vary between 0.69 and 1.2 (see
[30]).

4.2.2 Intra Setup K-means Analysis. The coefficient of vari-
ation analysis gives us a good idea on how disparate the values
in each elapsed time distribution are. We analyze the distributions
further to see whether we can divide the elapsed times into homo-
geneous query classes. A division of the elapsed times into a small
number of classes would indicate redundancy in the query set. We
analyze the elapsed time distribution of the queries run during the
power run (P) for each system s ∈ {A,B,C,D}. Using the k-means
algorithm [18] we calculate the elapsed time centroids CP,s,k and
clusters QP,s,k for k ∈ {2, 4, 6, 8, 10}. To determine the best value
for k we use the elbow method [28]. Our dataset size is small enough
to find the elbow for each system by visually inspecting the graphs.
For each value of k and setup s during the power run P we calculate
the sum of squared errors (SSEP,s,k). First we calculate the mean as:

µP,s,k =
1

|Qk |

∑
q∈Qk

TP,s (q) (4)

We then calculate the SSEs as:

SSEP,s,k =
k∑

k=1

∑
q∈Qk

(µP,s,k −TP,s (q))
2 (5)

Figure 5 graphs the SSEs for k ∈ 2, 4, 6, 8, 10 and each setup
s ∈ {A,B,C,D}. The “elbow” for each setup is at k = 4. That means
our k-means analysis divides the query elapsed times, and therefore
the queries for each setup into four categories: (i) fast-, (ii) medium-,
(iii) , slow- and (iv) very-slow-running queries. This seem to be a
very coarse granularity, but we can have a look at how many queries
are in each category and whether we can identify any intersecting
query subsets across setups.

Figure 6 shows how many queries are in each of the four clusters
on each setup. The number of fast-running queries on each setup
varies between 38 (Setup A) and 73 (Setup D). The number of
medium-running queries varies between 5 (Setup D) and 26 (Setup
A). The number of slow-running queries varies between 1 (Setup D)
and 12 (Setup B) and the number of very-slow-running queries varies
between 1 (setups B,C, and D) and 4 (Setup A). Across all setups the
fast-running category has the most queries. Most significantly, the
in-memory setup (D) has 90% of its queries in this category, which
suggests that many of these queries are redundant. They do not add
any value to the benchmark for evaluating this type of setup. Even
Setup A, which has the least number of fast-running queries, shows
38 (47%) in this category. Overall there seem to be too many short
running queries in TPC-DS V2.

There are also very few queries in the very-slow category across
all setups, suggesting that more queries should be added to evaluating
systems with respect to longer, more complex queries. Setup A has
four queries in the very-slow category while setups B, C, and D have
only one each.

Next, we analyze the individual queries in each of the categories.
The fast category, being the largest category, contains the largest
intersection of queries across all four setups (22), namely , 19 ,20
,21 ,22 ,26 ,30, 39, 42, 43, 52, 53, 55, 63, 66, 73, 29, 81, 85, 89, 91,
and 98. These queries do not contribute much to differentiating the
four different systems as they execute fast on all of them. The other
categories do not have an intersecting set of queries. However, there
are some that occur in three out of the four systems. For instance,

Analysis of TPC-DS - the First Standard Benchmark for
SQL-Based Big Data Systems SoCC’17, September 25-27, Santa Clara, California USA

Figure 5: Sum of Squared Errors for each
Setup

Figure 6: Number of Elements in each
Cluster

Figure 7: Single-User Normalized Elapsed
Times of all Setups

queries 2, 11, 31, and 51 are in the medium category for setups A,
B, and C and 76 is in the medium category for setups A, B, and D.
Query 4 is in the slow category of setups A, B, and C. Query 78 is in
the very-slow category of setups A, B, and C. However, it is in the
slow category of Setup D, making Query 78 a common long running
query across systems.

Query 78 reports the top customer\item combinations having
the highest ratio of store channel sales to all other channel sales. It
performs a large join of the sales and returns fact tables of all three
sales channels causing 2.8TB of I/O.

4.2.3 Inter Setup Elapsed Times Comparison. The four
systems are different in their hardware configuration and general
approach to executing queries. Systems A, B, and C use hard disks,
with A and B using HDFS, while System D keeps all data in memory.
System A and B use identical hardware. To compare the query
response times of the four systems in a meaningful way, we first
normalize the query response times obtained on one system by the
mean of all elapsed times of this system and then use the coefficient
of variation to express the disparity of query elapsed time across
setups.

Denoting the individual query times on system s during the power
run as TP,s (qi), 1 ≤ i ≤ 99, we calculate the mean query elapsed
time as:

µs =
1
99

99∑
i=1

TP,s (qi), 1 ≤ i ≤ 99 (6)

We express the normalized response times for each query as:

TnormP,s (qi) =
TP,s (qi)

µs
, 1 ≤ i ≤ 99 (7)

To compare the normalized elapsed times of each query between
the four setups, we use the coefficient of variation as a standardized
measure of dispersion between the normalized elapsed times. Using
the normalized elapsed times for Query qi on all four setups, we
compute the mean query elapsed time across all four setups as:

µ(qi) =
1
4

4∑
s=1

TnormP,s (qi)1 ≤ i ≤ 99 (8)

Table 3: Elapsed time & data scanned by queries with high nor-
malized elapsed time dispersion

Qry
Elapsed Time[s] Data Scanned [GB]

A B C D A B C D

12 51 7 4 185 276 4 54 532
16 1508 22 5 11 2219 81 59 217
17 3178 263 89 3 3100 2,021 1547 98
25 3177 76 34 3 3053 215 554 76
77 855 76 19 11 7251 79 543 234
84 482 24 6 70 7 97 76 341
91 16 8 2 22 3 1 19 264
95 619 481 387 2581 1485 1348 1298 37854

we calculate the coefficient of variation function as:

CV (qi) =

√√√
1
99

99∑
i=1

(TnormP,s (qi) − µ(qi))2, 1 ≤ i ≤ 99 (9)

The coefficient of variation function CV , plotted in Figure 7,
shows the relative dispersion of the normalized elapsed times of
the four setups on a ratio scale. The lower the value, the less differ
the normalized elapsed times between the four setups, the higher
the value the more differ the normalized elapsed times. 90% of all
normalized elapsed times vary between 0.2 and 1, which means
that 90% of the queries (73 queries) have a relative similar ranking
within their data sets when compared across all four systems. This
means that the benchmark tests similar characteristics of each of the
systems.

There are however, some outliers that have a large coefficient
of variation of more than 1, namely, queries 12, 16, 17, 25, 77, 84,
91 and 95. Table 3 shows the elapsed times and amount of data
read by these queries. Among these queries, 16, 25, and 84 show
the highest dispersion across systems. They have highly selective
predicates on the dimension tables, which for Sytems B and C results
in relatively low total amount of data read. The high amount of data
read by System A in all of the three queries indicates that it cannot
take advantage of the highly selective predicates causing it to read
over-proportionally more data compared to Systems B and C. Please
note that the amount of data scanned for System D, being a columnar
organized in-memory solution, includes both memory and disk IO
(in case of spills).

SoCC’17, September 25-27, Santa Clara, California USA Meikel Poess, Tilmann Rabl, and Hans-Arno Jacobsen

Figure 8: Comparison Single-User/Multi-User tests

4.3 Multi-User Test Analysis
The purpose of the multi-user test is to measure a system’s ability to
maximize query throughput. Estimating the elapsed time of n concur-
rent sessions by simply multiplying the time of the single-user test
with n, only works if queries are queued to run consecutively. Unless
a single-user test can utilize all systems’ resources to 100%, queuing
n users to a single session will result in sub-optimal performance.
Hence, the multi-user test is a very valuable component of a DS
benchmark. The challenges running queries in multiple concurrent
sessions on one system are different from those running queries
in a single session. To avoid over and under-allocation of system
resources, which may result in query failure or sub-optimal perfor-
mance, resources need to be allocated to each session considering
all queries currently being executed.

In our multi-user test, a system runs four concurrent sessions
each executing 99 queries consecutively. We chose four concurrent
sessions because that is the minimum number of concurrent sessions
in a valid TPC-DS V2 run. Each session executes the queries in
a different permutation to avoid cross-session caching effects. All
queries are executed using intra-query parallelism and no query
queuing is enabled. The three setups benefit differently from the
multi-user run because of the systems ability to schedule concurrent
tasks and overlap resources (e.g. IO and CPU). Next, we discuss the
CPU and IO resource utilization over time.

Figure 9 displays the CPU and I/O utilization during the single-
user run of Setup A. The execution is dominated by the IO (gray
graph) as the system is almost 100% IO (black graph) bound during
the entire execution of the run. This is in-line with the IO analysis
done in Figure 3 of Section 4.1. As this system seems to have the
least capability of pruning unnecessary data, it relies heavily on full
table scans. The resource utilization for System A during a multi-user
run is shown in Figure 10. The IO and CPU graphs in this figure look
very similar compared to their counterparts in the single-user figure.
However, a closer look shows that the IO utilization and the CPU
utilization is slightly higher in both graphs suggesting that the system
was able to take advantage of the additional parallelism during the

multi-user run. This system remains IO bound and executes the
multi-user test in 3.52 times the single-user test (see Figure 10).

Figure 11 displays the CPU and I/O utilization during the single-
user run of Setup B. The black graph shows percent CPU used, while
the gray graph shows percent I/O used. Both graphs are very ragged.
While the CPU graph frequently hits 100%, the I/O graph barely
makes it over 50% many times dropping to zero. Notably, there
is a period between 10,000 and 11,000 seconds during which the
CPU consumption fluctuates vastly. Summarizing the single-user
run of Setup B we can say that Setup B uses on average 65% of the
available CPU and 32% of the available I/O capacity of the system.
At no time interval is the system I/O bound.

Figure 12 shows the corresponding multi-user run. It behaves very
differently from the single-user run. Firstly, I/O is the predominant
resource hovering around 80%, while CPU varies between 10 and
60%, rarely reaching 100%. The graphs of the multi-user run fluc-
tuate much less compared to the single-user run. Summarizing the
multi-user run of Setup B we see that uses an average of 30% CPU
and 77% of I/O. To our surprise the numbers for average CPU and
I/O utilization are almost flipped in these two cases. The multi-user
run was not anymore CPU bound as was the single-user run, but was
7% I/O bound.

Figures 13 and 14 show the corresponding resource utilizations
for the single- and multi-user runs of Setup C. This setup behaves
similar to Setup B as both IO and CPU graphs are very ragged. The
setup is very IO dominated, although it only reaches 100% of IO
during very brief periods in the single-user run. In the multi-user run
both IO and CPU graphs increase substantially suggesting that the
system can take advantage of the increased parallelism.

Figures 15 and 16 show the CPU and IO resource utilization of the
in-memory system. In the single-user test this system is CPU bound
almost during the entire test, while it shows moderate IO behavior,
mostly due to spilling effects of large sort and join operations. The
multi-user test looks very similar. Both the IO and CPU graphs are
smoother as there is increased concurrency.

4.3.1 Comparing Single-User and Multi-User Tests. Figure
8 compares the single- and multi-user elapsed times for each system.
The multi-user test executes the fastest on Setup D (2h 27m 26s),
followed by Setup C (4h 18m 36s) and Setup B (8h 18m 14s). The
ratio of the elapsed times of the multi- and single-user tests for
system s is denoted as R(s)s =

TTT
TPT . It shows how well a system

can absorb concurrent users. A large ratio indicates that a system
cannot absorb more users while a small ratio indicates that the
system can absorb more users. In the extreme cases: A ratio of
1 means that single and multi-user runs execute in the same time
indicating that resources are available for 3 more users. This could
mean that the system cannot fully utilize a system with just one
user; A ratio of 4 means that the system executes the mutli-user
run 4 times that of the single-user run indicating that it has no
resources available for the additional 3 users, which in turn could
mean that the system is able to fully utilize the system with just
one user. These ratios are printed on top of each pair of single- and
multi-user tests in Figure 8. Setup A has a ratio of 3.52, Setup B
of 2.12, Setup C of 2.77, and Setup D of 3.24. This indicates that
systems B and C gain the most and System A the least by running
multiple concurrent users. To conclude, these ratios by themselves

Analysis of TPC-DS - the First Standard Benchmark for
SQL-Based Big Data Systems SoCC’17, September 25-27, Santa Clara, California USA

Figure 9: Setup A - CPU and IO Utilization for the Single-User Test

Figure 10: Setup A - CPU and IO Utilization for the Multi-User Test

Figure 11: Setup B - CPU and IO Utilization for the Single-User Test

Figure 12: Setup B - CPU and IO Utilization for the Multi-User Test

are, however, no absolute indication of good multi-user performance.
A low ratio can be caused by a disproportionately longer single user
test or by a disproportionately shorter multi-user test - the latter
being more desirable. Similarly, a high ratio can be caused by a
disproportionately longer multi-user test or by a disproportionately
shorter single-user test - again, the later being more desirable.

4.4 Resource Utilization Analysis
Each decision support query has its own hardware resource uti-
lization pattern, unique to the way it is executed on a particular
system in a given situation. A hash-join has a different query pattern
than an index-driven join. When comparing systems used in TPC-H
publications, it becomes apparent that the system resources most
important to decision support queries, especially when dealing with
large clusters, are CPU, reads and writes from/to disk, inter-node
communication network, and memory. In order to understand a work-
load it is essential to examine queries that exhibit extreme behaviors,

such as CPU intensive queries or I/O intensive queries, and at the
same time exhibit a simple structure. These queries enable system
analysis along single resource dimensions. This section characterizes
the TPC-DS V2 tests according to four resources: (i) CPU, (ii) I/O,
(iii) memory, and (iv) network. The sets in Figures 17-19 correlate
the I/O, memory, and network utilization to CPU utilization of all
TPC-DS V2 queries.

For each resource r ∈ {CPU , IO,Memory,Network} and each
one-second time interval during the execution of Workload w ∈

{Power ,Throuдhput ,Q1, ..,Q99} on System s ∈ {A,B,C,D}, we
record how many units of r are used. The unit for CPU is [thread],
i.e., hardware threads of a huperthreaded x86 processor, and includes
user and system time as reported by tools, such as vmstat. The unit
for IO is [MBytes/s] and includes all read and write operations to all
disks attached to the system as reported by tools such as iostat. The
unit for memory is [GB] and includes all physical memory allocated
by all processes on the system including the file system cache. The

SoCC’17, September 25-27, Santa Clara, California USA Meikel Poess, Tilmann Rabl, and Hans-Arno Jacobsen

Figure 13: Setup C - CPU and IO Utilization for the Single-User Test

Figure 14: Setup C - CPU and IO Utilization for the Multi-User Test

Figure 15: Setup D - CPU and IO Utilization for the Single-User Test

Figure 16: Setup D - CPU and IO Utilization for the Multi-User Test

unit for network is the amount of [Mbytes/s] sent and received over
the network measured with tools such as netstat. We further record
the query elapsed time of this workload as Tw (s,w). We denote
the total number of CPU threads available as Umax (CPU , s), the
maximum I/O available as Umax (I/O, s), the total memory avail-
able as Umax (MEM, s) and the total network bandwidth available
as Umax (NET , s). Assuming these resources are available to the big
data application during the entire duration of the query run, the aver-
age resource utilizationUavд of Resource r on System s ∈ {A,B,C}
for each Workload w , expressed in percent, can be computed as
the sum of the ratios of actual resource utilization and maximum
resource available during each Time Interval t .

Uavд(r , s,w) =
100

T (s,q)

T (s,w)∑
t=1

Umeasured (r , s,w, t)

Umax (r , s)
(10)

When plotting the resource consumption of two resources R1 and
R2 w add horizontal and vertical lines, dividing the space into four
equally sized quadrants. Queries in the first quadrant, upper right, use

both resources R1 and R2 intensively, queries located in the second
quadrant, upper left, use mostly R2, queries in the third quadrant, left
bottom, use neither R1 nor R2 intensively, and queries in the fourth
quadrant, right bottom, use both resources intensively. While it is
common to divide a plane into four quadrants with the origin point
(0,0) being in the middle, the division into four quadrants at 50%
resource utilization is our own method to describe query behavior.
Because decision support queries are complex and often join multiple
tables requiring different join methods, sort large amounts of data
and compute aggregate data, their execution pattern is typically not
in a steady state for a long time. For example, the usual execution
pattern of a hash join can be described as a relatively short burst of
intensive I/O during the creation of the hash table of the left side
of the join followed by a longer, usually CPU bound phase where
the right side of the join is scanned and probed into the hash table.
Hence, one cannot infer any specific CPU/ I/O pattern from the two
parameters described above. However, these parameters provides a

Analysis of TPC-DS - the First Standard Benchmark for
SQL-Based Big Data Systems SoCC’17, September 25-27, Santa Clara, California USA

(a) System A (b) System B (c) System C (d) System D

Figure 17: IO-CPU Utilization

(a) System A (b) System B (c) System C (d) System D

Figure 18: Memory-CPU Utilization

(a) System A (b) System B (c) System C (d) System D

Figure 19: Network-CPU Utilization

general idea about resource intensive queries and what the spread of
the entire TPC-DS V2 query set is with regard to two resources.

4.4.1 Single-User Resource Utilization. On each system
we run the above query subset in a single-user fashion, recording
individual query elapsed and resource utilizations.
CPU vs. I/O: Figures 17a, 17b, 17c, and 17d plot the average I/O
utilization on the horizontal axis against the average CPU utilization
on the vertical axis. On System A, queries fall only into Quadrants
III and IV indicating that they are mostly I/O intensive. Most queries
show around 20% CPU utilization in both quadrants. 45 queries are
located in Quadrant IV. Of the 36 queries that fall in Quadrant III,
10 show less than 5% I/O utilization. On System B, queries fall into
all four quadrants: 24 fall into Quadrant I, 25 fall into Quadrant II,
41 fall into Quadrant III and 9 fall into Quadrant IV. On System C,
most queries fall into Quadrants II (42) and IV (44). Quadrant III has
12 queries while Quadrant I has only one query. On System D, all
queries fall into Quadrant I (43) and Quadrant III (56) indicating that

they range from low CPU intensive to high CPU intensive, but using
very little IO. This is not surprising as Setup D is the in-memory
setup, which uses IO only for the spilling of large sort and join
operations.

Query 22 is a low IO/high CPU intensive query on all three system.
On Systems B and C, Query 22 uses on average 62% and 85%,
respectively, of the available compute power, placing it in Quadrant
II. On System A it uses only 32% of the available CPU power,
placing it in III quadrant. While 32% CPU utilization is generally
low, on this system it is the query with the highest CPU consumption.
Query 22 uses the compute intensive rollup functionality in SQL.
For each product name, brand, class, and category, it calculates the
average quantity on hand rolling-up data by product name, brand,
class, and category. Query 22 only has to scan 1% (21GB) of the total
dataset. Query 88 can be classified as a high IO/low CPU intensive
query on all three systems. It is located in Quadrant IV utilizing
on average between 70% (System A) and 84% (System C) of the

SoCC’17, September 25-27, Santa Clara, California USA Meikel Poess, Tilmann Rabl, and Hans-Arno Jacobsen

available IO bandwidth. Query 88 analyzes store sales by returning
in one row the number of sales occurring during each 30 minute
time interval between 8:30am and 12:30pm. As a consequence, this
query, without any optimization, scans store_sales eight times to a
total of 5,161 GB.
CPU vs. Memory: Figures 18a, 18b, 18c, and 18d plot the average
memory utilization on the horizontal axis against the average CPU
utilization on the vertical axis for each system. Queries are very
memory intensive across all four systems. Most queries are using
between 90% and 95% of the available memory on Setups A, B, and
C. Setup B and C seem to pre-allocate and never release memory
as all queries use about 95% of the available memory. System C
shows some variation of memory utilization with most queries using
between 88% and 95% of the available memory with one outlier
using only 64%. The in-memory Setup D shows between 70% and
90% memory utilization. It is not surprising that this setup does not
use 100% of the memory as this is a very large memory system and
not all memory was used for the workload. While most queries seem
to use between 70% and 80% of the available memory, the system
used for Setup D seem to release some memory. Likely the memory
that is used to store the actual data is fixed and the memory used for
query execution is partly released between queries.
CPU vs. Network: Figures 19a, 19b, 19c, and 19d plot the average
network utilization on the horizontal axis against the average CPU
utilization on the vertical axis for each system. All four setups show
a very different network utilization. Except for two outliers at 32%
and 80%, most queries run on Setup A show only up to 20% network
utilization and are located in Quadrant IV. Network utilization is
the lowest on Setup B where most queries use less than 5% of the
network’s bandwidth. Four queries use around 10%. Setups C and D
have the most wide-spread network utilization. Most queries use less
then 20%, four use between 30% and 40% and one uses 80%. There
is no common pattern to be found among these different systems
indicating that they distribute queries operations for the various
queries very differently.

To conclude we can say that many queries show a wide spectrum
of resource utilization across the four setups indicating that they are
very diverse and utilize the systems depending on their architectural
peculiarities.

5 CONCLUSION
Our analysis of pivotal parts of the benchmark and our experimental
results on four different setups show that TPC-DS V2 stresses many
aspects of SQL-based big data systems. Different resource consump-
tions and elapsed times of the queries suggest that the workload is
discriminatory enough to reveal interesting characteristics in current
big data solutions:

• Our test systems apply various degrees of data pruning, but
no system prunes the maximum possible.

• Query elapsed times during single-user runs on each system
vary between seconds and hours.

• Our test systems optimize differently for single- and multi-
user runs. Some benefit more some less.

• Our test systems show vastly different resource utilizations
for single- and multi-user runs.

• Many queries show a wide spectrum of resource utilization
across the four setups.

Our analysis also revealed some of the weaknesses of TPC-DS
V2. Using elapsed time coefficient of variation analysis and K-means
analysis we discovered that query elapsed times are skewed towards
short running queries, especially for in-memory systems (Setup D).
To the contrary, we identified that only few queries show very long
elapsed times on our systems, which suggest that more complex
queries should be added to counter balance the short running queries.
We also discovered that there is large potential for current systems to
prune unnecessary I/O. Plotting I/O, memory and, network consump-
tions in two dimensional grids against CPU utilization we identified
queries that are single resource heavy on all systems. These queries
can be used to calibrate systems before running the entire TPC-DS
V2 benchmark.

6 ACKNOWLEDGEMENT
This work has been supported through grants by the German Fed-
eral Ministry for Education and Research as Berlin Big Data Cen-
ter (funding mark 01IS14013A), through grants by the European
Union’s Horizon 2020 research and innovation program under grant
agreement 688191 and by the Alexander von Humboldt Founda-
tion. Many thanks to Srikanth Kandula for his valuable comments
and suggestions, which have led to significant improvement on the
presentation and quality of this paper.

REFERENCES
[1] 2017. IBM Big SQL. https://www.ibm.com/support/knowledgecenter/en/

SSPT3X_4.1.0/com.ibm.swg.im.infosphere.biginsights.product.doc/doc/bi_sql_
access.html. (2017). IBM.

[2] 2017. Oracle Big Data SQL. https://www.oracle.com/database/big-data-sql/index.
html. (2017). Oracle Corporation.

[3] 2017. SAP Vora. https://www.sap.com/products/hana-vora-hadoop.html. (2017).
SAP.

[4] AMP Lab. 2013. AMP Lab Big Data Benchmark. (2013).
https://amplab.cs.berkeley.edu/benchmark/.

[5] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark Callaghan.
2013. LinkBench: a Database Benchmark Based on the Facebook Social Graph.
In SIGMOD. 1185–1196.

[6] Cloudera. [n. d.]. Impala. http://www.cloudera.com/content/cloudera/en/products-
and-services/cdh/impala.html. ([n. d.]).

[7] Alain Crolotte. 2009. Issues in Benchmark Metric Selection. In Performance
Evaluation and Benchmarking, First TPC Technology Conference, TPCTC 2009,
Lyon, France, August 24-28, 2009, Revised Selected Papers. 146–152.

[8] Paul M. Davis. [n. d.]. Pivotal HAWQ Benchmark Demonstrates Up
To 21x Faster Performance on Hadoop Queries Than SQL-like Solu-
tions. https://content.pivotal.io/blog/pivotal-hawq-benchmark-demonstrates-up-
to-21x-faster-performance-on-hadoop-queries-than-sql-like-solutions. ([n. d.]).

[9] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Process-
ing on Large Clusters. Commun. ACM 51, 1 (2008), 107–113.

[10] Justin Ericson, Greg Rahn, Marcel Kornaker, and Yanpei Chen. [n. d.]. Impala
Performance Update: Now Reaching DBMS-Class Speed. http://blog.cloudera.
com/blog/2014/01/impala-performance-qdbms-class-speed/. ([n. d.]).

[11] Facebook. [n. d.]. Presto. https://prestodb.io/. ([n. d.]).
[12] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain

Crolotte, and Hans-Arno Jacobsen. 2013. BigBench: Towards an Industry Standard
Benchmark for Big Data Analytics. In SIGMOD.

[13] Simon Harris. [n. d.]. Big SQL 3.0: Hadoop-DS benchmark - Performance isnâĂŹt
everythingâĂę. https://developer.ibm.com/hadoop/blog/2014/12/02/big-sql-3-0-
hadoop-ds-benchmark-performance-isnt-everything/. ([n. d.]).

[14] Hortonworks. [n. d.]. Stinger. http://hortonworks.com/innovation/stinger/. ([n.
d.]).

[15] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. 2010.
The HiBench Benchmark Suite: Characterization of the MapReduce-Based Data
Analysis. In ICDEW.

[16] Kiyoung Kim, Kyungho Jeon, Hyuck Han, Shin gyu Kim, Hyungsoo Jung, and
H.Y. Yeom. 2008. MRBench: A Benchmark for MapReduce Framework. In

https://www.ibm.com/support/knowledgecenter/en/SSPT3X_4.1.0/com.ibm.swg.im.infosphere.biginsights.product.doc/doc/bi_sql_access.html
https://www.ibm.com/support/knowledgecenter/en/SSPT3X_4.1.0/com.ibm.swg.im.infosphere.biginsights.product.doc/doc/bi_sql_access.html
https://www.ibm.com/support/knowledgecenter/en/SSPT3X_4.1.0/com.ibm.swg.im.infosphere.biginsights.product.doc/doc/bi_sql_access.html
https://www.oracle.com/database/big-data-sql/index.html
https://www.oracle.com/database/big-data-sql/index.html
https://www.sap.com/products/hana-vora-hadoop.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
https://content.pivotal.io/blog/pivotal-hawq-benchmark- demonstrates-up-to-21x-faster-performance-on-hadoop-queries-than-sql-like-solutions
https://content.pivotal.io/blog/pivotal-hawq-benchmark- demonstrates-up-to-21x-faster-performance-on-hadoop-queries-than-sql-like-solutions
http://blog.cloudera.com/blog/2014/01/impala-performance-
http://blog.cloudera.com/blog/2014/01/impala-performance-
https://prestodb.io/
https://developer.ibm.com/hadoop/blog/2014/12/02/big-sql-3-0-hadoop-ds-benchmark-performance-isnt-everything/
https://developer.ibm.com/hadoop/blog/2014/12/02/big-sql-3-0-hadoop-ds-benchmark-performance-isnt-everything/
http://hortonworks.com/innovation/stinger/

Analysis of TPC-DS - the First Standard Benchmark for
SQL-Based Big Data Systems SoCC’17, September 25-27, Santa Clara, California USA

Parallel and Distributed Systems, 2008. ICPADS ’08. 14th IEEE International
Conference on. 11–18.

[17] Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Salapura. 2015. Spark-
Bench: A Comprehensive Benchmarking Suite for in Memory Data Analytic
Platform Spark. In Proceedings of the 12th ACM International Conference on
Computing Frontiers (CF ’15). ACM, New York, NY, USA, Article 53, 8 pages.

[18] J. MacQueen. 1967. Some methods for classification and analysis of multivariate
observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics. University of California Press,
Berkeley, Calif., 281–297. http://projecteuclid.org/euclid.bsmsp/1200512992

[19] Michael Armbrust, Zongheng Yang. [n. d.]. Exciting Performance Improvements
on the Horizon for Spark SQL. https://databricks.com/blog/2014/06/02/exciting-
performance-improvements-on-the-horizon-for-spark-sql.html. ([n. d.]).

[20] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang. 2010.
Introducing the Graph 500. Cray UserâĂŹs Group (CUG) (2010).

[21] Raghunath Othayoth Nambiar and Meikel Poess. 2006. The Making of TPC-DS.
In Proceedings of the 32nd International Conference on Very Large Data Bases,
Seoul, Korea, September 12-15, 2006. 1049–1058.

[22] Raghunath Othayoth Nambiar, Meikel Poess, Akon Dey, Paul Cao, Tariq Magdon-
Ismail, Da Qi Ren, and Andrew Bond. 2014. Introducing TPCx-HS: The First
Industry Standard for Benchmarking Big Data Systems. In Performance Char-
acterization and Benchmarking. Traditional to Big Data - 6th TPC Technology
Conference, TPCTC 2014, Hangzhou, China, September 1-5, 2014. Revised Se-
lected Papers. 1–12.

[23] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew
Tomkins. 2008. Pig Latin: A Not-so-Foreign Language for Data Processing. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008. 1099–1110.

[24] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt,
Samuel Madden, and Michael Stonebraker. 2009. A Comparison of Approaches
to Large-Scale Data Analysis. In SIGMOD. 165–178.

[25] Meikel Pöss, Raghunath Othayoth Nambiar, and David Walrath. 2007. Why
You Should Run TPC-DS: A Workload Analysis. In Proceedings of the 33rd
International Conference on Very Large Data Bases, University of Vienna, Austria,
September 23-27, 2007. 1138–1149.

[26] Tilmann Rabl, Ahmad Ghazal, Minqing Hu, Alain Crolotte, Francois Raab, Meikel
Poess, and Hans-Arno Jacobsen. 2014. BigBench Specification V0.1. In Specifying
Big Data Benchmarks, Tilmann Rabl, Meikel Poess, Chaitanya Baru, and Hans-
Arno Jacobsen (Eds.). Lecture Notes in Computer Science, Vol. 8163. Springer
Berlin Heidelberg, 164–201.

[27] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. 2009. Hive:
A Warehousing Solution Over a Map-Reduce Framework. PVLDB 2, 2 (2009),
1626–1629.

[28] Robert Tibshirani, Guenther Walther, and Trevor Hastie. 2001. Estimating the
number of clusters in a data set via the gap statistic. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 63, 2 (2001), 411–423. https://doi.org/
10.1111/1467-9868.00293

[29] Transaction Processing Performance Council. 2015. Specification TPC-DS Ver-
sion 2.1. http://www.tpc.org/tpcds/default.asp. (2015).

[30] Transaction Processing Performance Council. 2016. Top 10 TPC-H publications
grouped by scale factor. (07 2016). http://www.tpc.org/tpch/results/tpch_perf_
results.asp

[31] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
and E. Baldeschwieler. 2013. Apache Hadoop YARN: Yet Another Resource
Negotiator. In Proceedings of the 4th annual Symposium on Cloud Computing,
ACM (Ed.). 5.

[32] Reynold S Xin, Josh Rosen, Matei Zaharia, Michael J Franklin, Scott Shenker,
and Ion Stoica. 2013. Shark: SQL and Rich Analytics at Scale. In Proceedings of
the 2013 ACM SIGMOD International Conference on Management of data. ACM,
13–24.

http://projecteuclid.org/euclid.bsmsp/1200512992
https://databricks.com/blog/2014/06/02/exciting-performance-improvements-on-the-horizon-for-spark-sql.html
https://databricks.com/blog/2014/06/02/exciting-performance-improvements-on-the-horizon-for-spark-sql.html
https://doi.org/10.1111/1467-9868.00293
https://doi.org/10.1111/1467-9868.00293
http://www.tpc.org/tpcds/default.asp
http://www.tpc.org/tpch/results/tpch_perf_results.asp
http://www.tpc.org/tpch/results/tpch_perf_results.asp

	Abstract
	1 Introduction
	2 Related Work
	3 Benchmark Analysis
	3.1 Paradigm Shift in Data Ownership
	3.2 Goodbye ACID - Welcome BASE
	3.3 Periodic Data Integration Workload
	3.4 Query Workload
	3.5 Metric and Execution Rules

	4 Experimental Results
	4.1 Data Scan Analysis
	4.2 Single-User Test Analysis
	4.3 Multi-User Test Analysis
	4.4 Resource Utilization Analysis

	5 Conclusion
	6 Acknowledgement
	References

