
ScootR: Scaling R Dataframes on Dataflow Systems
Andreas Kunft

Technische Universität Berlin
andreas.kunft@tu-berlin.de

Lukas Stadler
Oracle Labs

lukas.stadler@oracle.com

Daniele Bonetta
Oracle Labs

daniele.bonetta@oracle.com

Cosmin Basca
Oracle Labs

cosmin.basca@oracle.com

Jens Meiners
Technische Universität Berlin
jens.meiners@tu-berlin.de

Sebastian Breß
DFKI GmbH

sebastian.bress@dfki.de

Tilmann Rabl
Technische Universität Berlin

rabl@tu-berlin.de

Juan Fumero
The University of Manchester
juan.fumero@manchester.ac.uk

Volker Markl
Technische Universität Berlin
volker.markl@tu-berlin.de

ABSTRACT
To cope with today’s large scale of data, parallel dataflow engines
such as Hadoop, and more recently Spark and Flink, have been
proposed. They offer scalability and performance, but require data
scientists to develop analysis pipelines in unfamiliar programming
languages and abstractions. To overcome this hurdle, dataflow en-
gines have introduced some forms of multi-language integrations,
e.g., for Python and R. However, this results in data exchange be-
tween the dataflow engine and the integrated language runtime,
which requires inter-process communication and causes high run-
time overheads.

In this paper, we present ScootR, a novel approach to execute R
in dataflow systems. ScootR tightly integrates the dataflow and R
language runtime by using the Truffle framework and the Graal
compiler. As a result, ScootR executes R scripts directly in the Flink
data processing engine, without serialization and inter-process
communication. Our experimental study reveals that ScootR out-
performs state-of-the-art systems by up to an order of magnitude.
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Figure 1: R function call overhead compared to the native
execution on the dataflow system. Source-to-source transla-
tion (STS) and inter-process communication (IPC) are com-
pared to native Spark. ScootR is compared to native Flink.

1 INTRODUCTION
Extracting value from data is a very important, but complex task.
Typically, data analysts rely on complex execution pipelines com-
posed of several stages, (e.g., data cleansing, transformation, and
preparation) that need to be executed before the actual analysis
or machine learning algorithm can be applied [34]. Often, these
pipelines are repeatedly refined to obtain the best suited subset of
data for prediction and analysis. Therefore, programming languages
with rich support for data manipulation and statistics (provided as
library functions), such as R and Python, have become increasingly
popular [2]. More recently, such languages also started receiving
increased attention in other domains such as enterprise software
ecosystems [23]. While these languages are convenient for non-
expert programmers, they are typically designed for a single-ma-
chine and in-memory usage. Thus, they run out of memory if data
exceeds the available capacity and cannot scale-out without signifi-
cant implementation efforts. In contrast, parallel dataflow systems,
such as Apache Flink [3] and Apache Spark [33], are able to handle
large amounts of data. However, data scientists are often unfamiliar
with the systems’ native language and programming abstraction,
which is crucial to achieve good performance [4]. To overcome
this barrier, dataflow engines provide additional programming in-
terfaces in guest languages, such as R and Python, which build on
familiar abstractions, e.g., dataframes. Current state-of-the-art so-
lutions integrate guest languages in two fundamental ways. They
either use inter-process communication (IPC) or source-to-source
translation (STS).
Inter-process communication. In this approach, the guest lan-
guage runtime runs in a separate process. Input and output data
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has to be exchanged via IPC between the process running the da-
taflow engine and the process running the guest language. IPC
supports any valid code in the guest language but can incur major
performance overhead in the form of data exchange between the
processes and serialization to a format readable by both languages.
Source-to-source translation. In this approach, guest language
code is translated to host language code, e.g., to the dataflows’s na-
tive API. While STS translation achieves near native performance,
as the translation happens before program execution, it is limited to
a restricted set of functions and library calls. Support for a rich set of
language features would require a full-fledged compiler. The impact
on the execution time for both methods is demonstrated in Figure 1,
by comparing SparkR [27], which supports STS translation and IPC.
In this case, the execution of a simple user-defined function (UDF)
via IPC is more than 100× slower compared to STS translation1.
Thus, current approaches either yield sub-optimal performance or
restrict the set of usable guest language features.

In this paper, we introduce ScootR, a novel language integra-
tion approach based on an efficient intermediate representation
(IR) for both the guest and the host language. We focus on the
execution of UDF heavy pipelines – the bottleneck in current state-
of-the-art solutions – and provide a dataframe-centric R API for
transformation, aggregation, and application of UDFs with minimal
overhead. Using a common IR, ScootR avoids the data exchange
and serialization overheads introduced by IPC. ScootR extends on
STS translation by using the existing compiler infrastructure and
back-end of the host language to support a rich set of language
features and pre-compiled modules.

ScootR is based on a tight integration of the fastR [24] language
runtime with the Java Virtual Machine (JVM) responsible for exe-
cuting Flink data processing pipelines. fastR is a GNU-R compatible
R language runtime based on the Truffle language implementation
framework and the Graal dynamic compiler [30, 31] for the JVM.
Thus, ScootR efficiently executes a rich set of R UDFs within the
same runtime and completely avoids IPC. By harnessing Truffle’s
efficient language interoperability system, ScootR accesses Flink
data types directly inside the R UDFs, avoiding data materialization
and unnecessary data copying due to marshalling.

Our experiments show that ScootR achieves comparable perfor-
mance to source-to-source translation and outperforms IPC based
approaches by up to an order of magnitude, while supporting a
rich set of language features. Analytics pipelines written in ScootR
can either be executed on a single local machine, utilizing multi-
threaded execution or distributed in a cluster, using both intra-node
multi-threading and inter-node parallelism.

In summary, we make the following contributions:

(1) We present a new integration technique that enables seam-
less, low-overhead, interoperability between the fastR R lan-
guage runtime and the Flink dataflow engine. Our approach
avoids the overhead of IPC and serialization present in state-
of-the-art solutions.

1In Section 5.2, the full benchmark is discussed in detail.

(2) We describe how we enable efficient exchange and access of
data structures between fastR and Flink with minimal over-
head and why it is necessary to achieve good performance.

(3) We compare our implementation in an experimental study
against the current state-of-the-art, as well as native execu-
tion in R and fastR.

2 BACKGROUND
In this section, we provide the necessary background to the systems
used in ScootR. We describe the language interoperability features
of Truffle that we use to achieve efficient data exchange between R
and the Flink execution engine. Furthermore, we describe the basic
concepts behind Flink needed in the following sections.

2.1 Graal, Truffle, and FastR
Truffle [31] is a language implementation framework. It is used
to develop high-performance language runtimes by means of self-
optimizing abstract syntax tree (AST) interpreters. These ASTs
collect profiling information at runtime and specialize their struc-
ture accordingly. Examples for such specializations include elision
of unnecessary type conversions as well as removal of complex
method dispatch logic. Truffle provides interoperability features to
efficiently exchange data and access functions between languages
build on top of it [11].

Graal [30] is a dynamic compiler that has special knowledge of
Truffle ASTs and can produce highly-optimized machine code by
means of (automatic) partial evaluation: as soon as a Truffle AST
self-optimizes itself by reaching a stable state, Graal assumes its
structure to be constant and generates machine code for it. De-
optimizations and speculation failures are handled automatically
by Graal by transferring execution flow back to the AST interpreter.
fastR is a high-performance GNU-R compatible R language runtime
implemented using Truffle that relies on the Graal dynamic com-
piler for runtime optimization. It is open-source, and is available
as one of the default languages of the GraalVM multi-language
runtime [11, 30]. GraalVM can execute Java applications on top
of the HotSpot [19] Java VM, and can execute other Truffle-based
language runtimes such as JavaScript, Ruby, Python, and LLVM.

2.2 Apache Flink
Apache Flink is a massively parallel dataflow engine that extends
the ideas of the MapReduce paradigm. It combines optimizations
known from the database community with the UDF-centric work
flow of a distributed execution engine. Written in Java, Flink offers
native APIs in Java and Scala based on the DataSet abstract data
type that represents a distributed collection. This type enables to
describe dataflow pipelines by means of transformations on bags,
based on second-order operators. A special tuple type (with fixed
arity and typing of the fields), together with an extended set of
operators, such as join and grouping, enable a more relational
specification of the execution pipelines using acyclic graphs. Jobs
specified in the DataSet API internally build a logical execution plan,
which is optimized. The resulting physical plan is then scheduled for
execution by themaster node, called JobManager. The worker nodes
– called TaskManager – execute in a shared-nothing architecture.
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3 GUEST LANGUAGE INTEGRATION
In this section, we discuss different approaches to call R code from
within Java. While we focus on integrating R in a dataflow engine,
the presented approaches are applicable to other programming
languages as well. In the following examples, we concentrate on
the task of evaluating a user-defined function, written in R, within
a worker node of a dataflow engine, e.g., Apache Flink or Apache
Spark. With that, we present current approaches based on inter-
process communication, source-to-source translation, and common
intermediate representations for both languages.

3.1 Inter-process communication
The first approach is based on inter-process communication be-
tween the Java process that runs the worker node of the dataflow
system and an external R process. We provide a schematic illustra-
tion of the IPC in Figure 2.

JVM

Java R

Figure 2: IPC between Java and an external R process.

In the IPC approach, the worker node sends elements to the R
process and the function is evaluated with the native R interpreter.
Afterwards, the result is sent back to the worker node. The ap-
proach introduces three drawbacks: (i ) The data in Java has to be
serialized to a format suitable for exchange and deserialization in R.
(ii ) Additional communication overhead is introduced, as data is
exchanged either through a (local) socket or a (memory-mapped)
file, shared between the two communicating processes. (iii ) In re-
source restricted environments, Java and R have to compete for the
available memory, due to their isolated address spaces. Despite the
presented drawbacks, IPC is used by several systems [9, 13, 32], as
it only requires basic I/O facilities.

3.2 Source-to-Source Translation
Source-to-source translation (STS) tackles the problem from a com-
pletely different direction as the previously presented approach
based on IPC. Instead of exchanging data between the processes,
the execution of R code is avoided altogether by executing a (se-
mantically-equivalent) translation of the UDF to a programming
language natively supported by the dataflow engine.

JVM

JavaJavaR

Translation1 Execution2

Figure 3: Source-to-source translation of R to Java for execu-
tion in native dataflow API.

As an example, Figure 3 shows how the R source code of a user-
defined function is translated to equivalent Java source code, before
the actual execution of the dataflow program takes place. Once the
translation is done, there is no interaction with R during program
execution and STS translation offers native performance. Never-
theless, extensive support of guest language features essentially
requires a full-fledged compiler and yield a huge effort. Thus, STS
translation is often restricted to a domain-specific language subset
to reduce the implementation effort.

3.3 Hybrid Approach
The R integration in Apache Spark [33], called SparkR [27], builds
on a hybrid approach, combining STS translation and IPC. R lan-
guage constructs that can be directly mapped to Spark’s native
dataframe API are source-to-source translated, as described in Sec-
tion 3.2. These constructs are limited to a subset of filter predicates
(e.g., >, <,=, etc.), column manipulations and transformations (e.g.,
arithmetic operators, string manipulations, etc.), and library func-
tion calls. For instance, in the following example, an R filter
function selects all tuples in the dataframe df that have the value
"R" in their language column:

df <- filter(df, df$language == "R")

The R filter function can be translated to the following filter
operator in Spark’s native Scala dataframe API, including the user-
defined predicate:

val df = df.filter($"language" === "R")

To run arbitrary UDFs, the user can specify functions on parti-
tions of the dataframe, analogous to the apply function in R, and
grouped data for aggregation. Here, source-to-source translation
cannot be used anymore and SparkR falls back to the previously
presented approach based on inter-process communication (Sec-
tion 3.1). Thus, SparkR represents a combination of both presented
approaches. It achieves near native performance for a subset of op-
erators via STS translation, but falls back to IPC in case of general
user-defined functions.

3.4 Common Intermediate Representation
To avoid IPC while supporting holistic optimizations for a rich
set of language features, one can define a common intermediate
representation (IR) both languages are translated to.

Runtime

IRIR

Java R

Figure 4: A common runtime for the intermediate represen-
tations of both languages.

The IR is then interpreted (and/or just-in-time compiled) on a
common runtime or compiled to machine code, as depicted in Fig-
ure 4. Implementing such a compiler is a huge implementation
effort. Translating high-level languages to an existing compiler
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infrastructure reduces this implementation effort, increases porta-
bility, and facilitates the reuse of compiler back-end components,
e.g., to generate efficient machine code through a Virtual Machine
(VM). Prominent examples are the Java Virtual Machine (JVM),
which uses byte code as IR, and LLVM, which uses e.g., bitcode as
IR.

Weld [20] provides an IR based on linear types that is optimized
for multi-threading by loop tiling and vectorization. Implemen-
tations for several important libraries exist, including Python’s
Pandas and NumPy, which are evaluated lazily to build a Weld
Abstract Syntax Tree (AST). Thereby, it avoids the creation of inter-
mediate results, e.g., by fusing dataframe transformations followed
by a NumPy sum function.

As described in Section 2.1, GraalVM provides Truffle, a language
implementation framework. Languages implemented in Truffle are
automatically optimized and JIT compiled by the Graal compiler.
In contrast to Weld, which provides its own runtime, GraalVM
runs on the HopSpot runtime and therefore, can run and access
Java seamlessly. In the next section, we describe how ScootR uses
GraalVM to provide efficient execution of R code within the worker
nodes of dataflow systems.

4 SCOOTR
In this section, we describe our approach to execute R code in
Apache Flink. We first provide an overview of all the components
in general, before we discuss each step in detail. We focus on the
efficient execution of user-defined functions, as they introduce a big
performance overhead in currently available solutions (Section 3).

4.1 Overview
We base our approach on fastR, the R implementation on top of the
GraalVM. As introduced in Section 2, GraalVM is a language execu-
tion runtime capable of running multiple languages – including R
and Java – in the same virtual machine instance. GraalVM enables
seamless interoperability between all of its supported languages,
and provides efficient language interoperability [11] capabilities.
ScootR builds on such capabilities to expose Flink’s internal data
structures to the fastR engine. ScootR distinguishes between two
main phases: the plan generation phase and the plan execution phase.

Plan Generation Phase

GraalVM

Job
Manager Java            R

Task Manager

Plan Execution Phase

UDF Support

Runtime Type Analysis

Data Access & Exchange

R

fastR

Type & Function Mapping

Dataframes to Datasets

R Functions to Operators

A

B

Figure 5: The two main phases in ScootR.

Figure 5 details the components of each phase. In the plan gener-
ation phase, described in Section 4.2, ScootR builds a Flink operator
plan from R source code, which is later executed by the dataflow
engine. Similar to Flink’s native APIs, the dataframe API of ScootR
is evaluated lazily. Calls to the API trigger no execution, but build

a Flink operator graph until a materialization point – a sink in the
graph – is reached. Section 4.2 A explains the steps necessary for
Type and Function Mapping. ScootR defines the correct mapping of
R dataframes to Flink’s DataSet abstraction. Based on this mapping,
R functions are translated to their corresponding Flink operators
as defined by ScootR’s function implementations in fastR. We de-
tail the necessary steps to enable efficient execution of UDFs in
Section 4.2 B (UDF Support). First, we show how ScootR deter-
mines the result types of UDFs via runtime type analysis. Second,
we describe how ScootR achieves efficient data exchange between
Java and R and why it is necessary to provide access to Flink’s
underlying data structures.

After the operator plan is created, it is deployed on the Flink
cluster and executed during the plan execution phase (Section 4.3).
R UDFs are executed in parallel by each worker node. ScootR’s
integration with the GraalVM ensures that each UDF is optimized
by the Graal JIT compiler, automatically.
Running Example. Listing 1 gives an example of an R application,
which makes use of the ScootR dataframe API. We use it as running
example throughout the rest of this Section. In Lines 1 – 2, we
specify the Flink cluster we execute on and its degree of parallelism.
In Lines 4 – 8, we read an input file and convert it to a dataframe.
Next, we project the flight_id and miles columns (Line 10) and
create a new column km by applying the UDF in Line 11. Finally,
we retrieve the first 5 entries of the dataframe in Line 12.

1 flink.init(host, port)

2 flink.parallelism(dop)

3

4 df <- flink.readdf(

5 "hdfs://some/input/file",

6 list("flight_id", "distance", ...),

7 list("integer", "integer", ...)

8 )

9

10 df <- flink.select(df, flight_id, miles)

11 df$km <- df$miles * 1.6

12 df$head(5)

Listing 1: Code snippet for the running example in ScootR.

4.2 Plan Generation Phase
In this section, we explain each necessary step to translate pro-
grams defined in ScootR to their corresponding dataflow pipelines.
We first detail the mechanics of the type and function mapping in
A , before we describe the introduced optimizations to increase
the performance of R UDFs in B .

A — In the following, we detail the type and function mapping be-
tween R and Java and describe the translation process for functions
without user-defined code.
Mapping R Data Frames to Flink DataSets. Dataframes are a
popular abstraction to represent tabular data in languages such
as Python and R and used in many libraries. As ScootR’s API is
build around dataframes, it is crucial to provide a valid and efficient
mapping from an R dataframe to a data type suitable for processing
in Flink. While Flink can work with arbitrary Java data types, it
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provides special facilities for instances of its TupleN type, where
N specifies the tuple’s fixed arity. The fields of a tuple are typed
and can be compared to a row in a database table or an entry in
a dataframe. Thus, we can define a mapping from an R dataframe
df with N columns and types t1, t2, ..., tN to a Flink dataset ds
with element type TupleN<t1, t2, ..., tN >. As individual dataframe
columns can be accessed either by index or name, we maintain a
mapping of the dataframe column names to their respective tuple
indexes in our dataframe wrapper for the dataset.
Defining R Functions for Flink Operators. During lazy evalu-
ation, an R program using ScootR’s API is translated to a Flink
operator plan. To generate such a plan from the R source code,
ScootR introduces new Truffle AST nodes (called RBuiltinNode)
that correspond to new built-in functions available to the R user.
Some important functions in ScootR are depicted in Table 1. List-
ing 2 shows a snippet for the flink.select built-in function used
in Line 11 of our running example in Listing 1. The specification of
Truffle nodes relies on annotations, while the actual code for the
AST nodes is generated during compilation by the Truffle frame-
work. The flink.select built-in expects a dataframe df and a
variable length argument (indicated by three dots) representing the
columns to project (Line 2). The behavior of the node is defined
by methods annotated with@Specialization. For example, the be-
havior of the flink.select node in our snippet is defined in the
select method in Line 5. Based on the arguments, it extracts the
projected columns and adds the according Flink project operator
to the execution graph.

1 @RBuiltin(name = "flink.select",

2 parameterNames = {"df", "..."})

3 abstract class FlinkSelect extends RBuiltinNode.Arg2 {

4 @Specialization

5 DataFrame select(DataFrame df,

6 RArgsValuesAndNames fields) {

7 // determine projected columns

8 // add Flink `ProjectOperator` to Execution Plan

9 }

10 }

Listing 2: Simplified Snippet of the flink.selectRBuiltin.

Functions without User-Defined Code. R functions that do not
involve user-defined code are directly mapped to their counter-
part operators defined by the Flink dataset API. For instance, the
flink.select function from the running example (Listing 1, Line 10)
is directly mapped to the project operator from Flink’s DataSet
API, as described in the previous paragraph. ScootR performs the
entire mapping of R functions without user-defined code during the
plan generation phase and, therefore, they introduce no runtime
overhead.
B — In the following, we detail how ScootR enables efficient ex-
ecution of R UDFs. First, we describe how ScootR determines the
correct result types of the executed UDFs. Second, we detail how
to efficiently exchange data between Java and R for the input and
R and Java for the output of the UDF.

Runtime Type Analysis. Explicit type ascription is not required
for UDFs specified in R. In contrast, Flink requires the input and
output types of operators when the operator plan is built. While
the container type is fixed to TupleN, the arity N and the types
of the fields may change when the UDF is applied. Thus, ScootR
needs to execute the R UDF to determine its result type before the
corresponding Flink operator, calling the function at runtime, is
created. For performance considerations, we avoid taking a sam-
ple of the actual data to determine the initial data types, since the
data might reside in a distributed file system such as HDFS [22].
Therefore, the current implementation requires to specify the data
types in the R API when reading files (as in Listing 1, Line 7). The
result types of all other operators in the pipeline are determined
automatically by ScootR. The result type of non-UDF operators is
defined by their semantics. In case of UDF operator, the R function
is executed during the plan generation phase, while the operator
graph is created. We instantiate temporary tuples with field values
based on the runtime type inference of the previous operator, call
the function with them, and thereby determine the result type of
the UDF. In case the UDF does not return results for the temporary
tuple used (e.g., it requires a specific number range), ScootR throws
an exception during compilation and requests an explicit type an-
notation. Thus, ScootR keeps track of the current tuple type until
the operator graph is built.

Java to R

R UDF

R to Java

Flink Operatord
a

ta

R UDF

Flink Operator

F
li
n
k
  

A
D

T
sd
a

ta

optimize 

data access

1

2

Figure 6: Schema of a Flink operator calling an R UDF with-
out (left) and with (right) applied optimizations.

Data Access and Exchange. An important aspect in ScootR is the
efficient access to Java data types in R and vice versa. As we op-
erate in the context of dataflow engines, the R UDFs are on the
hot path and get called for each processed data item in the worst
case, e.g., for the map operator. Thus, efficient data exchange and
access between Java and R is crucial. Figure 6 depicts the data flow
during the execution of a Flink operator. The unoptimized data flow
is shown on the left side of Figure 6. Even though ScootR avoids
data exchange due to the shared runtime, it still has to apply type
conversion and introduces materialization points. On the right side,
the optimized version is depicted. Due to the direct access of Java
types in R (and vice versa), as well as access to Flink’s abstract data
types, we avoid type conversion and materialization. In the next
paragraphs, we show how ScootR achieves these optimizations.

1 — In the context of dataframes, efficient access to the processed
elements means fast access to Flink Tuples (representing rows) and
their fields (representing columns). ScootR distinguishes operators
by their expected input – single or multiple tuples per function call:

(i ) The first case are tuple-at-a-time operators, e.g., map or flat-
map. A naive solution is to determine the columns that are accessed
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Table 1: Examples from the ScootR API.

Function Example Description

flink.select flink.select(df, x = COL1, COL2) Project (and rename) the specified set of columns

← df$new ← (COL1 / COL2) * 0.1 Create (Override) column by applying the UDF on each row

flink.apply flink.apply(df, func) Apply func on each row.
flink.apply(df, key = COL1, func) Group by COL1 column and apply func on each group

flink.groupBy max ← flink.groupBy(df, ’COL1’) Group by COL1 for further aggregation, e.g., max

flink.collect fastr_df ← flink.collect(df) Collect a distributed dataframe df on the driver

in the UDF and to expose them as explicit function arguments. This
is achieved, by wrapping the UDF in a R function which expects
the column values required by the UDF as arguments. For example,
the← apply function from Listing 1, Line 11, expecting one argu-
ment for the values of the miles column, is wrapped into following
function: function(miles) miles * 1.6.

In general, multiple columns are accessed in the UDF and their
values have to be extracted in a loop before being passed to the R
function in the naive solution. To avoid this scenario and be able to
call the function directly with the tuple instance, ScootR makes use
of the Truffle language interoperability features, a message-based
approach to gain access to foreign objects internals, called dynamic
access [11]. It enables a guest language (e.g., R) to efficiently access
objects from another language (e.g., Java) running in the same
GraalVM instance. ScootR integrates the tuple type in the Truffle
framework and thus, directly passes the tuples as arguments to the
function to access fields as they would be dataframe columns.

(ii ) The second case are operators that expect multiple tuples per
function call, e.g., a mapPartitions operator. Flink provides access
to all tuples expected by the function (e.g., all tuples contained in a
partition) by an iterator. Using the aforementioned interoperability
features, we provide direct access to the iterator in the R UDF. As
the iterator itself returns tuples, ScootR can access them directly
as described before. Without this optimization, ScootR would need
to materialize all tuples contained in the partition before passing
them, e.g., as an RList to the UDF. Therefore, it would introduce a
pipeline barrier in the normally streaming execution, as all tuples
have to be materialized before the R function can be called.

2 — Likewise, an R UDF returns results that are passed back to
the calling Flink operator for further processing in the operator
pipeline. Therefore, ScootR also needs an efficient mechanism to
access results of an R UDF in Flink. The R return type has to be
handled differently depending on the higher-order operator that
calls the R function:

(i ) The simplest type is a map operator that returns exactly one
value per input tuple. ScootR guarantees this case by the semantics
of the← apply function (Table 1). In this case, a new tuple is created
after the R function execution, either appending a new column or
replacing an existing one with the new values.

(ii ) In the general apply function (Table 1), the UDF returns a
vector of length N . Since fastR provides wrappers for all primitive
type lists in R, the result vector can be accessed with the same

methods as the Java Vector class2. While this grants access to the
values in Java, we still have to convert the R vector to a TupleN for
further processing in Flink. To avoid this type conversion, ScootR
provides built-in functions (see Section 4.2 A ) to create Flink tu-
ples directly in the R function. Thus, instead of returning an R
vector, the function is rewritten to create and return instances of
the corresponding tuple type directly using the built-in functions.
Figure 7 shows the execution time of a general apply function that
does nothing except returning (a) a small and (b) a large tuple.
We can observe that the function execution (purple bars) itself is
about 15 percent faster when we create the Flink tuples directly
in the R function. In addition, when an R list is returned, it still
has to be converted into the equivalent tuple class, indicated by
the pink bars in Figure 7. Overall, ScootR achieves 1.75× better
performance by instantiating the tuples directly in the R UDF in
this micro-benchmark.
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Figure 7: Creating a Flink Tuple in the R UDF vs. Creating
the Tuple from an R List in Java. Purple depicts the time
spent in the function call, pink the time for type conversion.

(iii ) Finally, ScootR needs to handle the case where higher-order
functions return multiple values per input tuple, e.g., the flatmap
operator. To this end, Flink provides an additional Collector class
as argument, which collects the results of the function. Again, we
provide direct access to the Collector from R. This avoids returning
a list containing the results of the UDF, which would require an ad-
ditional pass over the results to insert the values into the Collector
in Java. Figure 8 shows the time to execute a flatmap operator re-
turning a List of Lists (the inner lists representing the tuples), a
List of tuples, and finally directly using the Collector class in the R
function. The function just returns (a) 3 tuples with arity 2 and (b)
20 tuples with arity 19 for each input tuple. We can observe that
ScootR achieves 1.3× speedup when using the Collector directly.
Interestingly, the function call takes almost twice as long using
the Collector. This is due to increased complexity, as the collector

2R lists are backed by an Java array and provide constant time random access.
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stores the output using Flink’s internal buffer management in the
function call. Returning a list, the tuples have to be inserted after
the function execution as depicted by the pink bars.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

time [ms×103]

List[List]

List[Tuple]

Collector

(a) Tuple2, 1:3

0 5 10 15 20 25 30

time [ms×103]

List[List]

List[Tuple]

Collector

(b) Tuple19, 1:20

Figure 8: Flatmap using Flink’s Collector directly, returning
an RList of RList elements, and returning a RList of Tuples.
Purple depicts the time spent in the function call, pink the
time for type conversion.

Illustrative Rewrite for the Running Example. Figure 9 shows
the succession of R functions used and their corresponding Flink op-
erators. Only the apply function includes user-defined code which
has to be called and executed at runtime. All other functions can
be replaced with the corresponding Flink operators during the
plan generation phase. In the following, we describe the necessary
modifications to the← apply function before job execution.

Since the UDF is executed on every row in the example dataframe,
a Flink map operator is generated. To determine the result type
of the function, we execute it during the plan generation phase
with a Tuple2in : (lonд, lonд) instantiated with random instances
(1.1, 0.3), based on the field types defined by the previous operator.
The operator then calls the R function during the execution of each
input tuple and has the following signature:

Tuple2in : (lonд, lonд) 7→ Tuple3out : (lonд, lonд, lonд)

The additional field in the return value results from the extension
of the dataframe with the km column (Line 11 in Listing 1). Further-
more, given the mapping from column names to tuple indexes, the
access to the miles column is replaced with a tuple index access3:

function(tuple) tuple[[2]] * 1.6

4.3 Plan Execution Phase
After ScootR successfully generated the operator graph for the
pipeline, it forwards it to the JobManager, which schedules its exe-
cution. During this process, the JobManager also sends the serialized
R code to the responsible TaskManagers. The ScootR operator im-
plementations evaluate the R UDFs upon their first use. Since a
TaskManager can execute the same function simultaneously in its
available task slots, ScootR caches the code and shares it between
executions. Initially, the UDF is interpreted, however, as it gets hot,
the JIT compiler will produce an efficient compiled version of it,
which is executed for every subsequent call. The result of the job
can either be directed to an output file or the user can collect it on
the driver node via the flink.collect operator. If it is collected,
ScootR passes the result as a dataframe to fastR, which can then be
used for further local processing.

3The tuple fields indexes are 1 based in R.
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read project map

R script

Flink Execution

data
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Figure 9: Mapping from an R script (Listing 1) to the corre-
sponding Flink execution plan.

4.4 Implementation
We implemented ScootR in Flink without any changes to its existing
code base. Thus, it benefits from new features introduced by new
versions of Flink. All functions of ScootR’s API are represented
via RBuiltin nodes. In addition, all internal data structures that
are accessible inside R UDFs are provided as TruffleObjects. This
enables, e.g., direct access to the Java tuples and their fields in R,
without data exchange, as described in Section 4.2.
Library Support. R packages are used very frequently. Therefore,
it is important to support R packages. Many of the packages call
C implementations internally to achieve good performance. fastR
implements the C API of GNU-R and therefore can execute such
packages and external libraries seamlessly. While this works for
most of the popular packages, some rely on GNU-R internals, which
complicates the integration in fastR. fastR is continuously improved
and more packages are added, which are then directly available in
ScootR too.

5 EVALUATION
In this section, we compare ScootR against the previously presented
approaches by evaluating both micro-benchmarks and operator
pipelines using real-world datasets.

5.1 Experimental Setup
Cluster Setup. We conducted our experiments on a four-node
cluster. Each node features an Intel E5530 processor (2.4GHz, 8
cores), and 24GB main memory. The nodes are connected via a
1GBit Ethernet connection. We used Spark v2.2.0, Flink v1.3.1, and
Hadoop v2.7.1 for our distributed experiments. Furthermore, we use
GNU-R v3.2.3 [21], the latest versions of fastR4 and Graal5 available
while conducting the experiments, and JVMCI v0.33, based on the
JDK v1.8.0_141. We execute each experiment 7 times and report the
median time with error bars.
Datasets.We used two real-world datasets for our evaluation. The
first dataset is the Airline On-Time Performance Dataset6, which is
also used to evaluate SparkR [27] and dplyr [29]. It contains JSON-
formatted arrival data for flights in the USA with detailed informa-
tion such as departure time, origin and destination, etc. We cleaned
the data and reduced it to 19 columns per record (many of the
original dataset columns contain no entries for 99.9% of the rows).
As parsing JSON infers a high overhead in dataflow systems [16],

4https://github.com/graalvm/fastr, commit: 72b868a
5https://github.com/graalvm/graal, commit: 7da41b3
6https://www.transtats.bts.gov/Tables.asp?DB_ID=120
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we converted the dataset to the CSV format. The resulting file size,
containing data from the years 2005 – 2016, is 9.5GB. The second
dataset is the Reddit Comments7 dataset, which consists of line-
separated JSON entries. Each entry represents a comment on the
news aggregator website www.reddit.com. In addition to the actual
text of the comment, it contains further meta-information, such
as the author name, up and down votes, category, etc. Similarly to
the first dataset, we cleaned and converted the data to CSV in a
preprocessing step. The raw data is provided as separate files for
each month and we use the first 4 consecutive months starting from
2016. Each month amounts to roughly 33GB of raw data, resulting
in about 14GB per month for the CSV used as input.
Benchmark Overview. We evaluated our approach for single and
multi-node execution, comparing against: native GNU-R, fastR, and
SparkR. First, we conducted a set of micro-benchmarks for (i) oper-
ators without user-defined code (e.g., select), and (ii) operators
with user-defined code (e.g., map and flatmap). Here, we also com-
pare the execution of SparkR with source-to-source compilation
against the IPC approach. The goal of this set of micro-benchmarks
is to highlight the benefits deriving from the efficient execution of
UDFs in ScootR.

Second, in order to show the relevant performance impact of
efficient UDFs in the context of real-world applications, we evalu-
ated benchmarks consisting of operator pipelines. To this end, we
chose to evaluate an extract-transform-load (ETL) or preprocessing
pipeline on the airline dataset proposed by Oscar D. Lara et al.8 [32],
a MapReduce-style aggregation pipeline, and a mixed pipeline with
a multi-threaded ETL phase and successive, single-threaded model
training in R.

5.2 Micro-benchmarks
In this section, we present micro-benchmarks for several opera-
tors in isolation. For non-UDF operators, both ScootR and SparkR
achieve almost native performance compared to the native data-
flow API. This is expected, as the operators can be translated before
execution. Compared to standalone GNU-R and fastR, SparkR and
ScootR are up to 20× faster on a single node (using 8 cores) and up
to 46× for distributed execution (4 nodes × 8 cores).

The micro-benchmarks for operators with user-defined code
show that ScootR and SparkR with STS translation achieve almost
equal performance compared to their respective native API. It is im-
portant to note that ScootR achieves this even though the R UDF is
executed. Benchmarks using IPC in SparkR, and thereby executing
the R UDF, reveal its performance drawbacks as it fails to execute
on the airline dataset within the set experiment timeout of 4 hours.
Experiments on 10% of the original data show up to an magnitude
slower execution times for SparkR with IPC compared to ScootR.
The benchmarks also show the importance of direct access to inter-
nal data-structures to avoid additional cost due to materialization
barriers. The benchmarks for 1:N output operators, e.g., flatmap,
verify our assumptions that direct access to the Flink collector class
in R yields comparable performance to native execution. In the
following paragraphs, we describe each benchmark in detail.

7http://files.pushshift.io/reddit/comments/
8The pipeline reports the maximum arrival delay per destination for flights from NY.

Non-UDF Operator. In this first micro-benchmark, we project
three columns from the airline dataset and write the result to a file.
Figure 10 depicts the results for this benchmark for (a) a single node
and (b) execution on the four nodes cluster. SparkR (STS) reflects
the result for SparkR with source-to-source translation.
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Figure 10: Micro-benchmark for a single select function.

As expected, SparkR (STS) and ScootR achieve almost native
performance as the R select function is mapped to the project
operator of the native APIs of the benchmarked systems. SparkR
(STS) is about 1.15× slower than native Spark and ScootR about
1.13× slower than Flink. In contrast to GNU-R and fastR, which
materialize the input data in memory before applying the select
function, Flink and Spark stream the input data directly to the
project operator. This results in a speedup of about 3× for both
SparkR and ScootR compared to GNU-R for single-threaded exe-
cution. With increasing degree-of-parallelism (DOP), the speedup
increases further to about 20× on a single node with DOP 8 (Fig-
ure 10 (a)) and up to 46× for the fully distributed execution on 32
cores (Figure 10 (b)). This result is expected, as the project operator
is embarrassingly parallel. Interestingly, fastR is by a factor of 1.06×
slower than GNU-R. We attribute this behavior to a more efficient
implementation of the read.csv function in GNU-R.
UDF Operator with 1:1 Output. In this micro-benchmark, we
compare the execution of an← apply function similar to the one in
the running example (Line 11 in Listing 1). It multiplies the distance
column by a constant factor and appends the result as new column
to the dataframe. The function is executed in ScootR via a map
operator, as detailed in Section 4.2. SparkR (STS) uses source-to-
source translation.

Figure 11 (a) depicts the result of the benchmark on a single node.
Both SparkR (STS) and ScootR achieve almost the performance of
their respective implementations in the native APIs. ScootR is at
most 1.15× slower than Flink, while SparkR (STS) is about 1.07×
slower respectively. These results are expected for SparkR (STS), as
the UDF is translated to the native API. For ScootR, these results
validate our expectations that we can achieve comparable perfor-
mance to the native API even though the R function is executed
in a map operator. GNU-R is outperformed by fastR (1.5×), and by
both SparkR (STS) (up to 15×) and ScootR (up to 25×). Again, this is
mainly due to the streaming facilities in Spark and Flink. In contrast
to the previous benchmark, fastR is able to outperform GNU-R due
to the more efficient execution of the apply function.
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Figure 11: Micro-benchmark for the apply function from
Listing 1, Line 11.
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Figure 12: Single node micro-benchmark for the apply
method fromListing 1, Line 11with a 10% sample of the orig-
inal data. The y-axis is in log scale.

Figure 11 (b) depicts the same experiment, but now we distribute
the computation on up to 4 nodes. Again, ScootR (1.1× for a DOP
of 32) and SparkR (STS) (around 1.08× for a DOP of 32) introduce
only a small overhead compared to their respective native APIs.

To determine the cost of IPC, we implemented the UDF using the
dapply function of SparkR, which internally executes the UDF in a
mapPartitions operator. For a fair comparison, we implemented
the UDF using the general apply in ScootR, shown as ScootR (MP),
which internally also uses a mapPartitions operator. SparkR (IPC)
failed to execute the function within the set experiment timeout
of 4 hours for DOPs up to 32. In comparison, we observe that
ScootR (MP) is competitive (around 1.1× overhead) to the← apply
function, due to direct access to Flink’s data structures.

To obtain results for SparkR (IPC), we sampled the airline dataset
from 9.5GB down to roughly 100MB. Figure 12 shows the results
for single node execution with increasing DOP using the down-
sampled airline dataset. For single-thread execution, SparkR (IPC)
takes ∼50 minutes to complete the task compared to 30 seconds for
Spark (STS). Using the 8 available cores, SparkR (IPC) executes in
∼7 minutes. Both versions of ScootR are about 1.8× slower than
native Flink, while SparkR (IPC) is about 170× slower than na-
tive Spark. This performance overhead is due to the drawbacks of
IPC discussed in Section 3.1, namely serialization and data trans-
fer. In addition, the dapply function in SparkR (IPC) uses Spark’s
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Figure 13: Cluster micro-benchmark for calculating the N-
grams in the body column of the Reddit comments dataset.
The data is scaled according to the number of used nodes.

mapPartitions operator to execute the UDF. The operator pro-
vides all tuples contained in the partition via an iterator to the UDF.
As SparkR cannot access the iterator, all tuples in the iterator have
to be materialized and are provided as dataframe to the UDF. This
introduces a materialization barrier in the streaming execution and
causes additional performance overhead. ScootR (MP) also uses the
mapPartitions operator of Flink, but has access to the iterator via
the language interoperability features described in Section 4.2 B .
Thus, ScootR does not have to materialize and can directly access
the tuples in a streaming fashion via the iterator in the R UDF.
UDF Operator with 1:N Output. The next micro-benchmark exe-
cutes a more complex UDF, where we generate all 2-grams within
the body column of the Reddit comments dataset. Compared to the
previous benchmarks, the UDF is compute-heavy and second, the
function is called within a flatmap operator. As the body has N 2-
grams per comment, the function may emit 0, 1, ...,N elements per
input tuple. The ScootR function used in the experiment is detailed
in Listing 6 in the Appendix. As described in Section 4.2, ScootR
has direct access to the Flink Collector class, which collects the
output directly in R UDF.

Figure 13 depicts the result for the benchmark. The data size
is increased alongside with the number of nodes and we use 1,
2, and 4 months of data. We observe that ScootR is only about a
factor of 1.15× slower than Flink. As we can access the collector
and create the Flink tuples directly inside the R function, we avoid
the materialization and type conversion of the returned result. We
report the execution times without access to the collector as ScootR
(List) to show the benefit of direct access to Flink’s data structures.
As discussed in Section 4.2 B , the necessary additional pass over
the List and the type conversion results in 1.2× slower execution
compared to ScootR with direct access. SparkR with IPC failed to
execute within the set experiment timeout of 4 hours. The UDF
cannot be expressed in SparkR with STS translation.

5.3 Results for Operator Pipelines
In this section, we provide benchmarks for operator pipelines. The
first benchmark shows a ETL pipeline composed of several opera-
tors. It validates the results from the previous micro-benchmarks
and shows near native performance for ScootR and SparkR com-
pared to their respective system’s native APIs. Both outperform
GNU-R and fastR by up to 2.5× for single-threaded and up to 20×
for distributed execution. Again, while SparkR uses STS translation,
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ScootR achieves this while executing the UDFs. The second bench-
mark shows a classical MapReduce pipeline. ScootR and SparkR
execute in near native performance. The third benchmarks shows
a mixed pipeline combining preprocessing and model training. It
shows the benefits of the seamless integration of ScootR, as we
collect the distributed data for further local processing in the same
R script (depicted in Listing 5 in the Appendix). Thereby, we can
achieve up to 12× performance improvement compared to execut-
ing the complete pipeline in fastR as the majority of the time is
spent for preprocessing. In the following paragraphs, we describe
each benchmark in detail.
ETL Pipeline. In this experiment, we execute the pipeline described
by Oscar D. Lara et al. [32]. The ScootR code for the pipeline is
depicted in Listing 3 in the Appendix. The goal of this pipeline is
categorizing the delay of flights by two carriers in the airline dataset.
The operators used in the pipeline are embarrassingly parallel.
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Figure 14: Benchmark for the ETL pipeline shown in the Ap-
pendix, Listing 3.

Figure 14 depicts the results for the execution on (a) a single
node and (b) the four nodes cluster. SparkR (STS) is around 1.2×
slower than Spark and ScootR is up to 1.4× slower than Flink in
the worst case. Both outperform GNU-R and fastR by 2.5× for
single-threaded and up to 20× for distributed execution. GNU-R is
only 1.05× slower than fastR. This is mostly due to high selectivity
of the filter operator at the beginning of the pipeline, which
significantly reduces the amount of data. Thus, the data that has to
be processed by the two successive UDFs is reduced significantly.
Map-Reduce Pipeline. So far, the benchmarks did not involve ag-
gregations. Therefore, we designed a MapReduce-style aggregation
pipeline to determine the largest arrival delay per destination for
flights that started from New York. The ScootR code for the pipeline
is depicted in Listing 4 in the Appendix.

Figure 15 (a) and (b) depict the results for the benchmark on a
single node and the four nodes cluster. ScootR is up to 1.3× slower
than Flink and SparkR (STS) up to 1.15× than Spark. While both
translate the aggregation function to a native API call, ScootR
directly executes the R predicate for the filter function. Even
though the data size is reduced significantly by the filter operation,
the aggregation, due to the necessary shuffle step, together with
the initial reading of the data is still responsible for the majority of
the execution time.
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Figure 15: Benchmark for theMapReduce pipeline shown in
the Appendix, Listing 4.
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Figure 16: Benchmark for the mixed pipeline shown in the
Appendix, Listing 5. The fraction of time spent for the glm
function is indicated in dark blue.

Mixed Pipeline. In this experiment we evaluate a mixed pipeline.
We use the dataflow system to perform the initial data preprocessing
before it is gathered on the driver node for further analysis locally
as in-memory dataframe. Specifically, we train a generalized linear
model with the glm function provided in R and show the model
description with the summarize function. The ScootR code for the
pipeline is depicted in Listing 5 in the Appendix.

Figure 16 depicts the results for the described pipeline. We can
observe that most of the execution time is spent in the ETL pipeline,
which reduces the initial Airline dataset from 9.5GB to approxi-
mately 90MB. While all of the systems spend the majority of the
time in the preprocessing phase, we can decrease the duration sig-
nificantly by using ScootR, even in the single-threaded execution
case. Compared to GNU-R, ScootR is about 3.6× faster for single-
threaded execution, and 12.3× faster when using 8 cores. The per-
formance drawbacks of fastR and GNU-R result from the initial
dataset reading and materialization costs.

5.4 Discussion
The main goal of our evaluation was to highlight our two main
contributions: (i ) The integration of an R language API based on a
common runtime to avoid data exchange, while supporting a rich set
of language features. (ii ) The necessity of our applied optimizations
to share data structures between the guest- and the host language
to provide fast data access and avoid type conversion.

To this end, we conducted benchmarks comparing ScootR, SparkR,
fastR, and GNU-R for both single operators and operator pipelines
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for single node and cluster configurations. The non-UDF micro-
benchmark functions clearly show that ScootR and SparkR provide
reliable mapping of R functions to their respective native API calls,
with below 1.2× overhead. For functions calling R UDFs, ScootR
can compete with SparkR’s source-to-source translation approach,
even though ScootR executes the R function in the fastR language
runtime. In contrast, when SparkR has to fall back to inter-process
communication, its performance degrades by an order of magnitude
compared to ScootR. The benchmarks for 1:N operators show that
direct access to data structures is necessary to avoid data mate-
rialization and therefore achieve comparable performance to the
native execution. The benchmarks for operator pipelines, validate
the assumptions behind the micro-benchmark experiments, and
show very small performance overheads of up to 1.2× for SparkR
(STS) and 1.4× for ScootR. Both SparkR and ScootR outperform
GNU-R and fastR, even for single-threaded execution on a single
node.

6 RELATEDWORK
In this Section, we discuss related work on DSL language compilers,
parallelization based on existing dataflow systems, and paralleliza-
tion packages for the R programming language itself.
Compiler-based Approaches.Weld [20] offers a functional inter-
mediate representation based on nested parallel loops and builders
that specify what should be computed. Libraries and functions rep-
resent their operations using this IR to avoid materializing/copying
of intermediate results, which is normally required when data is
passed from one library to another. Weld applies optimizations
such as loop tiling and vectorization, and generates code for di-
verse processors including CPUs and GPUs. Tupleware [8] is a
distributed analytics system that focuses on the efficient execution
of UDF-centric workflows. It provides an IR based on the LLVM
compiler framework [15], which can be targeted by any language
that emits LLVM code. Tupleware applies high-level optimizations,
such as predicate pushdown or join reordering, as well as low-level
optimizations, such as reordering of the program structure and
vectorization. Pydron [18] parallelizes sequential Python code to
execute on multi-core, cloud, and cluster infrastructures. It is based
on two Python decorators, one to mark functions to parallelize and
another one to mark side-effect free functions. Functions annotated
for parallelization are translated to an intermediate representation.
Pydron applies several optimizations based on this IR, including
control flow and scheduling decisions for it’s parallelization.

All of the mentioned systems provide a familiar interface to the
programmer, while they achieve efficient execution by carefully
applied optimizations or parallelized execution. ScootR shares this
goal, but incorporates R into an existing dataflow system without
changing it. It achieves this by relying on the GraalVM, a JVM-
compatible language runtime that enables multi-language execu-
tion. The approach is not restricted by an IR specially designed
for the systems optimization goals. Thus, ScootR profits directly
from the ongoing efforts to advance the performance of Graal, and
can be easily extended with support for new languages and diverse
processors, e.g., GPUs [10].
Parallelism based on Dataflow engines. Hadoop’s Streaming
utility is used as a common basis for IPC in several frameworks.

It allows to specify executables and scripts that are called in the
map and reduce functions. Here, scripts receive data via stdin while
results are emitted via stdout. RHadoop is a collection of tools to
work with the Hadoop ecosystem within R. Likewise, R Revolu-
tion, now called Microsoft R Open and Server (commercial version),
provides the option to run R on top of Hadoop. All the presented
systems inherit the drawbacks of IPC, namely communication over-
head, (de)serialization and data-processing pipeline disruption, as
discussed in Section 3.1.

RHIPE [12] is also based on Hadoop and uses IPC while exchang-
ing data via Google’s ProtocolBuffers, a language- and platform-
neutral mechanism for serializing structured data. RHive allows
for easy use of HSql, the query language of Hive [25], in R. In ad-
dition, UDFs and user-defined aggregate functions (UDFAs) can
be specified in R, which are executed via IPC with an external R
process. RHIPE has a more efficient data exchange format compared
to Hadoop Streaming, but it still inherits the drawbacks of IPC, as
the executables run in separated processes.

Ricardo [9] was developed by IBM and executes Jaql [5] queries
on top of Hadoop. Beside Jaql functions that do not involve user-
defined code, users can specify R UDFs, which are executed in an
external R process. Thus, it provides a hybrid approach as discussed
in Section 3.3. Ricardo inherits the drawbacks from IPC when exe-
cuting user-defined functions, but it provides so-called trading that
allows for mixed R and Hadoop execution. Preprocessing can be
executed in Hadoop before the results are fetched in R and can be
used as input to the manifold libraries in R. ScootR is influenced by
the trading concept, but does not have to fall back to IPC in case of
user-defined functions.

Big R [32] is based on IBM BigInsights and uses a restricted,
overloaded set of R operations and transformations specified in Jaql
that can be executed on top of Hadoop. The results are returned as
a dataframe, which is used for further processing in R. In contrast
to Big R, ScootR is not restricted to a limited set of operators and
executes arbitrary R functions.

SparkR [27] provides a dataframe-centric programming abstrac-
tion in R. As described in Section 3, SparkR avoids IPC by applying
source-to-source translation for a subset of operations and library
calls. In case the source-to-source compiler cannot translate the R
program, SparkR falls back to use an external R process using inter-
process communication. This fall back causes large performance
penalties. ScootR builds upon the ideas of SparkR for non-UDF
operators, while improving execution time for arbitrary UDFs.

Spark also provides a programming abstraction for Python, called
PySpark. While the underlying concepts are the same as in SparkR,
there is an ongoing effort to integrate Apache Arrow [1]. Apache
Arrow’s goal is to provide a common in-memory data representa-
tion that provides efficient access and APIs in Python, C, and Java.
Therefore, it improves data exchange between Spark and Python,
while also providing more efficient access for the popular Python
pandas dataframes. While Arrow looks promising, data needs to be
serialized to and de-serialized from the binary format of Arrow.

SystemML [6] is a system for the efficient execution of linear
algebra programs on Apache Spark written in a DSL based on R’s
matrix abstraction. While its focus is clearly on linear algebra, it
provides basic facilities to transform input data with a restricted
set of operations and predefined functions. As SystemML focus is
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clearly on linear algebra, it is orthogonal to our goal of providing
efficient execution of UDF-centric workflows.

SciDB [7] is an array database that focuses on efficient execution
of array manipulation and linear algebra. SciDB provides an R
abstraction in addition to its native API. As SystemML, its focus is
not UDF support and therefore orthogonal to our goals.
R Parallelization Packages. There are several explicit paralleliza-
tion packages, such as Snow [26] and Snowfall [14], with parallel
versions of the common apply* methods. In addition, there are
packages based on parallelized versions of the foreach construct
[17, 28] for different back-ends such as Socket, MPI, PVM, and Net-
WorkSpaces. These packages focus on parallelizing computation
heavy, splittable tasks, but not on large amounts of data. In conse-
quence, they offer no facilities to read distributed files and reflect
the scatter/gather model from MPI. In contrast, ScootR focuses on
parallelizing computations on large amounts of data.

7 CONCLUSION
In this paper, we presented ScootR, a novel approach to execute R
user-defined functions in dataflow systems with minimal overhead.
Existing state-of-the-art systems, such as SparkR, use source-to-
source translation to the systems’ native API to achieve near native
performance for a restricted subset of user-defined functions. When
running arbitrary UDFs, their performance may degrade by a factor
of up to 170×, as they have to fall back to inter-process commu-
nication. This overhead is due to the necessary data serialization
and data transfer imposed by IPC. ScootR avoids such overheads by
tightly integrating the dataflow engine with the R language runtime,
using the Truffle framework and the Graal compiler. By making
Flink abstract data types accessible to the R user-defined functions,
ScootR avoids type conversion as well as intermediate results du-
plications and copies. Our experimental study shows that ScootR
achieves comparable performance to systems based on source-to-
source translation, even though ScootR executes the UDF in an R
language runtime. When SparkR has to fall back to inter-process
communication, ScootR has up to an order of magnitude higher
performance.
Future Work. The techniques and approaches presented so far
are general and are applicable to other dataflow systems as well.
With possibly few exceptions, most of the existing systems provide
a relational-style API based on typed, fixed-length tuples. For in-
stance, one could provide a similar abstraction implemented on top
of the Spark dataset and/or dataframe abstraction, following the ap-
proach outlined in this paper. Another interesting extension would
be the integration of other Truffle-based (dynamic) languages such
as JavaScript or Python. To this end, a small language agnostic and
data-processing centric Truffle API could be defined, which could
be used as common abstraction by different language runtimes.

APPENDIX

1 df <- flink.readdf(...)

2 df <- flink.filter(df, df$cancelled == 0 &&

3 df$dep_delay >= 10 && df$carrier %in% c("AA", "HA"))

4 df <- flink.select(df,

5 carrier, origin, dest, dep_delay, arr_delay)

6 df$avgDelay <- (df$arr_delay + df$dep_delay) / 2

7

8 df$delay <-

9 if (df$avgDelay > 30) "High"

10 else if (df$avgDelay < 20) "Low"

11 else "Medium"

12

13 df$head(5)

Listing 3: Data transformation pipeline proposed in [32].

1 df <- flink.readdf(...)

2 df <- flink.filter(df, df$origin == 'JFK')

3 grp <- flink.groupBy(df, 'dest')

4 max <- grp$max('arr_delay')

5 cat(max$head(5))

Listing 4: Calculating the maximal arrival delay per desti-
nation for flights starting from New York.

1 df <- flink.readdf(...)

2 df <- flink.filter(df, df$cancelled == 0 &&

3 df$dep_delay >= 10 && df$carrier %in% c("AA", "HA"))

4 df <- flink.select(df,

5 carrier, dep_delay, arr_delay, distance)

6 fastR_df <- flink.collect(df)

7

8 model <- glm(

9 arr_delay ~ dep_delay + distance,

10 data = fastR_df,

11 family = "gaussian")

12

13 summary(model)

Listing 5: A mixed pipeline. The ETL part is executed on
Flink, before the data is collected on the driver to train a
generalized linear model in fastR.

1 df <- flink.readdf(...)

2 ngrams <- function(tpl, collector) {

3 splits <- strsplit(tpl$body, " ")[[1]]

4 numSplits <- length(splits)

5

6 srtIdx <- 1

7 endIdx <- 2

8 while (endIdx <= numSplits) {

9 twoGram <- paste(splits[srtIdx:endIdx],

10 collapse = " ")

11 srtIdx <- srtIdx + 1

12 endIdx <- endIdx + 1

13 collector$collect(flink.tuple(twoGram, 1))

14 }

15 }

16

17 df <- flink.apply(df, ngrams)

18 flink.writedf(df, outFile)

19 flink.execute()

Listing 6: Calculating the 2-grams of the body column in
the Reddit comments dataset.
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