
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

From BigBench to TPCx-BB: Standardization of a Big
Data Benchmark

Paul Cao1, Bhaskar Gowda2, Seetha Lakshmi3, Chinmayi Narasimhadevara4, Patrick
Nguyen5, John Poelman6, Meikel Poess7, Tilmann Rabl8,9

1Hewlett Packard Enterprise, 2Intel Corporation, 3Actian Corporation,
4Cisco Systems Inc., 5Microsoft Corporation, 6IBM, 7Oracle Corporation,

8Technische Universität Berlin, 9DFKI GmbH

Abstract. With the increased adoption of Hadoop-based big data systems for the
analysis of large volume and variety of data, an effective and common benchmark
for big data deployments is needed. There have been a number of proposals from
industry and academia to address this challenge. While most either have basic
workloads (e.g. word counting), or port existing benchmarks to big data systems
(e.g.TPC-H or TPC-DS), some are specifically designed for big data challenges.
The most comprehensive proposal among these is the BigBench benchmark, re-
cently standardized by the Transaction Processing Performance Council as
TPCx-BB. In this paper, we discuss the progress made since the original
BigBench proposal to the standardized TPCx-BB. In addition, we will share the
thought process went into creating the specification, challenges in navigating the
uncharted territories of a complex benchmark for a fast moving technology do-
main, and analyze the functionality of the benchmark suite on different Hadoop-
and non-Hadoop-based big data engines. We will provide insights on the first
official result of TPCx-BB and finally discuss, in brief, other relevant and fast
growing big data analytic use cases to be addressed in future big data bench-
marks.

1 Introduction

Organizations are increasingly beginning to value big data analytics for improving busi-
ness, reducing the risks, and solving business challenges. At the same time, they are
faced with a number of big data technology and solution options such as: MapReduce,
Spark, NoSQL databases, SQL on Hadoop databases, and Flink. Choosing the right
technology (or set of technologies) is critical for their success. A standardized bench-
mark that can be used to evaluate the performance of different big data technologies
can greatly help organizations choose the right solution.
Influenced by Moore’s law, the rapidly evolving computing and storage landscape en-
ables companies to analyze their data for half the cost every two years. Many companies
hope to improve their business model by collecting increasing amounts of data and
employing techniques related to big data. Although traditional database systems pro-
vide means to store large amounts of data, these have to generally need be in a struc-
tured format. In recent years, a large ecosystem of big data tools has evolved, which is

targeted at analyzing the growing amounts of data, structured, semi-structured, or un-
structured.
While database systems are well established and their performance is understood by
companies, there is no easy methodology to compare, the plethora of big data systems
with their many interfaces, APIs, and query languages. In certain situations a scalable
big data system can be outperformed by a laptop for real problem sizes [1], emphasizing
the need to improve efficiency of scalable big data systems.
Trying to keep up with this rapidly moving trend, customers have the difficult task on
their hands to compare cross-platform solutions in order to select the right hardware
and software for their big data needs. They rely on industry standard benchmarks to
educate, inform and guide making these decisions. An absence of such performance
analysis tools in form of standardized benchmarks has magnified customer difficulties,
thus motivating the industry to take necessary actions to fill the void.
BigBench [2] was proposed to fill this gap, it set in motion efforts to create an end to
end benchmark for big data analytics systems. While it comes with a concrete default
implementation, the rules are very flexible regarding the type of systems this work can
be run on and how the workloads can be implemented.
Thanks to member companies in the benchmark sub-committee under Transaction Pro-
cessing Council (TPC), who contributed significant effort in drafting the specification
and provide a readily usable benchmark kit, TPCx-BB progressed from being a scien-
tific proposal [2] to an industry standard big data analytics benchmark in a span of two
and half years.
In this paper, we describe the process towards a standardized benchmark and show how
this process worked for BigBench. In particular, we have the following contributions:

• We give a detailed update of the benchmark and the changes that we required for the
standardization.

• We present the first official benchmark submission and give an analysis on the re-
sults.

• We give an overview of existing BigBench implementations and compare them
based on completeness.

The rest of the paper is structured as follows. In the next section, we give a brief over-
view of different big data benchmarking proposals. In Section 3, we present TPCx-BB
and in Section 4, we describe its standardization process. Section 5 presents TPCx-BB
experiments using different big data frameworks. Section 6 gives an outlook on future
big data benchmarks and workloads. Section 7 concludes the paper.

2 Related Work

While several benchmarks for big data systems have been proposed, and discussed,
most of them are either simplistic (e.g., limited to sorting or counting) or collections of
simple use cases rather than end-to-end, application-level benchmarks. While these
component benchmarks are good to test individual parts of a big data system, they can-

not provide a holistic view of the performance of the system under test. And more im-
portantly, none of these benchmarks have been discussed and reviewed under the um-
brella of benchmark standardization organizations.
The Transaction Processing Performance Council1 (TPC) understood this need and
worked on several benchmarks for the big data space. As a stop-gap solution for
MapReduce systems, TeraSort was standardized in TPCx-HS [3]. It is capable of indi-
cating the basic I/O and network throughput of a MapReduce deployment but has lim-
ited other information value. Another ongoing work is the revision of TPC-DS [4] for
big data systems. To this end, TPC-DS was adapted in Version 2 to accommodate the
limitations of current “SQL on Hadoop” systems such has Apache Hive, Apache
SparkSQL, and Apache Impala.

3 TPCx-BigBench (TPCx-BB)

Prior workshops on big data benchmarking have concluded that for successful adop-
tion, a benchmark should have some relevance to their use cases, simple to implement,
and easy to execute [5]. The TPC has a track record of publishing valuable and widely
adopted benchmarks for measuring the performance of database systems. TPC-C, TPC-
H, and TPC-DS are noteworthy enterprise benchmarks. Recently the TPC provides an-
other option called as ‘TPC Express’ standard. Express benchmarks provide ready to
run workloads to be executed on specific products. Here workload is bundled in the
form of benchmark kits that are ready to run on a number of pre-selected platforms.
The express benchmark model is very promising as it will lower the entry cost for test
sponsors publishing the benchmark results. However, commitment of resources is re-
quired from the kit sponsor to develop, maintain, support and ratify the kit with in the
sub-committee, for the lifetime of the kit. In designing the benchmark for big data sys-
tems, the TPC applied the lessons distilled from the making of previous successful and
not so successful benchmark specifications. For example, with over 250 audited results
publications and an even a larger number of publications that had used the benchmark
to quantify and demonstrate performance gains from specific HW/SW enhancements,
TPC-H is a widely successful benchmark, even though it has been criticized for not
being representative of real world decision support workloads at high scale factors. In
contrast, there has not been a single audited results published for TPC-DS benchmark,
a richer and more comprehensive decision support benchmark, addressing the deficien-
cies in TPC-H and has been available since 2006. The success and popularity of TPC-
H can be attributed to its relative simplicity (8 tables and 22 queries) and timeliness
when the database industry was making rapid advances in the data warehousing space
and was in need of a relevant benchmark. On the other hand, with TPC-DS, it is a
daunting task for end users to comprehend all the 99 queries, the rules for data refresh,
the complex business problems designed to model and to analyze their performance.
There have been some research publications or competitive analysis using only a subset
(or modified versions) of the TPC-DS queries [6].
Balancing the thoroughness of an enterprise benchmark with the flexibility of an ex-
press benchmark while keeping the benchmark complexity under check, the TPCx-BB

1 Transaction Processing Performance Council – www.tpc.org

http://www.tpc.org/

[7] took a middle of the road approach, in that it limited the number of queries to 30.
To keep the benchmark relevant for the big data analytics use cases, the 30 queries are
distributed to operate on structured, semi-structured, or unstructured data and using
pure HIVE queries, MapReduce, natural language processing, or machine learning li-
braries. Further, to promote easy and quick adoption of the benchmark, a self-contained
kit of the TPCx-BB is made freely available for download from the TPC website2. This
kit can be used to measure the performance of Hadoop based systems including MapRe-
duce, Apache Hive, and Apache Spark Machine Learning Library (MLlib).

3.1 TPCx-BB Overview

TPCx-BB is a big data batch analytics benchmark inspired by TPC-DS. The benchmark
which models aspects of commercial decision support systems for a retail business.
TPC-DS consists a snowflake schema representing three sales channels, (store, web,
catalog, and online. Each with a sales and a returns table) and inventory fact table. The
TPCx-BB uses the store and online distribution channels of TPC-DS and augments it
with semi-structured and unstructured data. The prototype proposal of TPCx-BB was
been discussed in detail [8].

3.2 Benchmark Kit

The kit is the first application-level benchmark suite specifically designed to measure
the performance of big data analytics systems. TPCx-BB measures the performance of
Hadoop-based systems including MapReduce, Apache Hive, and Apache Spark and its
machine learning library MLlib, and is publicly available for download as a self-con-
tained kit via the TPC Web site.
TPCx-BB’s benchmark kit is self-contained to have minimal requirements on external
software dependencies and able to run ‘out of the box’ on the system under test (SUT).
The kit is modular and it supports extensibility to new frameworks (i.e. collection of
Big Data software/hardware components) can be easily added. The kit consists of three
major components as shown in Figure 1, i) the benchmark driver, ii) the workload iii)
the data generator.

Benchmark Driver. Imple-
mented using Java and Bash
scripts, the versatile bench-
mark driver is the heart of the
kit. It orchestrates the work-
flow involved in executing
the benchmark on the SUT.
Support for running multiple
concurrent query streams, au-

2 http://www.tpc.org/tpcx-bb

Figure 1 Benchmark Kit

tomated answer set validation, SUT configuration details, and computing the bench-
mark score are done seamlessly at various phases during the benchmark execution. Ad-
ditionally, the driver exposes hooks for integrating new frameworks as needed. An ad-
vanced mode the benchmark driver provides options to run the complete benchmark or
individual queries for testing and optimization purposes.

Data Generator. The kit includes a parallel data generator based on the Parallel Data
Generation Framework [9] to generate the input data set required for the benchmark. It
is implemented as a Java program that runs as a MapReduce job on the SUT and can
generate hundreds of terabytes of data in a relatively short time.

Workload. The kit is designed to have self-contained modules for each framework
capable of running the TPCx-BB. All necessary binaries, configuration files, and an-
swer set reside inside the framework module. This makes it easy for kit maintenance
and help minimize the impact of adding new frameworks on existing kit modules. Ad-
dressing the complexity of big data frameworks and understanding the need to tune and
optimize the benchmark, various configuration files provide sufficient hooks to tune
the full benchmark or each individual queries by passing run time optimization param-
eters. Spark machine learning library suite is used for those queries invoking machine
learning stages. OpenNLP framework is packaged with the kit for procedural programs
invoking natural language processing.

3.3 Supported Big Data Frameworks

Big Data Ecosystem. Big data has transformed industries and research, spawning new
solutions for addressing a wide range of technical challenges. Big data ecosystem today
offers different end-to-end analytic strategies, scale-up frameworks for operational an-
alytics, and scale-out platforms for advanced analytics.
Scale-up frameworks offer vertically integrated analytical workflows for medium scale
big data datasets, e.g. database, data warehousing and online analytical systems. Scale-
out frameworks on the other hand offer an array of frameworks closely mimicking high
performance computing systems for analytics workflows requiring processing large
complex datasets, e.g., MapReduce, Spark.
There are a number of execution frameworks that are part of the Hadoop ecosystem,
including MapReduce, Spark, Tez, Flink, Storm, and Samza, each with its own
strengths and weaknesses. Initially Hadoop was developed as a special-purpose infra-
structure for big data with MapReduce handling massive scalability across hundreds or
thousands of servers in a cluster. A number of vendors have developed their own dis-
tributions, adding new functionality or improving the code base derived from the
Apache open source community. The most popular of these distributions are Cloudera,
Hortonworks, MapR and IBM BigInsights each with their unique set of offerings.

SQL on Hadoop. One of the three V's used to describe Big Data is "Variety." Despite
the diversity of data stored in Big Data systems, much of it still structured or can be
transformed into a form with enough structure that a broad range of useful queries can

be expressed in SQL. Evidence that SQL is still popular in the big data space can be
seen in the plethora of SQL on Hadoop offerings available today. Some of these SQL
engines for big data were built from the ground up to address big data problems, but
many have a much longer history. For example, traditional database vendors including
Oracle, Teradata and IBM have come out with versions of their SQL engines that run
on Hadoop clusters.

One of the earliest and perhaps the most widely known SQL on Hadoop engines is
Apache Hive. Hive supports a SQL-like language called HiveQL. Hive can execute
queries using MapReduce2, Tez, or Spark. The TPCx-BB kit supports execution of the
benchmark using Hive in all three of these frameworks. Besides Hive, there are several
other SQL engines in open source, such as Apache Drill, Apache Phoenix, SparkSQL,
Cloudera Impala, Teradata Presto, and Pivotal Hawq. Work is being done to have
SparkSQL to fully support TPCx-BB, at the time of writing this paper, SparkSQL with
help of support patches can successfully run all 30 queries. With the release of Spark
2.0, it is expected TPCx-BB should be able run on SparkSQL with no additional
patches.

Non Hadoop Frameworks. TPCx-BB is a good fit for engines designed for processing
or aggregating large amounts of data and that can either natively execute the machine
learning and natural language processing required by BigBench, or can call out to other
engines or frameworks such as Spark.
Since TPCx-BB kit has a pluggable architecture, support for additional SQL engines
can be added over time. In fact, any engine capable of answering the 30 BigBench
queries is a candidate for inclusion in the kit. The query syntax used by a given engine
does not matter, since TPCx-BB allows the 30 use cases to be expressed in any SQL-
like query language or natively written programs. However, since the queries are al-
ready expressible and available in HiveQL, developing implementations for SQL over
Hadoop engines is usually straight forward and less involved than for engines whose
query syntax is not similar to SQL. The benchmark prototype was implemented on two
non-Hadoop frameworks, namely Apache Flink and Metanautix. As a matter of fact,
the first BigBench prototype was actually implemented in Teradata Aster SQLMR.
Apache Flink is a big data streaming dataflow processing engine compatible to the Ha-
doop stack. It is based on the Stratosphere project [10]. Flink combines MapReduce
functionality (e.g., schema flexibility and rich user defined functions) with techniques
from traditional relational database management (e.g., query optimization, custom
memory management, and pipelined processing) and adds dataflow and iterations.
While having a different architecture, it offers similar functionality as Apache Spark
and is, therefore, a candidate for a comparative benchmark implementation.
Quest is a massively distributed query processing engine offering from Metanautix, part
of Microsoft. Quest is fully ISO/ANSI SQL’99 compliant, with a several extensions. It
natively supports document data structures The Quest engine also connects to many
data sources and extends the industry-standard Parquet columnar format with statistics
for faster processing. User-defined functions can be written in LUA, C#, Java, Python,
or SQL. A SQL extension, called Pipelines, is used to group SQL statements for more
complex processing, such as the Pearson correlation, or K-Means (see Appendix A).

Prototype implementations of the benchmark on Flink and Quest, proves TPCx-BB is
capable of working on non-Hadoop frameworks. TPCx-BB are open to new implemen-
tations, where TPCx-BB can be used to compare the performance and scalability of big
data offerings and drive innovation in this space.

TPCx-BB in the cloud. At the high level TPCx-BB does not differentiate running the
benchmark on SUT hosted in a datacenter or in the cloud. In the case of Infrastructure
as a Service (IaaS) offerings from various cloud vendors, the benchmark can run with
right framework and version requirements are met. In the past, the benchmark was run
in Amazon AWS using different Hadoop distributions. However, on Big Data as a Ser-
vice (BDaaS) offerings where the big data framework is an integrated offering, the
benchmark is yet to be tested, examples of such offerings are Amazon Elastic MapRe-
duce and the Databricks Cloud. For a fully valid result, where a test sponsors uses
TPCx-BB on BDaaS for results publication, it should be noted, that the benchmark
mandates adherence to the TPC pricing specification. TPC is working on amending
their pricing specification to include cloud based offerings and facilitate cloud based
TPC benchmark publications.

4 TPC Standardization of Big Bench

Founded in 1988, TPC’s goal is to create, manage and maintain a set of fair and com-
prehensive benchmarks that enable end-users and vendors to objectively evaluate sys-
tem performance under well-defined, consistent and comparable workloads. Currently,
the TPC offers six are enterprise benchmarks (TPC-C and TPC-E for OLTP, TPC-DI
for data integration, TPC-H for data warehouse, TPC-VMS for virtualization and TPC-
DS for big data) and three are express benchmarks (TPCx-V for virtualization, TPCx-
HS and TPCx-BB for big data). The TPC offers in parallel to the above listed bench-
mark specification so called Common Benchmarks, i.e. TPC-Energy and TPC-Pricing.
These benchmark standards guarantee that energy consumption and pricing is measured
in a consistent way across all performance benchmarks.
One of the pillars on which the credibility of TPC benchmarks rests is its strict audit
rules. Audit rules guarantee that each benchmark publication was done according to its
specification. TPCx-BB result is certified either by an independent certified TPC audi-
tor or a TPCx-BB pre-publication board. The method to use is under the discretion of
test sponsor.

4.1 Challenges during the Standardization

Standardizing an industry standard, involves framing set of rule and governance mod-
els. The process of standardization is a complex, cumbersome and time consuming pro-
cess even for Greenfield benchmarks. Furthermore, the complexity was increased in
the case of TPCx-BB where the specification had to consider the existing benchmark
prototype during the process. This entire process posed unique set of challenges for the
TPCx-BB sub-committee. The sub-committee worked diligently to address each of
these issues, reached consensus and finally voted unanimously to launch benchmark.

In this section, we make an attempt to present few selected challenges occurred during
the standardization process, addressing previously uncharted areas in any TPC specifi-
cation.

Execution Rules. The benchmark specification defines a set of narrow rules to ensure
the results are consistent with the standard, auditable by an independent auditor and
close any potential for gaps, which could be exploited to create benchmark specials. In
TPCx-BB run rules requires the benchmark to be run two times for performance and
repeatability of the results. The lower (i.e., worse) result metric of the two runs is re-
ported. Each run must include, Data generation, load test, power test, throughput test
and result check. The benchmark also adds an additional test to validate the query an-
swer set for consistency by running scale factor 1 on the SUT. The results along with
supporting files are audited for correctness by a TPC auditor or the publication board
before publishing the result. The sub-committee spent considerable time in providing
various tuning, and optimization options for test sponsors to experiment and get the
best results possible, without breaking any of the rules. In addition to tuning the frame-
work, the benchmark kit provides run time tuning options at global level where the
tuning parameters are applied for the benchmark as whole and tuning individual queries
by passing explicit parameters for a query. The benchmark specification provides
clearly defined areas with examples in the appendix for such tunings. In an effort to
keep answer sets for consistent for engine validation test, the sub-committee has put in
place a set of rules to accommodate the differences between various query engines.
This helps not only addition of future frameworks, but also fast evolving SQL on Ha-
doop frameworks like Hive. The benchmark also applies TPC-Pricing specification
where necessary, which is mandatory for published results and provides the option to
report the TPC-Energy metric.

Scale Factor. TPCx-BB’s data set scales linearly with the scaling factor (SF). In order
to be realistic across a large bandwidth of data set sizes (1 GB to 1PB), the individual
tables do scale in different ratios. While the large fact tables (sales and returns) scale
linearly, other tables scale logarithmic or are completely static. Although this is realis-
tic, it means that the ratio of sizes of the table changes with scale factors, e.g., for SF 1
the ratio of fact tables to dimension tables is approximately 50:50, while for large SFs
the ratio becomes shifted to the fact tables. While BigBench scales continuously, TPCx-
BB only specifies specific scale factors similar to TPC-H and TPC-DS (1, 3, 10, 30 …).
Minor adjustments were made to the individual table scaling to ensure very close to
linear scaling behavior for the full data set.

Metric. TPCx-BB’s metric underwent a series of changes along with the execution
model until its final version made it to the standard. The initially proposed metric was
specified as the geometric mean of the execution time:

𝐵𝐵𝐵𝐵 = �𝑇𝑇𝐿𝐿 ∗ 𝑇𝑇𝐷𝐷 ∗ 𝑇𝑇𝑃𝑃 ∗ 𝑇𝑇𝐵𝐵
4 (1)

where 𝑇𝑇𝐿𝐿 is the time taken for loading the data into the system, 𝑇𝑇𝐷𝐷 is the time for de-
clarative queries, 𝑇𝑇𝑃𝑃 is the time taken to process all procedural queries, and 𝑇𝑇𝐵𝐵 is the

time to process mixed queries. The query type is based on the implementation of the
queries (declarative, procedural, or both).
However, since this is different for different kind of systems an alternative metric was
proposed.

𝐵𝐵𝐵𝐵 = �∏ 𝑃𝑃𝑖𝑖30
𝑖𝑖=1

30
 (2)

which also uses the geometric mean, but rather than summing the queries according to
the classes uses each processing time individually. Both metrics only consider a power
test style setup, where each query is processed individually and do not account for multi
stream setups, where multiple users submit queries to a system. Also, they measure the
runtime directly, meaning a smaller result is better. To improve this, a new metric was
proposed in [20], which changed from a geometric mean to an arithmetic mean for all
parts and incorporated not only the stream use case (throughput test 𝑇𝑇𝑇𝑇) but also a data
maintenance step (𝐷𝐷𝐷𝐷). The metric is scaled by the number of streams (𝑆𝑆) to compute
the total number of queries processed per hour (3600 seconds) incorporating regular
updates (individual times are measured in seconds):

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ = 30∗3∗𝑆𝑆∗3600
𝑆𝑆∗𝑇𝑇𝐿𝐿+𝑆𝑆∗𝑇𝑇𝑃𝑃+𝑇𝑇𝑇𝑇𝑇𝑇1+𝑆𝑆∗𝑇𝑇𝐷𝐷+𝑇𝑇𝑇𝑇𝑇𝑇2

 (3)

Although easy to understand, the arithmetic mean is not ideal in the case of highly
skewed processing times. Since some queries process much less data than others and
the data size processed does not scale linearly with the scaling factor for all queries,
this is an issue in TPCx-BB. In this case, some queries will have very limited influence
on the result of the metric. Therefore, a combination of geometric mean and arithmetic
mean was finally incorporated in the standard:

BBQpm@SF = SF ∗ 60 ∗ M
TLD + �TPT ∗ TTT 2 (4)

The load time 𝑇𝑇𝐿𝐿𝐷𝐷 (reduced by a factor of 10) is added to the geometric mean of the
power test time 𝑇𝑇𝑃𝑃𝑇𝑇 and the throughput test time 𝑇𝑇𝑇𝑇𝑇𝑇. Again, all times are measured in
seconds but the metric is reported per minute (60 seconds). The number of queries (M)
is divided by the sum of load and processing time, in order to get larger results for larger
scale factors, the metric is multiplied by the scale factor (SF). While the power test time
is compute as the geometric mean of all individual query processing times, the through-
put time is the total processing time of all streams divided by the number of streams.
Although not as easy to understand as the second metric, the final metric finds a good
compromise for enabling useful optimizations.

Machine learning techniques. Three queries in TPCx-BB implement clustering, re-
gression, and classification at various stages to satisfy the use case requirements. The
benchmark kit uses algorithms bundled with Apache MLlib to invoke machine learning
stages. Differing from standard based SQL API’s where answer sets can be matched
with relative accuracy, in machine learning techniques it is expected to see changes in
answer set for two reasons, a) changes to the algorithm in the same machine learning
library for different versions, b) introduction of a new machine learning library which

may use a different method to implement an algorithm. TPCx-BB being an end to end
system performance benchmark, leaves validating accuracy of an algorithm outside the
scope of the specification. However, foreseeing these issues the specification provides
general guidelines to address answer set changes triggered by change in library ver-
sions. In case no other changes apart from library updates are in the code or parameters
in the benchmark kit the results are consider as valid and the reference results can be
updated. In the case of new machine learning library, the new implementation may
modify the code and parameters in the benchmark kit, but needs to use the same input
data set and needs to match or improve the algorithm accuracy provided in the existing
library. TPCx-BB addresses these variations in the specification of machine learning
for the first time and thus, eases extensions of the benchmark and integration of changes
during the lifecycle of the benchmark.

Determinism Requirements. SQL queries written for benchmarks are typically repro-
ducible. They always return the exact same result independent of the execution engine.
This is an important requirement for auditing since it enables verifying the correctness
of query results and ensures all SUTs actually have to perform the same work. TPCx-
BB contains several non-SQL workloads, some of which are machine learning tasks.
These are typically implemented in a non-deterministic way and different algorithms
can produce different results. In fact, the result quality typically depends on the number
of iterations an algorithm has run for (up to the maximum achievable quality for an
algorithm). This is a challenge for performance benchmarking, since result quality can
be traded for performance. To alleviate this problem the kits algorithms are designed in
a way that they produce the exact same results, or – where this is not possible – other
implementations’ algorithm have to have at least the same quality as the default imple-
mentation.

Reaching consensus. Although BigBench was fully implemented in a kit when it was
proposed to the TPC, the specification had to be extended to cover all required regula-
tions and rules. In this process, multiple changes were introduced to, one the one hand,
fix minor deficiencies and to, on the other hand, not penalize certain vendors that have
slightly different / not completely compatible functionality. This is one of the most
delicate parts of standardization, since disagreement on this level can delay or even stop
a benchmark standardization. One of the more controversial topics during the standard-
ization of BigBench was the metric, as briefly touch upon above. To solve this, the TPC
subcommittee went through the process of preparing a model that can estimate perfor-
mance, based on previously collected information, and using this to estimate the result
of an execution. Being able to rethink and discuss setups with some numbers rather
than on a theoretical level made it much easier for the committee to reach consensus.

5 Experiments with TPCx-BB Benchmark

In this section, we present experiments that were executed on independent test plat-
forms, different frameworks, and small and large scale factors. We also discuss the

hardware resource utilization behavior of one of the test platforms. Table 1 shows test
details of the experiments.
The test runs were conducted with default settings, except where parameters needed to
be configured to ensure all queries are able to run successfully. The data set was gen-
erated using the default data generator and the tests were run using the driver provided
in the kit.

Test # Nodes in Cluster Framework Scale Factor
1 9 Hive on MapReduce 3000
2 8 Hive on Spark 1000
3 8 Hive on Tez 3000
4 8 SparkSQL 3000
5 1 Metanautix 1
6 8 Apache Flink 300
7 60 Hive on MapReduce 100000

Table 1 Test run experiments

5.1 Experimental Results

Test 1. The original implementation of the benchmark uses Hive on MapReduce. The
test platform was configured with suitable parameters for Yarn, HDFS, and Hive, the
benchmark was run with all three phases with two concurrent streams (default value)
and completed successfully. Phase elapsed times were: load: 2803s, power: 34076s,
and throughput: 54705s.

Test 2. Hive on Spark utilizes Apache Spark as execution engine for Hive. Hive on
Spark reuses Hive's planner / optimizer. The primary benefit is that Hive on Spark au-
tomatically gets full compatibility with all of Hive's features. The benchmark can run
with Hive on Spark, with small changes in the configuration and changes on the cluster
to enable Hive to use Spark as the execution engine. All the three phases of the bench-
mark completed successfully on the test platform. Phase elapsed times are: load: 9389s,
power: 13775s, and throughput: 13864s.

Test 3. Tez is designed to run batch and interactive workloads using the Hive API. In
this test the load phase completed successfully, in the power phase 29 of 30 queries
completed successfully. However Q16 failed to complete throwing an exception. The
elapsed times for load was 3719s.

Test 4. SparkSQL is an offering from Apache Spark to process structured data.
SparkSQL is compatible with Hive, making it possible to run queries written in HiveQL
without modifications. Enabling SparkSQL support for all 30 queries has been a multi
month effort, where the benchmark team worked with the Apache Spark community to
identify and fix missing features and bugs that prevented the complete execution of
TPCx-BB queries. In this test, we had to apply a patch to Spark version 1.6.1 to get all
queries to run successfully. This patch should be made available in yet to release Spark

version 2.0. All three phases of the benchmark completed successfully on the test plat-
form. Phase elapsed times were: load: 7896s, power: 24,228s, and throughput: 40,352s.

Test 5. The Metanautix query processing engine is part of Microsoft’s big data portfo-
lio. All of the TPCx-BB queries were translated in SQL including sentiment analysis
using a combination of window functions, user-defined Java functions, and pipelines.
The machine learning post-processing stages were excluded.

Test 6. Apache Flink is a big data streaming dataflow processing engine compatible to
the Hadoop stack. While having a different architecture with a purely stream-oriented
execution engine, it offers similar functionality as Apache Spark. As a proof of concept,
22 queries were implemented using Flink’s DataSet API. In order to cover all necessary
machine learning capabilities, a Flink-backed SystemML implementation was used for
two of the queries [11].

Test 7. The objective of this test to demonstrate readiness of the benchmark to scale
beyond small dataset and clusters. For this purpose, we selected a cluster with 60 nodes
and dataset scale factor of 100000 which is close to 100TB of input data. Hive on
MapReduce was used as execution framework. We ran load and power phase and
skipped the throughput phase due to limited availability of cluster time. Phase elapsed
times were: load: 19,941s and power: 401,738s. During the tests, we found that the
usage of realistic data distribution models in the benchmark result in a number of
skewed tasks on Hive on MapReduce, where skewed tasks processes many more rec-
ords than others and took much more time to complete. While this behavior is seen
across all scale factors and cluster sizes, the result is amplified running the benchmark
on the larger dataset and more number of nodes, challenging the efficiency of the query
engine.
This set of experiments shows that various big data frameworks are able to run the
benchmark with modification or no modifications, as demonstrated by experiments 1-
6. This proves the versatility of the benchmark kit and shows that it can be used to
compare and distinguish multiple frameworks for their features and performance. Par-
tial execution of the kit on Metanautix shows that non-Hadoop-based frameworks are
capable of adapting the benchmark. Partial execution of the benchmark on Apache
Flink demonstrates the system agnostic nature of TPCx-BB, the use cases can be im-
plemented natively without higher level SQL expression API’s. Data and cluster scale
tests bring out issues which are mostly uncaught during the development stages proving
that a benchmark’s role goes beyond providing publications but also helping vendors
iteratively tune their platforms.

5.2 Resource Utilization Tests

Hardware platform tuning is often used to optimize the SUT to its maximum efficient
state, i.e., the configuration where the test hardware is fully utilized with no obvious
bottlenecks. Analysis of the hardware behavior under the load is crucial to understand
the baseline performance and identify and resolve any bottlenecks. In this section, we

analyze hardware resource utilization comparing the utilization patterns of the test plat-
form by running the benchmark two times on a fixed hardware setup, scale factor, and
big data framework. In the second test, we increase the number of concurrent streams
in the throughput phase from 2 to 4.

Benchmark Setup. The cluster consists of eight HPE DL360 G8 nodes, with the con-
figuration shown in Table 2. The experiments were conducted running all three phases
of TPCx-BB on Scale Factor 3000. Hive on MapReduce was selected as the framework.
Intel’s Performance Analysis Tool3 was used to collect the utilization pattern from the
cluster nodes.

Node Role Hardware Software
1 Master Server 24C,192GB RAM, 8.5TB storage, 10Gbe RHEL 6.7, CDH 5.6

2-8 Worker Node 24C,256GB RAM, 8.5TB storage, 10Gbe RHEL 6.7, CDH 5.6
Table 2 Cluster configuration

Table 3 shows the elapsed times for load, power, and throughput phase for both of the
test runs. The load phase consists of reading the
generated data to create the test dataset in ap-
propriate format; copy data into final location;
data preparation including metadata creation,
population, and computation of database statis-
tics. The power phase is designed to measure
the performance of the SUT when processing all the queries in sequential order. The
elapsed times for load and power phases are comparable with variation expected from
a Hadoop system. In this test we are in particular interested in the system characteristics
of the throughput phase. During this phase, all queries are executed using concurrent
streams. Each query stream runs all queries, where each stream has a different order of
queries. As can be seen in the table, the elapsed time for the throughput phase doubles
for 4 concurrent streams in comparison to 2 concurrent streams.

Analysis of Utilization Pattern. The charts in Figures 2 show the hardware utilization
pattern behavior of the cluster when running the benchmark with 2 and 4 streams. The
chart shows comparison of the major components of the cluster, i.e., CPU utilization,
memory utilization, I/O bandwidth, and network I/O. Since we have captured data at
one second samples, the chart is compressed on the time scale to show the complete
execution of the benchmark.

3 PAT - https://github.com/intel-hadoop/PAT

Table 3 Elapsed times

Phase 2 Streams 4 Streams
Load 2803 2796

Power 34076 34179
Throughput 54705 104565

Figure 2 Processor, memory and I/O utilization

The first mark in the time scale in Figure 2 marks the end of the load phase of both test
which is at ~ 2,800s. The load phase involves data staging and replicating over data
nodes that results in a cluster management overhead. This governs the performance of
this stage with significant CPU and memory utilization, I/O bandwidth, and network
I/O. The load phase uses software compression to compress the raw input data into
optimized columnar format, resulting in additional CPU utilization.

The power phase utilization can be seen between the first and second mark in the time
scale in Figure 2. The individual peaks are signatures of each query being run in se-
quential order. Additional insight of the queries can be gained by mapping the running
time of each to the time dimension on the charts. The independent utilization pattern
for each query highlights that, unlike the constant ramp-up and down seen in micro-
benchmarks, TPCx-BB exhibits use case driven utilization patterns close to real world
big data use cases, where the platform needs to accommodate both short and long run-
ning tasks. It is possible to go into more fine granular analysis of each query and gain
insight into the individual system resource usage. This leads to a better understanding
of the query and system behavior when tuning individual queries. As expected the
power phase shows very similar comparative elapsed times between the two tests.
In Figure 2, the second mark indicates the start of the throughput phase, the CPU utili-
zation shows a steady high processor usage. A more detailed analysis showed 70 %
utilization for two concurrent streams and 90% utilization for four concurrent streams.
The memory, storage, and network I/O are sufficiently utilized but nowhere close to
the processor utilization. We can estimate the overhead effect when observing the ratio
of the throughput phase execution time. As the number of streams doubled from 2 to 4,

the execution time increases by a factor of 2. The overhead of running more streams
can be inferred by varying the number of streams. The throughput phase reflects the
nature of big data workloads comprising a mix of both short running and long running
tasks executing side by side on a cluster [12].
The emphasis of TPCx-BB to simulate real-world scenario for big data batch analytics
helps to extrapolate the findings and apply the takeaways when deploying big data ap-
plications. By running the above experiments we summarize few key takeaways:

• When selecting the hardware for big data clusters, it is important to evaluate com-
puting power, memory capacity, storage, and network bandwidth in conjunction with
intended data set size and number of tasks required to run side by side.

• Contrary to common belief that big data workloads are I/O bound, we notice – with
an adequate I/O setup – big data workloads tend to be compute bound. Similar results
are also reported by [13,21] during their independent tests.

• Efficient utilization of hardware resources highly depends on framework tuning. In
this example, we believe – as software schedulers evolve – the utilization pattern of
peaks and valleys of will reduce when freeing hardware resources and reducing the
wait times for waiting queued tasks.

• Selective utilization of accelerators and off-load engines could be beneficial to in-
crease overall efficiency of the cluster. An example could be load phase compression
off-load.

6 Benchmarking Emerging Big Data Use Cases

In recent years, there have been large advances in analytics software. As big data
reaches a larger audience, the community has sought to commoditize general purpose
algorithms and systems for increasingly elaborate analytical tasks. The generation of
large datasets has been increasing, leading to the development of new big data pro-
cessing frameworks, which is predominantly driven by “People and Things”. For ex-
ample, “People” interacting via social media portals and cloud enabled applications are
driving an ever increasing volume of data into the cloud [14]. “Things” are intelligent
and connected devices capable of making semi-autonomous decisions using models re-
ceived by cloud-based or -hosted compute farms. Addressing these two important seg-
ments with a relevant benchmark, will help the industry and academic community to
validate the performance of new implementations.
There is a broad range of new applications for these analytical capabilities, to name a
few:

• Recommendation systems: graph processing, stream processing, machine learning.
• Search and ranking: graph processing, machine learning
• Fraud detection: machine learning, ad-hoc analysis.
• Internet-of-Things (IoT): stream processing, lambda processing.
• Image, video, audio, and natural language processing: deep learning using neural

networks

For the purpose of this paper and benchmarking, we select two categories of the ad-
vances as follows:

• Processing frameworks
• Machine learning

6.1 Processing frameworks
Stream. Stream processing is
mainly used in real-time analytics,
where the events are streamed in
form of micro or mini batches. A
data stream can be as simple as time
series events displayed in real-time,
e.g., temperature readings from a
sensor, or processed as complex
events by applying computation
techniques in real-time, e.g., identi-
fying failed components in an air-
plane using anomaly detection tech-
niques. In addition to acting on the
incoming stream in real-time, events are stored for feedback-based learning and histor-
ical trend analysis using batch analytics.
Data from a device in the field can be permuted and aggregated at the source or in mid-
way before it is transferred to the cloud. The lambda architecture [15] is an example of
a stream processing framework using three layers of processing.

• Batch Layer - curates the master dataset by storing all data entering the system using
batch processing techniques.

• Serving Layer – enables fast ad-hoc insights extracted from data curated in the batch
layer.

• Speed Layer – provides real-time insights from the incoming/streamed data, includ-
ing running machine learning algorithms, on real-time data.

An IoT benchmark based on such an architecture can serve as an excellent proxy to test
functions involved with streaming and real-time analytics.

Graph. Human interaction with the
internet changed the Web 2.0 [16].
The emergence of various social net-
working platforms, search engine op-
timizations, and the ability to connect
these human interactions with busi-
ness models was unthinkable just a
decade ago. Graph processing systems
are used in analyzing networks of re-
lationships normally represented in

Figure 3 Lambda Architecture

Figure 4 Graph processing framework

data objects referred as nodes and edges. Some large graph datasets can span trillions
of edges [17].
Graph processing requires a robust framework with characteristics such as, fault toler-
ant storage, fast database, scale-out graph analysis engines, scale-out computation en-
gine, and efficient algorithms as illustrated in Figure 3.

6.2 Machine learning

Machine learning techniques continue to grow in significance but also are expanding
into different areas of application. With this growth the field is transitioning from a few
“bespoke” applications; e.g., image recognition, machine translation, speech recogni-
tion, and robotics, to more commoditized ones; e.g., fraud detection. We will focus on
the latter, which typically operate on discrete symbols such as words as opposed to
continuous input such as from a microphone or historical revenue.
Machine learning has a broad range of applications with different algorithms being em-
ployed. These algorithms typically fall into two categories:

1. Regression, which works to predict a variable’s value (e.g., projection of revenue),
2. Classification, is concerned with predicting a label for a sample (e.g. male/female,

will or will not buy).

Moreover, a task can be structured where the prediction happens on a graph or sequence
such as machine translation generating a sequence of words in a foreign language. The
task can also be unstructured, where the desired output is a single value like the next
stock price, or whether a fraud occurred or not. Training of a model can be supervised,
unsupervised, or utilizing reinforcement learning. In each of these scenarios, one can
define a measure of quality such as in the case of fraud detection;

1. A weighted sum of false positives - fraud was declared when a transaction was in
good standing

2. False negatives - fraud remained undetected

Because the data are generated automatically, they have special properties which can
be exploited by the algorithms. Therefore, as in TPCx-BB, we should factor in the speed
of the algorithms.
TPCx-BB as a batch analytics benchmark provides excellent coverage for advanced
analytics to examine large datasets. Most of the benchmark is implemented using data
management primitives and functions. Although there are a handful of use cases in
TPCx-BB invoking machine learning algorithms4, TPCx-BB is far from being a com-
prehensive representation of analytics using machine learning algorithms. Currently,
neither streaming processing, graph processing, nor deep learning are represented in
TPCx-BB. Given the recent interest in deep learning, and its broad range of applicabil-
ity, it should be given special consideration.
There have been some efforts in the analytics community to address these areas [18,
19]. However, there hasn’t been any collaborative push from the industry and academia
to create a use case based benchmarking framework. We think it would be impractical

4 Examples are clustering, logistic regression, and sentiment analysis.

to expand the coverage of the TPCx-BB benchmark to include all of these, therefore,
they should be the focus of future benchmarks.

7 Conclusion

In 2013, the proposal “BigBench” was brought to the attention of the analytics commu-
nity as a candidate for a first end-to-end big data benchmark. Since then idea has
evolved, been put under the scrutiny of experts and public alike to finally emerge as
TPCx-BB, the first industry standard big data benchmark with relevance to big data use
cases. During this process, several changes went into the benchmark, which we dis-
cussed in this paper. Preliminary results are encouraging and it already has seen adop-
tion with first results being published5. The benchmark helps the big data software eco-
system to identify performance bottlenecks, feature gaps, and scaling issues, which pre-
viously often remained undiscovered. The benchmark has also helped driving innova-
tion in non-Hadoop ecosystems.
In this paper, we have tracked the course of the BigBench journey, gave a snapshot of
its current state and potential changes coming in the future. We have conducted exten-
sive experiments using the benchmark, and offered observations and analyses of several
platforms. This paper offers a glimpse of the TPC standardization process, challenges
and means to navigate through them successfully.

Acknowledgements. We would like to thank Sreenivas Viswanada from Microsoft
Corporation for running experiments on Metanautix. Yao Yi and Zhou Yi from Intel
Corporation for their help to run 100TB experiment. Michael Frank and Manuel
Dansich from bankmark for their work on the TPCx-BB benchmark kit.
This work has been partially supported through grants by the German Ministry for Ed-
ucation and Research as Berlin Big Data Center BBDC (funding mark 01IS14013A) as
well as through grants by the European Union’s Horizon 2020 research and innovation
program under grant agreement 688191.

8 References

1. Frank McSherry, Michael Isard, and Derek G. Murray: Scalability! But at what COST? In
HotOS ’15.

2. Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain Crolotte,
and Hans-Arno Jacobsen. BigBench: towards an industry standard benchmark for big data
analytics. In SIGMOD ’13.

3. Raghunath Othayoth Nambiar, Meikel Poess, Akon Dey, Paul Cao, Tariq Magdon-Ismail, Da
Qi Ren, Andrew Bond: Introducing TPCx-HS: The First Industry Standard for Benchmarking
Big Data Systems. TPCTC ’14.

4. Meikel Poess, Raghunath Othayoth Nambiar, and David Walrath. Why you should run TPC-
DS: a workload analysis. VLDB ’07.

5 Hewlett Packard Enterprise ProLiant DL for Big Data – http://www.tpc.org/3501

5. Tilmann Rabl, Chaitanya Baru, Milind Bhandarkar, Meikel Poess, and Raghunath Nambiar.
Setting the Direction for Big Data Benchmark Standards. In TPCTC ’12.

6. Devadutta Ghat, David Rorke, and Dileep Kumar. New SQL Benchmarks: Apache Impala
(incubating) Uniquely Delivers Analytic Database Performance. [online]. https://blog.clou-
dera.com/blog/2016/02/new-sql-benchmarks-apache-impala-incubating-2-3-uniquely-deli-
vers-analytic-database-performance/

7. Transaction Processing Performance Council. TPC Express Benchmark™ BB. [online]
http://www.tpc.org/tpcx-bb

8. Chaitan Baru, Milind Bhandarkar, Carlo Curino, Manuel Danisch, Michael Frank, Bhaskar
Gowda, Jie Huang, Hans-Arno Jacobsen, Dileep Kumar, Raghunath Nambiar, Meikel Poess,
Francois Raab, Tilmann Rabl, Nishkam Ravi, Kai Sachs, Lan Yi, and Choonhan Youn An
Analysis of the BigBench Workload. In TPCTC ’14.

9. Tilmann Rabl, Michael Frank, Hatem Mousselly Sergieh, and Harald Kosch. A data generator
for cloud-scale benchmarking. In TPCTC ’10.

10. Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag, Fabian
Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl, Felix Naumann,
Mathias Peters, Astrid Rheinländer, Matthias J Sax, Sebastian Schelter, Mareike Höger,
Kostas Tzoumas, Daniel Warneke: The Stratosphere Platform for Big Data Analytics. VLDB
Journal 2014. Volume 23(6), pages 939-964.

11. Matthias Boehm, Douglas Burdick, Alexandre V. Evfimievski, Berthold Reinwald, Prithviraj
Sen, Shirish Tatikonda, and Yuanyuan Tian. Compiling machine learning algorithms with
SystemML. In SoCC ‘13.

12. Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy Katz. The Case for Evaluating
MapReduce Performance Using Workload Suites. In MASCOTS '11.

13. Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon Chun. Mak-
ing Sense of Performance in Data Analytics Frameworks. In NSDI ’15.

14. Daniel E. O'Leary. ‘Big Data’, the ‘Internet of Things’ and the ‘Internet of Signs’. In Intelli-
gent Systems in Accounting, Finance and Management. Volume 20(1), pages 53-65.

15. Nathan Marz and James Warren. Big Data: Principles and best practices of scalable realtime
data systems. Manning Publications. 2015.

16. Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty
Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing.
SIGMOD ’10.

17. Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi Muthukrish-
nan. One Trillion Edges: Graph Processing at Facebook-Scale. PVLDB 8(12): 1804-1815
(2015).

18. Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Salapura. SparkBench: a compre-
hensive benchmarking suite for in memory data analytic platform Spark. In CF ’15.

19. Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with YCSB. In SoCC ’10.

20. Tilmann Rabl, Michael Frank, Manuel Danisch, Bhaskar Gowda, and Hans-Arno Jacobsen.
Towards a Complete BigBench Implementation. In WBDB ’14.

21. Yanpei Chen, Alan Choi, Dileep Kumar, David Rorke, Silvius Rus, and Devadutta Ghat. How
Impala Scales for Business Intelligence: New Test Results. [online].
http://blog.cloudera.com/blog/2015/09/how-impala-scales-for-business-intelligence-new-
test-results/

https://blog.cloudera.com/blog/2016/02/new-sql-benchmarks-apache-impala-incubating-2-3-uniquely-delivers-analytic-database-performance/
https://blog.cloudera.com/blog/2016/02/new-sql-benchmarks-apache-impala-incubating-2-3-uniquely-delivers-analytic-database-performance/
https://blog.cloudera.com/blog/2016/02/new-sql-benchmarks-apache-impala-incubating-2-3-uniquely-delivers-analytic-database-performance/
http://www.tpc.org/tpcx-bb

9 Appendix A

K-Means using SQL. It is possible to write K-means using SQL and extensions in the
Metanautix Quest system. The full implementation is complex, requiring an iteration
(implemented using SQL triggers), but also rebalancing when a class becomes empty.
For simplicity we assume that each point is described by an id, and a coordinate vector
x. Using a SQL UDF, we can write the Distance function. A user-defined aggregation
function, AVG_VECTOR, computes the average vector. We assume 50 classes. We
outline the steps:

1. Initialization of class centroids

CREATE TABLE Centroids .. AS
 SELECT ROW_NUMBER() OVER (ORDER BY RANDOM()) r, x FROM
Data WHERE r <= 50

2. Assigning data points to classes

CREATE TABLE ClassAssignment .. AS
 SELECT id, r FROM Centroids C, Data D WHERE
 Distance(D.x, C.x) = (SELECT MIN(Distance(D.x, C2.x))
FROM Centroids C2)

3. Compute new centroids

CREATE TABLE NewCentroids .. AS
 SELECT r, AVG_VECTOR(x) x FROM Centroids C, ClassAs-
signment CA, Data D WHERE
 C.r = CA.r AND CA.id = D.id

Using window functions. Window functions can be used where a MapReduce, or mul-
tiple passes would be otherwise required. As an example, we show how Query 02 can
be rewritten.

WITH Session as (
SELECT DISTINCT
 sessionid,
 wcs_item_sk
FROM
(SELECT
 *,
 concat(cast(wcs_user_sk as string), '_', cast(bucket as
string)) sessionid
FROM
(SELECT
 *,
 (first(tstamp_inSec) over (partition by wcs_user_sk
 order by tstamp_inSec desc)
- tstamp_inSec) / 3600 bucket

FROM
 (SELECT
 wcs_user_sk,
 wcs_item_sk,
 (wcs_click_date_sk * 24 * 60 * 60 +
wcs_click_time_sk) AS tstamp_inSec
 FROM web_clickstreams
 WHERE wcs_item_sk IS NOT NULL
 AND wcs_user_sk IS NOT NULL))))

	1 Introduction
	2 Related Work
	3 TPCx-BigBench (TPCx-BB)
	3.1 TPCx-BB Overview
	3.2 Benchmark Kit
	Benchmark Driver. Implemented using Java and Bash scripts, the versatile benchmark driver is the heart of the kit. It orchestrates the workflow involved in executing the benchmark on the SUT. Support for running multiple concurrent query streams, auto...
	Data Generator. The kit includes a parallel data generator based on the Parallel Data Generation Framework [9] to generate the input data set required for the benchmark. It is implemented as a Java program that runs as a MapReduce job on the SUT and c...
	Workload. The kit is designed to have self-contained modules for each framework capable of running the TPCx-BB. All necessary binaries, configuration files, and answer set reside inside the framework module. This makes it easy for kit maintenance and ...

	3.3 Supported Big Data Frameworks
	Big Data Ecosystem. Big data has transformed industries and research, spawning new solutions for addressing a wide range of technical challenges. Big data ecosystem today offers different end-to-end analytic strategies, scale-up frameworks for operati...
	SQL on Hadoop. One of the three V's used to describe Big Data is "Variety." Despite the diversity of data stored in Big Data systems, much of it still structured or can be transformed into a form with enough structure that a broad range of useful que...
	Non Hadoop Frameworks. TPCx-BB is a good fit for engines designed for processing or aggregating large amounts of data and that can either natively execute the machine learning and natural language processing required by BigBench, or can call out to ot...
	TPCx-BB in the cloud. At the high level TPCx-BB does not differentiate running the benchmark on SUT hosted in a datacenter or in the cloud. In the case of Infrastructure as a Service (IaaS) offerings from various cloud vendors, the benchmark can run w...

	4 TPC Standardization of Big Bench
	4.1 Challenges during the Standardization
	Execution Rules. The benchmark specification defines a set of narrow rules to ensure the results are consistent with the standard, auditable by an independent auditor and close any potential for gaps, which could be exploited to create benchmark speci...
	Scale Factor. TPCx-BB’s data set scales linearly with the scaling factor (SF). In order to be realistic across a large bandwidth of data set sizes (1 GB to 1PB), the individual tables do scale in different ratios. While the large fact tables (sales an...
	Metric. TPCx-BB’s metric underwent a series of changes along with the execution model until its final version made it to the standard. The initially proposed metric was specified as the geometric mean of the execution time:
	Machine learning techniques. Three queries in TPCx-BB implement clustering, regression, and classification at various stages to satisfy the use case requirements. The benchmark kit uses algorithms bundled with Apache MLlib to invoke machine learning s...
	Determinism Requirements. SQL queries written for benchmarks are typically reproducible. They always return the exact same result independent of the execution engine. This is an important requirement for auditing since it enables verifying the correct...
	Reaching consensus. Although BigBench was fully implemented in a kit when it was proposed to the TPC, the specification had to be extended to cover all required regulations and rules. In this process, multiple changes were introduced to, one the one h...

	5 Experiments with TPCx-BB Benchmark
	5.1 Experimental Results
	Test 1. The original implementation of the benchmark uses Hive on MapReduce. The test platform was configured with suitable parameters for Yarn, HDFS, and Hive, the benchmark was run with all three phases with two concurrent streams (default value) an...
	Test 2. Hive on Spark utilizes Apache Spark as execution engine for Hive. Hive on Spark reuses Hive's planner / optimizer. The primary benefit is that Hive on Spark automatically gets full compatibility with all of Hive's features. The benchmark can r...
	Test 3. Tez is designed to run batch and interactive workloads using the Hive API. In this test the load phase completed successfully, in the power phase 29 of 30 queries completed successfully. However Q16 failed to complete throwing an exception. Th...
	Test 4. SparkSQL is an offering from Apache Spark to process structured data. SparkSQL is compatible with Hive, making it possible to run queries written in HiveQL without modifications. Enabling SparkSQL support for all 30 queries has been a multi mo...
	Test 5. The Metanautix query processing engine is part of Microsoft’s big data portfolio. All of the TPCx-BB queries were translated in SQL including sentiment analysis using a combination of window functions, user-defined Java functions, and pipelin...
	Test 6. Apache Flink is a big data streaming dataflow processing engine compatible to the Hadoop stack. While having a different architecture with a purely stream-oriented execution engine, it offers similar functionality as Apache Spark. As a proof o...
	Test 7. The objective of this test to demonstrate readiness of the benchmark to scale beyond small dataset and clusters. For this purpose, we selected a cluster with 60 nodes and dataset scale factor of 100000 which is close to 100TB of input data. Hi...

	5.2 Resource Utilization Tests
	Benchmark Setup. The cluster consists of eight HPE DL360 G8 nodes, with the configuration shown in Table 2. The experiments were conducted running all three phases of TPCx-BB on Scale Factor 3000. Hive on MapReduce was selected as the framework. Intel...
	Analysis of Utilization Pattern. The charts in Figures 2 show the hardware utilization pattern behavior of the cluster when running the benchmark with 2 and 4 streams. The chart shows comparison of the major components of the cluster, i.e., CPU utiliz...

	6 Benchmarking Emerging Big Data Use Cases
	6.1 Processing frameworks
	Graph. Human interaction with the internet changed the Web 2.0 [16]. The emergence of various social networking platforms, search engine optimizations, and the ability to connect these human interactions with business models was unthinkable just a dec...

	6.2 Machine learning

	7 Conclusion
	Acknowledgements. We would like to thank Sreenivas Viswanada from Microsoft Corporation for running experiments on Metanautix. Yao Yi and Zhou Yi from Intel Corporation for their help to run 100TB experiment. Michael Frank and Manuel Dansich from bank...

	8 References
	9 Appendix A

